
Abstract Interpretation of Prolog Programswith Cut and Built-ins�Agostino Cortesi Gilberto Fil�e Sabina RossiDept. of Mathematics - University of PadovaVia Belzoni 7, I-35131 Padova ITALYfcortesi, �le, srossi g@pdmat1.unipd.itAbstractWe are interested in the Abstract Interpretation of real Prolog programs andin particular in handling the control primitive cut at the abstract level.A cut can be executed during the abstract computation only if it is sure that thesame cut is executed in all the corresponding concrete computations. Therefore,in order to execute cuts correctly during the static analysis, information aboutthe sure success or failure of the goals in the concrete computations must beavailable. We call such information control information. Control informationcan be inferred during the static analysis. In particular, we show that, withthe abstract domain EXP , de�ned in [CFil 91], one can easily infer controlinformation when treating the Prolog built-ins corresponding to tests on theterm instantiations. Assuming that control information is inferred during thestatic analysis, we de�ne a tabled interpreter for the Abstract Interpretationof Prolog programs with cuts and built-ins. It executes a cut whenever thecontrol information guarantees that the same cut is also reached during theconcrete computations. This generic �xpoint algorithm always terminates on�nite abstract domains.IntroductionAbstract Interpretation has been successfully developed in recent years for the staticanalysis of programs. It has been applied to many types of languages. Originally,
ow-chart languages were considered [CCou 77]. Starting in the early 80's with thework of Mellish [Mel 81] many researchers studied its application to logic program-ming [JoS� 87, Bru 88, Deb 89, HeRo 89, MaS� 89, CFWi 91, GiHe 91, CFWi 92,CCou 92] and more recently to concurrent constraint logic languages [MaS� 90,Codo 90, CFM 90].�Work supported by P.F. Sistemi Informatici e Calcolo Parallelo of CNR, grant 91.00026.691

Every Abstract Interpretation technique works roughly as follows: �rst one de�nesa simple (abstract) domain that represents the desired information and secondly onemimics the execution of the programs on this domain.Our aim is to de�ne a generic �xpoint algorithm for the Abstract Interpretation ofreal Prolog programs. In particular we are interested in handling the control primitivecut at the abstract level. In order to treat cuts during the abstract computation,information about the sure success of the goals in the concrete computations must beavailable. In fact, if a cut, that is not executed during the concrete computation (say,because of an earlier failure), is executed during the abstract one, then there may beconcrete LD-derivations that are not simulated in the abstract computation, leadingto an incomplete static analysis. One simple solution to this problem is to ignore thecuts during the abstract computation. However, it is interesting to be able to executecuts also at the abstract level in order to eliminate from the abstract computationsome useless LD-derivations and to obtain a more e�cient and more precise staticanalysis. Obviously, it is safe to execute a cut during the abstract computation whenit is sure that the same cut is executed in all the corresponding concrete computations.Therefore , information about the sure success or failure of the goals in the concretecomputations must be inferred at the abstract level. Let us call this knowledge controlinformation from now on.One may wonder whether it is realistic to assume that control information can beinferred during a static analysis. We show that, with the abstract domain EXP [CFil91] representing groundness and covering [Mel 81, Deb 89, MaS� 89], sharing [Deb 89,HeRo 89], freeness [Deb 89] and compoundness [Mel 81] substitution properties (butnot real sophisticated type information), the inference process can be easy. More pre-cisely, treating on EXP the Prolog built-ins that are tests on the term instantiations,control information about "sure success", "sure failure" and "unsure success" of thecorresponding concrete tests can be produced. Assuming that control informationis inferred during the abstract computation, we de�ne a generic �xpoint algorithmfor the Abstract Interpretation of Prolog programs with cuts and built-ins. This isdone following the approach of [CoFi 91] in which both the concrete computation of aProlog (and constraint) program P and its static analysis are obtained uniformly byexecuting them on di�erent domains with the same general tabled interpreter I. In[CoFi 91], I is obtained by "adding a tabulation mechanism" to an interpreter thatnondeterministically searches the SLD trees. Here we start from a standard Prologinterpreter St-I and add a tabulation mechanism to it. St-I0 is the obtained inter-preter. St-I0, in order to execute cuts safely, computes also control information thatis consulted every time a cut is encountered in order to decide whether to execute itor to ignore it. St-I 0 is a generic �xpoint algorithm for the static analysis of Prologprograms.This paper is organized as follows. Section 1 contains some preliminary de�nitions.In Section 2 we show how control information can be inferred by treating some Prologbuilt-ins on EXP . Section 3 contains the description of the tabled interpreter St-I0.

1 PreliminariesThe reader is assumed to be familiar with the basic concepts of Logic Programming,see for instance [Llo 87], [Apt 90]. If A is a relation, A[is the re
exive, symmetricand transitive closure of A: Let V denote an arbitrarily large �nite set of variables;� denotes a ranked alphabet of function and predicate symbols. Let T (�;V) be theset of all terms constructed over � and V: If t is a term, or an atom, or a clause,V ar(t) denotes the set of all the variables occurring in t: A substitution � is a functionV! T (�;V). Subst denotes the set of all idempotent substitutions.A program over a computation domain D is a �nite ordered set of de�nite clauses ofthe form: p(�X):�d;A1; : : :Anwhere d 2 D, p(�X) is an atom with �X that is a variable vector, each Ai is either anatom q(�Y) with �Y that is a variable vector or a built-in or the primitive cut. Analo-gously a goal over a computation domain D is de�ned.Observe that any Prolog program can be put into this form where d will be a substi-tution.The abstract domain EXP , de�ned in [CFil 91], synthesizes the groundness, cov-ering, sharing, boundness and freeness substitution properties. Its elements are 5-tuples of the form � = (GR�; C�; SH�; B�; F�) such that GR�; B�; F� � V,C� � (}V � }V), SH� � (V �V).The abstraction on EXP of a substitution � 2 Subst is the element �� de�nedcomponentwise by:GR� = fx 2 V : V ar(�x) = ;g;C� = f(S; S0) 2 }(V)� }(V) : V ar(�S) � V ar(�S0)g;SH� = f(x; y) 2 V �V : V ar(�x) \ V ar(�y) 6= ;g[;B� = fx 2 V : �x = f(t1; : : : tm) for a function f of arity m > 0g;F� = fx 2 V : �x is a variableg;and the abstraction of an arbitrary set � � Subst; � 6= ;, is the element �� de�nedcomponentwise by:GR� = \fGR� : � 2 �g;C� = \fC� : � 2 �g;B� = \fB� : � 2 �g;SH� = ([fSH� : � 2 �g)[;F� = fx 2 V : x 2 F�8� 2 � and if (y; x) 2 SH� then (fyg; fxg) 2 C�g:� = (GR�; C�; SH�; B�; F�) abstracts every � � Subst; � 6= ; such that GR� �GR�; C� � C�; SH� � SH�; B� � B� and F� � F�.The abstract uni�cation function � and the function for treating the built-ins onEXP , �, are de�ned as follows. Let
 be the concretization function, �, �1 and�2 2 Subst, A, B be two atoms.� is from (EXP 2�Subst) to EXP such that, 8�1 2
(�1), 8�2 2
(�2) and 8 A, Bwith � = mgufA = Bg, then �(�1;�2; �) = �0 abstracts the result of the concrete

uni�cation of the atom A under �1 with the atom B under �2 (see [CFil 91]).� is from EXP � (Built � ins) to EXP such that 8� 2
(�), �(�; b) = �0 ab-stracts the result of the concrete computation of the built-in b under the activationsubstitution � (see [CFR 92]).2 Control Information Inferred by Treating Pro-log's Built-ins on EXPWhen considering Abstract Interpretation over a domain, like EXP , representinginformation on the instantiation of the program variables, the sure success or failureof the uni�cation between two atoms can be inferred only in trivial cases. However,it is possible to obtain more interesting control information when one considers somebuilt-ins of "real" Prolog [ClMe 84, LPA 88]. The reason of this is that some built-insare tests on the instantiation of the variables. Hence in these cases, the abstractstates of EXP allows us to answer the tests. We illustrate this point in the followingexample.Example 2.1 Consider the behaviour of the goal :-var(X) under an activation sub-stitution �. By the declarative semantics of the built-in var(X), such a goal fails if�(X) is not a free variable, otherwise it succeeds and its answer substitution is exactly�. No uni�cation is made, but only a test about the freeness of X with respect to �.Let us mimic this situation at the abstract level. Let � 2 EXP be an activation state.Three cases can apply.(1) If X2 (GR� [B�) then we are certain that X is not free with respect to anysubstitution � 2
(�). According to the concrete case, also the abstract compu-tation will signal sure failure.(2) If X2 F� then the built-in surely succeeds, because in this case X is free withrespect to all substitutions in
(�).(3) Otherwise,
(�) may contain both substitutions � such that X is free with respectto � and substitutions �0 such that X is not free with respect to �0. In both cases� would be modi�ed into �0 stating that the variable X is free. Thus, wheneverit is possible, the resulting abstract state �0 will be obtained from � by modifyingonly its F -component, that will become F� [fXg.The example above suggests that the result of an abstract test �(�b), where � 2EXP and b is the built-in, can be one of the following three: (i) (?; s) meaning "surefailure"; (ii) (�; s) meaning "sure success"; (iii) (�0; u) meaning "unsure success"with outcome the abstract state �0. It satis�es the following correctness conditions:in case (i) 8� 2
(�) the goal : �b, under the activation substitution �, fails; incase (ii) 8� 2
(�), the goal : �b, under the activation substitution �, succeeds andthe corresponding answer substitution �0 belongs to
(�); in case (iii) 8� 2
(�),if the goal : �b, under the activation substitution �, does not fail and if �0 is thecorresponding answer substitution then �0 2
(�0).

Thus one can assume that the result of �(�; b) is always a pair (�; i), instead of thesingle value �, where the second component i can be s for "sure" or u for "unsure".The information i is called control information.In this way, most of Prolog's built-ins can be treated in EXP obtaining controlinformation from them. For details see [CFR 92].3 The Tabled Interpreter St-I 0Using control information, we de�ne a tabled interpreter for the static analysis ofProlog programs, treating cuts and built-ins.Given a goal G, over a domain D of the form :�d;A1; : : : ; An with A1 = p(�X),then the left-most call pettern of G islf(G) = [p(�X);�(d; �X)]where �(d; �X) is the projection of d on the variables of �X .Observe that the left-most call-pattern of a goal is de�ned only if its left most symbolis an atom.A left-most call pettern [p(�X); d] with �X = (X1; : : : ; Xn) is called equivalent to theleft-most call pattern [p(�Y); d0] with �Y = (Y1; : : : ; Yn), noted [p(�X); d] � [p(�Y); d0],when dfX1=Y1; : : : ; Xn=Yng = d0.The idea of the tabled computation is as follows: collect in a table all the left-mostcall patterns of the goals found so far in the computation, and whenever a new goal Gis produced, check whether the table already contains a left-most call pattern lf(G0)equivalent to lf(G). In this case use for expanding G the solutions of lf(G0) thathave been collected in the table. G0 is called solution node and G look-up node. In acase this tabulation mechanism is not according to the depth-�rst left-to-right com-putation rule. It is when G and G0 are goals of the same derivation, but lf(G) is notpart of the proof of lf(G0). The situation is the following:where s represents a solution for lf(G0). In this case, by means of the tabulationmechanism just described, the solutions of lf(G0) are used for expanding G and thusthey are all computed before of the corresponding solutions of lf(G). This is notaccording to the depth-�rst computation rule, by means of that, in this case G wouldbe completely solved before of G0.In order to perform a tabulationmechanism according to that rule, when this situationoccurs, we change the roles of G and G0 as follows. G becomes a solution node andG0 is turned into a look-up node, in such a way that G is completely solved before of

G0 and, when the computation backtracks to G0, the solutions of lf(G) are used tocontinue the computation of G.This new tabulation mechanism can be added to the standard Prolog interpreter,St-I. It performs loop-check as follows. Consider the situation:in which lf(G) � lf(G0), lf(G) is part of the proof of lf(G0), and s1; : : : ; sn are thesolutions of lf(G0) computed so far. In this case the solutions of lf(G0) are used forexpanding G, and when there are no more solutions in the table to consider, then aloop is detected. This is because the next alternative for lf(G) would be the samethat, in the proof of lf(G0), has produced it.What happens when cuts occur in the goals?It is clear that, for treating cuts correctly, the solutions in the table associated to alf(G0) such that G0 contains cuts, cannot be used for expanding another goal G withequivalent lf(G) that is not part of the proof of lf(G0). This is true independently ofwhether G contains cuts or not. In fact in this case, the solution list of lf(G0) couldhave been shortened because of a cut. Therefore, if G0 contains cuts, then St-I0 solveslf(G) independently of lf(G0). However, if lf(G) is part of the proof of lf(G0), thenSt-I0 uses the solutions of lf(G0) for expanding G because if G0 contains cuts thenthey have no e�ect on the computation of lf(G). Thus the loop-check mechanism isperformed also when cuts occur in the goals.At the abstract level, when a cut becomes the left most element of a goal G, thenit can be safely executed only if it is sure that the same cut is executed in all thecorresponding concrete derivations.Example 3.1 Let P be the program over the concrete domain of substitutions:(1) p(X):�r(Y); q(Y); !.(2) p(X):�fX=ag.(3) q(Y):�fY=ag.(4) r(Y):�fY=bg.and G be the goal :�p(X).At concrete level the cut is not executed because of a previous failure and the answersubstitutions fx=ag is computed. Let us now mimic the computation of P with G overthe abstract domain GR = }(V) obtained from EXP by considering only the �rstcomponent of its elements. GR sinthesizes the groundness properties of substitutions.The abstract program P 0 over GR corresponding to P is:

(1) p(X):�; r(Y); q(Y); !.(2) p(X):�fXg.(3) q(Y):�fY g.(4) r(Y):�fY g.and the abstract goal G0 corresponding to G is :�; p(X).It is easy to see that computing on GR, the cut is executed. In fact the uni�cation of:�; q(Y) with the head of the third clause succeeds and the computation proceeds byexecuting the cut. This leads to an incomplete analysis.In order to treat cuts correctly at the abstract level, control information must be avail-able. Suppose that control information is inferred. In this example, unifying :�; p(X)with the head of the �rst clause, one obtains the resolvent :�(;; s); r(Y); q(Y); ! wheres means that the concrete uni�cation surely succeeds. Then considering the head ofthe �rst clause one obtains the resolvent :�(fY g; s); q(Y); !. However it is not surethat the uni�cation of :�(fY g; s); q(Y) with the head of the third clause succeeds inthe concrete computation. Therefore the resolvent of this uni�cation is :�(fY g; u); !,meaning that it is not sure that the cut occurs in the concrete computation. In thiscase St-I0 ignores the cut.As shown in the example above, St-I0 uses the control information that can be inferredduring the static analysis to perform the following correctness rule: at the abstractlevel a cut is executed only when it is sure that the same cut is executed in all thecorresponding concrete derivations.St-I0 is a generic �xpoint algorithm for the abstract interpretation of Prolog programswith cuts and built-is.References[Apt 90] Apt K.: \Introduction to Logic Programming." in Handbook of TheoreticalComputer Science. J.van Leeuwen ed., North Holland. 1990.[Bru 88] Bruynooghe M.: \A practical framework for the abstract interpretation oflogic programs." Journal of Logic Programming 1992.[CCou 77] Cousot P., Cousot R.: \Abstract Interpretation: a uni�ed framework forstatic analysis of programs by construction of approximation of �xpoints". InProc. 4th ACM POPL. 1977.[CCou 92] Cousot P., Cousot R.: \Abstract Interpretation and Application to LogicPrograms". Rapport de Recherche LIENS-92-12. To appear in the special issueon Abstract Interpretation of the Journal of Logic Programming . 1992.[CF 89] Corsini M-M., Fil�e G.: \A complete framework for the abstract interpreta-tion of logic programs: theory and application." Research Report, Dipartimentodi Matematica Universita' di Padova. 1989.

[CFil 91] Cortesi A., Fil�e G.: \Abstract interpretation of logic programs: an abstractdomain for groundness, sharing, freeness, and compoundness analysis." Proc.ACM-PEPM, P. Hudak and N. D. Jones eds., ACM-SIGPLAN Notices 26 (9).1991.[CFR 92] Cortesi A., Fil�e G., Rossi S.: \Abstract interpretation of Prolog: theTreatment of the built-ins." In Proc. GULP 92 (87-103), S. Costantini (ed.).Milano 1992.[CFWi 91] Cortesi, A., Fil�e, G. and Winsborough W., \Prop revisited: Proposi-tional formula as abstract domain for groundness analysis." Proc. Sixth AnnualIEEE Symposium on Logic In Computer Science. G. Kahn (ed.), pp.322-327,Amsterdam 1991.[CFWi 92] Cortesi, A., Fil�e, G. and Winsborough W., \Comparison of AbstractInterpretations." Proc. 19th International Colloquium on Automata, Languagesand Programming W.Kuich (ed.), LNCS 623 (523-535) Springer-Verlag 1992.[Che 91] Cheong P-H.: Type inference by abstract interpretation. Ph.D. disserta-tion, LIENS, Paris,1991, forthcoming.[ClMe 84] Clocksin W.F., Mellish C.S.: Programming in Prolog. Springer-Verlag,2nd ed., Berlin, 1984.[CoFi 91] Codognet P., Fil�e G.: \Computations, Abstractions and Constraints inLogic Programming." R.I. Universit�a di Padova. 1991.[Codo 90] Codognet C., Codognet P., Corsini M.: \Abstract Interpretation for con-current logic languages." In Proc. NACLP'90 , Austin, 1990.[CFM 90] Codish M., Falaschi M., Mariott K.: \Suspension Analysis for ConcurrentLogic Programs." Research Report - University of Pisa, 1990.[Deb 89] Debray S.K.: \Static inference of modes and data dependencies in logicprograms". In TOPLAS Vol.11 (418-450). 1989.[GiHe 91] Giannotti F., Hermenegildo M.: A technique for recursive InvarianceDetection and Selective Program Specialization. In Proc. PLILP'91, LNCS 528(323-334) Springer-Verlag 1991.[HeRo 89] Hermenegildo M., Rossi F.: \On the correctness of independent AND-parallelism in logic programs." In Proc. NACLP'89. Cleveland 1989.[JoS� 87] Jones N., S�ndergaard H.: \A semantic based framework for the abstractinterpretation of Prolog." In Abstract Interpretation of Declarative Languages,ed. S.Abramsky and C.Hankin. Ellis Horwood. 1987[Llo 87] Lloyd J.W.: Foundations of Logic Programming . Springer, 1987.[LPA 88] Clark K. L., McCabe F. G., Johns N., Spenser C., LPA MacPROLOGReference Manual 1988[MaS� 89] Marriott K., S�ndergaard H.: \Notes for a tutorial on Abstract Interpre-tation of logic programs." NACLP'89. Cleveland 1989.[MaS� 90] Marriott K., S�ndergaard H.: \Analysis of Constraint Logic Programs".In Proc. NACLP'90 , Austin, 1990.

[Mel 81] Mellish C.S.: \The automatic generation of mode declarations for Prologprograms." In Proc. Workshop on Logic Prog. for Intel. Systems. Los Angeles.1981.

