
Compliance Preorders for Web Services

Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari Venezia
{michele,mace,lpino,srossi}@dsi.unive.it

Abstract. Compliance is a basic property of web-service architectures
that ensures the absence of deadlocks and livelocks during execution.
Following recent attempts in the literature, we interpret compliance as an
experiment, much like the experiments made by a test process in testing
theories, and use it as the basis for a notion of compliance preserving
substitution of components within a composition of web services.
We review the different notions of compliance in the literature, ana-
lyze their relative strengths and weaknesses, and formalize their inter-
relationships by providing a uniform formal framework where we recon-
cile the different perspectives that characterize them.

1 Introduction

Compliance is a basic property that characterizes the correct behavior of con-
current distributed systems. It is used widely in the context of Service Oriented
Architectures (SOA) as a formal device to identify well-formed service composi-
tions, those whose interactions are free of synchronization errors.

Formal theories of compliance have been developed within different settings,
most notably with session types and behavioral contracts. Session types [11] have
originally been conceived as a generalization of channel types [16] for the static
control of interaction patterns in which the same channel is used to send and/or
receive payloads of different types at different times. Recently, systems of session
types have applied widely in the analysis of various kinds of interaction and
conversation structures [6, 12, 5].

Behavioral contracts, our focus in the present paper, arise in process algebraic
settings, and provide abstract descriptions of system behavior by means of terms
of some process algebra. Formal theories of contracts have first been introduced
in [7], and then further developed along independent lines of research in [13, 8,
9], and in [3, 4].

All these papers share the main motivations and the overall technical setup,
inspired by the theory of testing in process algebra [15]. In particular, they all in-
terpret compliance as a basic test for investigating services, extract the preorder
relationships induced by the test, and justify a compliance-preserving substitu-
tion principle for services based on that. On the other hand, the approaches differ
significantly in the notion of compliance adopted as well as in the settings where
they apply it. In [13, 8, 9], compliance is targeted at preventing deadlocks, and
the theory is developed for a client-server setting to provide safety guarantees for

the client. Compliant servers are those which will never get their clients stuck:
the compliance preorder is established similarly in terms of the ability of servers
to satisfy their clients. In [3, 4], instead, compliance is a stronger condition that
ensures the absence of deadlocks and livelocks, and the application setting is
that of choreographies: compliant choreographies are those whose computations
never get stuck or trapped into infinite loops without chances to exit. The com-
pliance pre-order, in turn, is induced on the component contracts, in terms of
their ability to preserve the compliance of the choreographies they are part of.

In this paper, we review the existing definitions in the literature to formal-
ize their inter-relationships. As a result of our analysis we provide a uniform
framework where we (i) reconcile the different perspectives that characterize the
existing definitions of compliance, (ii) fill some of the existing gaps among them,
and thus (iii) maximize the potential of cross-fertilization among the different
approaches. We start with an analysis of the deadlock-safe notion of compliance
developed in [8, 13] for client-server settings, and propose an equivalent formu-
lation that scales naturally to multi-party service compositions. Then, we give a
fully-abstract co-inductive characterization of the induced compliance-preorder
and discuss its use for the safe replacement of services inside multi-party com-
positions. We also analyze the stronger definition of compliance proposed by
[4] for choreographies, showing that it effectively constitutes a conservative gen-
eralization of the deadlock-safe definition of [8, 13] (when the latter is lifted
to multiparty compositions). We generalize the coinductive construction of the
deadlock-safe preorder to obtain a sound (but not complete) characterization of
the stronger preorder. For both pre-orders, we also show how the filters from
[8] may be employed to achieve a flexible compliance-preserving substitution
principle inside choreographies.

Plan. Section 2 introduces the contract language we use for our analysis. Section
3 analyzes the notions of compliance in the literature, and introduces our own
variations of such notions. Section 4 develops the coinductive characterizations
of the associated compliance preorders. Section 5 discusses generalized versions
of the preorders, and their counductive characterizations. Section 6 concludes
the presentation.

2 A core contract language

We start introducing a small language for contracts and contract compositions
that we use for our analysis. Contracts are represented as (single-threaded) terms
of a CCS-like [14] process calculus that includes recursion and operators for ex-
ternal and internal choice. Parallel composition arises in contract compositions.
We presuppose a denumerable set of action names A, ranged over by a, b, c. Ac-
tions represent the basic units of observable behavior of the underlying services,
namely input, noted a, and output, note a. We let α range over actions and
co-actions, and note α the co-action corresponding to α.

Contracts σ ::= 1 | x | α.σ | σ + σ | σ ⊕ σ | rec(x)σ
Compositions C ::= σ | C ‖ C

1 signals that the service has reached a successful state, α;σ describes a service
that performs action α and then behaves as σ; σ+σ′ denotes an external choice,
guided by the environment, while σ ⊕ σ′ indicates a local choice between σ and
σ′ made irrespective of the structure of the interacting environment; rec(x)σ
is a recursively defined contract. We assume a standard contractivity condition
for the recursion operator, requiring that recursion variables be guarded by a
prefix. We let in(σ) and out(σ) note the set of input and output actions in σ,
respectively.

Contract Satisfaction: σX

1 X
σi X

σ1 + σ2 X

σ{x := rec(x)σ}X

rec(x)σX

Contract transitions: σ α̇−→ σ′

α.σ
α−→ σ σ1 ⊕ σ2 −→ σi (i = 1, 2)

σi
α̇−→ σ

(i = 1, 2)
σ1 + σ2

α̇−→ σ

σ{x := rec(x)σ} α̇−→ σ′

rec(x)σ α̇−→ σ′

Composition satisfaction and transitions:

C1 X C2 X

C1 ‖ C2 X

C1
α−→ C ′1 C2

α−→ C ′2

C1 ‖ C2 −→ C ′1 ‖ C ′2

C1
α̇−→ C ′1

C1 ‖ C2
α̇−→ C ′1 ‖ C2

Table 1. Dynamics of contracts and compositions

Dynamics of contracts and compositions. We define the dynamics of the calculus
with a labelled transition system (and a success predicate), with rules reported
in Table 1: α̇ indicates the label α or no label. The first block of rules defines
the successful states of a contract, i.e., those that expose the success term 1 at
top level, or immediately under an external choice (up-to recursive unfoldings).
The rules in the second and third blocks define the transitions for contracts and
compositions, and are mostly self-explanatory. Notice that a composition reaches
a successful state only when all component contracts are themselves successful.

We write =⇒ to note the reflexive and transitive closure of −→, and σ α=⇒ σ′

for σ =⇒ α−→=⇒ σ′. Similarly, for w = α1 . . . αn the transition σ
w=⇒ σ′ stands

for σ α1=⇒ · · · αn=⇒ σ′. We omit the target of a (weak) transition when immaterial,
writing σ

α−→ and σ
α=⇒ to signal that σ has a (weak) transition on α to

some σ′, and init(σ) for the set {α | σ α=⇒}. Finally, with σ ↓ r we note that
r ⊆ (A ∪ {X}) is the smallest non-empty set such that σ α−→ implies α ∈ r,
and σX implies X∈r. Similarly, σ ⇓ r whenever σ =⇒ σ′ with σ′ ↓ r.

A computation for a composition C is a sequence C≡C0 −→ C1 −→ . . . ;
the computation is maximal if either it is infinite or there exists Cn such that
C =⇒ Cn 6−→. A composition C is finite if all its maximal computations are
finite. Throughout, we presuppose the following conditions on contracts and
compositions.

Definition 1 (Determinacy). A contract σ is determinate if for every action
α there exists at most one contract σ′ such that σ =⇒ α−→ σ′, and σ′ is itself
determinate. A composition σ1 ‖ . . . ‖ σn is determinate, if so are the σi, and in
addition, in(σi) ∩ in(σj) = ∅ whenever i 6= j.

When σ α=⇒, we note σ(α) the unique σ′ such that σ =⇒ α−→ σ′. (σ(α) is always
defined for determinate contracts). Determinacy is technically convenient for our
analysis, and represents a fairly mild assumption (cf. [8] for a similar assumption,
which in that case is enforced directly by the transition relation). Indeed, con-
tracts can be made determinate, by factoring, without affecting their external be-
havior. To illustrate, the non-determinate contract (a.σ1 ⊕ b.σ2) + (a.σ3 ⊕ b.σ4)
may equivalently be expressed (up to, internal moves) as the determinate con-
tract a.(σ1 ⊕ σ3) ⊕ b.(σ2 ⊕ σ4). As to compositions, determinacy, simply
amounts to interpreting the actions of each contract in a composition as being as-
sociated with services located and accessible at univocally identified ports/sites
(as done, for instance, in [4]).

3 Compliance tests

We start with a review of the asymmetric, deadlock-safe notion of compliance
(ds-compliance, for short), as proposed by [8, 13] for client-server settings, and
introduce its asymmetric and symmetric variants for general, multi-party com-
positions. Then, we discuss the definition of safe compliance, that is sensitive to
both deadlocks and livelocks.

3.1 Deadlock-safe compliance

For two contracts ρ and σ, let ρ ./ σ signal that ρ and σ may synchronize, pos-
sibly after a sequence of internal moves. Formally ρ ./ σ iff init(σ)∩ init(ρ) 6= ∅,
where init(ρ) is the set of co-actions corresponding to the actions in init(ρ). The
asymmetric presentation distinguishes two roles (client and server, respectively)
for the contracts involved in the compliance test.

Definition 2 (Client-server ds-compliance [8, 13]). A client ρ and a server
σ are ds-compliant, written ρ ads σ iff whenever ρ ‖ σ =⇒ ρ′ ‖ σ′, either ρ′ ./ σ′,
or X ∈ r for all r such that ρ′ ⇓ r.

Accordingly, ρ ads σ if and only if whenever the interaction between ρ and σ gets
stuck (as there is no chance of synchronization) ρ may independently terminate
with success. The asymmetric nature of the definition, and its clear bias in favor
of ρ, is a consequence of the different intended roles of the two contracts in the
composition. In [13], the definition has the following, additional proviso: in case
σ′↑ then for all r such that ρ′ ⇓ r, r = {X}. The intuition here is that if the
interaction between client and server gets the server trapped into an internal
loop (noted σ′↑), then the client must terminate successfully without expecting
any further synchronization with the server. The proviso holds vacuously in our
contract language, given that recursive contracts are formally contractive, hence
they may not loop without interaction.

Definition 2 may be restated equivalently by stipulating that ρ and σ are
compliant if whenever ρ ‖ σ =⇒ ρ′ ‖ σ′ 6−→, one has ρ′X. That the two defini-
tions are equivalent follows again from our formal-contractiveness assumption,
which implies that ρ 6./ σ iff ρ ‖ σ =⇒ ρ′ ‖ σ′ 6−→. The new formulation is
interesting as it suggests the following, natural lifting of the client-server notion
of compliance to multi-party compositions.

Definition 3 (Asymmetric ds-compliance). A contract ρ is ds-compliant
with a composition C, written ρ ads C, iff whenever ρ ‖ C =⇒ ρ′ ‖ C ′ 6−→, one
has ρ′X.

Asymmetric compliance, in turn, is readily made symmetric by simply removing
the bias in favour of any of the component services.

Definition 4 (Symmetric ds-compliance). A contract composition C is
ds-compliant, noted C↘ds, if whenever C =⇒ C ′ 6−→, one has C ′X.

3.2 Safe compliance

One weakness of ds-compliance is that it is insensitive to livelocks. The following
example helps illustrate the problem in the asymmetric setting. Consider the two
contracts σ = rec(x) (a.x ⊕ b.x) and σ′ = rec(x) a.x, and take the contract
ρ = rec(x) (a.x + b.1). Applying Definition 3, it is a routine check to verify that
ρ is ds-compliant with both σ and σ′, namely ρ ads σ, and ρ ads σ′. This is not
exactly desirable, as the two contracts determine quite different behaviors for ρ:
indeed, while σ is acceptable to ρ, as there is always a chance for ρ to reach a
successful state, σ′ is not as it leaves ρ trapped into a livelock.

If livelocks are to be avoided, we need to strengthen the compliance test.
The following definition, that we take verbatim from [4], does the job with a test
inspired by the theory of should-testing [17].

Definition 5 (Symmetric safe compliance [4]). A contract composition C
is s-compliant, noted C↘s, if for every C ′ such that C =⇒ C ′ there exists C ′′

such that C ′ =⇒ C ′′X.

In other words, s-compliance ensures that at each intermediate step of the
computation in a choreography, each component service has a way to reach a
successful state (either autonomously, or via synchronizations within the chore-
ography). This is enough to avoid livelocks. To illustrate, consider the compo-
sition C def= rec(x) (a.x) ‖ rec(x) (ā.x). C is ds-compliant even though it never
reaches any successful state: indeed, the condition imposed by Definition 4 holds
vacuously as C has only infinite computation. This is rectified in Definition 5 by
demanding that all intermediate computation states offer a path to success for
all the services of the composition.

Safe compliance is readily re-cast into an asymmetric presentation, by simply
re-introducing the bias in favour of one component and stipulating that ρ as C
if for every ρ′ ‖ C ′ such that ρ ‖ C =⇒ ρ′ ‖ C ′ there exists ρ′′ ‖ C ′′ such
that ρ′ ‖ C ′ =⇒ ρ′′ ‖ C ′′ and ρ′′X. The new predicate conveys the desired
guarantees for the client-server setting (when C is a single server): if we go back
to our problematic servers σ and σ′ above, we now see that ρ as σ but ρ 6as σ′,
as desired.

3.3 Symmetric vs Asymmetric Compliance

While there is clearly a strong connection between the two presentations of com-
pliance (symmetric vs asymmetric), we are not aware of results establishing for-
mal relationships. We give two such results below, first showing that for deadlock-
safe compliance the asymmetric presentation can be defined in terms of the sym-
metric one, in the following sense. Given C = σ1 ‖ . . . ‖ σn, we note C/i the com-
position “C drop σi”, defined as follows: C/i def= σ1 ‖ . . . ‖ σi−1 ‖ σi+1 ‖ . . . ‖ σn.

Theorem 6 (Symmetric vs Asymmetric ds-compliance). Let C be the
composition σ1 ‖ . . . ‖ σn. Then C↘ds if and only if σi ads C/i for all 1 ≤ i ≤ n.

Proof. (=⇒) From the hypothesis, for every C ′ such that C =⇒ C ′ 6−→ we have
C ′X. This means that each component of C ′ is in a success state. Since this is
true of all C ′ 6−→ reachable from C, it must be the case that σi ads C/i for all i.
(⇐=) The hypothesis is that for every i, σi ads C/i. Now, for all the C ′ such
that C =⇒ C ′ 6−→ we have that σ′i X (where σ′i is the state corresponding to σi
in C ′). Since this is true of every i, it follows that C↘ds. ut

In the forward direction Theorem 6 carries over to the case of safe compliance.
Instead, somewhat surprisingly, this is not true of the backward direction. To
see that, consider the following counter-example. Take σp = rec(x) (ā.(b.x + 1))
and σq = rec(x) (a.b̄.x + 1), and form the composition C = σp ‖ σq. The fol-
lowing diagrams show the transitions for each contract and for the composition:

the success states are marked by the satisfaction predicate.

'&%$!"#1

σp

ā

��'&%$!"#2 X

b

HH
'&%$!"#1

σq

X

a

��'&%$!"#2

b̄

HH
'&%$!"#1

C

(a)

��'&%$!"#2

(b)

HH

Now, σp as σq because, for every state reached by the computation of C, we can
extend the computation to reach the state 2, where the σp reaches its success.
σq as σp holds for the same reason, because it’s always possible to reach the state
1 where σq reaches its success. However C 6↘s because, as outlined by the graph
above, there is not a reachable state where both the contracts are successful.

4 Compliance preorders

Associated with a compliance test, which we mark as • to generalize1, one de-
fines a corresponding semantics for service contracts. In client-server setting,
this is stated in terms of the sets of the compliant clients [σ]• def= {ρ | ρ a• σ};
in multi-party compositions, it is defined similarly in terms of sets of compliant
compositions: [σ]• def= {C | σ ‖ C↘•}. Then, based on the contract semantics,
one defines the contract preorder, uniformly as follows: σ v• σ′ def= [σ]• ⊆ [σ′]•.
Defined this way, compliance preorders may be employed to justify a substitu-
tion principle for servers, and more generally for services inside choreographies,
namely: given two contracts σ and σ′, it is safe to substitute (a service described
by) σ with (a service described by) σ′ as long as σ v• σ′.

In this section, we give coinductive versions of the two preorders vds and
vs induced by the compliance tests introduced in the previous section. As we
will show, for the deadlock-safe case, the coinductive version provides a fully
abstract characterization of vds. For the safe preorder, the characterization is
only sound, not complete. In both cases, being our compositions finite, and our
contracts finite-state, the characterizations provide an effective construction for
deciding the preorders.

4.1 Characterizing the deadlock-safe preorder

We start with the deadlock safe preorder. The definition we give here, and the
full-abstraction proof refine those in [13, 9] to account for the symmetric nature
of the compliance test.

Definition 7 (Coinductive ds-preorder). R is a coinductive ds-preorder if
σ R ρ implies that: (i) if ρ −→ ρ′, then σ R ρ′; (ii) if ρ ↓ r, then there exists
s ⊆ r such that σ ⇓ s; (iii) for every action α if ρ α−→ ρ′, then σ

α=⇒ and
σ(α) R ρ′. We note �ds the greatest ds-preorder.
1 In the paper • will stand either for ‘ds’, defined in §3.1, or ‘s’, defined in §3.2.

The next lemma shows that the coinductive ds-preorder is preserved not only
on single actions, but also on sequences of actions.

Lemma 8. If σ �ds ρ and ρ w=⇒ ρ′, then ∃ σ′ such that σ w=⇒ σ′ and σ′ �ds ρ′.

Proof. By induction on the length of w. ut

Theorem 9 (Soundness). If σ �ds ρ, then σ vds ρ.

Proof. Take a composition C such that (σ ‖ C)↘ds and let

ρ ‖ C = ρ1 ‖ C1 −→ ρ2 ‖ C2 −→ · · · −→ ρn ‖ Cn

be a maximal computation from C. We must show that (ρn ‖ Cn) X. By
Lemma 8, we know that σ ‖ C =⇒ σn ‖ Cn and σn �ds ρn. Also, ρn ↓ r for some
(non-empty) r, because otherwise ρn −→ and the computation from C we are
considering would not be maximal. Let then s be such that σn ⇓ s and s ⊆ r,
and take σ′n such that σn =⇒ σ′n 6−→ and σ′n ↓ s. Obviously σ ‖ C =⇒ σ′n ‖ Cn;
furthermore, Cn 6−→ since Cn is part of the final state of a maximal computation,
and σ′n 6−→ by construction. Then, for all α such that Cn

α−→ it must be the
case that σ′n 6

α−→ because otherwise from s ⊆ r we would derive ρn
α−→, which

is impossible since ρn ‖ Cn 6−→. It follows, then, that σ ‖ C =⇒ σ′n ‖ Cn 6−→,
and given that (σ ‖ C)↘ds we have (σ′n ‖ Cn) X. This, in turn, implies Cn X and
σ′n X, and hence X ∈ s. Now, from s ⊆ r we know that ρn X, hence (ρn ‖ Cn) X
as desired. ut

A further lemma shows that all contracts may be composed into at least one ds-
compliant choreography. This is a direct consequence of the syntactic structure
of our contracts (all choices in a contract must either end up with 1 or with a
recursion variable) and the definition of ds-compliance.

Lemma 10. For all σ there exists C such that (σ ‖ C)↘ds.

Theorem 11 (Completeness). If σ vds ρ, then σ �ds ρ.

Proof. We need to manipulate contract compositions in order to force their
behavior. In particular we note α1.C1 + α2.C2 the composition such that if
α1.C1 + α2.C2

γ
=⇒ C, then γ ∈ {α1, α2} and in addition γ = αi implies C ≡ Ci

(for i = 1, 2, respectively). We omit the (rather lengthy) details of how these
compositions can be formed so that they are determinate (in the sense of Defi-
nition 1), and move with the proof of our claim.

We show that R def= {(σ, ρ) |σ vds ρ} is a coinductive ds-preorder. Assume
(σ, ρ) ∈R: we examine the three clauses of the definition in turn.

Assume ρ −→ ρ′. By our hypothesis we know that for all C (σ ‖ C)↘ds
implies (ρ ‖ C)↘ds, so obviously (ρ′ ‖ C)↘ds and thus (σ, ρ′) ∈R.

Take r such that ρ ↓ r: we reason by contradiction. Assume that there is no
s such that σ ⇓ s and s ⊆ r: we show that σ 6vds ρ. Let then A = {α ∈ A |
σ ⇓ s and α ∈ s \ r}. By Lemma 10, for each α ∈ A there exists Cα such that

(σ(α) ‖ Cα)↘ds. Now, let C =
∑
α∈A α.Cα. By construction, (ρ ‖ C)6↘ds, and

similarly (ρ ‖ C + 1) 6↘ds if ρ6X. On the other hand, again by construction, one
easily sees that (σ ‖ C+1)↘ds. Furthermore, when ρX, by our initial assumption
we know that for all s such that σ ⇓ s, it must be the case that s) {X} (for
otherwise s ⊆ r): hence, in this case, we also have (σ ‖ C)↘ds. Summarizing,
when ρ 6X, we have (σ ‖ C)↘ds and (ρ ‖ C) 6↘ds. When ρX, the same is true of
C + 1. In both cases we have the desired contradiction.

Let ρ α−→ ρ′. Again we reason by contradiction, on the two possible cases.

– σ 6 α=⇒. By Lemma 10, there exists a composition C such that C 6 α=⇒ and (σ ‖
C)↘ds. Now, choose a name c fresh for ρ and C, and form the composition
C ′ = C+α.c.1. We have that (σ ‖ C ′)↘ds and (ρ ‖ C ′) 6↘ds, which contradicts
the hypothesis that σ vds ρ as desired.

– σ
α=⇒ and there exists C such that (σ(α) ‖ C)↘ds but (ρ′ ‖ C)6↘ds. Then we

define

C ′ =

 ∑
σ
β

=⇒ and β 6=α

β.Cβ

 + α.C

with Cβ such that (σ(β) ‖ Cβ)↘ds. Again, (σ ‖ C ′)↘ds and (ρ ‖ C ′)6↘ds as
desired. ut

4.2 Characterizing the safe-preorder

The coinductive construction of the s-preorder arises as an extension of the
one we just discussed. To motivate the construction, consider the following two
contracts:

σ = rec(x) .(a.(b.x + 1) ⊕ c.1) and σ′ = rec(x) .(a.(b.x + 1)). (1)

Applying Definition 7, one verifies that σ �ds σ′. On the other hand, given the
composition C = rec(x) .(a.(b.x)+c.1) one has (σ ‖ C)↘ds whereas (σ′ ‖ C)6↘ds.

In other words, the example in (1) shows that �ds is not sound for vs. A
closer look at the example shows that the problem is in the second of the clauses
that define �: in particular, to show that σ �ds σ′ it is enough for σ′ to match
(with r) any one of the action sets s such that σ ⇓ s, disregarding the remaining
ones. This is fine as long as we only look at finite maximal computations, as the
choice of any of action sets is arbitrary and effectively excludes the others; it is
unsound, instead, when the computation in σ may go back to the same point of
choice, as a result of a loop, and select another set. This observation suggests
how to rectify the construction, by keeping track of the states reached in the
simulation game, and make a sound choice at the looping states.

A contract-indexed relation over contracts is a binary relation indexed by sets
of contracts. We let H range over sets of contracts, and write σ RH ρ to mean
that σ and ρ are related by R at H.

Definition 12 (Coinductive safe-preorder). A coinductive s-preorder R is
contract-indexed relation such that σ RH ρ implies the following conditions:

– if ρ −→ ρ′, then σ RH∪{ρ} ρ′
– if ρ ↓ r, then
• if ρ /∈ H, then there exists s ⊆ r such that σ ⇓ s,
• if ρ ∈ H, then for every s such that σ ⇓ s it holds s ⊆ r,

– if ρ α−→ ρ′, then σ
α=⇒ and σ(α) RH∪{ρ} ρ′

We write σRρ when σRHρ for some H, and note �s the greatest s-preorder.

Notice that the coinductive s-preorder is a conservative extension of the
corresponding ds-preorder. The next lemma proves the same result as Lemma
8, now for the �s preorder.

Lemma 13. Let R be a coinductive s-preorder. If σ RH ρ for some H and
ρ

w=⇒ ρ′ 6−→, then there exist σ′, H ′ such that σ w=⇒ σ′ with σ′ RH′ ρ′ and
H ⊆ H ′. Furthermore, if ρ′ = ρ (with w non empty), then ρ′ ∈ H ′.

Proof. We show that given σ RH ρ, if ρ α1=⇒ ρ1
α2=⇒ ρ2 · · · ρn−1

αn=⇒ ρn = ρ′,
then σ

α1=⇒ σ1
α2=⇒ σ2 · · ·σn−1

αn=⇒ σn and σi RHi ρi for i = 1 . . . n with
H ⊆ H1 ⊆ . . . ⊆ Hn−1 ⊆ Hn. We proceed by induction on the length n of
the sequence. For the basic step, we have that if ρ =⇒ ρ′, then σ RH′ ρ′ with
H ⊆ H ′ by the first item of Definition 12. For the induction step, assume that
n > 0. Then, by the induction hypothesis, σ α1=⇒ σ1 . . .

αn−1=⇒ σn−1 with σi RHi ρi
for i = 1 . . . n− 1 and H ⊆ H1 ⊆ . . . ⊆ Hn−1. Now, since ρn−1

αn=⇒ ρn = ρ′, by
repeated applications of the first item, and one application of the last item in
Definition 12 we obtain σn−1

αn=⇒ and σn−1(αn) RHn ρ′ with Hn−1 ⊆ Hn. We
are done, as we can choose σn = σn−1(αn).

In case ρ′ = ρ, by Definition 12 we can immediately prove that when w is
non empty ρ ∈ H1, and thus also ρ ∈ Hn. ut

Lemma 14. Let R be a coinductive s-preorder. If σ R ρ and ρ
w1=⇒ ρ′

w2=⇒ ρ′

with ρ′ 6−→, then (i) σ
w1,w2=⇒ σ′ with σ′ R ρ′ and (ii) for every α such that

σ′ =⇒ σ̂
α−→ σ′′, then ρ′

α−→ ρ′′ and σ′′ R ρ′′. Furthermore, σ̂X implies ρ′X.

Proof. Let H be an index such that σ RH ρ for some H. Then item (i) is a
direct consequence of Lemma 13. For item (ii), Lemma 13 applied to ρ′ w2=⇒ ρ′

says that σ′ RH′ ρ′ with ρ′ ∈ H ′. Since ρ′ 6−→ we apply the second item of
Definition 12. In particular ρ′ ↓ r with s ⊆ r for all s such that σ′ ⇓ s, and this
proves the thesis. ut

Lemma 15. Let C be a contract composition without finite maximal computa-
tions. Then there exists C ′ such that (i) C =⇒ C ′ and (ii) for every C ′′ such
that C ′ =⇒ C ′′ then also C ′′ =⇒ C ′.

Proof. Since a composition expressed as a term of our language is a finite-state
system, we prove the lemma by induction on the number of the different states
reachable from C. Basic step, suppose that C can reach a single state. Then the
only maximal computation is C −→ C −→ C −→ · · · and the thesis is verified

with C ′ = C. Induction step, assume that C can reach n different states, if
C ′ =⇒ C for every C ′ such that C =⇒ C ′ then the thesis is verified. Otherwise,
there exists C ′ such that C =⇒ C ′ and C ′ 6=⇒ C. Then C ′ can reach at most n−1
states. Since C has no finite maximal computation, so does C ′. Thus we apply
the inductive hypothesis and we have: there exists C ′′, with C =⇒ C ′ =⇒ C ′′

such that if C ′′ =⇒ C ′′′, then C ′′′ =⇒ C ′′. Hence we conclude the thesis. ut

Corollary 16. Let C be a contract composition without finite maximal compu-
tations. Then there exists a computation C −→ C1 −→ · · · −→ Cn such that for
every C ′ such that Cn =⇒ C ′ there exists i ≤ n such that C ′ = Ci.

Proof. Lemma 15 says that there exists C ′ such that C =⇒ C ′ and, if C1, . . . , Cn
are all the states reachable from C ′ then Ci =⇒ C ′ for i = 1, . . . n. Then consider
the computation C =⇒ C ′ =⇒ C1 =⇒ C ′ =⇒ C2 =⇒ C ′ · · · =⇒ Cn =⇒ C and
conclude the thesis. ut

Theorem 17 (Soundness). If σ �s ρ, then σ vs ρ.

Proof. We reason by contradiction. We assume that there exists C such that
(σ ‖ C)↘s but (ρ ‖ C) 6↘s, this means that (i) there exists a computation ρ ‖
C =⇒ ρ′ ‖ C ′ such that (ρ′′ ‖ C ′′) 6X for every ρ′ ‖ C ′ =⇒ ρ′′ ‖ C ′′.

If there exists a finite computation ρ′ ‖ C ′ =⇒ ρ′′ ‖ C ′′ with (ii) ρ′′ ‖ C ′′ 6=⇒
and (ρ′′ ‖ C ′′) 6X, hence ρ′′ 6−→ and C ′′ 6−→, moreover either ρ′′ 6X or C ′′ 6X.
Now consider the list w of actions such that ρ w=⇒ ρ′′ and C

w̄=⇒ C ′′, where w̄
represents the list of actions performed by C to synchronize with w in order to
reduce the whole composition (ρ ‖ C) to (ρ′′ ‖ C ′′). From σ �s ρ and Lemma 13,
there exist H,H ′ such that σ RH ρ, σ′ RH′ ρ′ with H ⊆ H ′ and σ w=⇒ σ′. Let r
such that ρ′ ↓ r. Since σ′ RH′ ρ′, then σ′ =⇒ σ′′ 6−→ with (iv) σ′′ ↓ s and s ⊆ r.
Hence we found the computation σ ‖ C =⇒ σ′ ‖ C ′ =⇒ σ′′ ‖ C ′′, where the first
part is the synchronization on w between σ and C. Due to (ii), (iii) and (iv),
then σ′′ ‖ C ′′ 6−→ and σ′′ ‖ C ′′ 6X. We have σ ‖ C 6↘s, against the hypothesis.

Thus we conclude that ρ′ ‖ C ′ has no finite maximal computations. Then
Corollary 16 says that ρ′ ‖ C ′ −→ ρ1 ‖ C1 −→ · · · −→ ρn ‖ Cn and for every C∗

such that ρn ‖ Cn =⇒ C∗ there exists i ≤ n with C∗ = ρi ‖ Ci. As done above,
consider the list w = w1, w2 of actions such that ρ w1=⇒ ρ′

w2=⇒ ρn and C w̄=⇒ Cn,
were again w̄ represents the list of actions performed by C to synchronize with
w in order to reduce the whole composition (ρ ‖ C) to (ρn ‖ Cn). Again, by
Lemma 13 (v) there exist H,H ′ such that σ RH ρ, σn RH′ ρn with H ⊆ H ′ and
σ

w=⇒ σn.
We distinguish two cases. (1) If for every C∗ such that ρn ‖ Cn =⇒ C∗

we have C∗ = ρn ‖ Ĉ, thus ρn does not perform any more action along the
computation. Note that ρn 6−→, then let r such that ρn ↓ r. Moreover, due
to (i), it holds ρi ‖ Ci 6X for i = 1 . . . n, hence (vi) either ρi 6X or Ci 6X for
i = 1 . . . n. Moreover, consider (v) and let σ′n such that σn =⇒ σ′n and σ′n ↓ s
with s ⊆ r. Due to the assumption on ρn ‖ Cn and (vi): for every C∗ such that
σn ‖ Cn =⇒ C∗ we have C∗ = σn ‖ Ĉ, and also either σn 6 X or Ci 6 X for

i = 1 . . . n. Thus C∗ 6X for every C∗ such that σn ‖ Cn =⇒ C∗. We conclude
that σ ‖ C 6↘s, against the hypothesis. Thus the only possible case is (2): there
exists at least one ρ̂ 6= ρn such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ and moreover for every
ρ̂ such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ it holds ρ̂ = ρi for some i < n. Thus for every
ρ̂ such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ it holds: ρ v1=⇒ ρ̂

v2=⇒ ρn
v3=⇒ ρ̂. Thanks to

Lemma 14 and (v) we conclude the following

Fact 18 For every ρ̂ such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ with ρn
bw=⇒ ρ̂ and ρ̂ 6−→

there exist σ̂ and H ′ such that σn
bw=⇒ σ̂ and σn ‖ Cn =⇒ σ̂ ‖ Ĉ with σ̂ RH′ ρ̂

and for every σ̂ =⇒ σ̂′
α−→ σ′′ then also ρ̂

α−→ ρ̂′ and σ̂′′ RH′′ ρ̂′ for some H ′′.
Furthermore σ̂′′X implies ρ̂′X.

Since (σ ‖ C↘s) there exists a computation σn ‖ Cn =⇒ σ∗ ‖ C∗ such that

(σ∗ ‖ C∗) X. In particular σn
w∗=⇒ σ∗. If the sequence w∗ is empty, then Fact 18

says that also ρ̂X. Hence ρn ‖ Cn =⇒ ρn ‖ C∗ and (ρn ‖ C∗) X. In case w∗ is
not empty, we prove that also

ρn
w∗=⇒ ρ∗ with σ∗ RH∗ ρ∗. (2)

We proceed by induction on the length of w. Fact 18 gives the basis of the
induction. For the induction step, let w = α,w′. Then σn =⇒ σ′n

α−→ σ′′ and
Fact 18 says that ρn

α−→ ρ′n with σ′′n RH′′ ρ′n. Now the induction hypothesis
holds for σ′′n and ρ′n, and we are done. Now, from (2), it follows that ρn ‖ Cn =⇒
ρ∗ ‖ C∗ and the fact that σ∗ RH∗ ρ∗ says that (ρ∗ ‖ C∗) X. Hence we found a
contradiction and we conclude (ρ ‖ C)↘s. ut

The converse of Theorem 17 does not hold. Here is a counter-example. Let:

σ = rec(x) (a.x ⊕ b.1) ρ = rec(x) (a.(a.x ⊕ b.1)) (3)

We can easily see that σ vs ρ, because σ w=⇒ for all w such that ρ w=⇒. In fact,
given an arbitrary C, C must be able to respond to all of these traces, with a
corresponding dual trace in σ ‖ C. Given our observation, the same is true in
the composition ρ ‖ C. On the other hand, σ 6�s ρ because, after one round of
the loop, ρ ↓ {a}, whereas σ ⇓ {b} and {b} 6⊆ {a}, which breaks the condition
required by the coinductive game. The problem would seemingly be solved by
replacing the third condition with the following, slightly weaker requirement: if
ρ

α−→ ρ′, then there exists σ′ such that σ α=⇒ σ′ and σ′ RH∪{ρ} ρ′. On the other
hand, this coarser definition is unsound: taking the two contracts we discussed
earlier in (1), one verifies that σ �s σ′ even though σ 6vds σ′, hence σ 6vs σ′.

As it turns out, characterizing the safe preorder exactly, is hard. Indeed, to
our knowledge, no such characterization exists in the literature. The only related
result we are aware of is the trace-based full-abstract characterization of should
testing in [17]. However, the construction is non-effective, as it requires infinite
sums to characterize the infinite traces that capture the possible test processes.

5 Filtered preorders

As the last step of our analysis, we show how the filters introduced in [8, 9] can
be recast into the setting of general service compositions to achieve an expressive
compliance-preserving substitution principle inside choreographies. Following [8,
9], we define filters as behavioral coercions that specify the legal flow of actions
for individual contracts. Their syntax is defined by the following productions:

f := 0 | α.f | f × f | f ⊗ f | x | rec(x) f.

Their semantics, in Table 2, is best understood by viewing a filter as a finite-state
automaton accepting possibly infinite strings of actions, with × and ⊗ noting
the intersection and union automata. Then, applying a filter f to a contract σ,
as in f(σ), corresponds to verify that the sequence of visible transitions made
by the contract σ forms a string of the filter’s language.

Transitions for filters

α.f
α7−→ f

f{x := rec(x) f} α7−→ f ′

rec(x) f α7−→ f ′

f
α7−→ fα g

α7−→ gα

f ⊗ g α7−→ fα ⊗ gα

f
α7−→ fα g

α7−→ gα

f × g α7−→ fα × gα

f
α7−→ fα g 6 α7−→

f × g α7−→ fα

f 6 α7−→ g
α7−→ gα

f × g α7−→ gα

Transitions for filtered contracts

σ
α−→ σ′ f

α7−→ f ′

f(σ) α−→ f ′(σ′)

σ −→ σ′

f(σ) −→ f(σ′)

σX

f(σ) X

Table 2. Dynamics of Filtered Contracts

In their original, client-server formulation by [8, 9], filters generalize the notion of
contract interface introduced in [13]. Like filters, interfaces are intended to con-
strain the behavior of contracts, by defining the set of actions that a contract
may legally engage in. However, while with filters this set may vary dynami-
cally as the contract unfolds, with interfaces the set is determined statically and
does not change over time. In addition, filters also play a role in strengthening
the substitution principle based on compliance preorders. Specifically, given any
compliance preorder ≤• (whether coinductive or not), one defines a correspond-
ing filtered preorder as the following relation: σ ≤F• ρ if there exists a filter f
such that σ ≤• f(ρ). Thus, even when σ 6≤• ρ, one may still rely on a filter f

to justify the replacement of σ with f(ρ), provided that σ ≤• f(ρ). In a client-
server setting,. the filtered preorder of [8, 9] generalizes the interface-indexed
preorder of [13], which relates contracts based on a their ability to comply with
clients that follow the discipline imposed by the indexing interface, disregarding
all clients that do not follow that discipline.

Our present use of filters provides corresponding generalizations of the con-
cepts of input-output sets and input-output indexed preorder by [3, 4] that parallel
the notions of interface and interface indexed preorder in the analysis of multi-
party compositions. In [4], the authors provide an effective decision procedure
for their preorder based on the theory of should-testing [17]. In the rest of this
section, we provide an effective construction for the filtered version of the coin-
ductive safe-preorder. The same construction can be given, mutatis mutandis,
for the deadlock-safe preorder.

Definition 19 (filtered s-preorder). A filtered s-preorder is a contract in-
dexed relation F such that if σFHρ, then

1. if ρ −→ ρ′, then σFH′ρ′ with H ′ = H ∪ {ρ},
2. else if ρ ↓ r, then

(a) if ρ /∈ H, then there exists sr ⊆ r such that σ ⇓ sr, and for every α ∈ sr

it is the case that ρ α−→ ρ′ and σ α=⇒ with σ(α)FH′ρ′ and H ′ = H ∪{ρ}.
(b) if ρ ∈ H, then for every s such that σ ⇓ s it holds s ⊆ r, and for

every action α ∈
⋃
σ⇓s s if ρ α−→ ρ′, then σ

α=⇒ with σ(α)FH′ρ′ and
H ′ = H ∪ {ρ}.

We write σFρ whenever σFHρ for some H, and note σ �Fs ρ the greatest filtered
s-preorder.

Theorem 20. σ �Fs ρ iff there exists a filter f such that σ �s f(ρ).

Proof. Define contract bisimilarity, noted ∼, is the greatest symmetric relation
such that σ ∼ ρ implies (i) σX iff ρX, and (ii) if σ α̇−→ σ′, then also ρ α̇−→ ρ′

and σ′ ∼ ρ′. Clearly, ∼ ⊆ �F•.
We proceed with the proof of the theorem, in the two directions in turn.

(=⇒) Take a filtered s-preorder F . For every H and (σ, ρ) ∈ FH we define

SetH(σ, ρ) def=

{⋃
ρ⇓r sR if ρ /∈ H and sR is given by item 2.a of Definition 19⋃
σ⇓s s if ρ ∈ H

Then, given a set D of pairs of contracts, we define

fDσ,ρ,H
def=

{
rec(x(σ,ρ)) ×α∈SetH(σ,ρ) α.f

D∪{(σ,ρ)}
σ(α),ρ(α),H∪{ρ} if (σ, ρ) /∈ D

x(σ,ρ) otherwise

and let fσ,ρ,H = f∅σ,ρ,H . Since the reachable states are finite, f is well de-
fined. Furthermore note that, if fσ,ρ,H(ρ) α=⇒ f ′(ρ′) and σ

α=⇒, then f ′(ρ′) ∼
fσ(α),ρ′,H∪{ρ}(ρ′). Finally we define the following contract indexed relation:

RH def= {(σ, f(ρ)) : (σ, ρ) ∈ FH and f(ρ) ∼ fσ,ρ,H(ρ)}

We prove that R is a coinductive s-preorder, by a case analysis of the items in
the Definition 12. Given a filter f , and a set r ⊆ A ∪ {X}, let r|f note the set
{α ∈ r | f α7−→}. Let then (σ, f(ρ)) ∈ RH .

If ρ −→ ρ′, then also f(ρ) −→ f(ρ′) and we have (σ, ρ′) ∈ FH′ with H ′ =
H ∪ {ρ}, so (σ, f(ρ′)) ∈RH′ . If instead ρ ↓ r, we distinguishes two cases. (i) If
ρ /∈ H, then, since (σ, ρ) ∈ FH , there exists sR ⊆ r such that σ ⇓ sr and by
definition we have sr ⊆ SetH(σ, ρ); so sr ⊆ r|(fσ,ρ,H). (ii) If ρ ∈ H, then, since
(σ, ρ) ∈ FH , for every s such that σ ⇓ s it holds s ⊆ r and also s ⊆ SetH(σ, ρ),
hence s ⊆ r|(fσ,ρ,H).

Assume now fσ,ρ,H(ρ) α−→. Then there exists ρ′ such that ρ
α−→ ρ′, so

fσ,ρ(ρ) α−→ f ′(ρ′), where f ′(ρ′) ∼ fσ′,ρ′,H′(ρ′) with σ′ = σ(α) and H ′ = H ∪ ρ.
Since fσ,ρ,H

α7−→ then σ
α=⇒ with (σ(α), ρ′) ∈ FH′ and H ′ = H ∪ {ρ}. We

conclude that (σ(α), f ′(ρ′)) ∈ RH′ .
(⇐=) Let R be a coinductive s-preorder. Given H, we define

FH def= {(σ, ρ) | there exists f such that (σ, f(ρ)) ∈Rf(H)}
where f(H) = {f(ρ) : ρ ∈ H}. We show that F is a filtered s-preorder. Take
(σ, ρ) ∈ FH , i.e. (σ, f(ρ)) ∈Rf(H).

If ρ −→ ρ′, then f(ρ) −→ f ′(ρ′) and (σ, f ′(ρ′)) ∈Rf(H′) with H ′ = H ∪ {ρ},
hence (σ, ρ′) ∈ FH′ . If instead ρ ↓ r, we distinguishes two cases. (i) If ρ /∈ H,
then also f(ρ) /∈ f(H) hence there exists s such that s ⊆ r|f . Since r|f ⊆ r

we have s ⊆ r. Take now α ∈ s, then α ∈ r|f so f(ρ) α−→ f ′(ρ′). Now, from
(σ, f(ρ)) ∈Rf(H) we know that (σ(α), f ′(ρ′)) ∈Rf(H′) with H ′ = H ∪{f(ρ)}, so
(σ(α), ρ′) ∈ FH′ . ((ii) If ρ ∈ H, then also f(ρ) ∈ f(H). Now, for every s such
that σ ⇓ s it holds s ⊆ r|f , hence s ⊆ r|f and for every action α ∈

⋃
σ⇓s s if

f(ρ) α−→ f(ρ′), then σ α=⇒ with (σ(α), f(ρ′)) ∈ Rf(H′) and H ′ = H ∪{ρ}, hence
also (σ(α), ρ′) ∈ FH′ . ut

6 Conclusion

We have developed a formal framework for the analysis of different theories of
compliance in the literature. Besides investigating the relationships between the
existing definitions of compliance, we have also shown how to obtain compliance
preorders for multiparty service compositions, by recasting and generalizing the
theory of behavioral coercions from [8, 9] to this setting. Our present endeavor
continues on the line of work we initiated in [2]. There, we used filters to provide
a new solution to the problem of web service adaptation within service composi-
tions [18, 1, 10]. Specifically, we showed how filters may be employed as adapters
to enforce the compliance of a choreography, by blocking the transition paths
in all the components that may get the choreography stuck or trapped into a
livelock. Here, our focus has been on providing effective techniques for the con-
struction of expressive compliance preorders supporting contract replacement.
Collectively, the resulting theory constitutes an elegant support for a formal
analysis of component/service compliance, adaptation and replacement inside
choreographies.

Acknowledgements We gratefully acknowledge comments from the anony-
mous referees.

References

1. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic service composition based on behavioral descriptions.
Int. J. Cooperative Inf. Syst., 14(4):333–376, 2005.

2. G. Bernardi, M. Bugliesi, D. Macedonio, and S. Rossi. A theory of adaptable
contract-based service composition. In GlobalComp. IEEE Computer Society, 2008.

3. M. Bravetti and G. Zavattaro. Contract based multi-party service composition. In
FSEN’07, volume 4767 of LNCS, pages 207–222. Springer, 2007.

4. M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography con-
formance and contract compliance. In SC’07, volume 4829 of LNCS, pages 34–50.
Springer, 2007.

5. L. Caires and H. T. Vieira. Conversation types. In ESOP’09, volume 5502 of
LNCS, pages 285–300. Springer, 2009.

6. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP’07, LNCS, pages 2–17. Springer, 2007.

7. S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of
contracts for web services. In WS-FM’06, volume 4184 of LNCS, pages 148–162.
Springer, 2006.

8. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services.
In POPL’08, pages 261–272. ACM press, 2008.

9. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems, 2009. To appear.

10. Giuseppe De Giacomo and Sebastian Sardiña. Automatic synthesis of new behav-
iors from a library of available behaviors. In Manuela M. Veloso, editor, IJCAI,
pages 1866–1871, 2007.

11. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In ESOP ’98, volume 1381 of
LNCS, pages 122–138. Springer, 1998.

12. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL’08, pages 273–284. ACM Press, 2008.

13. C. Laneve and L. Padovani. The must preorder revisited. In CONCUR’07, volume
4703 of LNCS, pages 212–225. Springer, 2007.

14. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
15. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83–133, 1984.
16. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-

ematical Structures in Computer Science, 6(5):409–453, 1996.
17. A. Rensink and W. Vogler. Fair testing. Information and Computation, 205(2):125–

198, 2007.
18. Paolo Traverso and Marco Pistore. Automated composition of semantic web ser-

vices into executable processes. In Sheila A. McIlraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, International Semantic Web Conference, volume 3298
of Lecture Notes in Computer Science, pages 380–394. Springer, 2004.

