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a low level user sees of the system is not modi�ed (in the sense of the bisimulationsemantis) by omposing any high level proess � with E. The main advantageof BNDC with respet to trae-based properties is that it is powerful enough todetet information ows due to the possibility for a high level maliious proessto blok or unblok a system (see [4, 6℄ for more detail). As a matter of fat,although Martinelli [20℄ has shown that BNDC is deidable over �nite stateproesses, the problem of verifying BNDC is still open. The main diÆultyonsists of getting rid of the universal quanti�ation on high level proesses � .A way to overome this problems is to adopt suÆient onditions for BNDC.We reall from [6, 8℄ two of them, named Strong BNDC (SBNDC, for short)and Persistent BNDC (P BNDC, for short) 1. In partiular, P BNDC has beenshown to be suitable for analysing systems in dynami ontexts [8℄.In this paper we onsider P BNDC and SBNDC and for both these propertieswe study two di�erent haraterizations that allow to exploit di�erent veri�a-tion tehniques. The �rst kind of haraterization is based on bisimulation-likeequivalene relation between the system E to be analysed and the low level viewof the system itself, denoted by E nH (the system E prevented from performingon�dential ations). These bisimulation-based haraterizations allow to exploitvery eÆient tehniques for verifying the properties over �nite-state proessesusing existing algorithms for the veri�ation of strong bisimulation. The seondkind of haraterization is given in terms of unwinding onditions whih demandproperties of individual ations. Unwinding onditions aim at \distilling" the lo-al e�et of performing high level ations and are useful to de�ne both proofsystems (see, e.g., [2℄) and re�nement operators that preserve seurity proper-ties, as done in [17℄. Proof systems allow to inrementally build systems whihare seure by onstrution. Similarly re�nement operators are useful in a step-wise development proess as properties whih have been already investigated insome phase need not to be re-investigated in later phases.In partiular, we start by onsidering the two haraterizations above, givenin [2℄ for P BNDC . By studying the relation between suh two harateriza-tions, we are able to give a new bisimulation-based haraterization for SBNDC,whih was originally de�ned through unwinding onditions. As a next step weinvestigate the ompositionality of P BNDC and SBNDC. Compositionality isuseful for both veri�ation and synthesis: if a property is preserved when systemsare omposed, then the analysis may be performed on subsystems and, in ase ofsuess, the system as a whole an be proved to satisfy the desired property. Wenotie that both P BNDC and SBNDC are ompositional with respet to theparallel operator, but they are not fully ompositional, sine they are not om-positional with respet to the non-deterministi hoie operator, whih allows usto built a system that may hoose to behave as one of two spei�ed subsystems.It would be intuitive to require that a hoie between two seure proesses isstill seure as observed in [10℄. To this aim we introdue a new seurity prop-erty, named Compositional P BNDC (CP BNDC, for short), properly inludedin P BNDC, whih is fully ompositional, i.e., it is ompositional also with re-1 In [8℄, P BNDC has been shown to be equivalent to the SBSNNI property of [6℄.2



spet to the non-deterministi hoie. CP BNDC an be equivalently expressedthrough both a bisimulation-like equivalene and unwinding onditions.We show that the bisimulation-based haraterizations of our persistent seu-rity properties allow us to perform the veri�ation task for �nite state proessesin polynomial time with respet to the number of states of the system, alsoimproving on the polynomial time omplexity required by the CompositionalSeurity Cheker Cose presented in [5℄. Finally, we provide a suÆient ondi-tion to de�ne re�nement operators preserving all our seurity properties.The paper is organized as follows. In Setion 2 we introdue some basinotions on the SPA language and the seurity properties BNDC and P BNDC.In Setion 3 we study the property SBNDC and provide a bisimulation-basedharaterization of it. In Setion 4 we introdue the lass of CP BNDC proessesand prove that it is fully ompositional. Setion 5 is devoted to omplexity resultsfor the bisimulation-based haraterizations of the three properties. In Setion 6we propose a suÆient ondition to de�ne re�nement operators for SPA proessespreserving seurity. Finally, in Setion 7 we disuss related works and draw someonlusions. All the proofs of propositions and theorems an be found in [1℄.2 Basi NotionsIn this setion we report the syntax and semantis of the Seurity Proess Algebra(SPA, for short) [6℄ and the de�nition of the seurity properties BNDC [4℄ andP BNDC [8℄ together with some main results [2℄.The SPA Language. The Seurity Proess Algebra [6℄ is a variation of Milner'sCCS [27℄, where the set of visible ations is partitioned into high level ationsand low level ones in order to speify multilevel systems. SPA syntax is based onthe same elements as CCS that is: a set L of visible ations suh that L = I [Owhere I = fa; b; : : :g is a set of input ations and O = f�a;�b; : : :g is a set of outputations; a speial ation � whih models internal omputations, i.e., not visibleoutside the system; a omplementation funtion �� : L ! L, suh that ��a = a, forall a 2 L. Funtion �� is extended to At by de�ning �� = � . At = L [ f�g is theset of all ations. The set of visible ations is partitioned into two sets, H andL, of high and low ations suh that H = H and L = L. The syntax of SPAterms (or proesses) is de�ned as follows:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Zwhere a 2 At , v � L, f : At ! At is suh that f(��) = f(�), f(�) = � ,f(H) � H[f�g, and f(L) � L[f�g, and Z is a onstant that must be assoiatedwith a de�nition Z def= E.We denote by E the set of all SPA proesses and by EH the set of all high levelproesses, i.e., those onstruted only using ations in H [ f�g. The operationalsemantis of SPA agents is given in terms of Labelled Transition Systems (LTS,for short) as de�ned in [6℄. 3



The onept of observation equivalene is used to establish equalities amongproesses and it is based on the idea that two systems have the same semantis ifand only if they annot be distinguished by an external observer. This is obtainedby de�ning an equivalene relation over E . The weak bisimulation relation [27℄equates two proesses if they are able to mutually simulate their behavior stepby step. Weak bisimulation does not are about internal � ations.We will use the following auxiliary notations. If t = a1 � � � an 2 At� andE a1! � � � an! E0, then we write E t! E0. We also write E t=) E0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a (possibly empty) sequene of �labelled transitions. If t 2 At�, then t̂ 2 L� is the sequene gained by deletingall ourrenes of � from t. As a onsequene, E â=) E0 stands for E a=) E0 ifa 2 L, and for E( �!)�E0 if a = � (note that �=) requires at least one � labelledtransition while �̂=) means zero or more � labelled transitions).De�nition 1 (Weak Bisimulation). A binary relation R � E�E over agentsis a weak bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F â=) F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E â=) E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar, denoted by E � F , if there exists aweak bisimulation R ontaining the pair (E;F ).The relation� is the largest weak bisimulation and is an equivalene relation [27℄.Seurity Properties. The BNDC [4℄ seurity property aims at guaranteeingthat no information ow from the high to the low level is possible, even in thepresene of maliious proesses. The main motivation is to protet a systemalso from internal attaks, whih ould be performed by the so alled TrojanHorse programs, i.e., programs that are apparently honest but hide inside somemaliious ode. Property BNDC is based on the idea of heking the systemagainst all high level potential interations, representing every possible high levelmaliious program. In partiular, a system E is BNDC if for every high levelproess � a low level user annot distinguish E from (Ej�), i.e., if � annotinterfere with the low level exeution of the system E.De�nition 2 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nH � (Ej�) nH:Example 1. The BNDC property is powerful enough to detet information owsdue to the possibility for a high level maliious proess to blok or unbloka system. Let H = fhg, L = fl; jg and E1 = l:h:j:0 + l:j:0. Consider theproess � = �h:0. We have that (E1j�) nH � l:j:0, while E1 nH � l:0+ l:j:0.Note that the latter may (nondeterministially) blok after the l input. Havingmany instanes of this proess, a low level user ould dedue if �h is exeutedby observing whether the system always performs j or not. Proess E1 may be\repaired", by inluding the possibility of hoosing to exeute j or not inside theproess. Indeed, proess E2 = l:h:j:0+ l:(�:j:0+ �:0) is BNDC.4



In [8℄, it is introdued a seurity property alled Persistent BNDC (P BNDC,for short), whih is suitable for analysing systems in dynami exeution environ-ments. Intuitively, a system E is P BNDC if it never reahes inseure states.De�nition 3 (P BNDC). Let E 2 E.E 2 P BNDC i� 8 E0 reahable from E; E0 2 BNDC :Example 2. Consider the proess E2 of Example 1, i.e., E2 = l:h:j:0+ l:(�:j:0+�:0) where l; j 2 L and h 2 H . Suppose now that E2 is moved in the middle ofa omputation. This might happen when it �nd itself in the state h:j:0 (afterthe �rst l is exeuted). Now it is lear that this proess is not seure, as a diretausality between h and j is present. In partiular h:j:0 is not BNDC and thisgives evidene that E2 is not P BNDC. The proess may be \repaired" as follows:E3 = l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E3 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.In [8℄ it has been shown that even if the de�nition of P BNDC introdues anuniversal quanti�ation over all the possible reahable states, this an be avoidedby inluding the idea of \being seure in every state" inside the bisimulationequivalene notion. This is done by de�ning an equivalene notion whih justfous on observable ations whih do not belong to H . More in details, it isde�ned an observation equivalene, named weak bisimulation up to H whereations from H are allowed to be ignored, i.e., they are allowed to be mathedby zero or more � ations. To this aim, the following transition relation is used.De�nition 4. Let a 2 At. We de�ne the transition relation â=)nH as follows:â=)nH = ( â=) if a 62 Ha=) or �̂=) if a 2 HNote that the relation â=)nH is a generalization of the relation â=) used inthe de�nition of weak bisimulation [27℄. In fat, if H = ;, then for all a 2 At ,E â=)nH E0 oinides with E â=) E0.De�nition 5 (Weak Bisimulation up to H). A binary relation R � E � Eover agents is a weak bisimulation up toH if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F â=)nH F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E â=)nH E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar up toH, written E �nH F , if (E;F ) 2R for some weak bisimulation R up to H.The relation �nH is the largest weak bisimulation up to H and it is anequivalene relation. In [8℄ P BNDC has been haraterized in terms of �nH .Theorem 1 (P BNDC - Bisimulation). Let E 2 E. E 2 P BNDC i� E �nHE nH: 5



In [2℄ we give a further haraterization of P BNDC proesses in terms ofunwinding onditions. This new haraterization provides a better understandingof the operational semantis of P BNDC proesses. In pratie, whenever a stateE0 of a P BNDC proess may exeute a high level ation moving to a state E00,then E0 should be also able to simulate suh high move through a � sequenemoving to a state E000 whih is equivalent to E00 for a low level user.Theorem 2 (P BNDC - Unwinding). Let E 2 E be a proess. E 2 P BNDCi� for all E0 reahable from E, if E0 h! E00, then E0 �̂=) E000 and E00 n H �E000 nH.Here we observe that there is a strit relation between the bisimulation-basedharaterization of P BNDC given in Theorem 1 and the unwinding ondition ofTheorem 2: the equivalene �nH between E and E nH in Theorem 1 states thathigh level ations of E are simulated by zero or more � ations of E nH , whilethe unwinding ondition in Theorem 2 say that for every high level ation theremust exists a path of zero or more � ations leading to equivalent states fromthe low level view. This suggests us that onsistent hanges in the way of dealingwith high level ations in �nH and in the orresponding unwinding ondition,may lead to di�erent bisimulation-like and unwinding haraterizations of novelinformation ow seurity properties.This idea will be exploited in the next setions when we study the propertiesSBNDC and CP BNDC.In [8℄ it is also proved that P BNDC is ompositional with respet to theparallel omposition, restrition and low level pre�x operators. Unfortunately,P BNDC is not ompositional with respet to the nondeterministi hoie op-erator as illustrated in Example 4 in the next setion.3 Strong BNDCThe property Strong BNDC (SBNDC, for short) has been introdued in [4℄ asa suÆient ondition for verifying BNDC. It just requires that before and afterevery high step, the system appears to be the same, from a low level perspetive.It has been de�ned through unwinding onditions as follows.De�nition 6 (SBNDC - Unwinding). Let E 2 E. E 2 SBNDC i� for all E0reahable from E, if E0 h! E00, then E0 nH � E00 nH.SBNDC is persistent in the sense that if a proess E is SBNDC then allproesses E0 reahable from E are SBNDC, i.e., every state reahable from aseure system is still seure. From Theorem 2 it is easy to prove the following:Corollary 1. SBNDC � P BNDC � BNDC :By exploiting the relationships between the unwinding and the bisimulationharaterizations disussed for the property P BNDC in the previous setion,6



we show that we an avoid the universal quanti�ation over all the possiblereahable states in the de�nition of SBNDC by de�ning a suitable bisimulationequivalene notion. Note that De�nition 6 requires that high level ations of Eare simulated by no moves, i.e. by zero � ations, thus we de�ne an observationequivalene, named weak bisimulation up to H with zero � , where ations fromH are allowed to be totally ignored, i.e., they are allowed to be mathed by zeroations. To this aim, we use the following transition relation whih does not takeare of internal ations and may totally ignore ations from H .De�nition 7. Let a 2 At. We de�ne the transition relation â=)0nH as follows:â=)0nH = ( â=) if a 62 Ha=) or ! if a 2 Hwhere ! denotes a sequene of zero ations 2.Note that relation â=) 0nH is inluded into â=)nH , introdued in De�nition 4,sine the empty sequene is a partiular sequene of � ations.The onept of weak bisimulation up to H with zero � is de�ned as follows.De�nition 8 (Weak Bisimulation up to H with zero �). A weak bisimu-lation up to H with zero � is a weak bisimulation where the transition relationâ=) is replaed by â=)0nH . Two agents E;F 2 E are weakly bisimilar up to Hwith zero � , written E �0nH F , if (E;F ) 2 R for some weak bisimulation R upto H with zero � .The relation �0nH is the largest weak bisimulation up to H with zero � andit is an equivalene relation.SBNDC proesses an be haraterized in terms of �0nH as follows.Theorem 3 (SBNDC - Bisimulation). Let E 2 E. E 2 SBNDC i� E �0nHE nH:Example 3. Let us onsider the proess depited below, modelling the use ofa shared resoure by a low level produer and an high level onsumer, i.e.,produe 2 L and onsume 2 H .R0 = produe :R1Ri = produe :Ri+1 + onsume:Ri�1 for i 2 [1; n� 1℄Rn = produe :Rn + onsume:Rn�1Note that the resoure has a maximum apaity of n and the low level produeation is ignored when suh a limit is reahed. This non-intuitive behavior isneeded in order to avoid a potential ow from high to low level. In partiular,if the low level produer ould observe when the resoure is full, this will beexploited to dedue how many high level onsume ations have been performed.2 If E ! E0 then E oinides with E0. 7



It is easy to see that this proess is SBNDC by diretly applying De�nition 6.In fat all the Rj states are equivalent when restrited on high level ations, asthey may only perform a produe ation moving to another restrited Rj0 .In [6℄ (see Theorem 4) it is proved that SBNDC is ompositional with respetto the parallel and restrition operators. It is easy to extend the ompositionalityresult by showing that SBNDC is also ompositional with respet to low levelpre�x and relabelling.Proposition 1. Let E;F 2 E. If E;F 2 SBNDC, then� a:E 2 SBNDC, for all a 2 L [ f�g;� (EjF ) 2 SBNDC;� E n v 2 SBNDC, for all v � L;� E[f ℄ 2 SBNDC.As P BNDC also SBNDC is not ompositional with respet to the nondeter-ministi hoie operator. The following example onerns SBNDC, but a similarreasoning an be done for P BNDC.Example 4. Consider the proesses E4 = h:0 with h 2 H and E5 = l:0 withl 2 L. It is easy to see that both E4 and E5 are SBNDC but E4 + E5 is notSBNDC. In fat E4 + E5 h! 0 while E4 + E5 ! E4 + E5 = h:0 + l:0, but(h:0+ l:0) nH 6� 0. The problem lies in the fat that while the high level ationin E4 is safely simulated by a sequene of zero � in E4 nH , the same high levelation in E4+E5 is not safely simulated by a sequene of zero � in (E4+E5)nHdue to the presene of the additional omponent E5. This problem would notarise if h were be simulated by at least one � ation. This observation will beexploited in the next setion to de�ne a fully ompositional seurity property.4 Compositional P BNDCIt is well-known that seurity properties are, in general, not preserved underomposition [21℄. We have seen in the previous setions that P BNDC and SB-NDC are both non-ompositional with respet to the nondeterministi hoieoperator. However, ompositionality results are ruial for making the develop-ment of large and omplex systems feasible [23, 25, 19℄. In this setion we showhow the notion of P BNDC an be slightly restrited in order to obtain a lass ofproesses whih is fully ompositional (i.e., it is ompositional also with respetto the nondeterministi hoie). We all suh a lass Compositional P BNDC(CP BNDC, for short). We also show that this lass an be equivalently hara-terized in terms of a bisimulation-like relation and unwinding onditions.We start by modifying the way of dealing with high level ations in the �rstharaterization of P BNDC given in terms of �nH . The idea is that of de�ningan observation equivalene, named weak bisimulation up to H with at least one� , where ations from H are allowed to be mathed by one or more � ations, but8



not zero � . To this aim, we use the following transition relation whih generalizesthe relation â=). As in De�nition 4, a high level move an be simulated by asequene of � moves, but now we require that the sequene is not empty.De�nition 9. Let a 2 At. We de�ne the transition relation â=)+nH as follows:â=)+nH = ( â=) if a 62 Ha=) or �=) if a 2 HThe onept of weak bisimulation up to H with at least one � is as follows.De�nition 10 (Weak Bisimulation up to H with at least one �). A weakbisimulation up to H with zero � is a weak bisimulation where the transitionrelation â=) is replaed by â=)+nH . Two agents E;F 2 E are weakly bisimilarup to H with at least one � , written E �+nH F , if (E;F ) 2 R for some weakbisimulation R up to H with at least one � .The relation �+nH is the largest weak bisimulation up to H with at least one� and it is an equivalene relation. The relation â=)+nH is inluded in â=)nH .The lass of CP BNDC proesses is de�ned in terms of �+nH as follows.De�nition 11 (CP BNDC - Bisimulation). Let E 2 E.E 2 CP BNDC i� E �+nH E nH:CP BNDC an be haraterized in terms of unwinding onditions.Theorem 4 (CP BNDC - Unwinding). Let E 2 E. E 2 CP BNDC i� forall E0 reahable from E, if E0 h! E00 then E0 �=) E000 and E00 nH � E000 nH.Corollary 2. CP BNDC � P BNDC � BNDC:Notie that neither SBNDC implies CP BNDC nor CP BNDC implies SB-NDC. For example, proess h:0 is SBNDC but it is not CP BNDC, as no �transitions simulate the high level h. On the other side, proess h:0+ l:0+ �:0is CP BNDC but not SBNDC, as, after performing h, the low level ation l isno longer exeutable. However, there are proesses whih are both SBNDC andCP BNDC, e.g., proesses whih perform only low level ations. The situationis summarized in Fig. 1. Notie that all the inlusions are strit.Example 5. Consider the proess C (hannel) desribed through a value-passingextension of SPA by: C = in(x):(out(x):C + �:C):C may aept a value x at the left-hand port, labelled in. When it holds avalue, it either delivers it at the right-hand port, labelled out, or resets itselfperforming an internal transition. 9
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Fig. 1. Seurity Properties.If the domain of x is f0; 1g, then the hannel C an be translated into SPAin a standard way by following [27℄ as:C = in0:(out0:C + �:C) + in1:(out1:C + �:C):Let us assume that C is used as ommuniation hannel from low to highlevel. This an be expressed as in0; in1 2 L and out0; out1 2 H . Sine, in or-respondene of eah high level ation (out0; out1) there is a � transition leadingto the same state, by Theorem 4 we an onlude that C is CP BNDC . The �transitions basially makes the hannel a lossy one, as high level outputs may benon-deterministially lost. However, note that non-determinism is used to ab-strat away implementation details. For example, suh � 's ould orrespond, atimplementation time, to time-outs for the high level output ations, i.e., eventsthat empty the hannel and allow a new low level input, whenever high outputsare not aepted within a ertain amount of time. Analogously, it is possibleto see that C is also SBNDC . Note that proess C 0 = in(x):out(x):C 0 with no� 's is neither CP BNDC nor SBNDC . Indeed, a high level user may blok andunblok C 0 in order to transmit information to low level user. utExploiting the unwinding haraterization we are now ready to prove thatCP BNDC is ompositional with respet to the nondeterministi hoie operator.Proposition 2. Let E;F 2 E. If E;F 2 CP BNDC, then� a:E 2 CP BNDC , for all a 2 L [ f�g;� (E + F ) 2 CP BNDC ;� (EjF ) 2 CP BNDC;� E n v 2 P BNDC, for all v � L;� E[f ℄ 2 CP BNDC .5 Veri�ation ComplexityLet us denote with ��nH the relation �nH . By adopting this notation we havethat a proess E is P BNDC, SBNDC, and CP BNDC if and only if E �snH EnHfor s = �, s = 0 and s = +, respetively.10



The haraterizations of properties in terms of bisimulation equivalenes al-low us to eÆiently verify them. Let n = jSE j be the number of states in LTS (E),for eah a 2 At, let ma be the number of a! transitions in LTS(E), andm = Pa2Atma. Similarly, let m̂a be the number of â=)snH transitions, andm̂ =Pa2At m̂a.Theorem 5. Let s 2 f0; �;+g. The test E �snH E nH an be performed in timeO(nm̂� + nw + m̂ logn) and spae O(n2), where w denotes the exponent in therunning time of the matrix multipliation algorithm used.3The proof of this omplexity result follows exatly the lines of the proof presentedin the ase of P BNDC in [7℄ paying some attention to modify the third point ofthe algorithm. In partiular the time omplexity depends on the fat that in allthe ases it is neessary to ompute the transitive losure of the � -transitions.Notie that in the omplexity result m̂ logn omes from the fat that we use thealgorithm by Paige and Tarjan ([30℄) to ompute the maximum bisimulation.6 Preserving Seurity under Re�nementIn a stepwise development proess, one usually starts with a very abstrat spe-i�ation of the desired system. The spei�ation is then re�ned and deomposeduntil one arrives at a onrete spei�ation that an be diretly implemented.Naturally, one expets that a system whih is formally developed in this waysatis�es all properties that are satis�ed by the abstrat spei�ation (plus pos-sibly additional ones). While this holds for safety and liveness properties, it isnot true for most information ow properties. This problem has been widelydisussed in [14℄ and some progress toward a solution has been made in [13, 29,31, 18℄. In partiular, in [18℄ Mantel shows how from unwinding onditions onean easily de�ne re�nement operators whih preserve seurity.A re�nement for a proess is de�ned in terms of a basi re�nement opera-tor ref : E ! E that, given a proess E, returns a proess ref (E) whih is are�nement of E.Following [18℄, we identify a suÆient ondition to be satis�ed by basi re�ne-ment operators in order to preserve the bisimulation-based possibilisti seurityproperties studied in this paper.De�nition 12. A basi re�nement operator ref preserves the low level obser-vations if for all E;F 2 E if E nH � F nH, then ref (E) nH � ref (F ) nH.Example 6. Let v � L. The restrition operator nv is a basi re�nement operatorwhih preserves the low level observations. In fat, if E nH � F nH then it iseasy to prove that (E n v) nH � (E n v) nH .3 In the algorithm in [3℄, whih is at the moment the fastest in literature, we havethat w = 2:376. 11



Given a basi re�nement operator ref , a re�nement re�ne(E; ref ; S) for aomplex system E is the proess obtained by applying ref to all E0 2 S reahablefrom E. If E satis�es P BNDC (or CP BNDC or SBNDC ) then we would likethat also the resulting system satis�es it. However, by simply applying the refoperator to all the proesses in S one may obtain a system whih does not satisfythe desired property.Example 7. Consider the proess E6 = E7 + h:E8, where E7 = l:h:0 and E8 =l:0, with h 2 H and l 2 L. The proess E6 is SBNDC. If we onsider the basi re-�nement operator nflg and the set S = fE8g we obtain that re�ne(E6; ref ; S) =l:h:0+ h:0 whih is not SBNDC. The problem is due to the fat that by re�n-ing E8 we loose the unwinding property: re�ne(E6; ref ; S) does not ontain anysubproess E0 reahable with zero � ations and suh that E0 nH � ref (E8)nH .On the other hand, re�ne(E6; ref ; fE7; E8g) = h:0 is SBNDC.The above example suggests how to guarantee the unwinding onditions, andthen our seurity properties, in re�ning a proess: when we re�ne a subproessE0 we have to re�ne also all the subproesses E00 suh that E0 nH � E00 nH .Theorem 6. Let E 2 E, ref be a basi re�nement operator whih preserves thelow level observations. Let S be a set of states suh that for all E0; E00 reahablefrom E if E0 2 S and E0 nH � E00 nH then E00 2 S too.If E satis�es P BNDC (CP BNDC, SBNDC) then re�ne(E; ref ; S) satis�esP BNDC (CP BNDC, SBNDC, respetively).Proof. Immediate by the unwinding Theorems 2 and 4, and De�nition 6.Given an intended re�nement re�ne(E; ref ; S) whih does not satisfy thehypothesis on S of the above theorem, there are two natural ways for obtain-ing an approximation of it whih preserves our seurity properties. We denotethem by re�ne+(E; ref ; S) and re�ne�(E; ref ; S). While re�ne+(E; ref ; S) re-�nes through ref all the states whih are in S (plus possibly states not in S),re�ne�(E; ref ; S) only re�nes through ref states whih are in S (but possibly notall states in S). The formal de�nition of re�ne+(E; ref ; S) and re�ne�(E; ref ; S)are as follows.De�nition 13 (re�ne+ and re�ne�). Let E 2 E, let ref be a basi re�nementoperator whih preserves the low level observations and let S be a set of statesreahable from E.re�ne+(E; ref ; S) = re�ne(E; ref ; S [ S0) whereS0 = fE00 reahable from E j 9E0 2 S and E0 nH � E00 nHgre�ne�(E; ref ; S) = re�ne(E; ref ; S0) whereS0 is the greatest subset of S suh that if E0 2 S0 and E00 isreahable from E and E0 nH � E00 nH then E00 2 S.If a state E0 2 S is re�ned through ref then re�ne+(E; ref ; S) re�nes alsoall states E00 whih are equivalent to E0 from the low level view. On the otherhand, re�ne�(E; ref ; S) re�nes through ref a state E0 2 S only if all states E00whih are equivalent to E0 from the low level view belong to S.12



Corollary 3. Let E 2 E, ref be a basi re�nement operator whih preserves thelow level observations, and S be a set of states reahable from E. If E satis�esP BNDC (CP BNDC , SBNDC) then re�ne+(E; ref ; S) and re�ne�(E; ref ; S)both satisfy P BNDC (CP BNDC, SBNDC, respetively).7 Related Works and ConlusionsIn this paper we study three persistent information ow seurity properties basedon the bisimulation semantis model. For these properties we provide two hara-terizations: one in terms of a bisimulation-like equivalene relation and anotherone in terms of unwinding onditions.The �rst haraterization allows us to perform the veri�ation of the proper-ties for �nite state proesses in polynomial time with respet to the number ofstates of the system, also improving on the polynomial time omplexity requiredby the Compositional Seurity Cheker Cose presented in [5℄.The seond haraterization is based on unwinding onditions. This kind ofonditions for possibilisti seurity properties have been previously proposed inmany papers, see, e.g., [13, 32, 26, 17℄. All suh onditions have been proposedfor traes-based models and are, in most ases, only suÆient for the respetiveseurity properties. Here we propose new neessary and suÆient unwindingonditions for bisimulation-based properties.In [2℄ we show how unwinding onditions an be exploited for de�ning aproof system whih provides a very eÆient tehnique for the veri�ation andthe development of P BNDC seure proesses. Indeed, the proof system allowsus to verify whether a proess is seure just by inspeting its syntax, and thusavoiding the state-explosion problem. In partiular, it allows us to deal withreursive proesses whih may perform unbounded sequenes of ations, possiblyreahing an in�nite number of states. Moreover, the system o�ers a mean tobuilt proesses whih are P BNDC by onstrution in an inremental way. Suha proof system ould be easily adapted to deal with the CP BNDC and SBNDCproperties studied in this paper.We show that P BNDC and SBNDC are ompositional with respet to allthe operators of SPA, exept the non-deterministi hoie. Moreover, we provethat the new property named CP BNDC is fully ompositional. Compositional-ity of possibilisti seurity properties has been widely studied in the literature.There are several information ow properties based on the traes model whihhave been proved to be fully ompositional like, e.g., restritiveness [21℄, for-ward orretability [15℄ or separability [23℄. In [23, 25℄ it has been studied howto restrit omposition in order to preserve ertain seurity properties whihare not preserved by (more general) omposition. To the best of our knowledge,CP BNDC is the only bisimulation-based seurity property in literature whihis fully ompositional.Finally, we provide a suÆient ondition to de�ne re�nement operators pre-serving our persistent seurity properties. The problem of �nding re�nementsunder whih seurity is preserved has been widely disussed in [14℄ and some13
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