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Abstract Network connectivity and energy conserva-

tion are two major goals in mobile ad-hoc networks

(MANETs). In this paper we propose a probabilistic,

energy-aware, broadcast calculus for the analysis of both

such aspects of MANETs. We first present a probabilis-

tic behavioural congruence together with a co-inductive

proof technique based on the notion of bisimulation.

Then we define an energy-aware preorder over networks.

The behavioural congruence allows us to verify whether

two networks exhibit the same (probabilistic) connec-

tivity behaviour, while the preorder makes it possible

to evaluate the energy consumption of different, but be-

haviourally equivalent, networks. In practice, the quan-

titative evaluation of the models is carried out by re-

sorting to the statistical model checking implemented

in the PRISM tool, i.e., a simulation of the probabilistic
model. We consider two case studies: first we evaluate

the performance of the Location Aided Routing (LAR)

protocol, then we compare the energy efficiency of the

Go-Back-N protocol with that of the Stop-And-Wait in

a network with mobility.

Keywords Manets · Process Algebras · Energy

Conservation · Performance Evaluation · Simulation

1 Introduction

Mobile ad-hoc networks (MANETs) consist of mobile

devices connected by wireless links and communicat-
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ing with each other without any pre-existing infrastruc-

ture. Nodes are free to move arbitrarily in any direction,

and therefore their links to other nodes may change fre-

quently. Moreover, since mobile devices are often depen-

dent on battery power, it is important to minimize their

energy consumption. As a consequence, one of the ma-

jor issues of current communication protocols is that of

providing a full connectivity among the network devices

while maintaining good performances both in terms of

throughput and of energy conservation (see, e.g., [1–

6]). For larger networks in which some of/all the nodes

are aware of their relative or absolute geographical posi-

tion, e.g., thanks to a Global Positioning System device

(GPS), the routing protocols may exploit this informa-

tion in order to improve the efficiency of packet delivery

by controlling the flooding process (see, e.g., [7,8]).

Drawing on earlier work on the subject [9–12], in

this paper we present a calculus for the analysis of

network connectivity and the evaluation of energy con-

sumption in mobile ad-hoc networks.

The definition of a general framework for both quali-

tative (connectivity) and quantitative (power consump-

tion and throughput) analysis is a challenging topic of

research. Indeed, general purpose formalisms for con-

currency (e.g., Petri nets) do not deal with the mobil-

ity of the devices in a natural way, and hence they do

not allow for a modular and hierarchical description of

mobile systems. In [13] we presented a calculus with

non-atomic output and input actions to capture the

presence of interferences caused by the simultaneous

transmission of two (or more) nodes. The calculus of

[13] is targeted at the evaluation of the level of interfer-

ence in mobile ad hoc networks, while no quantitative

assessment of energy consumption is considered. Here

we present a calculus, named Probabilistic EBUM, for

formally reasoning about Energy-aware Broadcast, Uni-
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cast and Multicast communications of mobile ad-hoc

networks. This is an extension of the EBUM calculus

presented in [10,14,15] where probability distributions

are used to describe the movements of nodes. As in

previous works [10,13], our calculus allows us to rep-

resent the system devices as syntactical terms, named

nodes, associated with labels, named locations, allowing

us to identify the transmission area of each communica-

tion. Differently from [10], nodes may move inside the

network according to a fixed probability distribution.

Wireless synchronizations are non-deterministic, and

modeled by sequential processes inside the nodes. The

calculus allows us to model broadcast, unicast and mul-

ticast communications limited to the transmission cell

of the sender. The idea of using location-based desti-

nation is motivated by the need of efficiently modelling

large networks with location-based routing (see, e.g., [7,

8]), and of comparing their efficiency with respect to

standard routing algorithms based on flooding. Never-

theless, the routing based on the knowledge of nodes

destination addresses (but not their physical locations)

can still be implemented in our calculus by specifying

the intended recipients’ addresses as part of the mes-

sage content. This reflects the actual implementation of

wireless protocols in which messages are broadcast and

then filtered by the recipient devices according to the

(MAC) address specified in the header of the packet.

Another important feature of the calculus is the fact

that nodes may control their transmission power by

modifying the communication transmission radius.

The semantics of our calculus is expressed in terms

of both probabilistic and non-deterministic transitions.

Schedulers are used to resolve the non-deterministic

choice among different probability distributions over

target states. This leads to a purely probabilistic model

that can be studied by resorting to both exact and sta-

tistical approaches. In fact, for most of practical appli-

cations the cardinality of the model state space is huge

enough to make the application of standard probabilis-

tic analysis techniques prohibitive from the computa-

tional point of view. We show that our calculus can be

implemented within the PRISM model checker [16] and

hence the discrete-event simulator built into PRISM

can be used to perform a statistical model checking.

In this paper we define a probabilistic behavioural

congruence in the style of [17] to equate networks ex-

hibiting the same probabilistic connectivity behaviour.

As in [15,14], and in contrast to [12], the notion of

observability is relative to the nodes listening at spe-

cific locations in the network, so as to allow a fine

grained analysis of connectivity at different areas within

a network. We give a coinductive characterisation of be-

havioural congruence based on a labelled transition se-

mantics. This is a bisimulation-based proof technique in

the form of a probabilistic labelled bisimilarity which is

shown to coincide with the behavioural equivalence. We

also introduce energy-aware preorders over networks to

measure the relative energy cost of different, but be-

haviourally equivalent, networks. We present two case-

studies. The first one consists in modelling the Location

Aided Routing (LAR) protocol [7]: we study how the

performances of this protocol vary depending on the

characteristics of the specific network, e.g., node den-

sity, topology changes and power capacity of the de-

vices. In the second case-study we compare the perfor-

mances, in terms of energy consumption, of an aggres-

sive protocol for reliable communications (Go-Back-n)

and a slower protocol (Stop&Wait).

This paper is an extended and improved version of

[9]. The main novelties concern the extension of the

calculus through the channel restriction operator (νc)

over networks that is useful to specialise the verification

method to some specific class of contexts. Moreover, we

define a new equivalence relation that is parametric to a

restricted set of executions for a given network: our new

definition of probabilistic barbed congruence allows us to

study the performances of networks focusing the atten-

tion only on specific restricted behaviours, abstracting

out all the executions that are unrealistic or that are

simply non interesting for the aims of the analysis. We

also define the labelled semantics which is proved to

coincide with the probabilistic behavioural congruence.

This provides the basis for powerful, both inductive and

co-inductive, proof techniques. Finally, the analysis of

the LAR protocol using our Probabilistic EBUM cal-

culus is totally new. For this case study we perform a

quantitative analysis based on the discrete-event simu-

lation that is available in the PRISM model checker.

1.1 Related work

Various probabilistic algebraic calculi have been devel-

oped to model mobile ad-hoc and sensor networks.

Song and Godskesen [18] propose a probabilistic

broadcast calculus for mobile and wireless networks with

unreliable connections. The main feature of this calcu-

lus is the presence of a probabilistic mobility function

to model the mobility of nodes. Recently, in [19] the

same authors propose a new version of their calculus

built upon a stochastic mobility function to model the

stochastic changes of connectivity. As in our works [14,

9,10] broadcast actions are associated with the loca-

tions of the intended recipients of the message. How-

ever, differently from our calculus, in [19] any notion of

transmission radius is introduced and any performance

analysis is considered.
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Palamidessi et al. in [20] define the Probabilistic Ap-

plied π-calculus: this is a probabilistic extension of Ap-

plied π-calculus [21], where both non-deterministic and

probabilistic choices are modelled. The authors define

both a static equivalence, and an observational congru-

ence based on the notion of probabilistic barb, which

describes the probability, for a given system, to perform

a certain observable action. As in our calculus, in order

to solve the non-determinism, schedulers (also called

polices, or adversaries) have been introduced. They are

modelled as functions mapping states into probability

distributions. Differently from our work, their semantic

is not parametrized over restricted sets of schedulers.

Merro et al. introduce aTCWS (applied Timed Cal-

culus for Wireless Systems) [22]: a timed broadcast-

ing process algebra for the analysis of security prop-

erties of wireless networks with fixed nodes, all using

the same transmission radius for their communications.

The connectivity of the network is expressed by associ-

ating with each node a tag containing the list of all its

neighbours. The timed model adopted by this calculus

is known as the fictitious clock approach, and it is based

on clock synchronization of nodes. A probabilistic ver-

sion of TCWS has been introduced in [23]. The main

feature of this calculus is the presence of a simulation

up to probability which allows one to compare networks

which exhibit the same behaviour up to a certain prob-

ability. The main limitations of such calculus are the

absence of mobility and of multiple frequencies.

In [24] Hennessy and Cerone propose a calculus to

model the high-level behaviour of Wireless Systems (i.e.,

MAC-layer protocols). As our calculus, the one pre-

sented in [24] models both probabilistic and non-de-

terministic behaviours. Differently from our model, it

does not rely on any notion of distance or transmission

radius but represents the topology of the network as an

indirect graph where each edge denotes a link between

two nodes. More precisely, it presupposes that all nodes

use the same transmission radius to communicate, an

assumption that is not realistic for MANETs, which in-

clude different kinds of devices, with different physical

structure and power resources.

De Nicola et al. introduce StoKlaim [25]: a stochas-

tic process algebra, whose underlying processes are Con-

tinuous Time Markov Chains, allowing one to describe

random phenomena regarding mobile wireless networks.

As far as performance evaluation is concerned, Hill-

ston et al. introduce the process algebra PEPA [26]

which has been designed for reasoning about systems

composed of concurrent components which co-operate

each other and share resources. The authors also pro-

vide a tool, the PEPA Workbench [27], which allows a

practical use of this process algebra in many applica-

tions concerning software architecture and communica-

tion protocols.

Bernardo et al. introduce EMPAgr [28], an extended

Markovian process algebra including probabilities, pri-

orities and exponentially distributed durations. The pe-

culiarity of this calculus is the possibility of modelling

both exponentially timed and immediate actions, whose

selection is controlled by associating priority levels.

Other performance modelling approaches are based

on Petri Nets and queueing networks but they fall short

of accounting for node mobility while maintaining a

good accuracy in the protocol specification [29–31].

Many recent works investigate the problem of mea-

suring the energy consumption for specific communica-

tion protocols for wireless networks. For instance, in [2]

the authors define a Markov Reward process [32] for the

analysis of some protocols for pairwise node communi-

cations. A steady-state quantitative analysis is then de-

rived and hence the average performance indices com-

puted. In [33] Bernardo et al. present a methodology

to predict the impact of the power management tech-

niques on a system functionality and performance. In [1]

the authors define a set of metrics for measuring the

energy consumption, present various simulations and

show how protocols can be modified to improve the

efficiency. With respect to those works, the model pro-

posed here aims at providing a common framework for

both qualitative and quantitative analyses.

Concerning the problem of routing in mobile ad-

hoc networks, several different solutions have been pro-

posed. Usually, routing protocols are classified in proac-

tive and reactive. While proactive protocols continually

exchange routing information about all the nodes, (see,

e.g., DSDV [34] and WRP [35]), the reactive protocols

update the routing table of each node only on-demand

(see, e.g., the AODV [36], TORA [37] and DSR [38]).

Although proactive routing reduces the latency in send-

ing out packets, due to the continuous up-to-date of

the routing tables, reactive routing are more efficient in

terms of resource usage, since they update the route ta-

bles only on-demand. When dealing with mobile ad-hoc

networks the most common strategy is to use hybrid

protocols, where both the proactive and the reactive

approach coexist in order to provide a good trade-off

between latency and overhead.

1.2 Plan of the paper

Section 2 introduces the Probabilistic EBUM calculus

and its semantics. In Section 3 we present the labelled

transition semantics and define a labelled bisimilarity

which is proved to coincide with the behavioural con-

gruence of the unlabeled semantics. Section 4 shows
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how to exploit the labelled semantics for estimating

the energy consumption of mobile ad-hoc networks and

contrasting the average energy cost of networks exhibit-

ing the same connectivity behaviour. Section 5 analyses

the LAR protocol, comparing it with the simple flood-

ing algorithm usually adopted in reactive routing. Sec-

tion 6 carries out a quantitative and qualitative compar-

ison of the Stop&Wait and Go-Back-N protocols under

a specific scenario. Section 7 concludes the paper.

2 A Probabilistic Calculus for MANETs

We introduce the Probabilistic EBUM calculus, an ex-

tension of EBUM (a calculus for Energy-aware Broad-

cast, Unicast, Multicast communications of mobile ad-

hoc networks) [15]. The calculus has been designed for

modeling mobile ad-hoc networks as a collection of mo-

bile devices, running in parallel, and using channels to

broadcast messages. It supports both multicast and uni-

cast communications. Moreover, it allows us to model

the capability for a node to adjust its transmission

range and then to control the transmission energy.

2.1 Syntax

Hereafter, we use letters c and d for channels; m and

n for nodes; r for transmission radii; l, k and h for

locations; x, y and z for variables. Closed values include

nodes, locations, transmission radii and any basic value

(e.g., booleans, integers, ...), while values include also

variables. Moreover, letters u and v are used for closed

values and w for (open) values. We write ṽ, w̃ for tuples

of values and Loc for the set of all locations.

The syntax of our calculus is shown in Table 1. Net-

works are collections of nodes (or devices) running in

parallel and using channels to broadcasting messages.

We denote by 0 the empty network and by M1|M2

the parallel composition of two networks. We will write∏
i∈IMi to denote the parallel composition of the net-

works Mi, for i ∈ I. The syntactical term n[P ]l denotes

a node n, located at the physical location l, and execut-

ing the process P . The channel c is bound with scope

M in (νc)M . Note that in our calculus channels can-

not be neither transmitted nor dynamically created and

thus (νc)M simply plays the role of a CCS-style hiding

operator. We write fc(M) for the set of channels which

are not bound in M and denote by N the set of all

networks.

Processes are sequential and live within the nodes.

The inactive process is denoted by 0. The input process

c(x̃).P can receive a tuple w̃ of (closed) values through

channel c and then continue as P with x̃ substituted by

w̃ (where |x̃| = |w̃|, and | · | denotes the length of the

tuple), i.e., as P{w̃/x̃}. The variables x̃ in c(x̃).P are

said to be bound in P . The output process c̄L,r〈w̃〉.P
can send a tuple of (closed) values w̃ through channel

c and then continue as P. The tag L denotes the set

of locations of the intended recipients: L = Loc repre-

sents a broadcast transmission, while a finite set of lo-

cations L denotes a multicast communication (unicast

if L is a singleton). This allows us to model the be-

haviour of location-aware mobile networks where mes-

sages can be efficiently routed by specifying the final

destination of the recipients by means of their physi-

cal address. Notice that in the real implementations of

the transmission protocols the destination addresses are

included the headers of the packets. The tag r denotes

the transmission radius of the sender and is decided by

the process running inside the transmitter node. We as-

sume that the transmission radius of a communication

cannot exceed the maximum transmission radius asso-

ciated with the sending node. In a process term, tags L

and r associated with an output action on a channel c

may be variables, but they must be instantiated when

the output prefix is ready to fire. Process [w1 = w2]P,Q

behaves as P if w1 = w2, and as Q otherwise. We write

A〈w̃〉 to denote a process defined via a (possibly re-

cursive) definition A(x̃)
def
= P , with |x̃| = |w̃| where

x̃ contains all channels and variables that appear free

in P . We equate processes up to α-conversion and as-

sume that there are no free variables in a network. We

write cl for c{l}, c̄L,r〈w̃〉 for c̄L,r〈w̃〉.0, 0 for n[0]l and

[w1 = w2]P for [w1 = w2]P,0.

Nodes cannot be added or deleted, and move au-

tonomously. The network connectivity is expressed in

terms of node locations and transmission radius: a mes-

sage broadcast by a node is received only by the nodes

lying in the transmission area of the sender. Let d(·, ·)
be a function which returns the distance between two

locations (it can be the Euclidean distance or a more

complex function dealing with potential obstacles).

Each node n is characterized by a pair < rn,J
n >:

rn is a non negative real number denoting the maximum

transmission radius that n can use to transmit, while

Jn is the transition matrix of a discrete time Markov

chain: each entry Jnlk denotes the probability that the

node n located at l may move to the location k. Hence,∑
k∈Loc Jnlk = 1 for all locations l ∈ Loc and nodes n.

Static nodes are associated with the identity Markov

chain such that Jnll = 1 for all l ∈ Loc and Jnlk = 0 for

all k 6= l. We denote by µnl the probability distribution

associated with node n located at l, that is, the function

over Loc such that µnl (k) = Jnlk, for all k ∈ Loc1.

1 Notice that Jn is a matrix, while µnl is a function.
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Networks Processes

M, N ::= 0 Empty network P, Q, R ::= 0 Inactive process
|M1|M2 Parallel composition | c(x̃).P Input
| (νc)M Restriction | c̄L,r〈w̃〉.P Output
| n[P ]l Node (or device) | [w1 = w2]P,Q Matching

| A〈w̃〉 Recursion

Table 1: Syntax

2.2 Probabilistic network behaviour

Consider a network M with a node n at location l.

We write M{n : l′/l} to denote the network obtained by

substituting l by l′ in n and by JMKµnl the probability

distribution over the set of networks induced by µnl and

defined as follows: for all networks M ′,

JMKµnl (M ′) =

µnl (l′) if M ′ = M{n : l′/l}

0 otherwise

More precisely, JMKµnl (M ′) denotes the probability that

the network M evolves to M ′ because of the movement

of n located at l. We say that M ′ is in the support of

JMKµnl , denoted M ′ ∈ spt(JMKµnl ), if JMKµnl (M ′) 6= 0.

Let JMK∆ be the Dirac distribution on the network

M such that JMK∆(M) = 1 and JMK∆(M ′) = 0 for

all M ′ such that M ′ 6= M . Finally, let θ range over

{µnl |n is a node and l ∈ Loc} ∪ {∆}.
Example 1 (Probability distributions) Consider the net-

work defined as

M = n1[c̄L,r1〈ṽ1〉.P1]l1 | n2[c̄L,r2〈ṽ2〉.P2]l2 |m[c(x̃).P3]k

with two mobile nodes, n1 and n2, communicating with

a static node m. The nodes n1 and n2 move back and

forth between the two locations l1 and l2 according

to the probability distribution defined by the Markov

chain with the following transition matrix

J =

∣∣∣∣1− p p

q 1− q

∣∣∣∣ ,
where 0 < p, q < 1. The probability distribution of the

network induced by the movement of n1 is

JMKµn1
l1

(M ′) =


1− p if M ′ = M

p if M ′ = M{n1 : l2/l1}

0 otherwise

Similarly for n2 we have

JMKµn2
l2

(M ′) =


1− q if M ′ = M

q if M ′ = M{n2 : l1/l2}

0 otherwise

while for the static receiver m we have

JMKµmk (M ′) =

1 if M ′ = M

0 otherwise

i.e., JMKµmk = JMK∆. ut

2.3 Probabilistic reduction semantics

The dynamics of the calculus is expressed in terms of

the probabilistic reduction relation over networks (−→),

described in Table 3. As usual, it relies on an auxil-

iary relation, called structural congruence (≡), which

is the least contextual equivalence relation satisfying

the rules defined in Table 2. The probabilistic reduc-

tion relation takes the form M−→JM ′Kθ meaning that a

network M evolves to M ′ according to the probability

distribution JM ′Kθ.
Rule (R-Bcast) describes the evolution of a network

with a sender node n transmitting of a tuple of mes-

sages ṽ to the set of locations L through channel c with

transmission radius r. Observe that nodes communi-
cate using radio frequencies and broadcasting transmis-

sions (monopolizing channels is not permitted). How-

ever, modern routing protocols for manets support mul-

ticasting communications allowing nodes to communi-

cate with a specific group of nodes, and this is the rea-

son why we decided to label each output action a set of

target locations L. The cardinality of this set indicates

the kind of communication that is used: if L = Loc

then the recipients set is the whole network and this

denotes a broadcast transmission, while if L is a finite

set (resp., a singleton) then a multicast (resp., a uni-

cast) communication is performed. Observe that L does

not play a role in the (R-Bcast) rule, as messages are

broadcast and received by any active receiver in the

transmission range. On the other hand, we will use L

to fine-tune the notion of observation in the definition

of the behavioural semantics. Moreover, since the out-

put is a non-blocking action, the index set I could be

empty, i.e., rule (R-Bcast) could be applied even if no

nodes are ready to receive the transmission. A radius
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n[0]l ≡ 0 (Struct Zero)

n[[v = v]P,Q]l ≡ n[P ]l (Struct Then)

n[[v1 = v2]P,Q]l ≡ n[Q]l v1 6= v2 (Struct Else)

n[A〈ṽ〉]l ≡ n[P{ṽ/x̃}]l if A(x̃)
def
= P ∧ |x̃| = |ṽ| (Struct Rec)

M |N ≡ N |M (Struct Par Comm)

(M |N)|M ′ ≡M |(N |M ′) (Struct Par Assoc)

M |0 ≡M (Struct Zero Par)

(νc)0 ≡ 0 (Struct Zero Res)

(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)

(νc)(M | N) ≡M | (νc)N if c 6∈ fc(M) (Struct Res Par)

Table 2: Structural Congruence

(R-Bcast)
n[c̄L,r〈ṽ〉.P ]l |

∏
i∈Ini[c(x̃i).Pi]li−→Jn[P ]l |

∏
i∈Ini[Pi{ṽ/x̃i}]liK∆

where 0 < r ≤ rn, ∀i ∈ I.d(l, li) ≤ r, ri > 0 and |x̃i| = |ṽ|

(R-Move)
n[P ]l−→Jn[P ]lKµnl

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ

(R-Res)
M−→JM ′Kθ

(νc̃)M−→J(νc̃)M ′Kθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 3: Reduction Semantics

r is also associated with any output action, indicat-

ing the transmission radius required for that communi-

cation which may depend on the energy consumption

strategy adopted by the surrounding protocol.

Rule (R-Move) describes node movements within

the network. A node n located at l and performing a

move action will reach a location with a probability

expressed by the distribution µnl that depends on the

Markov chain Jn associated with n. In our model move-

ments are atomic actions. Moreover, due to the inter-

leaving nature of the calculus, only one node can move

at each reduction but this does not mean that only

one node can move at a time. Indeed, as usual in in-

terleaving semantics, concurrent events are represented

by sequentiality and non-determinism. Rules (R-Par),

(R-Res) and (R-Struct) are standard.

For a networkM , we writeM−→θN whenM−→JM ′Kθ
and N is in the support of JM ′Kθ. An execution for M

is a (possibly infinite) sequence of steps

M−→θ1M1−→θ2M2 · · · .

We write ExecM for the set of all possible executions

starting from M , last(e) for the final state of a finite ex-

ecution e, ej for the prefix M−→θ1M1...−→θjMj of length

j of the execution

e = M−→θ1M1 · · · −→θjMj−→θj+1
Mj+1 · · · ,

and e↑ for the set of e′ such that e is a prefix of e′. We

denote by −→
∗

the transitive and reflexive closure of −→.

2.4 Behavioural semantics

We formalize the behavioural semantics for our cal-

culus in terms of a notion barb, that provides the basic

unit of observation [17]. As in other calculi for wireless

communications, the definition of barb is naturally ex-

pressed in terms of message transmission. However, the

technical development in this paper is more involved, as

our calculus presents both non-deterministic and prob-

abilistic aspects, where the non-deterministic choices

are among the possible probability distributions that a

network may follow and arise from the possibility for

nodes to perform movements according to the associ-

ated discrete time Markov chain.

We denote by behave(M) = {JM ′Kθ |M −→ JM ′Kθ}
the set of the possible behaviours of M . In order to solve
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the non-determinism in a network execution, we con-

sider each possible probabilistic transition M −→ JM ′Kθ
as arising from a scheduler (see [39]).

Definition 1 (Scheduler) A scheduler is a total func-

tion F assigning to a finite execution e a distribution

JNKθ ∈ behave(last(e)).

Let Sched be the set of all schedulers. Given a net-

work M and a scheduler F , we define the set of execu-

tions starting from M and driven by F as:

ExecFM = {e = M−→θ1M1−→θ2M2... | ∀j,
Mj−1 −→ JM ′jKθj , JM ′jKθj = F (ej−1)

and Mj is in the support of JM ′jKθj}.

Given a finite execution e = M−→θ1M1...−→θkMk start-

ing from a network M and driven by a scheduler F we

define

PFM (e) = JM ′1Kθ1(M1) · ... · JM ′kKθk(Mk)

where ∀j ≤ k, JM ′jKθj = F (ej−1). We define the prob-

ability space on the executions starting from a given

network M as follows. Given a scheduler F , σFieldFM
is the smallest sigma field on ExecFM that contains the

basic cylinders e ↑, where e ∈ ExecFM . The probabil-

ity measure ProbFM is the unique measure on σFieldFM
such that ProbFM (e ↑) = PFM (e). Given a measurable

set of networks H, we denote by ExecFM (H) the set of

executions starting from M and crossing a state in H.

Formally, ExecFM (H) = {e ∈ ExecFM | last(ej) ∈ H for

some j}. We denote the probability for a network M to

evolve into a network H, according to the policy given

by F , as ProbFM (H) = ProbFM (ExecFM (H)).

The notion of barb introduced below denotes an ob-

servable transmission with a certain probability accord-

ing to a fixed scheduler. In our definition, a transmission

is observable only if at least one location in the set of

the target locations is able to receive the message.

Definition 2 (Barb) LetM ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|M ′),
with c /∈ d̃. We say that M has a barb on a chan-

nel c at locations K(6= ∅), denoted M ↓c@K , if ∃K ⊆
L such that d(l, k) 6 r for all k ∈ K.

Definition 3 (Probabilistic Barb) A networkM has

a probabilistic barb with probability p on a channel c to

the set K of locations, according to the scheduler F ,

written M⇓Fp c@K, if ProbFM ({N |N ↓c@K}) = p.

Intuitively, for a given network M and a scheduler

F , if M⇓Fp c@K then p is the positive probability that

M , driven by F , performs a transmission on channel

c and at least one of the receivers in the observation

locations is able to correctly listen to it.

In the following, we introduce a probabilistic be-

havioural congruence, in the style of [20], which is para-

metric to a restricted set of schedulers.

Schedulers constitute an essential feature for mod-

eling communication protocols as they provide freedom

in modelling implementation and incomplete knowledge

of a system. However, many schedulers could be in

fact unrealistic. Consider for example schedulers giving

priority to communication actions over movements of

the nodes. Such schedulers cancel the consequence that

nodes mobility has on the network behaviour, since no

movements can be performed during the execution.

Therefore our aim is the definition of a relation al-

lowing us to compare networks with respect to a given

restricted set of schedulers.

In order to define a congruence relation among net-

works, we have to select a set of schedulers guarantee-

ing that, for each behaviour a network can exhibit, the

same behaviour can be exhibited by the network in the

presence of any possible context. Hereafter, a context is

a network term with a hole [·] defined by the following

grammar:

C[·] ::= [·] | [·]|M | M |[·] | (νc)[·].

The following definition allows us to select the set

of schedulers preserving the contextuality, once we have

fixed the particular behaviour we want to capture.

Definition 4 Given a scheduler F ∈ Sched, we denote

by FC the set of schedulers F ′ such that ∀M0, ∀e ∈
ExecFM0

of the form

e = M0 −→θ1 M1 −→θ2 M2... −→θh Mh,

∀ context C0[·] and ∀e′ ∈ ExecF ′C0[O0] with M0 ≡ O0 of

the form

e′ = C0[O0] −→θ′1
C1[O1] −→θ′2

C2[O2]... −→θ′k
Ck[Ok],

there exists a monotonic surjective function f from [0−
k] to [0− h] such that:

(i) ∀i ∈ [0− k], Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θ′j = θf(j) if Mf(j−1) −→θf(j)
Mf(j).

Given a subset F ∈ Sched of schedulers, then we define

FC =
⋃
F∈FFC .

Example 2 Let M0 ≡ m[c̄L,r〈v〉.P ]l and F ∈ Sched

such that

M0 −→∆ M1 ∈ ExecFM ,

with M1 ≡ m[P ]l.

First notice that F ∈ FC , since we can take the

empty context C[·] ≡ [·] and the identity function f

such that f(i) = i for all i ∈ [0−1]. In this case C[Mi] ≡
Mi for i ∈ {0, 1} and the property of Definition 4 is

satisfied.
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Let N0 ≡ n[c(x).Q]k such that d(l, k) ≤ r. All the

schedulers allowing M0 and N0 to interact are in FC .

Indeed, consider F1 ∈ Sched such that, according to

rule (R-Bcast),

M0 | N0 −→∆ M1 | N1 ∈ ExecF1

M0|N0

with N1 ≡ n[Q{v/x}]k, and let F2 such that, by apply-

ing rule (R-Par)

M0 | N0 −→∆ M1 | N0 ∈ ExecF2

M0|N0
.

Both F1 and F2 belong to FC .

Now consider again the network N0. Let

e′ = n[c(x).Q]k −→µnk
n[c(x).Q]k′ 6∈ ExecFN0

,

then ∀F̄ ∈ Sched such that e′ ∈ ExecF̄N0
, F̄ 6∈ FC since

F̄ does not satisfy the conditions of Definition 4. ut

We are now in position to introduce our equivalence

relation.

Definition 5 Given a set F ∈ Sched of schedulers,

and a relation R over networks:

– Barb preservation. R is barb preserving w.r.t. F if

MRN and M⇓Fp c@K for some F ∈ FC implies that

there exists F ′ ∈ FC such that N⇓F
′

p c@K.

– Reduction closure. R is reduction closed w.r.t. F if

MRN implies that for all F ∈ FC , there exists F ′ ∈
FC such that for all classes C ∈ N/R, ProbFM (C) =

ProbF
′

N (C).
– Contextuality. R is contextual if MRN implies that

for every context C[·], it holds that C[M ]RC[N ].

The probabilistic behavioural congruence with re-

spect to a restricted set F of schedulers is defined as

the largest relation as follows.

Definition 6 (Probabilistic Behavioural Congru-

ence) Given a set F of schedulers, the probabilistic be-

havioural congruence w.r.t. F , written∼=Fp , is the largest

symmetric relation over networks which is reduction

closed, barb preserving and contextual.

Two networks are related by ∼=Fp if they exhibit

the same probabilistic behaviour (communications) rel-

ative to the corresponding sets of intended recipients. In

the next section we develop a bisimulation-based proof

technique for ∼=Fp . It provides an efficient method to

check whether two networks are related by ∼=Fp .

3 A Co-Inductive Proof Technique

Proving the relation ∼=Fp may be a hard task. In this

section we develop a co-inductive proof technique that

allows for an algorithmic decision of ∼=Fp .

3.1 Labelled Transition Semantics

We define a labelled transition semantics (LTS, for

short) for our calculus, which is built upon two sets

of rules: one for processes and one for networks. Table 4

presents the LTS rules for processes. Transitions are of

the form P
η−→ P ′, where η ranges over input and output

actions of the form:

η ::= cṽ | c̄L,rṽ.

Rules for processes are standard and consist of deter-

ministic transitions only. Table 5 depicts the LTS rules

for networks. Transitions are of the form M
γ−→ JM ′Kθ,

where M is a network and JM ′Kθ is a distribution over

networks. Node mobility is expressed in terms of prob-

ability distributions. The label γ is as follows:

γ ::= cL!ṽ[l, r] | c?ṽ@l | c!ṽ@K / R | τ.

Rule (Snd) describes the behaviour of a node send-

ing a tuple ṽ via channel c to a specific set L of locations

with transmission radius r (this is represented by the

transistion label cL!ṽ[l, r]), while rule (Rcv) models the

reception of ṽ by a node n at l via channel c (repre-

sented by the transmission label c?ṽ@l).

Broadcasting is modeled by rule (Bcast): messages

are received by all the nodes lying within the transmis-

sion cell of the sender, independently from the set of

intended receivers L.

Rule (Obs) deals with observability: a transmission

may be detected (and hence observed) by any recipient

within the transmission cell of the sender and lying in

one of the locations in L. The label c!ṽ@K /R denotes

the transmission of the tuple ṽ of messages via c: the

set R contains all the locations receiving the message,

while its subset K contains only the locations where

the transmission is observed.

Rule (Lose) models message loss. We use τ -transitions

to denote non-observable actions.

Rule (Move) models the movement of a mobile node

n from a location l to a location k according to the

probability distribution µnl , which is specified by the

Markov chain Jn statically associated with n.

Rule (Res) deals with the standard channel restric-

tion, where Chan(γ) = c if γ is of the form c?ṽ@l or

cL!ṽ[l, r] or c!ṽ@K / R, and Chan(τ) = ⊥.

Finally, rule (Par) is standard.

3.2 Reduction vs. labelled transition semantics

In this section we prove that the labelled transition se-

mantics coincides with the reduction semantics given in

the previous section.
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(Output)
−

c̄L,r〈ṽ〉.P
c̄L,r ṽ−−−→ P

(Input)
−

c(x̃).P
cṽ−→ P{ṽ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 6= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′ A(x̃)

def
= P

A〈ṽ〉 η−→ P ′

Table 4: LTS rules for Processes

(Snd)
P

c̄L,r ṽ−−−→ P ′

n[P ]l
cL!ṽ[l,r]−−−−−→ Jn[P ′]lK∆

(Rcv)
P

cṽ−→ P ′

n[P ]l
c?ṽ@l−−−−→ Jn[P ′]lK∆

(Bcast)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆ N
c?ṽ@l′−−−−→ JN ′K∆ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−−→ JM ′|N ′K∆
N |M

cL!ṽ[l,r]−−−−−→JN ′|M ′K∆

(Obs)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆ R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r} K = R ∩ L, K 6= ∅

M
c!ṽ@K/R−−−−−−→ JM ′K∆

(Lose)
M

cL!ṽ[l,r]−−−−−→ JM ′K∆
M

τ−→JM ′K∆
(Move)

n[P ]l
τ−→ Jn[P ]lKµnl

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ
N |M

γ−→JN |M ′Kθ

(Res)
M

γ−→ JM ′Kθ Chan(γ) 6= c

(νc)M
γ−→ J(νc)M ′Kθ

Table 5: LTS rules for Networks

We first prove that if M
γ−→ JM ′K∆, then the struc-

ture of M and M ′ can be determined up to structural

congruence.

Lemma 1 Let M be a network.

1. If M
c?ṽ@l−−−−→ JM ′K∆, then there exist n, x̃, a (possibly

empty) sequence d̃ such that c /∈ d̃, a process P and

a (possibly empty) network M1 such that

M ≡ (νd̃)(n[c(x̃).P ]l|M1)

and

M ′ ≡ (νd̃)(n[P{ṽ/x̃}]l|M1).

2. If M
cL!ṽ[l,r]−−−−−→ JM ′K∆, then there exist n, a (possibly

empty) sequence d̃ such that c /∈ d̃, a process P , a

(possibly empty) network M1 and a (possibly empty)

set I, with d(l, li) ≤ r ∀i ∈ I, such that:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|
∏
i∈I

ni[c(x̃i).Pi]li |M1)

and

M ′ ≡ (νd̃)(n[P ]l|
∏
i∈I

ni[Pi{ṽ/x̃i}]li |M1).

Proof The proof follows by induction on the transition

rules of Table 5. ut

The structural congruence respects the transitions

of Table 5.

Lemma 2 If M
γ−→ JM ′Kθ and M ≡ N , then there

exists N ′ such that N
γ−→ JN ′Kθ and M ′ ≡ N ′.
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Proof The proof is derived by induction on the depth

of the inference M
γ−→ JM ′Kθ. ut

The following theorem establishes the relationship

between the reduction semantics and the labelled tran-

sition one.

Theorem 1 (Harmony) Let M be a network.

1. If M −→ JM ′Kθ then there exist N ≡ M and N ′ ≡
M ′ such that N

τ−→ JN ′Kθ.

2. M ↓c@K if and only if there exist ṽ, R ⊇ K and

N ≡M such that N
c!ṽ@K/R−−−−−−→.

3. If M
τ−→ JM ′Kθ then M −→ JM ′Kθ.

4. If M
c!ṽ@K/R−−−−−−→ JM ′K∆ then M −→ JM ′K∆.

Proof See Appendix. ut

3.3 Probabilistic labelled bisimilarity

We now expand the LTS rules and develop a probabilis-

tic labelled bisimilarity that will be proved to be a com-

plete characterisation of our probabilistic behavioural

congruence. The probabilistic labelled bisimilarity is built

upon the following labels:

α ::= c?ṽ@l | c!ṽ@K / R | τ.

Here, we write M
α−→θ N if M

α−→ JM ′Kθ and N is in the

support of JM ′Kθ. A labelled execution e of a network

M is a finite (or infinite) sequence of steps:

M
α1−→θ1 M1

α2−→θ2 M2...
αk−−→θk Mk .

With abuse of notation, we define ExecM , last(e), ej

and e↑ as for unlabeled executions.

We denote by lbehave(M) the set of all possible be-

haviours of M , i.e., lbehave(M) = {(α, JM ′Kθ) | M
α−→

JM ′Kθ}. Labelled executions are obtained by resolving

the non-determinism of both α and JMKθ. As a conse-

quence, a scheduler2 in the labelled semantics is a func-

tion F associating a pair (α, JMKθ) ∈ lbehave(last(e))
to a finite labelled execution e. We denote by LSched

the set of all schedulers in the labelled semantics. Given

a network M and a scheduler F , we denote by ExecFM
the set of all labelled executions starting from M and

driven by F .

From a modelling point of view, we aim at dis-

tinguishing networks that differ for some observable

actions, therefore ignoring internal behaviours of the

nodes. Formally, this is captured by weak behavioural

equivalences, that abstract over τ -actions. The notion

of weak action is introduced below.

2 With abuse of notation, we still use F to denote a sched-
uler for the labelled transition semantics.

Definition 7 (Weak Action) We denote by =⇒ the

transitive and reflexive closure of
τ−→ and by

α
=⇒ the

weak action =⇒ α−→=⇒. We denote by
α̂

=⇒ the weak

action
α

=⇒ if α 6= τ , and =⇒ otherwise.

We denote by ExecFM (
α

=⇒, H) the set of executions

that, starting from M and guided by F , lead to a net-

work in the set H by performing
α

=⇒. Moreover, we

define ProbFM (
α

=⇒, H) = ProbFM (ExecFM (
α

=⇒, H)).

Since we want our bisimilarity to be a complete

characterisation of our notion of behavioural equiva-

lence, which has been defined with respect to a re-

stricted set of schedulers F ⊆ Sched on the reduction

semantics, we define the set of schedulers F̂ ∈ LSched
for the LTS corresponding to F .

Definition 8 Given a scheduler F ∈ Sched, we denote

by F̂C ⊆ LSched the set of schedulers F̂ ∈ LSched such

that ∀M0, ∀e ∈ ExecF̂M0
:

e = M0
α1−→θ1 M1...

αk−−→θh Mh

∃F ′ ∈ FC , a context C0 and e′ ∈ ExecF ′C0[O0] with O0 ≡
M0 such that

e′ = C0[O0] −→θ′1
C1[O1]... −→θ′k

Ck[Ok]

and there exists a monotone surjective function f from

[0− k] to [0− h] such that

(i) ∀i ∈ [1− k] Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θf(j) = θ′j if Mf(j−1)

αf(j)−−−→θf(j)
Mf(j).

For a given a set F ⊆ Sched of schedulers, we define

F̂C =
⋃
F∈F F̂C .

Example 3 Consider the networks M0 and N0, and the

schedulers F and F1 of the Example 2. Let F̂1 ∈ LSched
such that

M0
cL!v[l,r]−−−−−→∆ M1 ∈ ExecF̂1

M0
,

then, since

M0 −→∆ M1 ∈ ExecFM0

the conditions of Definition 8 are satisfied by taking

the empty context C[·] = [·] and the identity function

f(i) = i for i ∈ {0, 1}. Hence F̂1 ∈ F̂C .
Consider now F̂2 ∈ LSched such that

N0
c?v@k−−−−→∆ N1 ∈ ExecF̂2

N0
.

Since

M0 | N0 −→∆ M1 | N1 ∈ ExecF1

M0|N0

with F1 ∈ FC , by assuming the contexts Ci[·] ≡ Mi | ·
for i ∈ {0, 1}, and the identity function f(i) = i for

i ∈ {0, 1} we get F̂2 ∈ F̂C too. ut



Analysis of Mobile Ad-Hoc Networks 11

The following proposition holds.

Proposition 1

1. SchedC = Sched.

2. ŜchedC = LSched.

Proof The first statement follows straightforwardly from

Definition 4. To prove the second statement observe

that:

∀F ∈ LSched, ∀M0 ∈ N and ∀e = M0
α1−→θ1 M1...

αk−−→θk

Mk ∈ ExecFM0
it is always possible to find a context

C0[·] and a scheduler F ′ ∈ LSched such that e′ =

C0[M0]
τ−→θ1 ...C1[M1]...

τ−→θk Ck[Mk] ∈ ExecF ′C0[M0].

By Theorem 1, ∃F ′′ ∈ Sched such that

e′′ = C0[M0] −→θ1 C1[M1]... −→θk Ck[Mk] ∈ ExecF ′′C0[M0],

meaning that F ∈ ŜchedC as required. ut

The notion of probabilistic labelled bisimilarity rela-

tive to a given set of schedulers is defined below. Notice

that in the definition below input actions are treated

differently from output and silent actions. This is due

to the fact that in our model the input is not an observ-

able action, hence two systems are considered equiva-

lent even if they do not have the same behaviour in

terms of transmission receptions.

Definition 9 (Probabilistic Labelled Bisimilarity)

Let M and N be two networks. An equivalence relation

R over networks is a probabilistic labelled bisimulation

w.r.t. F if MRN implies: for all scheduler F ∈ F̂C there

exists a scheduler F ′ ∈ F̂C such that for all α and for

all classes C in N/R it holds:

1. if α 6= c?ṽ@l then ProbFM (
α−→, C) = ProbF

′

N (
α̂

=⇒ C);
2. if α = c?ṽ@l then either

ProbFM (
α−→, C) = ProbF

′

N (
α

=⇒, C) or

ProbFM (
α−→, C) = ProbF

′

N (=⇒, C).

Probabilistic labelled bisimilarity, written ≈Fp , is the lar-

gest probabilistic labelled bisimulation w.r.t. F over

networks.

3.4 A complete characterisation

Finally we prove that our probabilistic labelled bisimi-

larity is a complete characterisation of the probabilistic

behavioural congruence of Definition 6.

Proposition 2 Let M and N be two networks. If MRN
for some bisimulation R w.r.t F , then for all schedulers

F ∈ F̂C there exists a scheduler F ′ ∈ F̂C such that for

all α and for all classes C in N/R it holds:

1. if α 6= c?ṽ@l then ProbFM (
α̂

=⇒, C) = ProbF
′

N (
α̂

=⇒ C);

2. if α = c?ṽ@l then either

ProbFM (
α̂

=⇒, C) = ProbF
′

N (
α

=⇒, C) or

ProbFM (
α

=⇒, C) = ProbF
′

N (=⇒, C).

Proof The proof follows by induction on the length of

the weak transition
α̂

=⇒. ut

We now prove that our probabilistic labelled bisimi-

larity is a proof method for the behavioural congruence,

i.e., that ≈Fp is contained in ∼=Fp .

Theorem 2 (Soundness) Let M and N be two net-

works and F ⊆ Sched. If M ≈Fp N then M ∼=Fp N.

Proof See Appendix. ut

Finally, we show that the behavioural congruence is

contained in the labelled bisimilarity.

Theorem 3 (Completeness) Let M and N be two

networks and F ⊆ Sched. If M ∼=Fp N then M ≈Fp N.

Proof See Appendix. ut

The following result is a consequence of Theorems 2

and 3.

Theorem 4 (Characterization) For every set F ⊆
Sched, ∼=Fp =≈Fp .

4 Energy Consumption Estimation

In this section, based on the labelled transition seman-

tics, we define a preorder over networks to contrast the

average energy cost of different networks but exhibiting

the same connectivity behaviour relative to a specific

set of schedulers F . Formally, an energy cost is associ-

ated with labelled transitions as follows:

Cost(M,N)

=

 r if M
cL![l,r]−−−−→ JNK∆ for some c, L, ṽ, l

0 otherwise.

This can be read as: the energy cost to reach N from M

in one single step is r if M can reach N after firing on

a channel of radius3 r independently from the fact that

the transmitted message is observable or not (or even

lost). Moreover, for a given execution e = M0
α1−→θ1

M1...
αk−−→θk Mk we define

Cost(e) =
∑k
i=1Cost(Mi−1,Mi).

3 Note that considering the radius of the communication
channel as the energy cost of the transmitted data is standard
(see, e.g., [40,41]).
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Given a set of networksH, we denote by PathsFM (H)

the set of all executions from M ending in H and driven

by F which are not a prefix of any other execution

ending in H. More formally,

PathsFM (H) = {e ∈ ExecFM (H) | last(e) ∈ H and

∀e′ such that e is a prefix of e′, e′ 6∈ PathsFM (H)}.

We are now in position to define the average energy

cost of reaching a set of networks H from the initial

network M according to a scheduler F .

Definition 10 LetH be a set of networks. The average

energy cost of reaching H from M according to the

scheduler F is

CostFM (H) =

∑
e∈PathsFM (H)Cost(e)× PFM (e)∑

e∈PathsFM (H)P
F
M (e)

.

Basically, the average cost is computed by weight-

ing the cost of each execution by its probability accord-

ing to F and normalized by the overall probability of

reaching H. The following definition provides an effi-

cient method to perform both qualitative and quanti-

tative analyses of mobile networks.

Definition 11 Let H be a countable set of sets of net-

works and let F ⊆ Sched a set of schedulers. We say

that N is more energy efficient than M relative to H
and F , denoted

N v〈H,F〉 M,

if N ≈Fp M and, for all schedulers F ∈ F̂C and for all

H ∈ H, there exists a scheduler F ′ ∈ F̂C such that

CostF
′

N (H) ≤ CostFM (H).

5 Performance evaluation of a location based

routing protocol

In this section we consider a network of nodes with

mobility and using the Location Aided Routing pro-

tocol (LAR) [7]. LAR aims at reducing the number

of the packet floods with respect to what is observ-

able in other protocols such as the AODV [36]. This is

achieved by assuming that the nodes are aware of their

own absolute or relative positions, e.g., because they are

equipped with a GPS device [42] or because they are

able to derive their distances from a set of fixed nodes.

With respect to the analysis of LAR presented in [13],

here we consider a quantitative approach that allows us

to study the energy efficiency of LAR with respect to

AODV under different scenarios. In order to carry out

this comparison, we encode the AODV and LAR models

described by means of the process calculus that we have

defined into a PRISM program [16] and we perform a

statistical model checking to estimate the energy con-

sumptions of the protocols. We also prove that AODV

and LAR are behaviourally equivalent, i.e., under the

modelling assumptions, a packet is correctly delivered

by AODV if and only if it is correctly delivered by LAR.

5.1 Protocol Description

In very large mobile networks using flooding strate-

gies such as AODV [36] may be very expensive in terms

of number of sent packets and hence of node energy con-

sumption. The LAR protocol requires the sender node

to guess the location of the destination and therefore it

can avoid the use of flooding strategies. The destination

node’s location is inferred by its location that has been

transmitted during the latest packet exchange and an

assumption on the maximum node speed.

5.2 Simple flooding: description

We briefly recall some basic notion on flooding based

algorithms. In these algorithms the route discovery is

carried out by exchanging three types of packets [43]:

– Route Request packet (RREQ) has the form:

(S,Bid,D, seq#S , hop counter) ,

where S is the permanent source address, Bid is the

Request Id (unique identifier), D is the permanent

address of the destination, seq#S is the sequence

number maintained at the source, and hop counter

is the number of hops to reach the destination.

– Route Reply packet (RREP) has the form:

(S,Bid,D, seq#D, hop counter, Lifetime) ,

where S, Bid and D have the same meaning of be-

fore, seq#D is the sequence number maintained at

the destination, hop counter is the number of hops

to reach the destination and Lifetime is the time

to live associated with the route.

– Route Error packet (RERR) has the form:

(S,D, seq#D) ,

where S, D and seq#D are defined as before and are

used to handle errors in the protocol route discovery.

In the flooding algorithm, a node that wants to discover

a route to a destination first broadcasts a RREQ packet.

When the destination receives the RREQ it replies with

a RREP which is forwarded to the source in unicast

mode toward the same path used by the RREQ. A time-

out mechanism is adopted to avoid nodes starvation.



Analysis of Mobile Ad-Hoc Networks 13

5.3 The LAR algorithm

The LAR protocol differs from the basic flooding

because it does not perform a complete network broad-

cast in the route discovery phase, but it limits the area

in which the RREQ packets are transmitted to where

the destination node is expected to be found (Expected

Zone). If this strategy does not work, then a complete

flood is performed.

The expected zone is determined as follow: suppose

the source node S knows the location l1 of the destina-

tion node D at time t, and D moves with a speed v. S

expects to find D is circle area with center l1 and radius

v(t′−t), where t′ is the epoch in which the transmission

is being done. In the cases in which S does not have any

information about the locations of D the Expected Zone

coincides with the entire network.

Packets are forwarded only by the nodes that lies

in the Request Zone which is defined by the sender.

There is a trade off in the specification of the Request

Zone: smaller ones reduce the number of packets re-

quired to discover the route to the destination, whereas

large ones reduce the latency of the route discovery

phase. In the literature, several strategies have been

proposed to define the Request Zone, we present that

called LAR Scheme 1. This defines the Request Zone

as the smallest rectangle containing both the Expected

Zone and the position of the source node (see Fig. 1).

Let (XS , YS) and (XD, YD) be the Cartesian coor-

dinates of S and D according to some reference system,

and let R be the radius of the Expected Zone. If S is out-

side the Expected Zone, the coordinates of the rectangle

area are:

A : → (XS , YD +R) B : → (XD +R, YD +R)

C : → (XD +R, YS) D : → (XS , YS)

If S falls inside the Expected Zone, the coordinates of

the rectangle area are:

A : → (XD −R, YD +R) B : → (XD +R, YD +R)

C : → (XD −R, YD −R) D : → (XD +R, YD −R)

5.4 Modelling the network

We encode the simple flooding and the LAR proto-

cols using our calculus. We consider a 80× 100 metres

area of 35 mobile nodes. We omit the implementation

details about how the Expected Zone and Request Zone

are determined according to the specifications of LAR

Scheme 1.

We use the following auxiliary functions to simplify

the protocol specification:

– gps: returns the actual geographical position of the

node executing the process (by means, e.g., of GPS

technology);
– dist(l): returns the distance from location l and the

location of the node executing the process;
– self: returns the name (permanent address) of the

node executing the process;
– geq(k, l) = true if k ≥ l, false otherwise;
– inside(s,A) = true if s ∈ A, false otherwise;
– unable(n) = refreshes the route table, removing the

existing path to n;
– find path(n) = true if there exists a valid path

for n in the route table of the node executing the

process;
– newBid: generates a new unique Bid identifier for a

packet;
– lastBid: returns the latest generated Bid identifier;
– control(Bid) = true if the request associated with

Bid has been already received by the node executing

the process.

Each record in the nodes’ routing tables is structured

as follows:

(d, seq#d, next hopd, hopcountd, locd, vd, timeout)

with:

– d: the destination name
– seq#d: the sequence number associated with the

route to d
– next hopd: name of the next node to reach d
– hopcountd: number of hops to reach d
– locd: the last location known of d
– vd: expected speed of d
– timeout: time to leave of the record

The request table is used by the nodes to store the

history of all the requests that have been previously

processed by the nodes. This prevents the creation of

loops during the route request forwarding phase. For

the sake of simplicity, we assume that all the nodes

share a common transmission radius r = 15 metres.

We define the following model: N = (νc)(n[P ]l |∏
i∈Ini[Q SIMPLE]li) that represents a node n which

moves among the locations in {16, 23, 30} and broad-

casts a route request according to the flooding protocol

aimed to find a path to n7. Fig. 2 (a) shows the location

of the nodes in the network
∏
i∈Ini. Moreover, consider

M = (νc)(n[P ]l |
∏
i∈Ini[Q LAR1]li) which models the

same network in which the nodes in I implements the

LAR protocol with (Scheme 1). The DTMC that de-

scribes the movements of node ni is identified by the

matrix Jni :

lni kni
lni 0.2 0.8

kni 0.8 0.2
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n 

m 
v(t’ – t) 

EXPECTED	  
ZONE	  

REQUESTED	  
ZONE	  

A	  

C	  D	  

B	  

Fig. 1: Expected and Request Zones in the LAR protocol

(a) Flooding Area (b) Location-Aided Routing Area

Fig. 2: Topology of the network

where lni and kni are adjacent locations (Fig. 2 (b)).

Node n behaves as follows: it broadcasts a RREQ

packet with destination node n7 and waits for a RREP

packet. We use the operator ⊕ to model the timeout.

Notice that, in our calculus, the non-deterministic choice

and can be implemented with the parallel composition

and the restriction operator in the standard way. When

the timeout expires n broadcasts a new RREQ with the

same destination. Let

P = c̄Loc,r〈(rreq, n, newBid, n7,

Request Zone, seq#n, 0)〉.P ′

and

P ′ = P ⊕ c(x1, x2, x3, x4, x5, x6, x7).

[x1 = rrep][x2 = n][x3 = lastBid][x4 = m]

[geq(hop countn7
, x7)]ōkgps,r〈route found〉.P ′

where x7 = hop count in the RREP packet received.

For modelling purpose, in order to be able to observe a

correct route discovery by n, we assume that when this

event occurs n transmits on the fictitious channel ok an

acknowledgement packet. With this simplification, we

say that two networks are probabilistically equivalent

with respect to their ability on finding a route to n7 if

we observe this transmission with the same probability.

Hereafter, we use X ∈ {SIMPLE,LAR1} to de-

note the simple flooding or LAR Scheme 1.

The RREQ SIMPLE and the RREQ LAR1 subpro-

cess are defined as shown by Table 6.

In order to compare the behaviour of the protocols,

we restrict the set of admissible schedulers F ⊆ Sched

to those that satisfy the following conditions:

1. the timeout for a RREQ identified by Bid occurs

when in the networks there are no packets related

to Bid;
2. nodes’ movements are allowed after every transmis-

sion.

Condition 1 on F derives from the protocol specifi-

cation and indeed it is usually set according to the max-
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Q X = c(x1, x2, x3, x4, x5, x6, x7).[x1 = rreq]([control(x3) = false]

([x4 = self]c̄next hopx2
,r〈(rrep, s, Bid, d, seq#s, hop counter)〉.

Q X,RREQ X〈x̃〉), Q X), [x1 = rrep]([x2 = self]

ūdgps,r〈x2, x3, x4, x5, x6, x7〉,
c̄next hopx2

,r〈(rrep, s, Bid, d, seq#s, hop counter)〉.Q X),

[x1 = rerr]unable(x4).Q X,Q X

RREQ SIMPLE〈(rreq, s, Bid, d, seq#s, hop counter)〉 =

[find path(d) = true].

c̄next hopd,r〈(rrep, s, Bid, d, seq#d, hop counter + 1 + hopcountd, timeout)〉,
c̄Loc,r〈(rreq, s, Bid, d, seq#s, (hop counter) + 1)〉.Q SIMPLE

RREQ LAR1〈(rreq, s, Bid, d, Request Zone, seq#s, hop counter)〉 =

([inside(gps, Request Zone) = true]([find path(d) = true]

c̄next hopd,r〈(rrep, s, Bid, d, seq#d, hop counter + 1 + hopcountd, timeout)〉,
c̄Request Zone,r〈(rreq, s, Bid, d, Request Zone, seq#s, (hop counter) + 1)〉)).Q LAR1

Table 6: Process specifications used in the case study of Section 5

imum delay that a packet spends to cover the longest

distance in the network. Informally, this condition ex-

cludes the schedulers associate to timeout which are

set so short that a packet cannot be received in time

or those that waits for the reply indefinitely long. Con-

dition 2 has been introduced to ensure that mobility is

taken into account in the comparison.

Proposition 3 states the functional equivalence be-

tween the AODV and LAR protocols. It holds for all

networks M and N implementing the LAR and AODV

protocols as described above with arbitrary number of

nodes, locations and node distances provided that the

DTMC modelling the mobility is ergodic on the set of

locations.

Proposition 3 (Functional equivalence of LAR

and AODV) Let M and N be two networks implemen-

ting the LAR and AODV protocols, respectively. LetM
= {M̄ : M −→

∗
M̄} ∪ {N̄ : N −→

∗
N̄} and F be the set

of admissible schedulers defined as above. A sufficient

condition for N ≈Fp M is that the Markov chains Jni

associated with the mobile nodes ni (i ∈ I) are ergodic.

Proof We have to find a relation containing the pair

(M,N) that is a probabilistic bisimulation relative to

F . Let us consider Zi ∈ {RREQ,Q}, P̄ ∈ {P ′ : P −→
∗

P ′} and the relation

R = {(n[P̄ ]l |
∏

i∈I
ni[Zi SIMPLE]li , n[P̄ ]l |∏

i∈I
ni[Zi LAR1]li) :

N −→
∗
n[P̄ ]l |

∏
i∈I
ni[Zi SIMPLE]li}.

In order to prove thatR ⊆≈Fp we have to show that,

for all pairs (N̄ , M̄) ∈ R and for all schedulers F ∈ F̂C
there exists a scheduler F ′ ∈ F̂C such that for all α and

for all classes C in N/R it holds:

1. if α 6= c?ṽ@l then

ProbF
N̄

(
α−→, C) = ProbF

′

M̄
(
α̂

=⇒ C);
2. if α = c?ṽ@l then either

ProbF
N̄

(
α−→, C) = ProbF

′

M̄
(
α

=⇒, C) or

ProbF
N̄

(
α−→, C) = ProbF

′

M̄
(=⇒, C).

We start from τ actions and consider N̄
τ−→ JN̄ ′Kθ.

Then, ∀C ∈ N/R, we have:

ProbN̄ (
τ−→, C) =

∑
N̂∈spt(JN̄ ′Kθ)∩C

JN̄ ′Kθ(N̂) .

If the action is due to the application of rule (Move)

we are done, because, for each pair (N̄ , M̄) ∈ R, M̄

can perform exactly the same movements as N̄ , hence

there will exist F ′ ∈ F̂C such that: ProbF
N̄

(
τ−→, C) =

ProbF
′

M̄
(
τ−→ C), and we are done.

If the action is the result of the application of rule

(Lose), by applying rule (Bcast) backwardly we get

N̄
cK !ṽ[l,r]−−−−−→ JN̄ ′K∆.

If l ∈ Request Zone then we are done, because, by

the analysis of the process P LAR1 with respect to

P SIMPLE we note that the protocol packets are for-

warded exactly in the same way inside the RequestZone.

If l 6∈ Request Zone, then M̄ 6 cK !ṽ[l,r]−−−−−→ because the

routing protocol packets are forwarded only inside the

Request Zone. However, this does not mean that M̄

will not reach an equivalent state with the same prob-

ability. By the initial hypothesis that all the Markov
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Fig. 4: Estimates of the expected energy cost w.r.t. sent

packets per successfully transmission.

matrices are ergodic, M̄ can enter the Request Zone

with probability 1, send the message, and come back to

the previous location again with probability 1, and we

get ProbF
N̄

(
τ−→, C) = 1 = ProbF

M̄
(=⇒, C) as required.

As concerns the input and the observable actions the

proof is trivial, since the input actions are the same for

both protocols, and we applied the restriction to chan-

nel c, hence the only observable output is the trans-

mission of route found through the channel ok by the

node n, which behaves in the same way for both proto-

cols. ut

Given that the two networks M and N defined at

the beginning of this section are functionally equiva-

lent, we compare their energy efficiency by simulation.

In order to carry out the simulations we resort to the

statistical model checker implemented in PRISM [16].

This technique is commonly used when dealing with

models with large state spaces. The simulation model

for the PRISM has been automatically generated by the

tool introduced in [44].

We have compared the two different networks with

the sender node n located in each of the locations in
the set {16, 23, 30}.

The simulations have been performed with an av-

erage of 10000 independent experiments, a maximum

confidence interval width of 1% of the estimated mea-

sure based on 95% of confidence.

The plot (see Fig. 3) shows the relation among the

distance between sender and receiver and the energy

consumption of AODV and LAR expressed in terms

of number of sent packets for each successful transmis-

sion. For larger distances, since a larger Request Zone

is involved, using LAR protocol still requires a large set

of nodes to forward the message, while for smaller dis-

tances the improvement brought by the protocol is more

evident, since the Request Zone is smaller, drastically

reducing the number of retransmissions. This supports

the intuitive idea that LAR protocol is useful especially

in the cases where the expected distance between the

sender and the receiver is small. In Fig. 4 we show the

numerical comparison between the LAR protocol and

the AODV for the considered scenarios.

6 Analysing the SW-ARQ and GBN-ARQ

Protocols

In the following we briefly recall the salient features

of SW-ARQ and GBN-ARQ protocols. In SW-ARQ

protocol, the sender pushes a packet into the channel

with a delay that is given by ratio between the packet

size and the channel bandwidth (pushing time). Once

the packet is in the channel we observe two delays: one

is that required to reach the destination and the other

one is that required for the acknowledge packet (ACK)

to go back to the transmitter. The sum of the two is

known as the round trip time. In SW-ARQ protocol

the sender sends a packet only once the acknowledge

of the previous one has been received. If the round trip

time (or an upper bound) is known by the protocol de-

signer, a possible error in the transmission is detected

by a timeout mechanism, i.e., if the sender does not re-

ceive an ACK from the receiver before a deadline, then

it assumes that an error occurred and sends again the

same packet. If the round trip time is much higher than

the pushing time, then SW-ARQ protocols are very in-

efficient and exploit only a minimal part of the channel

capacity. With respect to SW protocols, GBN takes ad-

vantage of the pipelining of the packets, i.e., a sequence

of n packets can be sent without receiving any confir-

mation. This widely used technique is known to highly

improve the throughput of the sender, but it is expen-

sive from the energy consumption point of view (see,

e.g., [45]) since correctly received packets may be re-

quired to be resent. Indeed, once the sender realizes that

a packet p has not been received (using a timeout), it

has to resend all the packets already sent starting from

p. In this way, it can be shown that throughput is re-

ally improved and the protocol can use the full channel

capacity.

6.1 Assumptions on the models

In this case study, we consider a single transmitter

node using ARQ-based error recovery protocol to com-

municate with a receiver node over a wireless channel.

Transmissions occur in fixed-size time slots whose size

is the time required by the sender to push a packet into

the channel. We assume the round trip time to be a

multiple of the time slot. For both SW and GBN pro-

tocols, the transmitter continuously sends packets until

it detects a transmission error. Notice that although

in actual implementations of the ARQ protocols errors

are usually detected by means of a timeout mechanism,

in this context we use negative-acknowledge (NACK)

feedbacks which simplify the protocol encoding and are

equivalent for the analysis purposes if we assume to
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Fig. 3: Plot of the expected energy cost w.r.t. sent packets per succesful transmission.

send rec 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l2 

Fig. 5: Topology of the network and mobility of the sender

know the number of slots that the round trip time con-

sists of. Here, we consider an error-free feedback channel
4 and assume that the ACK or NACK of each trans-
mitted packet arrives at the sender node one slot after

the beginning of its transmission slot. Therefore, the

feedback of a packet is received exactly after its trans-

mission for the SW-protocol and in case of a failure

(NACK), the packet is automatically resent. Instead for

the GBN protocol, a feedback for the ith packet arrives

exactly after the transmission of the (i+n−1)th packet

and in case of a failure the transmission restarts from

the ith packet. We model both SW-ARQ and GBN-

ARQ-based protocols for a communication channel of

capacity n = 3 in our framework. Observe that in this

way we do not take into account the round trip time

for SW-ARQ protocols, however this does not affect the

analysis that we will carry out later, i.e., the expected

energy cost for each packed correctly received. We con-

sider a unique static receiver rec < 0, I > where I de-

notes the identity matrix. We model the transmitter as

a mobile node send (< r, Js >) whose reachable loca-

4 A very standard assumption [45].

tions are l1, which represents the “good state” of the

channel, where the receiver lies within the transmission

radius of the channel and l2 the “bad state”, where the
destination is no longer reachable (see Fig. 5). The mo-

bility of the sender is modelled by the two state Markov

chain with the following transition probability matrix

Js =

∣∣∣∣ p 1− p
1− q q

∣∣∣∣ ,
where p and q are the probabilities of the stability of

the node in two successive time slots in its good and

bad states, respectively.

6.2 Modelling the Protocols

In our analysis, we assume that the energy consump-

tion of the feedback messages is negligible. Therefore,

they are sent over channels with zero radius. For this

reason the static receiver rec is located at l1, i.e., at the

same location of the sender in its good state, so that

the feedback will be received with no cost. Note that

the sender still transmits over channels with radius r
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and thus it consumes an amount of energy equal to r

for each fired packet.

The process executed by rec, the receiver node, is

the same for both protocols and modelled as the process

REC〈i〉 = c(i)(x).c̄l1,0〈ACK(i)〉.REC〈i+ 1〉

which, upon receiving packet pi over the channel c(i),

sends ACK(i) over the channel c and waits for the next

packet on c(i+1).

For each channel c(i), we use a static auxiliary node

bi(〈0, I〉) located at l2, the bad state of the sender, cap-

turing bad transmissions over c(i). It executes the fol-

lowing process which upon receiving packet pi over the

channel c(i), sends NACK(i) over the channel c:

BAD〈i〉 = c(i)(x).c̄l2,0〈NACK(i)〉.BAD〈i〉.

6.2.1 GBN-ARQ.

Now we introduce the full model of the protocol

GBN-ARQ. We start by modelling its sender node. Re-

call that, as a simplifying assumption, the channel ca-

pacity is 3. It executes the following process:

GB〈i〉 = c̄
(i)
l1,r
〈pi〉.c(x1).c̄

(i+1)
l1,r
〈pi+1〉.c(x2).c̄

(i+2)
l1,r
〈pi+2〉.

c(x3)[x1 = NACK(i)]GB〈i〉, SEND〈i+ 3, x2, x3〉

where the process SEND is defined as follows.

SEND〈i, x, y〉 = c̄
(i)
l1,r
〈pi〉.c(z).[x = NACK(i− 2)]

GB〈i− 2〉, SEND〈i+ 1, y, z〉.

Though that the feedback of a packet is received

after the transmission of its two successors, for practi-

cal reason, we read a feedback of a packet right after

sending it. Indeed, since we do not want feedback to

be costly, both sender and receiver must be located at

the same place when the feedback is sent. However, the

sender node will verify it only after having sent the fol-

lowing two packets.

Recall that the receiver node in our modelling above,

reads each packet pi on its specific channel c(i). Thus,

in the GBN, if the transmitter sends p1 while being in

its good state, then moves to bad and sends p2 and fi-

nally moves back to the good state and sends p3, then

the later packet will not be read by the receiver as it is

blocked on c(2). Then, the firing on c(3) is lost and this

models the fact that packets sent after a bad packet is

just a wasting of energy. But since the sender process

GB〈i〉 is blocked on the feedback channel c, we intro-

duce a static auxiliary node lose(〈0, I〉) located at l1
and executing the process:

WAST = c̄∅,0〈LOST 〉.WAST

6.2.2 SW-ARQ.

Now on to the SW-ARQ-based protocol. This is very

simple since it always sends one packet and waits for

its feedback. The sender process is defined as follows.

SW 〈i〉 = c̄
(i)
l1,r
〈pi〉.

c(x).[x = NACK(i)]SW 〈i〉, SW 〈i+ 1〉.

The full protocols are then modelled as:

GBN = (νc(1), c(2)...)(send[GB〈1〉]l1
| rec[REC〈1〉]l1 | lose[WAST ]l1 |∏

i≥1 bi[BAD〈i〉]l2)

SW = (νc(1), c(2)...)(send[SW 〈1〉]l1 | rec[REC〈1〉]l1
|
∏
i∈I bi[BAD〈i〉]l2).

6.3 Measuring the Energy Cost of the Protocols.

This section analyzes the energy consumption of the

above ARQ-based protocols. In order to compare the

observational behaviours of the protocols, we assume

that the communications over the feedback channel are

observable for any observer node located at l1. Thus the

protocols are equivalent with respect to a set of sched-

ulers F if for all schedulers F in F driving one of the

protocols, there exists a scheduler F ′ in F driving the

other one such that both protocols correctly transmit

the same packets with the same probabilities. We con-

sider the following set of schedulers denoted Falt which:

1. always alternates between sending packets and node’s

movement so that at each interaction of the trans-

mitter with the channel, the later can be either good

or bad;
2. gives priority to acknowledgment actions (ACK and

NACK) to model the standard assumption of an

error-free feedback channel;
3. allows interaction with the outside environment only

through its observable actions so that we capture

exactly the observable behaviour of the protocol.

Notice that the assumptions on the schedulers would

be stricter if one desires to carry out an analysis of the

throughput. If we consider the set of schedulers Falt, we

can prove that the SW-ARQ protocol is more energy

efficient of the GBN-ARQ one. This follows from the

following results.

Proposition 4 GBN ≈Faltp SW .

Proof We give here a sketch. For each sender’s window

size we will choose, the only observable actions are the

acknowledgments sent by the static node rec. All other

actions are silent, since we apply the restriction on each
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c(i). For all i ≥ 1 rec[REC〈i〉]l1 sends the acknowledg-

ment ACK(i) if and only if the relative packet pi has

been correctly received, hence, all the executions per-

formed by GBN and SW are of the form:

=⇒ c!ACK(1)@{l1}/{l1}−−−−−−−−−−−−−→=⇒ c!ACK(2)@{l1}/{l1}−−−−−−−−−−−−−→=⇒ ...

Since the number of transmissions performed by the

sender do not affect the probabilities, the bisimulation

between the two protocols can be proved. ut

We compare the energy efficiency with respect to

the set H = {Hk | k ≥ 1} where Hk means that all the

packets up to k have been correctly transmitted and is

defined as Hk = H1
k ∪H2

K where

H1
k = {M |M ≡ send[c̄

(k+1)
l1,r

〈pk+1〉.P ]l1 |
rec[REC〈k + 1〉]l1 | lose[WAST ]l1 |∏

i≥1 bi[BAD〈i〉]l2}

for some process P and

H2
k = {N |N ≡ send[SW 〈i+ 1〉]l1 |

rec[REC〈k + 1〉]l1 |
∏
i∈I bi[BAD〈i〉]l2}.

Then, we compute the energy consumption of the

protocols assuming that we start by a move action at

the good state so that the first message could be lost if

it moves to the bad state5. The results are summarized

in the following propositions and illustrated in Fig. 6.

Proposition 5 If q 6= 1 then for all F ∈ Falt

CostFSW(Hk) =

(
1 +

1− p
1− q

)
kr.

Proposition 6 If q 6= 1 then for all F ∈ Falt

CostFGBN(Hk) = kr
(
p+ (p−1)

(−1+q)(1+p2−q+q2−p+2pq) ·
1−2p2+2p2q+4q−4q2+2q3+2p−6pq+4pq2

−p2+p2+(−p+pq)(−1+2q)+q(2+−2q+q2)

)
.

These results can be derived by applying the Chapman-

Kolmogorov’s forward equations to compute the proba-

bility of consecutive failures in the sending of the same

packet. Each failure (except the first) causes the waste

of a number of sent packets equals to the window size.

Note that the number of wasted windows has a geomet-

ric distribution. Then, the mean of total packets sent

to obtain a success, can be straightforwardly derived.

To conclude this section, we note that while both

protocols increasingly enjoy bad performance in terms

of energy consumption when the channel deteriorates,

i.e., when q is increasing (see Fig. 6-(a) and 6-(b)), the

GBN protocol deteriorates faster. Indeed, as illustrated

by Fig. 6-(c) as the channel deteriorates the additional

5 The analysis for the other case is similar.

energy required by GBN protocol to correctly transmit

the same number of packets increases to infinite. Thus,

the gain of having a high throughput results in a very

high energy consumption.

The next theorem follows by Propositions 4, 5 and 6.

Theorem 5 It holds that SW v〈H,Falt〉 GBN.

7 Conclusion

Ad-hoc network is a new area of mobile communi-

cation networks that has attracted significant attention

due to its challenging problems. The main goal of our

work is to provide a formal model to reason about the

problem of limiting the power consumption of commu-

nications while maintaining acceptable performances.

Indeed, one of the most critical challenges in managing

mobile ad-hoc networks is actually to find a good trade-

off between network connectivity and power saving.

Even though not all the devices have the ability

of adjusting their transmission power, modern tech-

nologies are quickly evolving, and there exist devices

that are enabled to choose among two or more differ-

ent power levels. For this reason many researchers have

proposed algorithms and protocols with the aim of pro-

viding a way to decide the best transmission power for

node communications in a given network [46,47], or to

develop energy-aware routing protocols [48,49].

In this paper, we presented the Probabilistic EBUM

calculus which, due to its characteristics of modelling

broadcast, multicast and unicast communications and

also modelling the ability of a node to change its trans-

mission power, results to be a valid formal model for the

analysis, evaluation and comparison of energy-aware

protocols and algorithms specifically developed for wire-

less ad-hoc networks. The model we presented can clearly

be extended with different metrics for measuring, e.g.,

the level of interference or the number of collisions and

losses. Moreover, it provides a basis for the definition

of other verification techniques, like e.g., bisimulation-

based preorders (see [50]) which integrate both obser-

vational properties and quantitative ones.

We have shown that our calculus can be implemented

within the model checker PRISM. Then both exact

analysis and discrete-event simulation become available

for the performance evaluation of the models defined in

terms of the Probabilistic EBUM calculus.
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(a) SW protocol (b) GBN protocol

(c) costGBN (p, q)− costSW (p, q)

Fig. 6: Energy cost functions for SW and GBN and their comparison.
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Appendix

Proof of Theorem 1

1. The first part is proved by induction on the reduction

M −→ JM ′Kθ.

Let M −→ JM ′Kθ due to the application of the rule (R-
Move). It means that M ≡M ′ ≡ n[P ]l, for some name n,
location l, some (possibly empty) process P , and θ = µnl .
We simply apply (Move) to obtain:

n[P ]l
τ−→ Jn[P ]lKµn

l

.

Suppose that M −→ JM ′Kθ is due to the application of
the rule (R-Par) with M ≡ M1 | M2, M ′ ≡ M ′1 | M2

and:

M1 −→ JM ′1Kθ
M1 |M2 −→ JM ′1 |M2Kθ

.

By induction hypothesis there exist N ≡ M1 and N ′ ≡
M ′1 such that N

τ−→ JN ′Kθ, then by applying rule (Par)
we get:

N
τ−→ JN ′Kθ

N |M2
τ−→ JN ′ |M2Kθ

,

hence by the rules of structural congruence we have that
N |M2 ≡M1 |M2 ≡M and N ′ |M2 ≡M ′1 |M2 ≡M ′.
Suppose that M −→ JM ′Kθ is due to the application of
the rule (R-Res) with M ≡ (νc)M1 and M ′ ≡ (νc)M ′1 for
some channel c and some networks M1 and M ′1, then

M1 −→ JM ′1Kθ
(νc)M1 −→ J(νc)M ′1Kθ

.

By induction hypothesis there exist N ≡ M1 and N ′ ≡
M ′1 such that N

τ−→ JN ′Kθ, then by applying rule (Res),
since Chan(τ) 6= c we get:

N
τ−→ JN ′Kθ

(νc)N
τ−→ J(νc)N ′Kθ

,

hence by the rules of structural congruence we have that
(νc)N ≡ (νc)M1 ≡M and (νc)N ′ ≡ (νc)M ′1 ≡M ′.
Let M −→ JM ′Kθ due to the application of the rule (R-
Bcast). Then M ≡ n[c̄L,r〈ṽ〉.P ]l |

∏
i∈I ni[c(x̃i).Pi]li

and M ′ ≡ n[P ]l |
∏
i∈I ni[Pi{ṽ/x̃i}]li for some name n,

channel c, location l, radius r, some set L of locations,
some tuple ṽ of messages, some (possibly empty) process
P , some (possibly empty) set I of networks. By applying
the rules (Snd), (Rcv), | I | times the rule (Bcast) and,
finally the rule (Lose), we obtain

n[c̄L,r〈ṽ〉.P ]l |
∏
i∈I

ni[c(x̃i).Pi]li
τ−→

Jn[P ]l |
∏
i∈I

ni[Pi{ṽ/x̃i}]liK∆ .

Finally, suppose that the reduction M −→ JM ′Kθ is due
to an application of rule (R-Struct):

M ≡ N N−→JN ′Kθ N ′ ≡M ′

M−→JM ′Kθ
.

By induction hypothesis there existN1 ≡ N andN2 ≡ N ′
such that N1

τ−→ JN2Kθ. The statement follows since by
applying the rules of the structural congruence we have
M ≡ N ≡ N1 and M ′ ≡ N ′ ≡ N2.

2. The second part of the theorem follows straightforwardly
from Lemma 1 and the definition of Barb.
⇒ If M ↓c@K , by the definition of Barb:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l |M1) ,

for some n, ṽ, L, r, some (possibly empty) sequence d̃

with c /∈ d̃, some process P and some (possibly empty)
network M1, with K ⊆ {k ∈ L such that d(l, k) ≤ r}
and K 6= ∅. By applying the rules (Snd), (Par) and
(Res):

n[c̄L,r〈ṽ〉.P ]l
cL!ṽ[l,r]−−−−−−→ Jn[P ]lK∆

M
cL!ṽ[l,r]−−−−−−→ J(νd̃)(n[P ]l |M1K∆)

;

then by rule (Obs): n[c̄L,r〈ṽ〉.P ]l | M1
c!ṽ@K/R−−−−−−−→

Jn[P ]l | M1K∆, where R = {l′ ∈ Loc : d(l, l′) ≤ r},
and K ⊆ L ∩R as required.

⇐ IfM
c!ṽ@K/R−−−−−−−→ JM ′K∆, becauseM

cL!ṽ![l,r]−−−−−−→ JM ′K∆,
by applying Lemma 1 there exist n, some (possibly

empty) sequence d̃ such that c /∈ d̃, some process P ,
some (possibly empty) network M1 and a set I, such
that ∀i ∈ I with d(l, li) ≤ r:
M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|

∏
i∈I ni[c(x̃i).Pi]li | M1)

and M ′ ≡ (νd̃)(n[P ]l|
∏
i∈I ni[Pi{ṽ/x̃i}]li |M1).

Since K 6= ∅, by the definition of barb we conclude
M ↓c@K .

3. The third part of the theorem is proved by induction on

the derivation M
τ−→ JM ′Kθ.

Suppose that M
τ−→ JM ′Kθ is due to an application of

the rule (Move), i.e., M ≡ n[P ]l, M ′ ≡ n[P ]l, for some
name n, some (possibly empty) process P , some location
l, θ = µnl and

n[P ]l
τ−→ Jn[P ]lKµn

l

,

hence , by applying (R-Move) we get:

n[P ]l−→Jn[P ]lKµn
l

.

If M
τ−→ JM ′Kθ is due to an application of (Lose):

M
cL!ṽ[l,r]−−−−−−→ JM ′K∆
M

τ−→JM ′K∆
,

for some channel c, some set L of locations, some tuple
ṽ of messages, some location l and radius r. By applying
Lemma 1, there exist n, ṽ, a (possibly empty) sequence d̃

such that c /∈ d̃, a process P , a (possibly empty) network
M1 and a (possibly empty) set I with d(l, li) ≤ r ∀i ∈ I
such that:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|
∏
i∈I

ni[c(x̃i).Pi]li |M1)

and

M ′ ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l|
∏
i∈i

ni[Pi{ṽ/x̃i}]li |M1) .
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Finally, by applying rules (R-Bcast), (R-Res) and (R-

Struct) we get M −→ JM ′Kθ.

Suppose that M
τ−→ JM ′Kθ is due to the application of

(Res) with M ≡ (νc)M1 and M ′ ≡ (νc)JM ′1Kθ, for some
channel c and for some networks M1 and M ′1. Then we
have:

M1
τ−→ JM ′1Kθ

(νc)M1
τ−→ J(νc)M ′1Kθ

.

By induction hypothesis M1 −→ JM ′1Kθ, hence, by apply-

ing rule (R-Res) we get (νc)M1 −→ J(νc)M ′1Kθ.

Finally, suppose that M
τ−→ JM ′Kθ is due to the appli-

cation of (Par) with M ≡ M1 | M2, M ′ ≡ M ′1 | M2

and
M1

τ−→ JM ′1Kθ
M1|M2

τ−→ JM ′1|M2Kθ
.

By induction hypothesis M1 −→ JM ′1Kθ, hence, by apply-

ing rule (R-Par) we get M1|M2 −→ JM ′1|M2Kθ.
4. The last part of the theorem follows from the definition

of barb and Lemma 1. Indeed, since M
c!ṽ@K/R−−−−−−−→ JM ′K∆

because M
cL!ṽ[l,r]−−−−−−→ JM ′K∆ for some location l, radius r

and set L of intended recipients, by applying Lemma 1,
there exist n, a (possibly empty) sequence d̃ with c /∈ d̃, a
process P , a (possibly empty) network M1 and a (possibly
empty) set I such that:

M ≡ (νd̃)(n[c̄L,r〈ṽ〉.P ]l |
∏
i∈I

ni[c(x̃i).Pi]li |M1)

and

M ′ ≡ (νd̃)(n[P ]l |
∏
i∈I

ni[Pi{ṽ/x̃i}]li |M1) .

Then, by applying the rules (R-Bcast), (R-Par) and (R-
Res) we get:

(νd̃)(n[c̄L,r〈ṽ〉.P ]l |
∏
i∈I ni[c(x̃i).Pi]li |M1)

−→ J(νd̃)(n[P ]l |
∏
i∈I ni[Pi{ṽ/x̃i}]li |M1)K∆,

and, by applying (R-Struct), we obtain M −→ JM ′K∆, as
required. ut

Proof of Theorem 2

We have to prove that ≈Fp is:

1. probabilistic barb preserving
2. reduction closed
3. contextual.

1. To prove that the probabilistic labelled bisimilarity ≈Fp
is barb preserving we have to show that if M ≈Fp N then, for
each scheduler F ∈ FC, for each channel c and for each set K
of locations such that M⇓Fp c@K, there exists F ′ ∈ FC such

that N⇓F ′p c@K.

Assume that M⇓Fp c@K for some F ∈ FC. By Definition 3

we have ProbFM (H) = p, where H = {M ′ : M ′ ↓c@K}. We
can partition H into a set of equivalence classes with respect
to ≈Fp . Formally, ∃J such that H ⊆ ∪j∈JCj , and ∀j ∈ J we

have Cj ∈ N/ ∼=Fp and H ∩ Cj 6= ∅. Hence:

ProbFM (H)=
∑

e∈ExecF
M

(H)
PFM (e)=

∑
j∈J

ProbFM (Cj) = p.

By Theorem 1 and by Definition 8 there exists F̂ ∈ F̂C such
that ∀j ∈ J :

ProbFM (Cj) = ProbF̂M (=⇒, C′j)

where C′j = Cj ∪ {M̂ | ∃M̂ ′ ∈ Cj and M̂ ≡ M̂ ′}.
Now, since ∀M̂ such that M̂ ≡ M̂ ′ ∈ Cj , by applying rule

(R-Struct) and by Definition 4 M̂ ∼=Fp M̂ ′, we obtain that

{M̂ : M̂ ≡ M̂ ′ ∈ Cj} ⊆ Cj , that means C′j = Cj ∀j ∈ J .
Hence we get:∑

j∈J
ProbFM (Cj) =

∑
j∈J

ProbF̂M (=⇒, Cj).

Since M ≈Fp N , there exists F̂ ′ ∈ F̂C such that, by Proposi-

tion 2, for all j ∈ J : ProbF̂M (=⇒, Cj) = ProbF̂
′

N (=⇒, Cj). We
then have:

p =
∑

j∈J
ProbF̂

′

N (=⇒, Cj).

Again, by Theorem 1, Proposition 2 and Definition 4, there

exists F ′ ∈ FC such that for all j ∈ J : ProbF̂
′

N (=⇒, Cj) =

ProbF
′

N (Cj) and

p=
∑

j∈J
ProbF̂

′

N (=⇒, Cj)=
∑

i∈J
ProbF

′

N (Cj)=ProbF
′

N (H)

i.e., N⇓F ′p c@K as required.

2. To prove that probabilistic labelled bisimilarity ≈Fp is

reduction closed, we have to show that if M ≈Fp N , then for
all F ∈ FC, there exists F ′ ∈ FC such that for all classes
C ∈ N/ ∼=Fp , ProbFM (C) = ProbF

′

N (C).
By Theorem 1 and by Definition 8 we have that ∃F̂ ∈ F̂C

such that ProbFM (C) = ProbF̂M (=⇒, C′), where C′ = C ∪{M̂ :

M̂ ≡ M̂ ′ ∈ C}, but since ∀M̂ such that M̂ ≡ M̂ ′ ∈ C, by

applying rule (R-Struct) and by Definition 4 M̂ ∼=Fp M̂ ′ we

get {M̂ : M̂ ≡ M̂ ′ ∈ C} ⊆ C, i.e., C′ = C.
By Proposition 2 we have that there exists F̂ ′ ∈ F̂C such

that ProbF̂M (=⇒, C) = ProbF̂
′

N (=⇒, C).
Finally, by Theorem 1 and by Definitions 8 and 4, ∃F ′ ∈

FC such that ProbF̂
′

N (=⇒, C) = ProbF
′

N (C), as required.
3. In order to prove that probabilistic labelled bisimilarity

≈Fp is contextual we have to prove that, if M ≈Fp N :

1. M | O ≈Fp N | O ∀O ∈ N .

2. (νd)M ≈Fp (νd)N ∀d ∈ C.

Case 1. Let us consider the relation

R = {(M | O,N | O) : M ≈Fp N}.

We prove that for all scheduler F ∈ F̂C there exists a sched-
uler F ′ ∈ F̂C such that for all α and for all classes C in
N/≈Fp :

1. if α = τ then ProbFM|O(
τ−→, C) = ProbF

′

N|O(=⇒, C).
Indeed, if P,Q ∈ C, then, by definition of R, P ≡ P̄ | Ō,
Q ≡ Q̄ | Ō and P̄ ≈Fp Q̄. Then there exists D ∈ N/ ≈Fp
such that D = {P̄ : P̄ | Ō ∈ C}. Now we have three cases
to consider:

(i) if M | O τ−→ JM | O′Kθ because O
τ−→ JO′Kθ the

proof is simple, because for all M̄ in the support of
JM | O′Kθ such that M̄ ∈ C, it holds M̄ ≡ M | O′′
and, since M ≈Fp N , N | O′′ ∈ C too, by definition of

R. By Definition 4 there exists F̄ ∈ FC such that, by

applying rule (R-Par) to the reduction O −→ JO′Kθ,
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N | O −→ JO′ | NKθ ∈ ExecF̄N|O. By Theorem 1 and

by Definition 8 ∃F ′ ∈ F̂C such that ProbF̄N|O(C) =

ProbF
′

N|O(=⇒, C), hence we have ProbFM|O(
τ−→, C) =

ProbF
′

N|O(=⇒, C) as required.

(ii) If M | O τ−→ JM ′ | OKθ because M
τ−→ JM ′Kθ,

then by Definition 8 there exists F1 ∈ F̂C such that

ProbFM|O(
τ−→, C) = ProbF1

M (
τ−→,D). Since M ≈Fp N ,

there exists F2 ∈ F̂C such that ProbF1

M (
τ−→,D) =

ProbF2

N (=⇒,D). For each N
τ−→θ1

...
τ−→θk Nk ∈

ExecF1

N (=⇒,D), there exists a scheduler F̄ ∈ FC such

that N −→θ1
N1... −→θk Nk ∈ ExecF̄N . By Definition

4, since FC captures the interactions of N with any
context, ∃F̄ ′ ∈ FC such that, by applying rule (R-

Par) to each step in e: N | O −→θ1
... −→θk Nk | O ∈

ExecF̄
′

N|O. By Definition 8 we finally get F ′ ∈ F̂C such

that:

ProbF2

N (=⇒,D) = ProbF̄N (D)

= ProbF̄
′

N|O(C) = ProbF
′

N|O(=⇒, C).

(iii) If M | O τ−→ JM ′ | O′K∆ due to a synchronization
between M and O, then there are two cases to con-

sider. If M
cL!ṽ[l,r]−−−−−−→ JM ′K∆ and O

c?ṽ@k−−−−−→ JO′K∆,
for some tuple ṽ of messages, channel c, locations l, k
and radius r, such that d(l, k) ≤ r, we can apply rule

(Obs) obtaining M
c!ṽ@K/R−−−−−−−→ JM ′K∆ for some set

R = {l′ | d(l, l′) ≤ r} with k ∈ R and K = L ∩R.

Hence, by Definition 8, there exists F1 ∈ F̂C such that

ProbFM|O(
τ−→, C) = ProbF1

M (
c!ṽ@K/R−−−−−−−→,D).Moreover,

since N ≈Fp M , there exists F2 ∈ F̂C such that

ProbF1

M (
c!ṽ@K/R−−−−−−−→,D) = ProbF2

N (
c!ṽ@K/R

=⇒ ,D), where

each execution e ∈ ExecF2

N (
c!ṽ@K/R

=⇒ ,D) has the form

e = N
τ−→θ1

N1
τ−→θ2

...Ni−1

c!ṽ@K/R−−−−−−−→∆ Ni
τ−→θi+1

... N ′ ,

with k ∈ R, and, by applying rule (Obs) backwardly,

Ni−1
c!ṽ[l′,r′]−−−−−−→∆ Ni for some l′ and r′ such that

d(l′, k) ≤ r′. We can apply rule (Bcast) obtaining

Ni−1 | O
c!ṽ[l′,r′]−−−−−−→∆ Ni | O′ without changing the

probability. Finally if we take F ′ ∈ LSched which
applies rule (Lose) to the output action, we obtain
the required result:

ProbF2

N (
c!ṽ@K/R

=⇒ ,D) = ProbF
′

N|O(=⇒, C).

We have finally to prove that F ′ ∈ F̂C. We start by
the consideration that, by Definition 1, for any execu-

tion of the form
α

=⇒ in F̂C, where α is a silent or an
output action there exists a correspondent reduction
in FC. Since by Definition 4, for any context, there ex-
ists a scheduler in FC mimicking the behaviour exhib-
ited by N when interacting with the given context, we
can affirm that ∃F̄ ∈ FC such that ExecF̄N|O contains

all the reductions corresponding to the executions of
ExecF

′

N|O. Hence, by Definition 8, F ′ ∈ F̂C, as re-

quired. If M
c?ṽ@k−−−−−→ JM ′K∆ and O

cL!ṽ[l,r]−−−−−−→ JO′K∆,

for some message ṽ, channel c, locations l, k and ra-
dius r, such that d(l, k) ≤ r, then by Definition 8

∃F1 ∈ F̂C such that:

ProbFM|O(
τ−→, C) = ProbF1

M (
c?ṽ@k−−−−−→,D),

and, since M ≈Fp N , there exists F2 ∈ F̂C such that

ProbF1

M (
c?ṽ@k−−−−−→,D) = ProbF2

N (
c?ṽ@k
=⇒ ,D) or

ProbF1

M (
c?ṽ@k−−−−−→,D) = ProbF2

N (=⇒,D).
In the first case, since by hypothesis k ∈ R, also N
is able to synchronize with O, for all executions in

ExecF2

N (
c?ṽ@k
=⇒ ,D) of the form e = N

τ−→θ1
N1

τ−→θ2

...Ni−1
c?ṽ@k−−−−−→∆ Ni

τ−→θi+1
...N ′ since by hypothe-

sis d(l, k) ≤ r, then by applying rule (Bcast) we get

Ni−1 | O
cL!ṽ[l.r]−−−−−−→ Ni | O′, and there exists a match-

ing execution: N | O τ−→θ1
N1 | O

τ−→θ2
...Ni−1 |

O
cL!ṽ[l,r]−−−−−−→∆ Ni |O′

τ−→θi+1
...N ′ |O′.

By rule (Lose) to Ni−1 | O
cL!ṽ[l,r]−−−−−−→∆ Ni | O′ and

by Definition 4 ∃F̄ ′ ∈ FC such that, ProbF̄
′

N|O(C) =

ProbF2

N (D). By Definition 8 ∃F ′ ∈ F̂C such that,

ProbF
′

N|O(=⇒, C) = ProbF̄
′

N|O(C). If N is not able

to receive the message the proof is analogous, be-
cause ∃F ′ ∈ F̂C such that, for each execution in

ExecF1

N (=⇒,D) of the form N
τ−→θ1

N1...
τ−→θk Nk,

by applying rule (Par) to each step we have that

N | O τ−→θ1
N1 | O...

τ−→θk Nk | O, and by apply-
ing rule (Bcast) and (Lose) to O, and then (Par) to
Nk | O, we get:

N | O τ−→θ1
N1 | O...

τ−→θk Nk | O
τ−→∆ Nk |

O′ ∈ ExecF
′

N|O(=⇒, C), hence, since the output of

O does not change the probabilities of the execu-
tions, we get: ProbFM|O(=⇒, C) = ProbF1

M (=⇒,D) =

ProbF2

N (=⇒,D)=ProbF
′

N|O(=⇒, C).
2. if α = c!ṽ@K / R then

ProbFM|O(
c!ṽ@K/R−−−−−−−→, C) = ProbF

′

N|O(
c!ṽ@K/R

=⇒ , C) .

The proof is analogous to point (iii) of the previous item.
3. if α = c?ṽ@k then it holds

ProbFM|O(
α−→, C) = ProbF

′

N|O(
α

=⇒, C)

or ProbFM|O(
α−→, C) = ProbF

′

N|O(=⇒, C). If P,Q ∈ C, then

by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō and P̄ ≈Fp Q̄.

Hence there exists D ∈ N/ ≈Fp such that D = {P̄ : P̄ |
Ō ∈ C}. Now we have two cases to consider:

(i) The transition is due to an action performed by O,

hence O
α−→∆ O′ and M | O′ ∈ C. But since M ≈Fp

N , then also N | O′ ∈ C, and, by Definition 8 there

exists F ′ ∈ F̂C such that by applying rule (Par) to

O
α−→ O′, we get N | O α−→ N | O′ obtaining:

ProbFM|O(
α−→, C) = ProbF

′

N|O(
α

=⇒, C).

(ii) The transition is due to an action performed by M .

By Definition 8 ∃F1 ∈ F̂C such that ProbFM|O(
α−→

, C) = ProbF1

M (
α−→,D). Since M ≈Fp N , there exists

F2 ∈ F̂C such that ProbF1

M (
α−→,D) = ProbF2

N (
α

=⇒,D),

or ProbF1

M (
α−→,D) = ProbF2

N (=⇒,D). In both cases,
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for e ∈ ExecF1

N (
α̂

=⇒,D): e = N
α1−−→θ1

N1...
αk−−→θk Nk

by rule (Par) to each step we get:

N | O α1−−→θ1
N1 | O...

αk−−→θk Nk | O.
Then, we have that ∃F ′ ∈ LSched such that

ProbF2

N (
α

=⇒,D) = ProbF
′

N|O(
α

=⇒, C) ,

or

ProbF2

N (=⇒,D) = ProbF
′

N|O(=⇒, C) .

In order to prove that F ′ ∈ F̂C, we start by the con-
sideration that, by Definition 8 there exists at least a

context C[·] and ∃F̄ ∈ FC such that C[N ] −→ C′[N ′],
and, by the reduction rules we get:

C[·] ≡ (νd̃)m[c̄L,r〈ṽ〉.P ]l |M1

for some d̃ such that c 6∈ d̃, some m, some set L of lo-
cations, some process P , some (possibly empty) net-
work M1, some location l and some radius r such
that d(l, k) ≤ r. Then, by Definition 4 there exists a

scheduler allowing m[c̄L,r〈ṽ〉.P ]l −→ Jm[P ]lK∆, and
again by Definition 4 there exists a scheduler such

that m[c̄L,r〈ṽ〉.P ]l | N | O −→
∗

Jm[P ]l | N ′ | O′K∆,

and hence, by Definition 8, F ′ ∈ F̂C as required.

Case 2. Let us consider now the relation

S = {((νd)M, (νd)N) : M ≈Fp N}.

Let C ∈ N/S: if P,Q ∈ C, then by definition of S we have
P ≡ (νd̄)P̄ , Q ≡ (νd̄)Q̄ and P̄ ≈Fp Q̄. Hence ∃D ∈ N/ ≈Fp
such that D = {P̄ : (νd̄)P̄ ∈ C}.

We have to prove that, ∀F ∈ F̂C, ∃F ′ ∈ F̂C such that,
∀C ∈ N/S, ∀α:

1. α = τ implies ProbF(νd)M (
τ−→, C) = ProbF

′

(νd)N (=⇒, C).
Since Chan(τ) = ⊥, by Definition 8 ∃F1 ∈ F̂C such that

ProbF(νd)M (
τ−→, C) = ProbF1

M (
τ−→,D) and, since M ≈Fp N

∃F2 ∈ F̂C such that ProbF1

M (
τ−→,D) = ProbF2

N (=⇒,D).
Finally we can take F ′ ∈ LSched mimicking the execu-
tions in the set ExecF2

N (=⇒,D), when applying the re-
striction on N . Hence, we have

ProbF2

N (=⇒,D) = ProbF
′

(νd)N (=⇒, C) .

In order to prove that F ′ ∈ F̂C, we start by the consid-
eration that, by Definition 4, for any context there exists
a scheduler in FC mimicking the behaviour of N when
interacting with the given context. Hence ∃F̄ ∈ FC such
that ExecF̄(νd)N contains all the reductions correspond-

ing to the executions in ExecF
′

(νd)N , i.e., by Definition 8,

F ′ ∈ F̂C.
2. α = c!ṽ@K/R. Since Chan(c!ṽ@K/R) 6= d, by Definition 8

∃F1 ∈ F̂C with ProbF(νd)M (
α−→, C) = ProbF1

M (
α−→,D).

Since M ≈Fp N , ∃F2 ∈ F̂C such that ProbF1

M (
α−→,D) =

ProbF
′

N (
α

=⇒,D). Since Chan(α) 6= d, ∃F ′ ∈ LSched with

ProbF2

N (
α

=⇒,D) = ProbF2

(νd)N (
α

=⇒, C). We now can prove

that F ′ ∈ F̂C as in the previous cases.
3. α = c?ṽ@k. Again, by Chan(c?ṽ@k) 6= d, by Definition 8

∃F1 ∈ F̂C with ProbF(νd)M (
α−→, C) = ProbF1

M (
α−→,D).

Since M ≈Fp N , ∃F2 ∈ F̂C such that ProbF1

M (
α−→,D) =

ProbF2

N (
α

=⇒,D) or ProbF1

M (
α−→,D) = ProbF2

N (=⇒,D), in

the case that N is not able to receive ṽ. In both cases, by
rule (Res) to N , since Chan(τ) = ⊥ and Chan(c?ṽ@k) 6= d.
Hence, ∃F ′ ∈ LSched such that

ProbF2

N (
α

=⇒,D) = ProbF
′

(νd)N (
α

=⇒, C)

or

ProbF2

N (=⇒,D) = ProbF
′

(νd)N (=⇒, C) .

Again, we prove that F ′ ∈ F̂C as in the previous cases.
ut

Proof of Theorem 3

In order to prove the completeness of the probabilistic
labelled bisimilarity we show that the relation

R = {(M,N) : M ∼=Fp N}

is a probabilistic labelled bisimulation.
We have to prove that, ∀F ∈ F̂C ∃F ′ ∈ F̂C such that,

∀C ∈ N/R, ∀α:

if α = τ then ProbFM (
τ−→, C) = ProbF

′

N (=⇒, C).
By Theorem 1 and Definition 8 we know that ∃F̄ ∈ FC
such that ProbFM (

τ−→, C) = ProbF̄M (C). By M ∼=Fp N ,

∃F̄ ′ ∈ FC such that ProbF̂M (C) = ProbF̄
′

N (C). Again by

Theorem 1 and by Definition 8 ∃F ′ ∈ F̂C such that

ProbF̂
′

N (C) = ProbF
′

N (=⇒, C ∪ {N̄ ≡ N ′ ∈ C}), but since
∼=Fp is closed under structural equivalence, ∀N̄ ≡ N ′ ∈ C,
N̄ ∈ C, and hence: ProbFM (

τ−→, C) = ProbF
′

N (=⇒, C).
if α = c!ṽ@K / R then ProbFM (

α−→, C) = ProbF
′

N (
α

=⇒, C).
First note that ProbFM (

c!ṽ@K/R−−−−−−−→, C) is either 0 or 1.

If ProbFM (
c!ṽ@K/R−−−−−−−→, C) = 0 we are done, because it will

be enough to take any scheduler F ′ ∈ F̂C not allowing
observable output actions on the channel c, and we get

ProbFM (
c!ṽ@K/R−−−−−−−→, C) = ProbF

′

N (
c!ṽ@K/R

=⇒ , C).
If ProbFM (

c!ṽ@K/R−−−−−−−→, C) = 1, by Theorem 1 and by Def-

inition 8 ∃F̄ ∈ FC such that M⇓F̄1 c@K, and this means

that ∃F̄ ′ ∈ FC such that N⇓F̄ ′1 c@K, hence, by Theorem

1 and by Definition 8 there exist F ′ ∈ F̂C and R′ such

that K ⊆ R′ and ProbF̄
′

N (C) = ProbF
′

N (
c!ṽ@K/R′

=⇒ , C).
We proved that ∃R′ with

ProbFM (
c!ṽ@K/R−−−−−−−→, C) = ProbF

′

N (
c!ṽ@K/R′

=⇒ , C) ,

now we want to show that R′ = R. In order to mimic
the effect of the action c!ṽ@K /R, we build the following
context

C[·] =
∏n

i=1
(ni[c(x̃i).[x̃i = ṽ]f̄

(i)
ki,r
〈x̃i〉]ki |

mi[f
(i)(ỹi).ōk

(i)
ki,r
〈ỹi〉]ki),

where R = {k1, ..., kn}, ni, mi, ok(i) and f(i) are fresh

∀i ∈ [1 − n]. Since M
c!ṽ@K/R−−−−−−−→, then the message is

reachable by all nodes ni, hence, by Definition 4 ∃F̄1 ∈ FC
such that C[M ] −→∗ M̂ , where

M̂ ≡M ′ |
∏n

i=1
(ni[0]ki | mi[ōk

(i)
ki,r
〈ṽi〉]ki ≡

M ′ |
∏n

i=1
(mi[ōk

(i)
ki,r
〈ṽi〉]ki
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with M̂ 6↓f(i)@R and M̂⇓F̄1
1 ok(i)@R, ∀i ∈ [1− n].

The absence of the barb on the channels f(i) together
with the presence of the barb on the channels ok(i) en-
sures that all the locations in R have been able to receive
the message. Since C[M ] ∼=Fp C[N ], ∃F̄2 ∈ FC such that

ProbF̄1

C[M](C
′) = ProbF̄2

C[N](C
′) where M̂ ∈ C′.

Therefore, C[N ] −→∗ N̂ with N̂ 6↓f(i)@R and N̂⇓F̄2
1 ok(i)@R.

The constraints on the barbs allow us to deduce that

N̂ ≡ N ′ |
∏n

i=1
(ni[0]ki | mi[ōk

(i)
ki,r

ṽi]ki) ≡ N
′ |∏n

i=1
(mi[ōk

(i)
ki,r

ṽi]ki) ,

which implies N
c!ṽ@K/R

=⇒ N ′, or N =⇒ N ′ in case (Lose)
has been applied to the output action on the channel c.
Since M̂, N̂ ∈ C, then M̂ ∼=Fp N̂ , and since ∼=Fp is contex-

tual, it results (νok(1)...ok(n))M̂ ∼=FMp (νok(1)...ok(n))N̂ .
By applying (Struct Res Par):

(νok(1)...ok(n))M̂ ≡

M ′ | (νok(1)...ok(n))
∏n

i=1
(mi[ōk

(i)
ki,r
〈ṽi〉]ki) ≡M

′

and

(νok(1)...ok(n))N̂ ≡

N ′ | (νok(1)...ok(n))
∏n

i=1
(mi[ōk

(i)
ki,r
〈ṽi〉]ki) ≡ N

′

and, since the network

(νok(1)...ok(n))
∏n

i=1
(mi[ōk

(i)
ki,r
〈ṽi〉]ki)

is silent, we can derive M ′ ∼=Fp N ′. Since N ′ ∈ C and

N
c!ṽ@K/R

=⇒ N ′, by Definition 8 ∃F ′ ∈ F̂C such that

ProbF
′

N (
c!ṽ@K/R

=⇒ , C) = 1 = ProbFM (
c!ṽ@K/R

=⇒ , C), as re-
quired.

if α = c?ṽ@k then ProbFM (
α−→, C) = ProbF

′

N (
α

=⇒, C) or

ProbF
′

N (=⇒, C).
We notice that ProbFM (

c?ṽ@k−−−−−→, C) is either 0 or 1. If

ProbFM (
c?ṽ@k−−−−−→, C) = 0 we are done, because it will be

enough to take any scheduler F ′ ∈ F̂C not allowing in-
put actions on the channel c. Therefore we obtain that

ProbFM (
c?ṽ@k−−−−−→, C) = ProbF

′

N (
c?ṽ@k
=⇒ , C).

If ProbFM (
c?ṽ@k−−−−−→, C) = 1, because M

c?ṽ@k−−−−−→ JM ′K∆,
by Definition 4 there exists at least a context C[·] and

∃F̄ ∈ FC such that C[M ] −→ C′[M ′], and by Theo-

rem 1 we have C[·] ≡ (νd̃)m[c̄L,r〈ṽ〉.P ]l |M1 and C′[·] ≡
(νd̃)m[P ]l |M ′1 for some m, some tuple d̃ of channels such

that c /∈ d̃, some set L of messages, some radius r, some
process P , some location l such that d(l, k) ≤ r and some
(possibly empty) networks M1 and M ′1. By Definition 4,
for any context there exists a scheduler in FC allowing m
to perform the output when interacting with any context.
Hence we can build the following context:
C1[·] = · | m[c̄L,r〈ṽ〉.P ]l | m1[c(x̃).f̄k,r′〈x̃〉.ōkk,r′〈x̃〉]k,
in order to mimic the behaviour of the networks, with m
static, f and ok fresh channels, r′ > 0 and d(l, k) > r′

∀l ∈ Loc such that l 6= k. Hence, ∃F̄1 ∈ FC such that

C1[M ] −→∗ M ′ | m[P ]l | m1[ōkk,r′〈ṽ〉]k ∈ ExecF̄1

C[M],

with M ′ | m[P ]l | m[ōkk,r′〈ṽ〉]k 6↓f@k and M ′ | m[P ]l |
m[ōkk,r′〈ṽ〉]k⇓F̄1

1 ok@k.

The reduction sequence above must be matched by a cor-
responding reduction sequence of the form

C1[N ] −→∗ N ′ | m[P ]l | m[ōkk,r′〈ṽ〉]k, with

M ′ | m[P ]l | m[ōkk,r′〈ṽ〉]k ∼=p N ′ | m[P ]l |
m[ōkk,r′〈ṽ〉]k 6↓f@k

and
N ′ | m[P ]l | m[ōkk,r′〈ṽ〉]k⇓F̂2

1 ok@k for some F̄2 ∈ FC.
This does not ensure that N actually performed the input
action, but we can conclude that ∃F ′ ∈ LSched and N ′

such that either N
c?ṽ@k
=⇒ N ′ or N =⇒ N ′. Since M ′ |

m[P ]l | m[ōkk,r′〈ṽ〉]k ∼=p N ′ | m[P ]l | m[ōkk,r′〈ṽ〉]k
and ∼=Fp is is a contextual relation, we can easily derive

M ′ ∼=Fp N ′ (applying the rules for structural equivalence),
i.e., there exists F ′ ∈ LSched such that:

ProbFM (
c?ṽ@k−−−−−→, C) = 1 = ProbF

′

N (
c?ṽ@k
=⇒ , C) or

ProbFM (
c?ṽ@k−−−−−→, C) = 1 = ProbF

′

N (=⇒, C).
Now we have only to prove that F ′ ∈ F̂C, but this follows
straightforwardly by Definition 8, since F̄2 ∈ FC. ut


