
Theory and Pratie of Logi Programming, volume 2, n. 2, pag. 125-154, 2002 1Properties of Input-Consuming DerivationsANNALISA BOSSI, SABINA ROSSIDipartimento di Informatia, Universit�a di Veneziavia Torino 155, 30172 Venezia, ItalySANDRO ETALLEDepartment of Computer Siene, University of MaastrihtP.O. Box 616, 6200 MD Maastriht, The NetherlandsandCWI { Center for Mathematis and Computer Siene,P.O. Box 94079, 1090 GB Amsterdam, The NetherlandsAbstratWe study the properties of input-onsuming derivations of moded logi programs. Input-onsuming derivations an be used to model the behavior of logi programs using dynamisheduling and employing onstruts suh as delay delarations.We onsider the lass of niely-moded programs and queries. We show that for these pro-grams a weak version of the well-known swithing lemma holds also for input-onsumingderivations. Furthermore, we show that, under suitable onditions, there exists an alge-brai haraterization of termination of input-onsuming derivations.1 IntrodutionMost of the reent logi programming languages provide the possibility of employingdynami sheduling, i.e., a runtime mehanism determining whih atoms in a queryare seletable and whih ones are not. In fat, dynami sheduling has proven tobe useful in a number of appliations; among other things, it allows one to modeloroutining, as shown in (Naish, 1993; Hill and Lloyd, 1994), and parallel exeutions,as shown in (Naish, 1988).Let us use the following simple examples to show how dynami sheduling anbe enfored by using delay delarations and how it an prevent nontermination andunneessary omputations. Consider the program APPENDapp([ ℄,Ys,Ys).app([H|Xs℄,Ys,[H|Zs℄)  app(Xs,Ys,Zs).together with the queryQ1 := app(Xs,[5,6℄,Ys), app([1,2℄,[3,4℄,Xs).In this query, if we selet and resolve the leftmost atom, we ould easily have to faeone of the following two problems. First, the possibility of nontermination: Thisis the ase if we repeatedly resolve the leftmost atom against the seond lause.



2 A. Bossi, S. Etalle, and S. RossiThe seond problem is that of ineÆieny. If, for instane, in Q1 we resolve theleftmost atom against the �rst lause, we obtain the query app([1,2℄,[3,4℄,[ ℄).This will eventually fail, yielding to (unneessary) baktraking. Notie that if oneemploys the rightmost seletion rule, Q1 would terminate with suess and withoutbaktraking. Basially, the problem when seleting app(Xs,[5,6℄,Ys), is that wedo not know whih lause we should use for resolving it, and the only pratialway for getting to know this is by waiting until the outermost funtor of Xs isknown: If it is the empty list [ ℄ we know that we should use the �rst lause, if itis the list-onstrutor symbol we know that we should use the seond lause, if itis something else again, we know then that the query fails. Notie that the sameproblems arise for the queryQ2 := app([1,2℄,[3,4℄,Xs), app(Xs,[5,6℄,Ys).if the rightmost seletion rule is onsidered.This shows the usefulness of a mehanism for preventing the seletion of thoseatoms whih are not suÆiently instantiated. Suh a mehanism is in fat o�ered bymost modern languages: In GHC (Ueda, 1988) programs are augmented with guardsin order to ontrol the seletion of atoms dynamially. Moded Flat GHC (Ueda andMorita, 1994) uses an extra ondition on the input positions, whih is extremelysimilar to the onept of input-onsuming derivation step we refer to the sequel: Theresolution of an atom with a de�nition must not instantiate the input arguments ofthe resolved atom. On the other hand, G�odel (Hill and Lloyd, 1994) and ECLiPSe(Wallae et al., 1997) use delay delarations, and SICStus Prolog (1997) employsblok delarations (whih are a speial kind of delay delarations). Both delay andblok delarations hek the partial instantiation of some arguments of alls. Forinstane, the standard delay delaration for APPEND isd1 := delay app(Ls, , ) until nonvar(Ls).This delaration forbids the seletion of an atom of the form app(s; t; u) unless sis a non-variable term, whih is preisely what we need in order to run the queriesQ1 or Q2 eÆiently.The adoption of dynami sheduling has the disadvantage that various programproperties that have been proven for logi and pure Prolog programs do not applyany longer.The goal of our researh is the study of termination properties. This is motivatedby the fat that most of the literature on termination of logi programs (see DeShreye and Deorte (1994) for a survey on this subjet) assumes the standardProlog seletion rule, i.e., the leftmost one. Notable exeptions are Bezem (1993)and Cavedon (1989) who provide results for all seletion rules. There are onlyfew authors who takled the spei� problem of verifying the termination of logiprograms with dynami sheduling. Namely, Apt and Luitjes (1995), Marhiori andTeusink (1999) and Smaus (1999b). We ompare our results with the ones in (Aptand Luitjes, 1995; Marhiori and Teusink, 1999; Smaus, 1999b) in the onludingsetion.



Theory and Pratie of Logi Programming 3Another feature of logi programs whih does not hold in presene of dynamisheduling is the well-known swithing lemma, whih is, for instane, at the base ofthe result on the independene of the seletion rule. In this paper we show that {under ertain onditions { a weak form of the well-known swithing lemma holds.In order to reuperate at least part of the delarative reading of logi pro-gramming, we follow here the same approah to dynami sheduling as (Smaus,1999b) and we substitute the use of delay delarations by the restrition to input-onsuming derivations. The de�nition of input-onsuming derivation is done in twophases. First we give the program a mode, that is, we partition the positions of eahatom into input and output positions. Then, in presene of modes, input-onsumingderivation steps are preisely those in whih the input arguments of the seletedatom will not be instantiated by the uni�ation with the lause's head. If in a queryno atom is resolvable via an input-onsuming derivation step and a failure does notarise then we have a deadlok situation1.For example, the standard mode for the program APPEND reported above, whenused for onatenating two lists, is app(In,In,Out). Notie that in this ase thedelay delaration d1 serves preisely the purpose of guaranteeing that if an atomof the form app(s; t;X) (with X being a variable) is seletable and uni�able witha lause head, then the resulting derivation step is input-onsuming.It is also worth remarking that, as a large body of literature shows, the vastmajority of \usual" programs are atually moded and are, in a well-de�ned senseonsistent wrt. to their modes (e.g., well-moded, niely-moded, simply-moded, et.);see for example (Apt and Pellegrini, 1994; Apt andMarhiori, 1994), or more simply,the tables of programs we report in Setion 7, or onsider for instane the logiprogramming language Merury (Somogyi et al., 1996), whih requires that itsprograms are moded (and well-moded).Contributions of this paperIn this paper we study some properties of input-onsuming derivations.In the �rst plae we show that, if we restrit ourselves to programs and querieswhih are niely-moded, then a weak form of the well-known swithing lemma holds.Furthermore, we study the termination properties of input-onsuming deriva-tions. For this we de�ne the lass of input terminating programs whih haraterizesprograms whose input-onsuming derivations starting in a niely-moded query are�nite. In order to prove that a program is input terminating, we use the onept ofquasi reurrent program (similar to, but notieably less restritive than the oneptof semi-reurrent program introdued in (Apt and Pedreshi, 1994)). We show thatif P is niely-moded and quasi reurrent then all its input-onsuming derivationsstarting from a niely-moded query terminate.Furthermore, we demonstrate that under mild additional onstraints (namely,1 As we disuss in Setion 3.2, this notion of deadlok di�ers, in some way, from the usual one,whih is given in the ase of programs employing delay delarations.



4 A. Bossi, S. Etalle, and S. Rossisimply-modedness and input-reurreny) the above ondition is both suÆient andneessary for ensuring that all input-onsuming derivations starting from a niely-moded query terminate.This approah generalizes the method desribed in (Smaus, 1999b) in two ways:First beause we also provide onditions whih are both neessary and suÆient, andseondly beause we do not require programs and queries to be well-moded; we onlyassume that they are niely-moded. This is atually ruial: When programs andqueries are well-moded, derivations annot deadlok. Thus, as opposed to (Smaus,1999b), our results apture also termination by deadlok. For instane, we aneasily prove that the query app(X;Y; Z) terminates. A more detailed omparisonis presented in the onluding setion.We also show that the results presented in this paper an be extended to programsand queries whih are permutation niely- or simply-moded, (Smaus et al., 1998).To evaluate the pratiality of the results we present, we onsider the programsfrom various well-known olletions, and we hek whether they satisfy the ondi-tions of our main theorem.The paper is organized as follows. Setion 2 ontains some preliminary notationsand de�nitions. In Setion 3 input-onsuming derivations are introdued and someproperties of them are proven. In Setion 4 we prove that, for niely-moded input-onsuming programs, a left swithing lemma holds. In Setion 5 a method forproving input termination of programs is presented, �rst in a non-modular way,then for modular programs. In Setion 6 we show that this method is neessary forthe lass of simply-moded and input-reursive programs. Setion 7 disusses theappliability of our results through simple examples of programs and reports theresults obtained by applying our method to various benhmarks. Finally, Setion 8onludes the paper. 2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi results oflogi programs (Apt, 1990; Apt, 1997; Lloyd, 1987).2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data onstrutors C and a denu-merable set of variable symbols V . A substitution � is a mapping from V to T suhthat Dom(�) = fX j �(X) 6= Xg is �nite. For any syntati objet o, we denoteby Var(o) the set of variables ourring in o. A syntati objet is linear if everyvariable ours in it at most one. We denote by � the empty substitution. Theomposition �� of the substitutions � and � is de�ned as the funtional omposi-tion, i.e., ��(X) = �(�(X)). We onsider the pre-ordering � (more general than)on substitutions suh that � � � i� there exists  suh that � = �. The resultof the appliation of a substitution � to a term t is said an instane of t and it isdenoted by t�. We also onsider the pre-ordering � (more general than) on termssuh that t � t0 i� there exists � suh that t� = t0. We denote by � the assoiated



Theory and Pratie of Logi Programming 5equivalene relation (variane). A substitution � is a uni�er of terms t and t0 i�t� = t0�. We denote by mgu(t; t0) any most general uni�er (mgu, in short) of t andt0. An mgu � of terms t and t0 is alled relevant i� Var(�) � Var(t) [ Var(t0).2.2 Programs and DerivationsLet P be a �nite set of prediate symbols. An atom is an objet of the formp(t1; : : : ; tn) where p 2 P is an n-ary prediate symbol and t1; : : : ; tn 2 T . Givenan atom A, we denote by Rel(A) the prediate symbol of A. A query is a �nite,possibly empty, sequene of atoms A1; : : : ; Am. The empty query is denoted by 2.Following the onvention adopted in (Apt, 1997), we use bold haraters to denotequeries. A lause is a formula H  B where H is an atom (the head) and B is aquery (the body). When B is empty, H  B is written H  and is alled a unitlause. A program is a �nite set of lauses. We denote atoms by A;B;H; : : : ; queriesby Q;A;B;C; : : : ; lauses by ; d; : : : ; and programs by P .Computations are onstruted as sequenes of \basi" steps. Consider a non-empty query A; B;C and a lause . Let H  B be a variant of  variable disjointfrom A; B;C. Let B and H unify with mgu �. The query (A;B;C)� is alled aresolvent of A; B;C and  with seleted atom B and mgu �. A derivation step isdenoted by A; B;C �=)P; (A;B;C)�The lause H  B is alled its input lause. The atom B is alled the seleted atomof A; B;C.If P is lear from the ontext or  is irrelevant then we drop the referene tothem. A derivation is obtained by iterating derivation steps. A maximal sequeneÆ := Q0 �1=)P;1 Q1 �2=)P;2 � � �Qn �n+1=)P;n+1 Qn+1 � � �is alled a derivation of P [ fQ0g provided that for every step the standardizationapart ondition holds, i.e., the input lause employed is variable disjoint from theinitial query Q0 and from the substitutions and the input lauses used at earliersteps.Derivations an be �nite or in�nite. If Æ := Q0 �1=)P;1 � � � �n=)P;n Qn is a �nitepre�x of a derivation, also denoted Æ := Q0 �7�! Qn with � = �1 � � � �n, we say that Æis a partial derivation and � is a partial omputed answer substitution of P [ fQ0g.If Æ is maximal and ends with the empty query then � is alled omputed answersubstitution (.a.s., for short). The length of a (partial) derivation Æ, denoted bylen(Æ), is the number of derivation steps in Æ.The following de�nition of B-step is due to Smaus (1999a).De�nition 1 (B-step)Let A; B;C �=) (A;B;C)� be a derivation step. We say that eah atom in B� isa diret desendant of B, and for eah atom E in (A;C), E� is a diret desendantof E. We say that E is a desendant of F if the pair (E;F ) is in the reexive,transitive losure of the relation is a diret desendant of. Consider a derivation



6 A. Bossi, S. Etalle, and S. RossiQ0 �1=) � � � �i=) Qi � � � �j=) Qj �j+1=) Qj+1 � � �. We say that Qj �j+1=) Qj+1 � � � is aB-step if B is a subquery of Qi and the seleted atom in Qj is a desendant of anatom in B. 3 Modes and Input-Consuming DerivationsIn this setion we introdue the onept of input-onsuming derivation whih isstritly related to the notion of mode; we disuss the relations between input-onsuming derivations and programs using delay delarations; we reall the notionof niely-moded program and state some properties.3.1 Input-Consuming DerivationsLet us �rst reall the notion of mode. A mode is a funtion that labels as input oroutput the positions of eah prediate in order to indiate how the arguments of aprediate should be used.De�nition 2 (Mode)Consider an n-ary prediate symbol p. A mode for p is a funtionmp from f1; : : : ; ngto fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p(wrt. mp). We assume that eah prediate symbol has a unique mode assoiated toit; multiple modes may be obtained by simply renaming the prediates.If Q is a query, we denote by In(Q) (resp. Out(Q)) the sequene of terms �llingin the input (resp. output) positions of prediates in Q. Moreover, when writing anatom as p(s; t), we are indiating with s the sequene of terms �lling in the inputpositions of p and with t the sequene of terms �lling in the output positions of p.The notion of input-onsuming derivation was introdued in (Smaus, 1999b) andis de�ned as follows.De�nition 3 (Input-Consuming)� An atom p(s; t) is alled input-onsuming resolvable wrt. a lause  := p(u;v) Q and a substitution � i� � = mgu(p(s; t); p(u;v)) and s = s�.� A derivation step A; B;C �=) (A;B;C)�is alled input-onsuming i� the seleted atom B is input-onsuming resolv-able wrt. the input lause  and the substitution �.� A derivation is alled input-onsuming i� all its derivation steps are input-onsuming.The following lemma states that we are allowed to restrit our attention to input-onsuming derivations with relevant mgu's.Lemma 4Let p(s; t) and p(u;v) be two atoms. If there exists an mgu � of p(s; t) and p(u;v)suh that s� = s, then there exists a relevant mgu # of p(s; t) and p(u;v) suh thats# = s.



Theory and Pratie of Logi Programming 7ProofSine p(s; t) and p(u;v) are uni�able, there exists a relevant mgu �rel of them (fr.(Apt, 1997), Theorem 2.16). Now, �rel is a renaming of �. Thus s�rel is a variant of s.Then there exists a renaming � suh that Dom(�) � Var(s; t;u;v) and s�rel� = s.Now, take # = �rel�.From now on, we assume that all mgu's used in the input-onsuming derivationsteps are relevant.Example 5Consider the program REVERSE with aumulator in the modes de�ned below.mode reverse(In, Out).mode reverse a(In,Out,In)reverse(Xs,Ys)  reverse a(Xs,Ys,[ ℄).reverse a([ ℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs)  reverse a(Xs,Ys,[X|Zs℄).The derivation Æ of REVERSE[ freverse([X1; X2℄; Zs)g depited below is input-onsuming.Æ := reverse([X1; X2℄; Zs)) reverse a([X1; X2℄; Zs; [ ℄))reverse a([X2℄; Zs; [X1℄)) reverse a([ ℄; Zs; [X2; X1℄)) 2.3.2 Input-Consuming vs. Delay DelarationsDelay delarations are by far the most popular mehanism for implementing dy-nami sheduling. However, being a non-logial mehanism, they are diÆult tomodel and there are few proposals onerning their semantis (Marriott, 1997) and(Falashi et al., 1997).An alternative approah to dynami sheduling, whih is muh more delarativein nature, has been proposed by Smaus (1999b). It onsists in the use of input-onsuming derivations.There is a main di�erene between the onept of delay delaration and the oneof input-onsuming derivation: While in the �rst ase only the atom seletability isontrolled, in the seond one both the atom and the lause seletability are a�eted.In fat, in presene of delay delarations, if an atom is seletable then it an beresolved with respet to any program lause (provided it uni�es with its head); onthe ontrary, in an input-onsuming derivation, if an atom is seletable then it isinput-onsuming resolvable wrt. some, but not neessarily all, program lauses, i.e,only a restrited lass of lauses an be used for resolution.Also the onept of deadlok has to be understood in two di�erent ways. Forprograms using delay delarations a deadlok situation ours when no atom in aquery satis�es the delay delarations (i.e., no atom is seletable), while for input-onsuming derivations a deadlok ours when no atom in a query is resolvable viaan input-onsuming derivation step and the derivation does not fail, i.e., there is



8 A. Bossi, S. Etalle, and S. Rossisome atom in the query whih uni�es with a lause head but the uni�ation is notinput-onsuming.In spite of these di�erenes, in many situations there is a strit relation betweenprograms using delay delarations and input-onsuming derivations. This relationis studied by Smaus in his PhD thesis (1999a). More preisely, Smaus proves aresult that relates blok delarations and input-onsuming derivations. A blokdelaration is a speial ase of delay delaration and it is used to delare that ertainarguments of an atom must be non-variable when the atom is seleted for resolution.In Chapter 7 of (Smaus, 1999a), Smaus shows that blok delarations an be used toensure that derivations are input-onsuming. In fore of this result and of pratialexperiene, we might laim that in most \usual" moded programs using them,delay delarations are employed preisely for ensuring the input-onsumedness ofthe derivations.In fat, delay delarations are generally employed to guarantee that the inter-preter will not use an \inappropriate" lause for resolving an atom (the other,perhaps less prominent, use of delay delarations is to ensure absene of runtimeerrors, but we do not address this issue in this paper). This is ahieved by prevent-ing the seletion of an atom until a ertain degree of instantiation is reahed. Thisdegree of instantiation ensures then that the atom is uni�able only with the headsof the \appropriate" lauses. In presene of modes, we an reasonably assume thatthis degree of instantiation is the one of the input positions, whih are the onesarrying the information. Now, it is easy to see that a derivation step involvinga lause  is input-onsuming i� no further instantiation of the input positions ofthe resolved atom ould prevent it from being resolvable with . Therefore  mustbelong to the set of \appropriate" lauses for resolving it. Thus, the onepts ofinput-onsuming derivation and of delay delarations are often employed for ensur-ing the same properties. 3.3 Niely-Moded ProgramsIn the sequel of the paper we will restrit ourselves to programs and queries whihare niely-moded. In this setion we report the de�nition of this onept togetherwith some basi important properties of niely-moded programs.De�nition 6 (Niely-Moded)� A query Q := p1(s1; t1); : : : ; pn(sn; tn) is niely-moded if t1; : : : ; tn is a linearsequene of terms and for all i 2 f1; : : : ; ngVar(si) \ n[j=iVar(tj) = ;:� A lause  = p(s0; t0) Q is niely-moded if Q is niely-moded andVar(s0) \ n[j=1Var(tj) = ;:In partiular, every unit lause is niely-moded.



Theory and Pratie of Logi Programming 9� A program P is niely-moded if all of its lauses are niely-moded.Note that a one-atom query p(s; t) is niely-moded if and only if t is linear andVar(s) \ Var(t) = ;.Example 7� The program APPEND in the modes app(In,In,Out) is niely-moded.� The program REVERSE with aumulator in the modes depited in Example 5is niely-moded.� The following program MERGE is niely-moded.mode merge(In,In,Out).merge(Xs,[ ℄,Xs).merge([ ℄,Xs,Xs).merge([X|Xs℄,[Y|Ys℄,[Y|Zs℄)  Y < X, merge([X|Xs℄,Ys,Zs).merge([X|Xs℄,[Y|Ys℄,[X|Zs℄)  Y > X, merge(Xs,[Y|Ys℄,Zs).merge([X|Xs℄,[X|Ys℄,[X|Zs℄)  merge(Xs,[X|Ys℄,Zs).The following result is due to Smaus (Smaus, 1999a), and states that the lassof programs and queries we are onsidering is persistent under resolution.Lemma 8Every resolvent of a niely-moded query Q and a niely-moded lause , where thederivation step is input-onsuming and Var(Q) \ Var() = ;, is niely-moded.The following Remark, also in (Smaus, 1999a), is an immediate onsequene ofthe de�nition of input-onsuming derivation step and the fat that the mgu's weonsider are relevant.Remark 9Let the program P and the query Q := A; p(s; t);C be niely-moded.If A; p(s; t);C �=) (A;B;C)� is an input-onsuming derivation step with seletedatom p(s; t), then A� = A.4 The Left Swithing LemmaThe swithing lemma (see for instane (Apt, 1997), Lemma 3.32) is a well-knownresult whih allows one to prove the independene of the omputed answer substi-tutions from the seletion rule.In the ase of logi programs using dynami sheduling, the swithing lemma doesnot hold any longer. For example, in program APPEND reported in the introdution(together with the delay delaration d1) we have that the rightmost atom of Q2 isseletable only after the leftmost one has been resolved; i.e., the swithing lemmaannot be applied.Nevertheless we an show that, for input-onsuming derivations of niely-modedprograms, a weak version of the swithing lemma still holds. Intuitively, we showthat we an swith the seletion of two atoms whenever this results in a left to rightseletion. For this reason, we all it left swithing lemma.



10 A. Bossi, S. Etalle, and S. RossiFirst, we need one tehnial result, stating that the only variables of a query thatan be \a�eted" in an input-onsuming derivation proess are those ourringin some output positions. Intuitively, this means that if the input arguments ofa all are not \suÆiently instantiated" then it is delayed until it allows for aninput-onsuming derivation step (if it is not the ase then a deadlok situation willarise).Lemma 10Let the program P and the query Q be niely-moded. Let Æ := Q �7�! Q0 bea partial input-onsuming derivation of P [ fQg. Then, for all x 2 Var(Q) andx 62 Var(Out(Q)), x� = x.ProofLet us �rst establish the following laim.Claim 11Let z and w be two variable disjoint sequenes of terms suh that w is linear and� = mgu(z;w). If s1 and s2 are two variable disjoint terms ourring in z then s1�and s2� are variable disjoint terms.ProofThe result follows from Lemmata 11.4 and 11.5 in (Apt and Pedreshi, 1994).We proeed with the proof of the lemma by indution on len(Æ).Base Case. Let len(Æ) = 0. In this ase Q = Q0 and the result follows trivially.Indution step. Let len(Æ) > 0. Suppose that Q := A; p(s; t);C andÆ := A; p(s; t);C �1=) (A;B;C)�1 �27�! Q0where p(s; t) is the seleted atom of Q,  := p(u;v)  B is the input lause usedin the �rst derivation step, �1 is a relevant mgu of p(s; t) and p(u;v) and � = �1�2.Let x 2 Var(A; p(s; t);C) and x 62 Var(Out(A; p(s; t);C)). We �rst show thatx�1 = x (1)We distinguish two ases.(a) x 2 Var(s). In this ase, property (1) follows from the hypothesis that Æ isinput-onsuming.(b) x 62 Var(s). Sine x 2 Var(A; p(s; t);C), by standardization apart, we havethat x 62 Var(p(u;v)). Moreover, sine x 62 Var(Out(A; p(s; t);C)), it also holdsthat x 62 Var(p(s; t)). Then, property (1) follows from relevane of �1.Now we show that x�2 = x (2)Again, we distinguish two ases:() x 62 Var((A;B;C)�1). In this ase, beause of the standardization apartondition, x will never our in (A;B;C)�1 �27�! Q0. Hene, x 62 Dom(�2) andx�2 = x.(d) x 2 Var((A;B;C)�1). In this ase, in order to prove (2) we show that x 62Var(Out((A;B;C)�1)). The result then follows by the indutive hypothesis.



Theory and Pratie of Logi Programming 11From the standardization apart, relevane of �1 and the fat that the �rst deriva-tion step is input-onsuming, it follows that Dom(�1) \ Var(Q) � Var(t).From the hypothesis that Q is niely-moded, Var(t) \ Var(Out(A;C)) = ;.Hene, Var(Out(A;C))�1 = Var(Out(A;C)). Sine x 62 Var(Out(A;C)), thisproves that x 62 Var(Out((A;C)�1)).It remains to be proven that x 62 Var(Out(B�1). We distinguish two ases.(d1) x 62 Var(s). Sine x 62 Var(p(s; t)), the fat that x 62 Var(Out(B�1) followsimmediately by standardization apart ondition and relevane of �1.(d2) x 2 Var(s). By known results (see (Apt, 1997), Corollary 2.25), there existstwo relevant mgu �1 and �2 suh that� �1 = �1�2,� �1 = mgu(s;u),� �2 = mgu(t�1;v�1).From relevane of �1 and the fat that, by niely-modedness of Q, Var(s)\Var (t) =;, we have that t�1 = t, and by the standardization apart ondition Var(t) \Var(v�1) = ;. Now by niely-modedness of , Var(u)\Var (Out(B)) = ;. Sine �1is relevant and by the standardization apart ondition it follows thatVar(u�1) \Var(Out(B�1)) = ; (3)The proof proeeds now by ontradition. Suppose that x 2 Var(Out(B�1�2)).Sine by hypothesis x 2 Var(s), and s = u�1�2, we have that Var(u�1�2) \Var(Out(B�1�2)) 6= ;. By (3), this means that there exist two distint variables z1and z2 in Var(�2) suh that z1 2 Var(Out(B�1)), z2 2 Var(u�1) andVar(z1�2) \ Var(z2�2) 6= ; (4)Sine, by the standardization apart ondition and relevane of the mgu's, Var(�2)� Var(v�1) [ Var(t) and (Var(Out(B�1)) [ Var(u�1))\Var (t) = ;, we have thatz1 and z2 are two disjoint subterms of v�1. Sine �2 = mgu(t;v�1), t is linear anddisjoint from v�1, (4) ontradits Claim 11.The following orollary is an immediate onsequene of the above lemma and thede�nition of niely-moded program.Corollary 12Let the program P and the one-atom query A be niely-moded. Let Æ := A �7�! Q0be a partial input-onsuming derivation of P [ fAg. Then, for all x 2 Var(In(A)),x� = x.Next is the main result of this setion, showing that for input-onsuming niely-moded programs one half of the well-known swithing lemma holds.Lemma 13 (Left-Swithing)Let the program P and the query Q0 be niely-moded. Let Æ be a partial input-onsuming derivation of P [ fQ0g of the formÆ := Q0 �1=)1 Q1 � � �Qn �n+1=)n+1 Qn+1 �n+2=)n+2 Qn+2where



12 A. Bossi, S. Etalle, and S. Rossi� Qn is a query of the form A; B;C; D;E,� Qn+1 is a resolvent of Qn and n+1 wrt. D,� Qn+2 is a resolvent of Qn+1 and n+2 wrt. B�n+1.Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 suh that�n+1�n+2 = �0n+1�0n+2and Æ0 := Q0 �1=)1 Q1 � � �Qn �0n+1=)n+2 Q0n+1 �0n+2=)n+1 Qn+2where Æ0 is input-onsuming and� Æ and Æ0 oinide up to the resolvent Qn,� Q0n+1 is a resolvent of Qn and n+2 wrt. B,� Qn+2 is a resolvent of Q0n+1 and n+1 wrt. D�0n+1,� Æ and Æ0 oinide after the resolvent Qn+2.ProofLet B := p(s; t), D := q(u;v), n+1 := q(u0;v0)  D and n+2 := p(s0; t0)  B.Hene, �n+1 = mgu(q(u;v); q(u0;v0)) andu�n+1 = u; sine Æ is input-onsuming. (5)By (5) and the fat that Qn is niely-moded and �n+1 is relevant, we have thatp(s; t)�n+1 = p(s; t). Then, �n+2 = mgu(p(s; t)�n+1; p(s0; t0)) = mgu(p(s; t); p(s0; t0))and s�n+2 = s; sine Æ is input-onsuming. (6)Moreover,2�n+1�n+2 = mgufp(s; t) = p(s0; t0); q(u;v) = q(u0;v0)g = �n+2�0n+2 (7)where �0n+2 = mgu(q(u;v)�n+2; q(u0;v0)�n+2) = mgu(q(u;v)�n+2; q(u0;v0)):We onstrut the derivation Æ0 as follows.Æ0 := Q0 �1=)1 Q1 � � �Qn �0n+1=)n+2 Q0n+1 �0n+2=)n+1 Qn+2where �0n+1 = �n+2 (8)By (6), Qn �0n+1=)n+2 Q0n+1 is an input-onsuming derivation step. Observe now thatu�0n+1�0n+2 = u�n+2�0n+2; (by (8))= u�n+1�n+2; (by (7))= u�n+2; (by (5))= u�0n+1; (by (8)):This proves that Q0n+1 �0n+2=)n+1 Q0n+2 is an input-onsuming derivation step.2 We use the notation mgu(E) to denote the mgu of a set of equations E, see (Apt, 1997).



Theory and Pratie of Logi Programming 13This result shows that it is always possible to proeed left-to-right to resolve theseleted atoms. Notie that this is di�erent than saying that the leftmost atom ofa query is always resolvable: It an very well be the ase that the leftmost atom issuspended and the one next to it is resolvable. However, if the leftmost atom of aquery is not resolvable then we an state that the derivation will not sueed, i.e.,either it ends by deadlok, or by failure or it is in�nite.It is important to notie that if we drop the niely-modedness ondition the abovelemma would not hold any longer. For instane, it does not apply to the query Q1of the introdution whih is not niely-moded. In fat, the leftmost atom of Q1 isresolvable only after the rightmost one has been resolved at least one.The following immediate orollary will be used in the sequel.Corollary 14Let the program P and the query Q := A;B be niely-moded. Suppose thatÆ := A;B �7�! C1;C2that is a partial input-onsuming derivation of P [ fQg where C1 and C2 areobtained by partially resolving A and B, respetively. Then there exists a partialinput-onsuming derivationÆ0 := A;B �17�! C1;B�1 �27�! C1;C2where all the A-steps are performed in the pre�x A;B �17�! C1;B�1 and � = �1�2.5 TerminationIn this setion we study the termination of input-onsuming derivations. To thisend we re�ne the ideas of Bezem (1993) and Cavedon (1989) who studied thetermination of logi programs in a very strong sense, namely with respet to all se-letion rules, and of Smaus (1999b) who haraterized terminating input-onsumingderivations of programs whih are both well and niely-moded.5.1 Input Terminating ProgramsWe �rst introdue the key notion of this setion.De�nition 15 (Input Termination)A program is alled input terminating i� all its input-onsuming derivations startedin a niely-moded query are �nite.The method we use in order to prove that a program is input terminating isbased on the following onept of moded level mapping due to Etalle et al. (1999).De�nition 16 (Moded Level Mapping)Let P be a program and BEP be the extended Herbrand base3 for the languageassoiated with P . A funtion j j is a moded level mapping for P i�:3 The extended Herbrand base of P is the set of equivalene lasses of all (possibly non-ground)atoms, modulo renaming, whose prediate symbol appears in P . As usual, an atom is identi�edwith its equivalene lass.



14 A. Bossi, S. Etalle, and S. Rossi� it is a funtion j j : BEP ! N from atoms to natural numbers;� for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.The ondition jp(s; t)j = jp(s;u)j states that the level of an atom is independentfrom the terms in its output positions. There is atually a small yet importantdi�erene between this de�nition and the one in (Etalle et al., 1999): In (Etalle etal., 1999) the level mapping is de�ned on ground atoms only. Indeed, in (Etalle etal., 1999) only well-moded atoms are onsidered, i.e., atoms with ground terms inthe input positions. Here, instead, we are onsidering niely-moded atoms whoseinput positions an be �lled in by (possibly) non-ground terms.Example 17Let us denote by TSize(t) the term size of a term t, that is the number of funtionand onstant symbols that our in t.� A moded level mapping for the program APPEND reported in the introdutionis as follows:|app(xs,ys,zs)|=TSize(xs).� A moded level mapping for the program REVERSE with aumulator of Exam-ple 5 is the following:|reverse(xs,ys)|= TSize(xs)|reverse a(xs,ys,zs)|=TSize(xs).5.2 Quasi ReurrenyIn order to give a suÆient ondition for termination, we are going to employa generalization of the onept of reurrent and of semi-reurrent program. The�rst notion (whih in the ase of normal programs, i.e., programs with negation,oinides with the one of ayli program) was introdued in (Bezem, 1993; Aptand Bezem, 1991) and independently in (Cavedon, 1991) in order to prove universaltermination for all seletion rules together with other properties of logi programs.Later, Apt and Pedreshi (1994) provided the new de�nition of semi-reurrent pro-gram, whih is equivalent to the one of reurrent program, but it is easier to verifyin an automati fashion. In order to proeed, we need a preliminary de�nition.De�nition 18Let P be a program, p and q be relations. We say that p refers to q in P i� there isa lause in P with p in the head and q in the body. We say that p depends on q andwrite p w q in P i� (p; q) is in the reexive and transitive losure of the relationrefers to.Aording to the above de�nition, p ' q � p v q ^ p w q means that p and q aremutually reursive, and p = q � p w q^p 6' q means that p alls q as a subprogram.Notie that = is a well-founded ordering.Finally, we an provide the key onept we are going to use in order to proveinput termination.



Theory and Pratie of Logi Programming 15De�nition 19 (Quasi Reurreny)Let P be a program and j j :BEP ! N be a moded level mapping.� A lause of P is alled quasi reurrent with respet to j j if for every instaneof it, H  A; B;C if Rel(H) ' Rel(B) then jH j > jBj: (9)� A program P is alled quasi reurrent with respet to j j if all its lausesare. P is alled quasi reurrent if it is quasi reurrent wrt. some moded levelmapping j j : BEP ! N.The notion of quasi reurrent program di�ers from the onepts of reurrent andof semi-reurrent program in two ways. First, we require that jH j > jBj only forthose body atoms whih mutually depend on Rel(H); in ontrast, both the oneptof reurrent and of semi-reurrent program require that jH j > jBj (jH j � jBj in thease of semi-reurreny) also for the atoms for whih Rel(H) 6' Rel(B). Seondly,every instane of a program lause is onsidered, not only ground instanes as inthe ase of (semi-)reurrent programs. This allows us to treat diretly any niely-moded query without introduing the onept of boundedness (Apt and Pedreshi,1994) or over as in (Marhiori and Teusink, 1999).It is worthwhile notiing that this onept almost oinides with the one of ICD-aeptable program introdued and used in (Smaus, 1999b). We deided to usea di�erent name beause we believe that referring to the word aeptable mightlead to onfusion: The onept of aeptable program was introdued by Apt andPedreshi (1993; 1994) in order to prove termination of logi programs using the left-to-right seletion rule. The ruial di�erene between reurreny and aeptabilitylies in the fat that the latter relies on a model M ; this allows ondition (9) to beheked only for those body atoms whih are in a way \reahable" wrt. M . Hene,every reurrent program is aeptable but not vie-versa. As an aside, Marhioriand Teusink (1999) introdue the notion of delay reurrent program although theironept is based on the presene of a model M . Our de�nition does not rely on amodel, and so it is muh more related to the notion of reurrent than the one ofaeptable program.We an now state our �rst basi result on termination, in the ase of non-modularprograms.Theorem 20Let P be a niely-moded program. If P is quasi reurrent then P is input termi-nating.ProofIt will be obtained from the proof of Theorem 24 by setting R = ;.Example 21Consider the program MERGE de�ned in Example 7. Let j j be the moded levelmapping for MERGE de�ned by|merge(xs,ys,zs)| = TSize(xs) + TSize(ys).



16 A. Bossi, S. Etalle, and S. RossiIt is easy to prove that MERGE is quasi reurrent wrt. the moded level mapping above.By Theorem 20, all input-onsuming derivations of MERGE started with a querymerge(s; t; u), where u is linear and variable disjoint from s and t, are terminating.5.3 Modular TerminationThis setion ontains a generalization of Theorem 20 to the modular ase, as wellas the omplete proofs for it. The following lemma is a ruial one.Lemma 22Let the program P and the query Q := A1; : : : ; An be niely-moded. Suppose thatthere exists an in�nite input-onsuming derivation Æ of P [ fQg. Then, there existan index i 2 f1; : : : ; ng and substitution � suh that1. there exists an input-onsuming derivation Æ0 of P [ fQg of the formÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� 7�! � � �2. there exists an in�nite input-onsuming derivation of P [ fAi�g.ProofLet Æ := A1; : : : ; An 7�! � � � be an in�nite input-onsuming derivation of P [ fQg.Then Æ ontains an in�nite number of Ak-steps for some k 2 f1; : : : ; ng. Let ibe the minimum of suh k. Hene Æ ontains a �nite number of Aj -steps for j 2f1; : : : ; i� 1g and there exists C and D suh thatÆ := A1; : : : ; An #7�! C;D 7�! � � �where A1; : : : ; An #7�! C;D is a �nite pre�x of Æ whih omprises all the Aj-stepsof Æ for j 2 f1; : : : ; i � 1g and C is the subquery of C;D onsisting of the atomsresulting from some Aj-step (j 2 f1; : : : ; i � 1g). By Corollary 14, there exists anin�nite input-onsuming derivation Æ0 suh thatÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� �07�! C;D 7�! � � �where # = ��0. This proves (i).Now, let Æ00 := C; (Ai; : : : ; An)� �07�! C;D 7�! � � �. Note that in Æ00 the atoms ofC will never be seleted and, by Remark 9, will never be instantiated. Let Æ000 beobtained from Æ00 by omitting the pre�x C in eah query. Hene Æ000 is an in�niteinput-onsuming derivation of P [ f(Ai; : : : ; An)�g where an in�nite number ofAi�-steps are performed. Again, By Remark 9, for every �nite pre�x of Æ000 of theform Ai�; (Ai+1; : : : ; An)� �17�! D1;D2 �2=) D01;D02where D1 and D2 are obtained by partially resolving Ai� and (Ai+1; : : : ; An)�,respetively, and D1;D2 �2=) D01;D02 is an Aj-step for some j 2 fi+ 1; : : : ; ng, wehave that D01 = D1. Hene, from the hypothesis that there is an in�nite number ofAi�-steps in Æ00, it follows that there exists an in�nite input-onsuming derivationof P [ fAi�g. This proves (ii).



Theory and Pratie of Logi Programming 17The importane of the above lemma is shown by the following orollary of it,whih will allow us to onentrate on queries ontaining only one atom.Corollary 23Let P be a niely-moded program. P is input terminating i� for eah niely-modedone-atom query A all input-onsuming derivations of P [ fAg are �nite.We an now state the main result of this setion. Here and in what follows we saythat a relation p is de�ned in the program P if p ours in a head of a lause of P ,and that P extends the program R if no relation de�ned in P ours in R.Theorem 24Let P and R be two programs suh that P extends R. Suppose that� R is input terminating,� P is niely-moded and quasi reurrent wrt. a moded level mapping j j :BEP ! N.Then P [R is input terminating.ProofFirst, for eah prediate symbol p, we de�ne depP (p) to be the number of prediatesymbols it depends on. More formally, depP (p) is de�ned as the ardinality of theset fqj q is de�ned in P and p w qg. Clearly, depP (p) is always �nite. Further, itis immediate to see that if p ' q then depP (p) = depP (q) and that if p = q thendepP (p) > depP (q).We an now prove our theorem. By Corollary 23, it is suÆient to prove that forany niely-moded one-atom query A, all input-onsuming derivations of P [ fAgare �nite.First notie that if A is de�ned in R then the result follows immediately fromthe hypothesis that R is input terminating and that P is an extension of R. So wean assume that A is de�ned in P .For the purpose of deriving a ontradition, assume that Æ is an in�nite input-onsuming derivation of (P [R) [ fAg suh that A is de�ned in P . ThenÆ := A �1=) (B1; : : : ; Bn)�1 �2=) � � �where H  B1; : : : ; Bn is the input lause used in the �rst derivation step and�1 = mgu(A;H). Clearly, (B1; : : : ; Bn)�1 has an in�nite input-onsuming derivationin P [ R. By Lemma 22, for some i 2 f1; : : : ; ng and for some substitution �2,1. there exists an in�nite input-onsuming derivation of (P [ R) [ fAg of theform A �1=) (B1; : : : ; Bn)�1 �27�! C; (Bi; : : : ; Bn)�1�2 � � � ;2. there exists an in�nite input-onsuming derivation of P [ fBi�1�2g:Notie also that Bi�1�2 is niely-moded. Let now � = �1�2. Note that H�  (B1; : : : ; Bn)� is an instane of a lause of P .We show that (2) annot hold. This is done by indution on hdepP (Rel(A)); jAji



18 A. Bossi, S. Etalle, and S. Rossiwrt. the ordering � de�ned by: hm;ni � hm0; n0i i� either m > m0 or m = m0 andn > n0.Base. Let depP (Rel(A)) = 0 (jAj is arbitrary). In this ase, A does not dependon any prediate symbol of P , thus all the Bi as well as all the atoms ourring inits desendents in any input-onsuming derivation are de�ned in R. The hypothesisthat R is input terminating ontradits (2) above.Indution step. We distinguish two ases:1. Rel(H) = Rel(Bi),2. Rel(H) ' Rel(Bi).In ase (a) we have that depP (Rel(A)) = depP (Rel(H�)) > depP (Rel(Bi�)).So, hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji. Inase (b), from the hypothesis that P is quasi reurrent wrt. j j, it follows thatjH�j > jBi�j.Consider now the partial input-onsuming derivation A �7�! C; (Bi; : : : ; Bn)�.By Corollary 12 and the fat that j j is a moded level mapping, it follows thatjAj = jA�j = jH�j. Therefore, hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji �hdepP (Rel(Bi�)); jBi�ji. In both ases, the ontradition follows by the indutivehypothesis.Example 25The program FLATTEN using di�erene-lists is niely-moded with respet to themodes desribed below, provided that one replaes \n" by \,", as we have donehere.mode flatten(In,Out).mode flatten dl(In,Out,In).mode onstant(In).mode 6=(In,In).flatten(Xs,Ys)  flatten dl(Xs,Ys,[ ℄).flatten dl([ ℄,Ys,Ys).flatten dl(X,[X|Xs℄,Xs)  onstant(X), X 6= [ ℄.flatten dl([X|Xs℄,Ys,Zs)  flatten dl(Xs,Y1s,Zs),flatten dl(X,Ys,Y1s).Consider the moded level mapping for FLATTEN de�ned by|flatten(xs,ys)| = TSize(xs)|flatten dl(xs,ys,zs)| = TSize(xs).It is easy to see that the program FLATTEN is quasi reurrent wrt. the modedlevel mapping above. Hene, all input-onsuming derivations of program FLATTENstarted with a query flatten(s,t), where t is linear and variable disjoint from s,are terminating.



Theory and Pratie of Logi Programming 196 Termination: A Neessary ConditionTheorem 20 provides a suÆient ondition for termination. The ondition is notneessary, as demonstrated by the following simple example.mode p(In,Out).p(X,a)  p(X,b).p(X,b).This program is learly input terminating, however it is not quasi reurrent. If it was,we would have that jp(X; a)j > jp(X; b)j, for some moded level mapping j j (otherwisethe �rst lause would not be quasi reurrent). On the other hand, sine p(X; a) andp(X; b) di�er only for the terms �lling in their output positions, by de�nition ofmoded level mapping, jp(X; a)j = jp(X; b)j. Hene, we have a ontradition.Nevertheless, as shown by other works, e.g., (Bezem, 1993; Apt and Pedreshi,1993; Etalle et al., 1999), it is important to be able to give a haraterization oftermination, i.e., a ondition whih is neessary and suÆient to ensure termination.To this purpose is dediated this setion.6.1 Simply-Moded ProgramsAs demonstrated by the example above, in order to provide a neessary onditionfor termination we need to further restrit the lass of programs we onsider. The�rst problem is that we should rule out those situations in whih termination isguaranteed by the instantiation of the output positions of some seleted atom, asit happens in the above example. For this we restrit to simply-moded programswhih are niely-moded programs with the additional ondition that the outputarguments of lause bodies are variables.De�nition 26 (Simply-Moded)� A query Q (resp., a lause  = H  Q) is simply-moded if it is niely-modedand Out(Q) is a linear sequene of variables.� A program P is simply-moded i� all of its lauses are simply-moded.It is important to notie that most programs are simply-moded (see the mini-survey at the end of (Apt and Pedreshi, 1993)) and that often non simply-modedprograms an naturally be transformed into simply-moded ones.Example 27� The programs REVERSE of Example 5, MERGE of Example 7 and FLATTEN ofExample 25 are all simply-moded.� Consider the program LAST whih extends REVERSE:mode last(In,Out).last(Ls,E) reverse(Ls,[E| ℄).This program is not simply-moded sine the argument �lling in the outputposition in the body of the �rst lause is not a variable. However, it an betransformed into a simply-moded one as follows:



20 A. Bossi, S. Etalle, and S. Rossimode last(In,Out).mode seletfirst(In,Out).last(Ls,E) reverse(Ls,Rs), seletfirst(Rs,E).seletfirst([E| ℄,E).The following lemma, whih is an immediate onsequene of Lemma 30 in (Apt andLuitjes, 1995), shows the persistene of the notion of simply-modedness.Lemma 28Every resolvent of a simply-moded query Q and a simply-moded lause , wherethe derivation step is input-onsuming and Var(Q)\Var() = ;, is simply-moded.6.2 Input-Reursive ProgramsUnfortunately, the restrition to simply-moded programs alone is not suÆient toextend Theorem 20 by a neessary ondition. Consider for instane the followingprogram QUICKSORT:mode qs(In,Out).mode part(In,In,Out,Out).mode app(In,In,Out).qs([ ℄,[ ℄).1 := qs([X|Xs℄,Ys)  part(X,Xs,Littles,Bigs),qs(Littles,Ls),qs(Bigs,Bs),app(Ls,[X|Bs℄,Ys).part(X,[ ℄,[ ℄,[ ℄).part(X,[Y|Xs℄,[Y|Ls℄,Bs)  X>Y, part(X,Xs,Ls,Bs).part(X,[Y|Xs℄,Ls,[Y|Bs℄)  X<=Y, part(X,Xs,Ls,Bs).This program is simply-moded and input terminating4. However it is not quasi re-urrent. Indeed, there exist no moded level mapping j j suh that, for every variable-instane, jqs([XjXs℄; Ys)j > jqs(Littles; Ls)j and jqs([XjXs℄; Ys)j > jqs(Bigs; Bs)j.This is due to the fat that, in lause 1 there is no diret link between the inputarguments of the reursive alls and those of the lause head. This motivates thefollowing de�nition of input-reursive programs.De�nition 29 (Input-Reursive)Let P be a program.� A lause H  A; B;C of P is alled input-reursive ifif Rel(H) ' Rel(B) then Var(In(B)) � Var(In(H)):4 Provided that one models the built-in prediates > and <= as being de�ned by (an in�nite numberof) ground fats of the form >(m,n) and <=(m,n). The problem here is that the de�nition ofinput-onsuming derivation does not onsider the presene of built-ins.



Theory and Pratie of Logi Programming 21� A program P is alled input-reursive if all its lauses are.Thus, we say that a lause is input-reursive if the set of variables ourring inthe arguments �lling in the input positions of eah reursive all in the lause bodyis a subset of the set of variables ourring in the arguments �lling in the inputpositions of the lause head. Input-reursive programs have strong similarities withprimitive reursive funtions.Example 30� The programs APPEND of the introdution, REVERSE of Example 5 and MERGEof Example 7 are all input-reursive.� The program FLATTEN of Example 25 is not input-reursive. This is due tothe presene of the fresh variable Y1s in a body atom of the last lause.� QUICKSORT, is not input-reursive. In partiular, lause 1 is not input-reursive.6.3 Charaterizing Input Terminating ProgramsWe an now prove that by restriting ourselves to input-reursive and simply-modedprograms, the ondition of Theorem 20 is also a neessary one.To prove this, we follow the approah of Apt and Pedreshi when haraterizingterminating programs (Apt and Pedreshi, 1994). First we introdue the notion ofIC-tree that orresponds to the notion of S-tree in (Apt and Pedreshi, 1994) andprovides us with a representation for all input-onsuming derivations of a programP with a query Q, then we de�ne a level mapping whih assoiates to every atomA the number of nodes of a given IC-tree and �nally we prove that P is quasireurrent wrt. suh a level mapping.De�nition 31 (IC-tree)An IC-tree for P [ fQg is a tree whose nodes are labelled with queries suh that� its branhes are input-onsuming derivations of P [ fQg,� every node Q has exatly one desendant for every atom A of Q and ev-ery lause  from P suh that A is input-onsuming resolvable wrt. . Thisdesendant is a resolvent of Q and  wrt. A.In this tree, a node's hildren onsist of all its resolvents, \modulo renaming", viaan input-onsuming derivation step wrt. all the possible hoies of a program lauseand a seleted atom.Lemma 32 (IC-tree 1 )An IC-tree for P [ fQg is �nite i� all input-onsuming derivations of P [ fQg are�nite.ProofBy de�nition, the IC-trees are �nitely branhing. The laim now follows by K�onig'sLemma.Notie that if an IC-tree for P [ fQg is �nite then all the IC-trees for P [ fQgare �nite.For a program P and a query Q, we denote by nodes iP (Q) the number of nodesin an IC-tree for P [ fQg. The following properties of IC-trees will be needed.



22 A. Bossi, S. Etalle, and S. RossiLemma 33 (IC-tree 2 )Let P be a program, Q be a query and T be a �nite IC-tree for P [ fQg. Then(i) for all non-root nodes Q0 in T , nodes iP (Q0) < nodes iP (Q),(ii) for all atoms A of Q, nodes iP (A) � nodes iP (Q).ProofImmediate by De�nition 31 of IC-tree.We an now prove the desired result.Theorem 34Let P be a simply-moded and input-reursive program. If P is input terminatingthen P is quasi reurrent.ProofWe show that there exists a moded level mapping j j for P suh that P is quasireurrent wrt. j j.Given an atom A, we denote with A� an atom obtained from A by replaing theterms �lling in its output positions with fresh distint variables. Clearly, we havethat A� is simply-moded. Then we de�ne the following moded level mapping for P :jAj = nodes iP (A�):Notie that, the level jAj of an atom A is independent from the terms �lling inits output positions, i.e., j j is a moded level mapping. Moreover, sine P is in-put terminating and A� is simply-moded (in partiular, it is niely-moded), allthe input-onsuming derivations of P [ fA�g are �nite. Therefore, by Lemma 32,nodes iP (A�) is de�ned (and �nite), and thus jAj is de�ned (and �nite) for everyatom A.We now prove that P is quasi reurrent wrt. j j.Let  : H  A; B;C be a lause of P and H�  A�;B�;C� be an instane of (for some substitution �). We show that if Rel(H) ' Rel(B) then jH�j > jB�j.Let H = p(s; t). Hene, (H�)� = p(s�;x) where x is a sequene of fresh dis-tint variables. Consider a variant 0 : H 0  A0; B0;C0 of  variable disjoint from(H�)�. Let � be a renaming suh that 0 = �. Clearly, (H�)� and H 0 unify. Let� = mgu((H�)�; H 0) = mgu((H�)�; H�) = mgu(p(s�;x); p(s; t)�). By properties ofsubstitutions (see (Apt, 1997)), sine x onsists of fresh variables, there exists tworelevant mgu �1 and �2 suh that� �1 = mgu(s�; s�),� �2 = mgu(x�1; t��1).Sine s� � s�, we an assume that Dom(�1) � Var(s�). Beause of standardizationapart, sine x onsists of fresh variables, x�1 = x and thus �2 = mgu(x; t��1). Sinex is a sequene of variables, we an also assume that Dom(�2) � Var(x). There-fore Dom(�) � Var(Out((H�)�)) [ Var(In(H�)). Moreover, sine (A0; B0;C0)� =(A; B;C)��, we have that (H�)� �=) (A; B;C)��



Theory and Pratie of Logi Programming 23is an input-onsuming derivation step, i.e., (A; B;C)�� is a desendant of (H�)�in an IC-tree for P [ f(H�)�g.By de�nition of �, s� = s��; hene(��)jIn(H) = �js: (10)Let now B = p(u;v). By (10) and the hypothesis that  is input-reursive, thatis Var(In(B)) � Var(In(H)) = Var(s), it follows thatu�� = u(��)jIn(H) = u�js = u�: (11)Moreover, sine 0 is simply-moded, In(H�)\Out(B�) = ;. Hene, by de�nition of� and standardization apart, Dom(�) \Out(B�) = ;, i.e.,v�� = v�: (12)Therefore, by (11) and (12), B�� = p(u;v)�� = p(u�;v�) = (B�)�, i.e.,B�� = (B�)�: (13)Hene,jH�j = nodes iP ((H�)�) by de�nition of j j> nodes iP ((A; B;C)��) by Lemma 33 (i)� nodes iP (B��) by Lemma 33 (ii)= nodes iP ((B�)�) by (13)= jB�j by de�nition of j j:7 AppliabilityThis setion is intended to show through some examples the appliability of ourresults. Then, programs from various well-known olletions are analyzed.7.1 ExamplesIt is worth notiing that, sine the de�nition of input-onsuming derivation is in-dependent from the textual order of the atoms in the lause bodies, the results wehave provided (Theorems 20, 24 and 34) hold also in the ase that programs andqueries are permutation niely- (or simply-) moded (Smaus et al., 1998), that isprograms and queries whih would be niely- (or simply-) moded after a permuta-tion of the atoms in the bodies. Therefore, for instane, we an apply Theorems 20and 24 to the program FLATTEN as it is presented in (Apt, 1997) (exept for thereplaement of \n" with \,"), i.e.,flatten(Xs,Ys)  flatten dl(Xs,Ys,[ ℄).flatten dl([ ℄,Ys,Ys).flatten dl(X,[X|Xs℄,Xs)  onstant(X), X 6= [ ℄.flatten dl([X|Xs℄,Ys,Zs)  flatten dl(X,Ys,Y1s),flatten dl(Xs,Y1s,Zs).



24 A. Bossi, S. Etalle, and S. Rossiwhere the atoms in the body of the last lause are permuted with respet to theversion of Example 25.Let us onsider again the program APPEND of the introdution with its naturaldelay delaration:mode app(In,In,Out)app([ ℄,Ys,Ys).app([H|Xs℄,Ys,[H|Zs℄)  app(Xs,Ys,Zs).delay app(Xs, , ) until nonvar(Xs).Let Q be the set of one-atom queries of the form app(s,t,Z) where s and tare any terms and Z is a variable disjoint from s and t. Observe that Q is losedunder resolution: Eah resolvent in a derivation starting in a query from Q is stilla query from Q. Moreover, beause of the presene of the delay delaration, onlyatoms whose �rst argument is a non-variable term are allowed to be seleted. Thus,seletable atoms have the form app(s,t,Z) where(1) s is a non-variable term,(2) t is any term and Z is a variable disjoint from s and t.Any derivation of APPEND starting in a query ofQ is similar to an input-onsumingone. This follows from the fat that for any seletable atom A and lause's head H ,there exists a mgu � whih does not a�et the input arguments of A. In fat, let Abe a seletable atom of Q. If A uni�es with the head of the �rst lause then, by (1),s is the empty list [ ℄ and � = mgu(A;H) = fYs=t; Z=tg. Otherwise, If A uni�eswith the head of the seond lause then, by (1), s is a term of the form [s1|s2℄and � = mgu(A;H) = fH=s1; Xs=s2; Ys=t; Z=[s1jZs℄g. By (2) it follows that, in bothases, s� = s and t� = t, i.e., � does not a�et the input arguments of A.Moreover, it is easy to hek that APPEND is quasi reurrent wrt. the moded levelmapping depited in Example 17. Sine it is niely-moded, by applying Theorem 20it follows that it is input terminating. By the arguments above, we an onlude thatall the derivations of APPEND in presene of the delay delaration d1 and starting ina (permutation) niely-moded query are �nite. Hene, in partiular, we an statethat all the derivations of APPEND starting in the query Q1 of the introdution,whih is not niely-moded but it is permutation niely-moded, are �nite.7.2 BenhmarksIn order to assess the appliability of our results, we have looked into four olletionsof logi programs, and we have heked those programs against the three lassesof programs: (permutation) niely-moded, input terminating and quasi reurrentprograms. The results are reported in Tables 1 to 4. These tables learly show thatour results apply to the large majority of the programs onsidered.In Table 1 the programs from Apt's olletion are onsidered, see (Apt, 1997).The programs from the DPPD's olletion, maintained by Leushel and available



Theory and Pratie of Logi Programming 25at the URL: http://dsse.es.soton.a.uk/�mal/systems/dppd.html, are referred toin Table 2. Table 3 onsiders various programs from Lindenstrauss's olletion (seethe URL: http://www.s.huji.a.il/�naomil). Finally, in Table 4 one �nds the (al-most omplete) list of programs by F. Bueno, M. Garia de la Banda and M.Hermenegildo that an be found at the URL: http://www.lip.dia.�.upm.es.For eah program we speify the name and the modes of the main proedure.Then we report whether or not the program is (permutation) niely-moded (NM),input terminating (IT), and quasi reurrent (QR). Notie that for programs whihare not input terminating, beause of Theorem 20, it does not make sense to hekwhether or not they are quasi reurrent. For this reason, we leave blank the ellsin the olumn QR orresponding to non-input terminating programs.Finally, Table 5 reports the list of programs from previous tables whih havebeen found to be input terminating but not quasi reurrent. For these programs,the notion of quasi reurreny does not provide an exat haraterization of inputtermination. In partiular, Theorem 34 does not apply. In order to understandwhih of the hypothesis of the theorem does not hold, we report in Table 5 whetheror not these programs are simply-moded (SM) and input-reursive (IR).8 Conlusion and Related WorksIn this paper we studied the properties of input-onsuming derivations of niely-moded programs.This study is motivated by the widespread use of programs using dynami shedu-ling ontrolled by delay delarations. In fat, as we have motivated in Setion 3.2,we believe that in most pratial programs employing delay delarations these on-struts are used for guaranteeing that the derivation steps are input-onsuming.In the �rst plae, we showed that for niely-moded programs a weak versionof the well-known swithing lemma holds: If, given a query (A; B;C; D;E), D isseleted before B in an input-onsuming derivation, then the two resolution stepsan be interhanged while maintaining that the derivation is input-onsuming.Seondly, we presented a method for proving termination of programs and querieswhih are (permutation) niely-moded. We also showed a result haraterizing alass of input terminating programs.In the literature, the paper most related to the present one is ertainly (Smaus,1999b). Our results stritly generalize those in (Smaus, 1999b) in the fat thatwe drop the ondition that programs and queries have to be well-moded. Thisis partiularly important in the formulation of the queries. For instane, in theprogram FLATTEN of Example 25, our results show that every input-onsumingderivation starting in a query of the form flatten(t; s) terminates provided thatt is linear and disjoint from s, while the results of (Smaus, 1999b) apply only if tis a ground term. Note that well-moded queries (in well-moded programs) neverterminate by deadlok, sine the leftmost atom of eah resolvent is ground in itsinput positions and hene seletable. This does not hold for niely-moded querieswhih might deadlok. Our method allows us thus to ope also with this morediÆult situation: For instane we an prove that all derivations of APPEND starting



26 A. Bossi, S. Etalle, and S. Rossiin app(X; Y; Z) are terminating. In pratie the result of (Smaus, 1999b) identify alass of programs and queries whih is both terminating and deadlok free. Whiledeadlok is learly an undesirable situation, there are various reasons why one mightwant to prove termination independently from the absene of deadlok: In the �rstplae, one might want to prove absene of deadlok using a di�erent tool than byemploying well-moded programs. Seondly, in some situations absene of deadlokmight be diÆult or impossible to prove, like in a modular ontext in whih theode of some module is not known, hene not analyzable: onsider for instane thequery generator 1(X1s), generator 2(X2s), append(X1s,X2s,Zs)., where thegenerators are de�ned in di�erent modules; our results allow us to demonstrate thatif the generators terminate, then the above query terminates. On the other hand,one annot determine whether it is deadlok free unless one has a more preisespei�ation of the generators. Thirdly, it is well-known that one of the goals ofdynami sheduling is preisely enforing termination; in this respet a deadlokan be regarded as the situation in whih \all else failed". Our system allows us tohek how e�etive dynami sheduling is in enforing termination.Conluding our omparison with (Smaus, 1999b), for the lass of (permutation)simply-moded and input-reursive programs, we provide an exat haraterizationof input termination. A similar result is not present in (Smaus, 1999b).Apt and Luitjes (1995) have also takled the problem of the termination of pro-grams in presene of dynami sheduling. The tehniques employed in it are basedon determinay heks and the presene of suessful derivations, thus are om-pletely di�erent from ours. It is nevertheless worth mentioning that (Apt and Luit-jes, 1995) reports a speial ad-ho theorem, in order to prove that, if u is linear anddisjoint from s then the query app(s; t; u) terminates. This is reported in order toshow the diÆulties one enounters in proving termination in presene of dynamisheduling. Now, under the further (mild) additional ondition that u be disjointfrom t, the termination of app(s; t; u) is a diret onsequene of our main result.Another related paper is the one by Marhiori and Teusink (1999). However,Marhiori and Teusink make a strong restrition on the seletion rule, whih hasto be loal ; this restrition atually forbids any form of oroutining. Moreover,(Marhiori and Teusink, 1999) allows only safe delay delarations; we do not reporthere the de�nition of safe delay delaration, we just say that it is rather restritive:For instane, the delay delaration we have used for APPEND is not safe (a safeone would be delay app(X, , ) until list(X)). Atually, their requirements gobeyond ensuring that derivations are input-onsuming.Appliability and e�etiveness of our results have been demonstrated by math-ing our main de�nitions against the programs of four publi program lists. Thesebenhmarks showed that most of the onsidered programs are niely-moded (for asuitable mode) and quasi reurrent (wrt. a suitable level mapping).
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Theory and Pratie of Logi Programming 29Table 1. Programs from Apt's ColletionNM IT QR NM IT QRapp(In, , ) yes yes yes ordered(In) yes yes yesapp( , ,In) yes yes yes overlap( ,In) yes yes yesapp(Out,In,Out) yes no overlap(In,Out) yes noappend3(In,In,In,Out) yes yes yes perm( ,In) yes yes yesolor map(In,Out) yes no perm(In,Out) yes noolor map(Out,In) yes no qsort(In, ) yes yes noolor map(In,In) yes yes yes qsort(Out,In) yes nodsolve(In, ) yes no reverse(In, ) yes yes yeseven(In) yes yes yes reverse(Out,In) yes nofold(In,In,Out) yes yes yes selet( ,In, ) yes yes yeslist(In) yes yes yes selet( , ,In) yes yes yeslte(In, ) yes yes yes selet(In,Out,Out) yes nolte( ,In) yes yes yes subset(In,In) yes yes yesmap(In, ) yes yes yes subset (In,Out) yes nomap( ,In) yes yes yes subset (Out,In) yes nomember( ,In) yes yes yes sum( ,In, ) yes yes yesmember(In,Out) yes no sum( , ,In) yes yes yesmergesort(In, ) yes yes no sum(In,Out,Out) yes nomergesort(Out,In) yes no type(In,In,Out) no yes nomergesort variant( , ,In) yes yes yes type(In,Out,Out) no noTable 2. Programs from DPPD's ColletionNM IT QR NM IT QRapplast(In,In,Out) yes yes yes math app(In,Out) yes noapplast(Out, , ) yes no max lenth(In,Out,Out) yes yes yesapplast( ,Out, ) yes no memo solve(In,Out) yes yes noontains( ,In) yes yes yes power(In,In,In,Out) yes yes yesontains(In,Out) yes no prune(In, ) yes yes yesdepth(In,In) yes yes yes prune( ,In) yes yes yesdepth(In,Out) yes yes no relative (In, ) yes nodepth(Out,In) yes no relative( ,In) yes nodupliate(In,Out) yes yes yes rev a(In,In,Out) yes yes yesdupliate(Out,In) yes yes yes rotate(In, ) yes yes yesipip(In,Out) yes yes yes rotate( ,In) yes yes yesipip(Out,In) yes yes yes solve( , , ) yes nogenerate(In,In,Out) yes no ssupply(In,In,Out) yes yes yesliftsolve(In,Out) yes no trae(In,In,Out) yes yes yesliftsolve(Out,In) yes no transpose( ,In) yes yes yesliftsolve(In,In) yes yes yes transpose(In,Out) yes nomath app( ,In) yes yes yes unify(In,In,Out) yes no



30 A. Bossi, S. Etalle, and S. RossiTable 3. Programs from Lindenstrauss's ColletionNM IT QR NM IT QRak(In,In, ) yes yes no least(In, ) yes yes yesonatenate(In, , ) yes yes yes least( ,In) yes yes yesonatenate( , ,In) yes yes yes normal form(In, ) yes noonatenate( ,In, ) yes no normal form( ,In) yes nodesendant(In, ) yes no queens( ,Out) yes yes nodesendant( ,In) yes no queens( ,In) yes yes yesdeep(In, ) yes yes yes poss(In) yes yes yesdeep(Out, ) yes no poss(Out) yes noredit(In, ) yes yes yes rewrite(In, ) yes yes yesredit( ,In) yes yes yes rewrite( ,In) yes yes yesholds( ,Out) yes no transform( , , ,Out) yes noholds( ,In) yes yes yes transform( , , , In) yes yes yeshu�man(In, ) yes yes no twoleast(In, ) yes yes yeshu�man( ,In) yes no twoleast( ,In) yes yes yesTable 4. Programs from Hermenegildo's ColletionNM IT QRaiakl.pl init vars(In,In,Out,Out) yes yes yesann.pl analyze all(In,Out) yes yes yesbid.pl bid(In,Out,Out,Out) yes yes yesboyer.pl tautology(In) yes nobrowse.pl investigate(In,Out) yes yes yes�b.pl �b(In,Out) yes no�b add.pl �b(In,Out) yes yes yeshanoiapp.pl shanoi(In,In,In,In,Out) yes nohanoiapp su.pl shanoi(In,In,In,In,Out) yes yes yesmmatrix.pl mmultiply(In,In,Out) yes yes yesour.pl ourall(In,In,Out) yes yes yespeephole.pl peephole opt(In,Out) yes yes yesprogeom.pl pds(In,Out) yes yes yesrdtok.pl read tokens(In,Out) yes noread.pl parse(In,Out) yes noserialize.pl serialize(In,Out) yes yes notak.pl tak(In,In,In,Out) yes notitatoe.pl play(In) yes nowarplan.pl plans(In,In) yes no



Theory and Pratie of Logi Programming 31Table 5. Input terminatining but non-quasi reurrent ProgramsSM IRmergesort(In, ) yes noqsort(In, ) yes notype(In,In,Out) no nodepth(In,Out) yes nomemo solve(In,Out) no noak(In,In, ) yes nohu�man(In, ) no noqueens( ,Out) no noserialize(In,Out) no no


