
SEQUENCE-BASED ABSTRACTINTERPRETATION OF PROLOG1
BAUDOUIN LE CHARLIER, SABINA ROSSI, ANDPASCAL VAN HENTENRYCK. Abstract interpretation is a general methodology for systematic develop-ment of program analyses. An abstract interpretation framework is cen-tered around a parametrized non-standard semantics that can be instantia-ted by various domains to approximate di�erent program properties.Many abstract interpretation frameworks and analyses for Prolog have beenproposed, which seek to extract information useful for program optimiza-tion. Although motivated by practical considerations, notably making Pro-log competitive with imperative languages, such frameworks fail to capturesome of the control structures of existing implementations of the language.In this paper we propose a novel framework for the abstract interpretationof Prolog which handles the depth-�rst search rule and the cut operator.It relies on the notion of substitution sequence to model the result of theexecution of a goal. The framework consists of (i) a denotational concretesemantics, (ii) a safe abstraction of the concrete semantics de�ned in termsof a class of post-�xpoints, and (iii) a generic abstract interpretation al-gorithm. We show that traditional abstract domains of substitutions mayeasily be adapted to the new framework, and provide experimental evidenceof the e�ectiveness of our approach. We also show that previous work ondeterminacy analysis, that was not expressible by existing abstract inter-pretation frameworks, can be seen as an instance of our framework.The ideas developed in this paper can be applied to other logic languages,notably to constraint logic languages, and the theoretical approach shouldbe of general interest for the analysis of many non-deterministic program-ming languages. /1Preliminary versions of this work appeared in the Proceedings of ILPS'94, Ithaca, NY [6, 58].Address correspondence to Baudouin Le Charlier, Institut d'Informatique, University of Na-mur, 21 rue Grandgagnage, B-5000 Namur, Belgium. E-mail: ble@info.fundp.ac.be

21. INTRODUCTIONAbstract interpretation [19] is a general methodology for systematic developmentof program analyses. It has been applied to various formalisms and paradigms in-cluding ow-charts and imperative, functional, logic, and constraint programming.Abstract interpretation of Prolog and, more generally, of logic programmingwas initiated by Mellish [71] and further developed by numerous researchers (e.g.,[8, 21, 47, 53, 69]). Many di�erent kinds of practical analyses and optimizationshave been proposed, a detailed description of which can be found in [21, 37]. Briey,mode [16, 27, 29, 83], type [2, 18, 36, 44, 49, 50, 51, 63, 77, 96, 97], and aliasing[12, 42] analyses collect information about the state of variables during the exe-cution and are useful to speed up term uni�cation and make memory allocationmore e�cient [41, 94]. Sharing analysis [14, 15, 52, 75] is similar to aliasing exceptthat it refers to the sharing of memory structures to which program variables areinstantiated; it is useful to perform compile-time garbage collection [45, 52, 74] andautomatic parallelization [10, 11, 38, 43]. Reference chain analysis [66, 92] attemptsto determine an upper bound to the length of the pointer chain for a program vari-able. Trailing analysis [88] aims at detecting variables which do not need to betrailed. Liveness analysis [73] determines when memory structures can be reused.All these analyses approximate the set of values (i.e., terms or memory structures)to which program variables can be instantiated at some given program point.It is thus not surprising that almost all frameworks for the abstract interpretationof Prolog (e.g., [3, 8, 47, 67, 69, 71, 78]) are based on abstractions of sets of substitu-tions. Such frameworks ignore important control features of the language, like thedepth-�rst search strategy and the cut operator. Indeed, the latter are di�cult tomodel accurately, and yet not strictly necessary for a variable level analysis. How-ever, modeling Prolog control features has two main advantages. First, it allows oneto perform so-called predicate level analyses, like determinacy [31, 39, 81, 89, 91]and local stack [65, 70] analyses. These analyses are not captured by traditionalabstract interpretation frameworks; they usually rely on some ad hoc techniqueand require special-purpose proofs of correctness (e.g., [30, 81]). They are useful toperform optimizations, such as the choice point removal and the simpli�cation ofenvironment creation. Second, the analysis of some classes of programs, like pro-grams containing multi-directional procedures which use cuts and meta-predicatesto select among di�erent versions, may be widely improved. The compiler may beallowed to perform various important optimizations such as dead-code elimination.Abstract interpretation of Prolog with control has been investigated by otherauthors. In particular, we know of three main di�erent approaches. The approachof R. Barbuti et al. [4] is based on an abstract semantics for logic programs withcontrol which is parametric with respect to a \termination theory". The latter isintended to be provided from outside, for instance by applying proofs procedures.G. Fil�e and S. Rossi [34] propose an operational and non-compositional abstractinterpretation framework for Prolog with cut consisting of a tabled interpreter tovisit OLDT abstract trees decorated with information about sure success or failureof goals. Finally, F. Spoto and G. Levi [84] de�ne an abstract goal-independentdenotational semantics for Prolog handling control rules and cut. Program de-notations are adorned with \observability" constraints giving information aboutdivergent computations and cut executions. We know of no experimental resultsvalidating the e�ectiveness of these approaches.

3In this paper we present a novel abstract interpretation framework for Prologwhich models the depth-�rst search rule and the cut operator. It relies on thenotion of substitution sequence which allows us to collect the solutions to a goaltogether with information such as sure success and failure, the number of solutions,and/or termination. The framework that we propose can be applied to performpredicate level analyses, such as determinacy, which were not expressible by classicalframeworks, and can be also used to improve the accuracy of existing analyses.Experiments on a sample analysis, namely cardinality analysis, will be discussed.1.1. Some Motivating ExamplesIn this section we illustrate by means of small examples the functionality of ourstatic analyzer and we discuss how it improves on previous abstract interpretationframeworks. Experimental results on medium-size programs will be reported later.The �rst two examples show that predicate level properties, such as determinacy,which are out of the scope of traditional abstract interpretation frameworks can becaptured by our analyzer. To the best of our knowledge, does not exist any speci�canalysis which can infer determinacy of all the programs discussed below.Consider �rst the procedure is last:is last(X,[X]).is last(X,[|T]) :- is last(X,T).When given the input pattern is last(var,ground), where var and ground denotethe set of all variables and the set of all ground terms respectively, our analy-sis returns the abstract sequence his last(ground,[ground|ground]),0,1,pti,where is last(ground,[ground|ground]) is the pattern characterizing the outputsubstitutions, 0 and 1 are, respectively, the minimum and the maximum number ofreturned output substitutions, and pt stands for \possible termination".Consider now the following two versions of the procedure partition.partition([],P,[],[]).partition([S|T],P,[S|Ss],Bs) :- S � P, !, partition(T,P,Ss,Bs).partition([B|T],P,Ss,[B|Bs]) :- partition(T,P,Ss,Bs).partition([],P,[],[]).partition([S|T],P,[S|Ss],Bs) :- leq(S,P), partition(T,P,Ss,Bs).partition([B|T],P,Ss,[B|Bs]) :- gt(B,P), partition(T,P,Ss,Bs).leq(K1-V1,K2-V2) :- K1 � K2.gt(K1-V1,K2-V2) :- K1 > K2.Note that the second version of the procedure calls arithmetic predicates throughan auxiliary predicate and is appropriate for a key sort. Given an input patternpartition(ground,ground,var,var), our analysis returns in both cases the ab-stract sequence hpartition(ground,ground,ground,ground),0,1,pti. Input/out-put patterns are used to determine that the �rst clause and the two others aremutually exclusive in both programs, while the cut (in the �rst version) and theabstraction of arithmetic predicates (in the second version) determine the mutualexclusion of the second and the third clause. Thus we can infer determinacy ofboth versions of the procedure partition.As stated above, we don't know of any static analysis for logic programs which can

4 infer determinacy of all these programs. For instance, the analysis developed byDebray and Warren in [30] to detect functional computations of a logic programcannot infer determinacy of the procedure is last; the analyses proposed by Daw-son et al. in [25] and by Giacobazzi and Ricci in [39] cannot handle the �rst versionof the procedure partition, since they do not deal with the cut; and the cardinali-ty analysis de�ned by Sahlin in [81] cannot handle any of the examples discussedabove since it ignores predicate arguments. Finally, we know of no implementedsystem that can handle the second version of the procedure partition.The next example shows that the use of abstract sequences can improve on theanalysis of variable level properties such as modes.Consider the procedure compress(L,Lc), which relates two lists Lc and L suchthat Lc is a compressed version of L. For instance, the compressed version of [a,b, b, c, c, c] is [a, 1, b, 2, c, 3]. A library can contain the de�nition ofa single procedure to handle both compression and decompression as follows.compress(A,B) :- var(A), !, decomp(A,B).compress(A,B) :- comp(A,B).comp([],[]).comp([C],[C,1]).comp([C1,C2|T],[C1,1,C2,N|Rest]):-C1<>C2,comp([C2|T],[C2,N|Rest]).comp([C1,C1|T],[C1,N1|Rest]) :- comp([C1|T],[C1,N|Rest]), N1 := N + 1.decomp([],[]).decomp([C],[C,1]).decomp([C1,C2|T],[C1,1,C2,N|Rest]):-decomp([C2|T],[C2,N|Rest]),C1<>C2.decomp([C1,C1|T],[C1,N1|Rest]):-N1>1,N:=N1-1,decomp([C1|T],[C1,N|Rest]).Given the input patterns compress(ground,var) and compress(var,ground), ouranalysis returns the abstract sequence hcompress(ground,ground),0,1,pti forboth the inputs. This example illustrates many of the functionalities of our sy-stem, including input/output patterns, abstraction of arithmetic and meta-pre-dicates, and the cut, all of which are necessary to obtain the optimal precision.In addition, it shows that taking the cut into account improves the analysis ofmodes. Indeed, a mode analysis ignoring the cut would return the output patterncompress(novar; ground) for the input pattern compress(var,ground), losing thegroundness information. None of the abstract interpretation algorithms for logicprograms we know of can handle this example with an optimal result. Moreover, ifa program only uses the input pattern compress(var,ground), our analysis detectsthat the second clause of compress is dead code without any extra processing sinceno input/output pattern exists for comp. The second clause, the test var, and thecut of the �rst clause can then be removed by an optimizer.Notice that there exist implemented tools for the static analysis of Prolog programs,such as PLAI [76], which can achieve as accurate success and dead-code informa-tion as our analyzer. However, such tools usually integrate several analyses basedon di�erent techniques which are not all justi�ed by the abstract interpretationframework. The example of the procedure compress shows that our analyzer canhandle control features of the language within the abstract interpretation frame-work without the need of any extra consideration.

51.2. Sequence-Based Abstract Interpretation of PrologAn abstract interpretation framework [22] is centered around the de�nition of anon-standard semantics approximating a concrete semantics of the language.Most top-down abstract interpretation frameworks for logic programs [8, 13, 47,61, 68, 71, 76, 78, 93, 95] can be viewed as abstractions of a concrete structuraloperational semantics [79]. Such a semantics de�nes the meaning of a program asa transition relation described in terms of transition rules of the form h�; oi 7�! �0,where the latter expresses the fact that �0 is a possible output from the execution ofthe construct o (i.e., a procedure, a clause, etc.) called with input �. This structuraloperational semantics can easily be rephrased as a �xpoint semantics mapping anyinput pattern h�; oi to the set of all corresponding outputs �0. The �xpoint semanticscan then be lifted to a collecting semantics that maps sets of inputs to sets ofoutputs and is de�ned as the least �xpoint of a set-based transformation. The non-standard (or abstract) semantics is identical to the collecting one except that it usesabstract values instead of sets and abstract operations instead of operations oversets. Finally, an abstract interpretation algorithm can be derived by instantiatinga generic �xpoint algorithm (e.g., [60]) to the abstract semantics.The limitations of traditional top-down frameworks for Prolog stem from the factthat structural operational semantics are unable to take the depth-�rst search ruleinto account. Control operators such as the cut cannot be modeled and are thussimply ignored. To overcome these limitations, we propose a concrete semantics ofProlog which describes the result of program executions in terms of substitutionsequences. This allows us to model the depth-�rst search rule and the cut operator.The semantics is de�ned in the denotational setting to deal with sequences resultingfrom the execution of in�nite computations. Moreover, it is still compositionalallowing us to reuse most of the material of our previous works, i.e., the abstractdomains and the generic algorithm [61]. However, technical problems arise whenapplying the abstract interpretation approach described above. Let us informallyexplain the main ideas behind the de�nition of our framework.First, we de�ne a concrete semantics as the least �xpoint of a concrete trans-formation TCB mapping every so-called concrete behavior 7�! to another concretebehavior TCB7�! . The notion of concrete behavior is our denotation choice for a Pro-log program: it is a function that maps pairs of the form h�; pi to a substitutionsequence S, which intuitively represents the sequence of computed answer sub-stitutions returned by the query p(x1; : : : ; xn)�. The �xpoint construction of theconcrete semantics relies on a suitable ordering v de�ned on sequences.Second, a collecting transformationTCD is obtained by lifting the concrete trans-formation TCB to sets of substitutions and sets of sequences. The transformationTCD is monotonic with respect to set inclusion. However, its least �xpoint doesnot safely approximate the concrete semantics. In fact, the least set with respect toinclusion, that is the empty set fg, does not contain the least substitution sequencewith respect to v, which is a special sequence denoted by < ? >. The problemrelies on the fact that an ordering on sets of sequences that \combines" both theordering v on sequences and the ordering � on sets is needed. This is an instanceof the power domain construction problem [82], which is di�cult in general.We choose a more pragmatic solution which consists in restricting to chain-closedsets of sequences, i.e., sets containing the limit of every increasing chain, withrespect to v, of their elements. We also introduce the notion of pre-consistent

6 collecting behavior which, roughly speaking, contains a lower approximation, withrespect to v, of the concrete semantics (the least �xpoint of TCB). The transfor-mation TCD maps pre-consistent collecting behaviors to other pre-consistent ones.Moreover, assuming that sets of sequences are chain-closed, any pre-consistent post-�xpoint, with respect to set inclusion, of TCD safely approximates the concretesemantics. These results imply that a safe collecting behavior can be constructedby iterating on TCD from any initial pre-consistent collecting behavior and byapplying some widening techniques [23] in order to reach a post-�xpoint.Third, the abstract semantics is de�ned exactly as the collecting one except thatit is parametric with respect to the abstract domains. In fact, we do not explicitlydistinguish between the collecting and the abstract semantics: in our presentation,the collecting transformation TCD is just a particular instance of the (generic)abstract transformation TAB.Finally, a generic abstract interpretation algorithm is derived from the abstractsemantics. The algorithm is essentially an instantiation of the universal �xpointalgorithm described in [60].1.3. Plan of the PaperThe paper is organized as follows. Section 2 and Section 3 describe, respectively,our concrete and abstract semantics for pure Prolog augmented with the cut. Thegeneric abstract interpretation algorithm is discussed in Section 4. Section 5 is arevised and extended version of [6]. It describes an instantiation of our abstractinterpretation framework to approximate the number of solutions to a goal. Exper-imental results are reported. In Section 6 we consider related works on determinacyanalysis. Section 7 concludes the paper.2. CONCRETE SEMANTICSThis section describes a concrete semantics for pure Prolog augmented with the cut.The concrete semantics is the link between the standard semantics of the languageand the abstract one. Our concrete semantics is denotational and is based on thenotion of substitution sequence. Correctness of the concrete semantics with respectto Prolog standard semantics, i.e., OLD-resolution, is discussed. Most proofs areomitted here; all details can be found in [57].2.1. SyntaxThe abstract interpretation framework presented in this paper assumes that pro-grams are normalized according to the abstract syntax given in Figure 2.1. Thevariables occurring in a literal are distinct; distinct procedures have distinct names;all clauses of a procedure have exactly the same head; if a clause uses m di�erentprogram variables, these variables are x1, . . . , xm.

7P 2 Programs P ::= pr j pr Ppr 2 Procedures pr ::= c j c prc 2 Clauses c ::= h :- g.h 2 ClauseHeads h ::= p(x1, . . . , xn)g 2 ClauseBodyPre�xes g ::= <> j g , ll 2 Literals l ::= p(xi1 , . . . , xin) j bb 2 Built-ins b ::= xi=xj j xi1=f(xi2 , . . . , xin) j !p 2 ProcedureNamesf 2 Functorsxi 2 ProgramVariables (PV)FIGURE 2.1. Abstract Syntax of Normalized Programs2.2. Basic Semantic DomainsThis section presents the basic semantic domains of substitutions. Note that weassume a preliminary knowledge of logic programming (see, for instance [1, 64]).Variables and Terms. We assume the existence of two disjoint and in�nite setsof variables, denoted by PV and SV . Elements of PV are called program variablesand are denoted by x1, x2, . . . , xi, The set PV is totally ordered; xi is the i-thelement of PV . Elements of SV are called standard variables and are denoted byletters y and z (possibly subscripted). Terms are built using standard variables only.Standard Substitutions. Standard substitutions are substitutions in the usualsense [1, 64] which use standard variables only. The set of standard substitutionsis denoted by SS . Renamings are standard substitutions that de�ne a permutationof standard variables. The domain and the codomain of a standard substitution �are denoted by dom(�) and codom(�), respectively. We denote by mgu(t1; t2) theset of standard substitutions that are a most general uni�er of terms t1 and t2.Program Substitutions. A program substitution is a set fxi1=t1; : : : ; xin=tng,where xi1 ; : : : ; xin are distinct program variables and t1, . . . , tn are terms. Pro-gram substitutions are not substitutions in the usual sense; they are best under-stood as a form of program store which expresses the state of the computationat a given program point. It is meaningless to compose them as usual substitu-tions or to use them to express most general uni�ers. The domain of a programsubstitution � = fxi1=t1; : : : ; xin=tng, denoted by dom(�), is the set of programvariables fxi1 ; : : : ; xing. The codomain of �, denoted by codom(�), is the set ofstandard variables occurring in t1; : : : ; tn. Program and standard substitutionscannot be composed. Instead, standard substitutions are applied to program sub-stitutions. The application of a standard substitution � to a program substitution� = fxi1=t1; : : : ; xin=tng is the program substitution �� = fxi1=t1�; : : : ; xin=tn�g.The set of program substitutions is denoted by PS . The application xi� of a pro-gram substitution � to a program variable xi is de�ned only if xi 2 dom(�); itdenotes the term bound to xi in �. Let D be a �nite subset of PV and � be aprogram substitution such that D � dom(�). The restriction of � to D, denoted by�=D, is the program substitution such that dom(�=D) = D and xi(�=D) = xi�, for

8 all xi 2 D. We denote by PSD the set of program substitutions whose domain is D.Canonical Program Substitutions. We say that two program substitutions� and �0 are equivalent if and only if there exists a renaming � such that �� =�0. We assume that, for each program substitution �, we are given a canonicalrepresentative, denoted by [[�]], of the set of all program substitutions that areequivalent to �. We denote by CPS the set of all canonical program substitutions [[�]].For any �nite set of program variables D, we denote by CPSD the set PSD \CPS .2.3. Program Substitution SequencesProgram substitution sequences are intended to model the sequence of computedanswer substitutions returned by a goal, a clause, or a procedure.Program Substitution Sequences. Let us denote byN? the set of positive natu-ral numbers. A program substitution sequence is either a �nite sequence of the form< �1; : : : ; �n > (n � 0) or an incomplete sequence of the form < �1; : : : ; �n;? >(n � 0) or an in�nite sequence of the form < �1; : : : ; �i; : : : > (i 2 N?), wherethe �i are program substitutions with the same domain. We use the notation< �1; : : : ; �i; > to represent a program substitution sequence when it is not knownwhether it is �nite, incomplete or in�nite. Let S be a program substitution se-quence. We denote by Subst(S) the set of program substitutions that are elementsof S. The domain of S is de�ned when S 6=<> and S 6=< ? >. In this case,dom(S) is the domain of the program substitutions belonging to Subst(S). Theset of all program substitution sequences is denoted by PSS. Let D be a �nite setof program variables. We denote by PSSD the set of all program substitution se-quences with domain D augmented with <> and < ? >. Let S 2 PSSD be asequence < �1; : : : ; �i; > and D0 � D. The restriction of S to D0, denoted byS=D0 , is the program substitution sequence < �1=D0 ; : : : ; �i=D0 ; >. The number ofelements of S, including the special element ?, is denoted by Ne(S). The number ofelements of S that are substitutions is denoted by Ns(S). Sequence concatenationis denoted by :: and it is used only when its �rst argument is a �nite sequence.Canonical Substitution Sequences. The canonical mapping [[�]] is lifted to se-quences as follows. Let S be a program substitution sequence < �1; : : : ; �i; >. Wede�ne [[S]] =< [[�1]]; : : : ; [[�i]]; >. We denote by CPSS the set of all canonical sub-stitution sequences [[S]] and by CPSSD the set PSSD \CPSS , for any �nite subsetD of PV.CPO's of Program Substitution Sequences. The sets PSS, PSSD, CPSS andCPSSD can be endowed with a structure of pointed cpo as described below.De�nition 2.1. [Relation v on Program Substitution Sequences]Let S1; S22PSS . We de�neS1 v S2 i� either S1 = S2or there exists S; S02PSS such that S is �nite,S1 = S ::< ? > and S2 = S :: S0.

9The relation v on program substitution sequences is an ordering and the pairshPSS ;vi, hCPSS ;vi, hPSSD ;vi, and hCPSSD;vi are all pointed cpo's (see [57]).We denote by (Si)i2N an increasing chain, S0 v S1 v : : : v Si v : : : in PSS; whereaswe denote by fSigi2N a, non necessarily increasing, sequence of elements of PSS.Lazy Concatenation. Program substitution sequences are combined through theoperation 2 and its extensions 2nk=1 and 21k=1 de�ned below.De�nition 2.2. [Operation 2]Let S1, S22PSS .S12S2 = S1 :: S2 if S1 is �nite= S1 if S1 is incomplete or in�nite.De�nition 2.3. [Operation 2nk=1]Let fSkgk2N? be an in�nite sequence of program substitution sequences (notnecessarily a chain). For any n � 1, we de�ne:20k=1Sk = < >2nk=1Sk = (2n�1k=1Sk)2Sn:De�nition 2.4. [Operation 21k=1]Let fSkgk2N? be an in�nite sequence of program substitution sequences. Thein�nite sequence fS0igi2N where S0i = (2ik=1Sk)2 < ? > (i 2 N) is a chain. Sowe are allowed to de�ne:21k=1Sk = t1i=0S0i = t1i=0((2ik=1Sk)2 < ? >).The operation 2 is associative; hence, it is meaningful to write S12 : : :2Sn insteadof 2nk=1Sk. Operations 2, 2nk=1, and 21k=1 are continuous with respect to the or-dering v on program substitution sequences.Program Substitution Sequences with Cut Information. Program substitu-tion sequences with cut information are used to model the result of a clause togetherwith information on cut executions.Let CF be the set of cut ags fcut ;nocutg. A program substitution sequence withcut information is a pair hS; cfi where S2PSS and cf 2CF .De�nition 2.5. [Relation v on Substitution Sequences with Cut Information]Let hS1; cf 1i; hS2; cf 2i2PSS � CF . We de�nehS1; cf 1i v hS2; cf 2i i� either S1 v S2 and cf 1 = cf 2or S1 =< ? > and cf 1 = nocut .The relation v on program substitution sequences with cut information is an orde-ring. Moreover, the pairs hPSS � CF ;vi, hPSSD � CF ;vi, hCPSS � CF ;vi andhCPSSD � CF ;vi are all pointed cpo's.We extend the de�nition of the operation 2 to program substitution sequences withcut information. The extension is continuous in both the arguments.

10 De�nition 2.6. [Operation 2 with Cut Information]Let hS1; cf i2PSS � CF and S22PSS . We de�nehS1; cf i2S2 = S12S2 if cf = nocutS1 if cf = cut.2.4. Concrete BehaviorsThe notion of concrete behavior provides a mathematical model for the input/outputbehavior of programs. To simplify the presentation, we do not parameterize thesemantics with respect to programs. Instead, we assume a given �xed underlyingprogram P.De�nition 2.7. [Concrete Underlying Domain]The concrete underlying domain, denoted by CUD, is the set of all pairs h�; pisuch that p is the name of a procedure pr of P and � 2 CPSfx1;:::;xng, wherex1; : : : ; xn are the variables occurring in the head of every clause of pr.Concrete behaviors are functions but we denote them by the relation symbol 7�!in order to stress the similarities between the concrete semantics and a structuraloperational semantics for logic programs de�ned in [62].De�nition 2.8. [Concrete Behaviors]A concrete behavior is a total function 7�!: CUD �! CPSS mapping everypair h�; pi2CUD to a canonical program substitution sequence S such that, forevery �0 2 Subst(S), there exists a standard substitution � such that �0 = ��.We denote by h�; pi 7�! S the fact that 7�! maps the pair h�; pi to S. The setof all concrete behaviors is denoted by CB.The ordering v on program substitution sequences is lifted to concrete behaviorsin a standard way [82].De�nition 2.9. [Relation v on Concrete Behaviors]Let 7�!1; 7�!22CB . We de�ne7�!1v7�!2 i� (h�; pi 7�!1 S1 and h�; pi 7�!2 S2) imply S1 v S2,for all h�; pi2CUD :The following result is straightforward.Proposition 2.1. hCB ;vi is a pointed cpo, i.e.,1. the relation v on CB is a partial order;2. CB has a minimum element, which is the concrete behavior 7�!? such thatfor all h�; pi2CUD, h�; pi 7�!?< ? >;3. every chain (7�!i)i2N in CB has a least upper bound, denoted by t1i=0 7�!i;t1i=0 7�!i is the concrete behavior 7�! such that, for all h�; pi 2 CUD,h�; pi 7�! t1i=0Si, where h�; pi 7�!i Si (8i2N).

112.5. Concrete OperationsWe specify here the concrete operations which are used in the de�nition of theconcrete semantics. The choice of these particular operations is motivated by thefact that they have useful (i.e., practical) abstract counterparts (see Sections 3, 4and 5). The concrete operations are polymorphic since their exact signature de-pends on a clause c or a literal l or both.Let c be a clause, D = fx1; : : : ; xng be the set of all variables occurring in the headof c, and D0 = fx1; : : : ; xmg (n � m) be the set of all variables occurring in c.Extension at Clause Entry : EXTC(c; �) : CPSD ! (CPSSD0 � CF)This operation extends a substitution � on the set of variables in D to the set ofvariables in D0. Let �2CPSD.EXTC(c; �) = h< [[�0]] >;nocutiwhere xi�0 = xi� (8i : 1 � i � n) and xn+1�0, . . . , xm�0 are distinct standardvariables not belonging to codom(�).Restriction at Clause Exit : RESTRC(c; �) : (CPSSD0 �CF)! (CPSSD �CF)This operation restricts a pair hS; cf i, representing the result of the execution of c onthe set of variables in D0, to the set of variables in D. Let hS; cf i2(CPSS 0D�CF).RESTRC(c; hS; cf i) = h[[S0]]; cf i where S0 = S=D.Let l be a literal occurring in the body of c, D00 = fxi1 ; : : : ; xirg be the set ofvariables occurring in l, and D000 be equal to fx1; : : : ; xrg.Restriction before a Call : RESTRG(l; �) : CPSD00 ! CPSD000This operation expresses a substitution � on the parameters xi1 ; : : : ; xir of a call lin terms of the formal parameters x1; : : : ; xr of l. Let �2CPSD00 .RESTRG(l; �) = [[fx1=xi1�; : : : ; xr=xir�g]]:Extension of the Result of a Call : EXTG(l; �; �) : CPSD0�CPSSD000 6! CPSSD0This operation extends a substitution � with a substitution sequence S representingthe result of executing a call l on �. Hence, it is only used in contexts where thesubstitutions that are elements of S are (roughly speaking) instances of �. Let� 2 CPSD0 . Let S 2 CPSSD000 be of the form< �0�1; : : : ; �0�i; > where xj�0 = xij �(1 � j � r) and the �i are standard substitutions such that dom(�i) � codom(�0).Let fz1; : : : ; zsg = codom(�) n codom(�0). Let yi,1; : : : ; yi,s be distinct standardvariables not belonging to codom(�) [codom(�i) (1 � i � Ns(S)). Let �i be arenaming of the form fz1=yi,1; : : : ; zs=yi,s; yi,1=z1; : : : ; yi,s=zsg.EXTG(l; �; S) = [[< ��1�1; : : : ; ��i�i; >]]:It is easy to see that the value of EXTG(l; �; S) does not depend on the choice of theyi,j . Moreover, it is not de�ned when S is not of the above mentioned form.Uni�cation of Two Variables : UNIF-VAR: CPSfx1;x2g ! CPSSfx1;x2gLet �2CPSfx1;x2g. This operation uni�es x1� with x2�.

12 UNIF-VAR(�) = <> if x1� and x2� are not uni�able,= [[< �� >]] where �2mgu(x1�; x2�), otherwise.Uni�cation of a Variable and a Functor : UNIF-FUNC(f; �) : CPSD ! CPSSDGiven a functor f of arity n�1 and a substitution �2CPSD whereD = fx1; : : : ; xng,the UNIF-FUNC operation uni�es x1� with f(x2; : : : ; xn)�.UNIF-FUNC(f; �) = <> if x1� and f(x2; : : : ; xn�) are not uni�able,= [[< �� >]] where �2mgu(x1�; f(x2; : : : ; xn)�), otherwise.All operations de�ned in this section are monotonic and continuous with respectto the orderings de�ned in the previous sections. Sets of program substitutions areendowed with the trivial ordering v such that � v �0 i� � = �0.2.6. Concrete Semantic RulesThe concrete semantics of the underlying program P is the least �xpoint of a conti-nuous transformation on CB (the set of concrete behaviors). This transformation isde�ned in terms of a set of semantic rules that naturally extend a concrete behaviorto a continuous function de�ning the input/output behavior of every pre�x of thebody of a clause, every clause, every su�x of a procedure and every procedure ofP . This function is called extended concrete behavior and maps each element of theextended concrete underlying domain to a substitution sequence, possibly with cutinformation, as de�ned below.De�nition 2.10. [Extended Concrete Underlying Domain]The extended concrete underlying domain, denoted by ECUD, consists of1. all triples h�; g; ci, where c is a clause of P , g is a pre�x of the body of c, and� is a canonical program substitution over the variables in the head of c;2. all pairs h�; ci, where c is a clause of P and � is a canonical program substi-tution over the variables in the head of c;3. all pairs h�; pr i, where pr is a procedure of P or a su�x of a procedure of Pand � is a canonical program substitution over the variables in the head ofthe clauses of pr.De�nition 2.11. [Extended Concrete Behaviors]An extended concrete behavior is a total function from ECUD to the set CPSS [(CPSS � CF) such that1. every triple h�; g; ci from ECUD is mapped to a program substitution se-quence with cut information hS; cf i such that dom(S) is the set of all varia-bles in the clause c;2. every pair h�; ci from ECUD is mapped to a program substitution sequencewith cut information hS; cf i such that dom(S) is the set of variables in thehead of the clause c;3. every pair h�; pri from ECUD is mapped to a program substitution sequenceS such that dom(S) is the set of variables in the head of the clauses of theprocedure pr.

13The set of extended concrete behaviors is endowed with a structure of pointedcpo in the obvious way. It is denoted by ECB; its elements are denoted by 7�!.Let 7�! be a concrete behavior. The concrete semantic rules depicted in Figure 2.2de�ne an extended concrete behavior derived from 7�!. This extended concretebehavior is denoted by the same symbol 7�!. This does not lead to confusion sincethe inputs of the two functions belong to di�erent sets. The de�nition proceeds byinduction on the syntactic structure of P .The concrete semantic rules model Prolog operational semantics through the no-tion of program substitution sequence. Rule R1 de�nes the program substitutionsequence with cut information at the entry point of a clause. Rules R2 and R3de�ne the e�ect of the execution of a cut at the clause level. Rules R4, R5 andR6 deal with execution of literals; procedure calls are solved by using the concretebehavior 7�! as an oracle. Rule R7 de�nes the result of a clause. Rules R8 andR9 de�ne the result of a procedure by structural induction on its su�xes. RuleR8 deals with the su�x consisting of the last clause only: it simply forgets the cutinformation, which is not meaningful at the procedure level. Rule R9 combinesthe result of a clause with the (combined) result of the next clauses in the sameprocedure: it deals with the execution of a cut at the procedure level. The expres-sion 2Ne(S)k=1 Sk used in Rules R4, R5 and R6 deserves an explanation: when thesequence S is incomplete, it is assumed that SNe(S) =< ? >. This convention isnecessary to propagate the non-termination of g0 to g.The following results are instrumental for proving the well-de�nedness of the con-crete semantics.Proposition 2.2. [Properties of the Concrete Semantic Rules]1. Given a concrete behavior, the concrete semantic rules de�ne a unique ex-tended concrete behavior, i.e., a unique mapping from CB to ECB. Thismapping is continuous.2. Rules R1 to R6 have a conclusion of the form h�; g; ci 7�! hS; cf i. Inall cases, S is of the form < �0�1; : : : ; �0�i; >, where the �i are standardsubstitutions and h�0;nocuti = EXTC(c; �).Rules R7 to R9 have a conclusion of the form h�; �i 7�! S. In all cases, Sis of the form < ��1; : : : ; ��i; >, where the �i are standard substitutions.2.7. Concrete SemanticsThe concrete semantics of the underlying program P is de�ned as the least �xpointof the following concrete transformation.De�nition 2.12. [Concrete Transformation]The transformation TCB : CB ! CB is de�ned as follows: for all 7�!2 CB ,pr is a procedure of Pp is the name of prh�; pr i 7�! ST1 h�; pi TCB7�! S

14 g ::= <>R1 h�; g; ci 7�! EXTC(c; �)g ::= g' , !h�; g0; ci 7�! hS; cf iS 2 f< ? >;<>gR2 h�; g; ci 7�! hS; cf i g ::= g' , !h�; g0; ci 7�! hS; cf iS =< �0 >:: S0R3 h�; g; ci 7�! h< �0 >; cutig ::= g' , ll ::= xi=xjh�; g0; ci 7�! hS; cf iS =< �1; : : : ; �i; >8>><>>: �0k = RESTRG(l; �k)S0k = UNIF-VAR(�0k)Sk = EXTG(l; �k; S0k)(1 � k � Ns(S)) 9>>=>>;R4 h�; g; ci 7�! h2Ne(S)k=1 Sk; cf i
g ::= g' , ll ::= xi1=f(xi2 , . . . , xin)h�; g0; ci 7�! hS; cf iS =< �1; : : : ; �i; >8>><>>: �0k = RESTRG(l; �k)S0k = UNIF-FUNC(f; �0k)Sk = EXTG(l; �k; S0k)(1 � k � Ns(S)) 9>>=>>;R5 h�; g; ci 7�! h2Ne(S)k=1 Sk; cf ig ::= g' , ll ::= p(xi1 , . . . , xin)h�; g0; ci 7�! hS; cf iS =< �1; : : : ; �i; >8>><>>: �0k = RESTRG(l; �k)h�0k ; pi 7�! S0kSk = EXTG(l; �k; S0k)(1 � k � Ns(S)) 9>>=>>;R6 h�; g; ci 7�! h2Ne(S)k=1 Sk; cf i c ::= h :- g.h�; g; ci 7�! hS; cf iR7 h�; ci 7�! RESTRC(c; hS; cf i)pr ::= ch�; ci 7�! hS; cf iR8 h�; pr i 7�! S pr ::= c pr'h�; ci 7�! hS; cf ih�; pr 0i 7�! S0R9 h�; pr i 7�! hS; cf i2S0FIGURE 2.2. Concrete Semantic Rules

15where TCB7�! stands for TCB(7�!). Remember that h�; pr i 7�! S is de�ned by meansof the previous rules which use the concrete behavior 7�! as an oracle to solve theprocedure calls.The transformation TCB is well-de�ned and continuous.De�nition 2.13. [Concrete Semantics]The concrete semantics of the underlying program P is the least concrete beha-vior 7�! such that 7�! = TCB7�! :2.8. Correctness of the Concrete SemanticsSince OLD-resolution [64, 87] is the standard semantics of pure Prolog augmentedwith cut, our concrete semantics and OLD-resolution have to be proven equivalent.The proof is fairly complex because OLD-resolution is not compositional. Conse-quently, the two semantics do not naturally match. The equivalence proof is givenin [57]. In this section, we only give the principle of the proof.1. We assume that OLD-resolution uses standard variables to rename clausesapart. The initial queries are also assumed to contain standard variablesonly.2. The notion of incomplete OLD-tree limited to depth k is de�ned (IOLDk-tree,for short). Intuitively, an IOLDk-tree is an OLD-tree modi�ed according tothe following rules:(a) procedure calls may be unfolded only down to depth k;(b) branches that end at a node whose leftmost literal may not be unfoldedare called incomplete;(c) a depth-�rst left-to-right traversal of the tree is performed in order todetermine the cuts that are reached by the standard execution and toprune the tree accordingly (see [64]);(d) the traversal ends when the whole tree has been visited or when a nodethat may not be unfolded is reached;(e) the branches on the right of the left-most incomplete branch are pruned(if such a branch exists).3. Assuming a query of the form p(t1; : : : ; tn) and denoting the concrete beha-vior TCBk(7�!?) by 7�!k, it can be shown that the sequence of computedanswer substitutions < �1; : : : ; �i; > for the IOLDk-tree of p(t1; : : : ; tn) issuch that h�; p i 7�!k [[< ��1; : : : ; ��i; >]] where � = fx1=t1; : : : ; xn=tng.4. The equivalence of our concrete semantics and OLD-resolution is a simpleconsequence of the previous result.For every query p(t1; : : : ; tn), < �1; : : : ; �i; > is the sequence of computedanswer substitutions of p(t1; : : : ; tn) according to OLD-resolution if and onlyif h�; p i 7�! [[< ��1; : : : ; ��i; >]] where � = fx1=t1; : : : ; xn=tng and 7�! isthe concrete behavior of the program according to our concrete semantics.

16 In fact, the correctness of our concrete semantics should be close to obvious to any-one who knows about both Prolog and denotational semantics. So, the equivalenceproof is a formal technical exercise, which adds little to our basic understanding ofthe concrete semantics.2.9. Related WorksDenotational semantics for Prolog have been proposed before (e.g., [26, 28, 46]).Our concrete semantics is not intended to improve on these works from the languageunderstanding standpoint. Instead, it is merely designed as a basis for an abstractinterpretation framework; in particular, it uses concrete operations that are as closeas possible to the operations used by the structural operational semantics presentedin [62] upon which our previous frameworks are based. This allows us to reusemuch of the material from our existing abstract domains and generic algorithms(e.g., [32, 53, 61, 62]). The idea of distinguishing between �nite, incomplete, andin�nite sequences is originally due to M. Baudinet [5].3. ABSTRACT SEMANTICSAs we have just explained in the introduction, our abstract semantics is not de�nedas a least �xpoint of an abstract transformation but instead as a set of post-�xpointsthat ful�ll a safety requirement, namely pre-consistency. Moreover, the abstractdomains are assumed to represent so-called chain-closed sets of concrete elementsas speci�ed below.3.1. Abstract DomainsWe state here the mathematical assumptions that are required to be satis�ed bythe abstract domains. Speci�c abstract domains will be described in Section 5.Abstract Substitutions. For every �nite set D of program variables, we denoteby CSD the set }(PSD). A domain of abstract substitutions is a family of sets ASDindexed by the �nite sets D of program variables. Elements of ASD are called ab-stract substitutions; they are denoted by �. Each set ASD is endowed with a partialorder � and a monotonic concretization function Cc : ASD ! CSD associating toeach abstract substitution � the set Cc(�) of program substitutions it denotes.Abstract Sequences. For every �nite set D of program variables, we denote byCSSD the set }(PSSD). Abstract sequences denote chain-closed subsets of CSD.A domain of abstract sequences is a family of sets ASSD indexed by the �nite setsD of program variables. Elements of ASSD are called abstract sequences; they aredenoted by B. Each set ASSD is endowed with a partial order � and a monotonicconcretization function Cc : ASSD ! CSSD. Moreover, the following propertiesare required to be satis�ed: (1) every ASSD contains an abstract sequence B? suchthat < ? >2 Cc(B?); (2) for every B 2 ASSD , Cc(B) is chain-closed, i.e., forevery chain (Si)i2N of elements of Cc(B), the limit t1i=0Si also belongs to Cc(B).The disjoint union of all the ASSD is denoted by ASS .

17Abstract Sequences with Cut Information. Let CSSCD denote }(PSSD �CF). A domain of abstract sequences with cut information is a family of setsASSCD indexed by the �nite sets D of program variables. Elements of ASSCD arecalled abstract sequences with cut information; they are denoted by C. Every setASSCD is endowed with a partial order � and a monotonic concretization functionCc : ASSCD ! CSSCD . The disjoint union of all the ASSCD is denoted by ASSC .Abstract Behaviors. Abstract behaviors are the abstract counterpart of theconcrete behaviors introduced in Section 2.4. They are endowed with a weakermathematical structure as described below. As in the case of concrete behaviors, a�xed underlying program P is assumed.De�nition 3.1. [Abstract Underlying Domain]The abstract underlying domain, denoted by AUD, is the set of all pairs h�; pisuch that p is a procedure name in P of arity n and �2ASfx1;:::;xng.De�nition 3.2. [Abstract Behaviors]An abstract behavior is a total function sat : AUD �! ASS mapping each pairh�; pi2AUD to an abstract sequence B with B 2 ASSfx1;:::;xng, where n is thearity of p. The set of all abstract behaviors is denoted by AB. The set AB isendowed with the partial ordering � such that, for all sat1; sat2 2 AB :sat1 � sat2 i� sat1h�; pi � sat2h�; pi; 8h�; pi 2 AUD :It would be reasonable to assume that abstract behaviors are monotonic functionsbut this is not necessary for the safety results. The notation sat stands for \set ofabstract tuples". It is used because the abstract interpretation algorithm, derivedfrom the abstract semantics, actually computes a set of tuples of the form h�; p;Bi,i.e., a part of the table of an abstract behavior.3.2. Abstract OperationsIn this section, we give the speci�cation of the primitive abstract operations used bythe abstract semantics. The speci�cations are safety assumptions which, roughlyspeaking, state that the abstract operations safely simulate the corresponding con-crete ones. In particular, operations EXTC, RESTRG, RESTRC, UNIF-VAR, UNIF-FUNCare faithful abstract counterparts of the corresponding concrete operations. Hence,their speci�cation simply states that, if some concrete input belongs to the con-cretization of their (abstract) input, then the corresponding concrete output belongsto the concretization of their (abstract) output. Moreover, overloading the opera-tion names is natural in these cases. Operation AI-CUT deals with the cut; itsspeci�cation is also straightforward. Operations EXTGS and CONC are related to theconcrete operations EXTG and 2 in a more involved way. We will discuss them inmore detail. Finally, operations SUBST and SEQ are simple conversion operations toconvert an abstract domain into another.Let us specify the operations, using the notations of Section 2.5.Extension at Clause Entry : EXTC(c; �) : ASD ! ASSCD0Let � 2 ASD and � 2 CPSD. The following property is required to hold.

18 � 2 Cc(�)) EXTC(c; �) 2 Cc(EXTC(c; �)):Restriction at Clause Exit : RESTRC(c; �) : ASSCD0 ! ASSCDLet C 2 ASSCD0 and hS; cf i 2 (CPSS 0D � CF).hS; cf i 2 Cc(C)) RESTRC(c; hS; cf i) 2 Cc(RESTRC(c; C)):Restriction before a Call : RESTRG(l; �) : ASD00 ! ASD000Let � 2 ASD00 and � 2 CPSD00 .� 2 Cc(�)) RESTRG(l; �) 2 Cc(RESTRG(l; �)):Uni�cation of Two Variables : UNIF-VAR: ASfx1;x2g ! ASSfx1;x2gLet � 2 ASfx1;x2g and � 2 CPSfx1;x2g.� 2 Cc(�)) UNIF-VAR(�) 2 Cc(UNIF-VAR(�)):Uni�cation of a Variable and a Functor : UNIF-FUNC(f; �) : ASD ! ASSDLet � 2 ASD and � 2 CPSD. Let also f be a functor of arity n� 1.� 2 Cc(�)) UNIF-FUNC(f; �) 2 Cc(UNIF-FUNC(f; �)):Abstract Interpretation of the Cut : AI-CUT: ASSCD0 ! ASSCD0Let C 2 ASSCD0 , � 2 CPSD0 , S 2 CPSSD0 , cf 2 CF .h<>; cf i 2 Cc(C)) h<>; cf i 2 Cc(AI-CUT(C));h< ? >; cf i 2 Cc(C)) h< ? >; cf i 2 Cc(AI-CUT(C));h< � >:: S; cf i 2 Cc(C)) h< � >; cuti 2 Cc(AI-CUT(C)):Extension of the Result of a Call : EXTGS(l; �; �) : ASSCD0�ASSD000 ! ASSCD0The speci�cation of this operation is more complex because it abstracts in a singleoperation the calculation of all sequences Sk = EXTG(l; �k; S0k) and of their concate-nation 2Ne(S)k=1 Sk, performed by the rules R4, R5, R6 (see Figure 2.2). At theabstract level, it may be too expensive or even impossible to simulate the execu-tion of l for all elements of S, as de�ned in the rules. Therefore, we abstract S toits substitutions, losing the ordering. The abstract execution will be the following.Assuming that C abstracts the program substitution sequence with cut informationhS; cf i before l, we compute � = SUBST(C); then we compute �0 = RESTRG(l; �)and, subsequently, we get the abstract sequence B resulting from the abstract exe-cution of l with input �0. The set Cc(B) contains all sequences S0k of rules R4,R5, R6. Then, an over approximation of the set of all possible values 2Ne(S)k=1 Sk iscomputed from the information provided by C and B. This is realized by the fol-lowing operation EXTGS. Let C 2 ASSCD0 , B 2 ASSD000 , hS; cf i 2 (CPSSD0 �CF)and S01; : : : ; S0Ns(S) 2 CPSSD000 .hS; cf i 2 Cc(C);S =< �1; : : : ; �i; >;�8k : 1 � k � Ns(S) : S0k 2 Cc(B)and Sk = EXTG(l; �k; S0k) �9>>=>>;) h2Ne(S)k=1 Sk; cf i 2 Cc(EXTGS(l; C;B)):

19Abstract Lazy Concatenation : CONC : (ASD �ASSCD �ASSD)! ASSDThis operation is the abstract counterpart of the concatenation operation 2. Itis however extended with an additional argument to increase the accuracy. LetB0 = CONC(�;C;B) where � describes a set of input substitutions for a procedure;C describes the set of substitution sequences with cut information obtained by exe-cuting a clause of the procedure on �; B describes the set of substitution sequencesobtained by executing the subsequent clauses of the procedure on �. Then, B0describes the set of substitution sequences obtained by concatenating the resultsaccording to the concrete concatenation operation 2.Let us discuss a simple example to understand the role of �. Assume thatCc(C) = fh<>;nocuti; h< fx1=ag >;nocutig and Cc(B) = f<>;< fx1=bg >g:If the input mode of x1 is unknown, it must be assumed that all combinations ofelements in Cc(C) and Cc(B) are possible. Thus,Cc(B0) = f<>;< fx1=ag >;< fx1=bg >;< fx1=ag; fx1=bg >g:On the contrary, if the input mode of x1 is known to be ground, the outputsh< fx1=ag >;nocuti and < fx1=bg > are incompatible since x1 cannot be boundto both a and b in the input substitution. In this case, we haveCc(B0) = f<>;< fx1=ag >;< fx1=bg >g:The �rst argument � of the operation CONC provides information on the inputvalues: it may be useful to improve the accuracy of the result. The above discussionmotivates the following speci�cation of operation CONC. Note that the statement(9� 2 SS : �0 = ��) is abbreviated by �0 � � in the speci�cation. Let � 2 ASD ,C 2 ASSCD, B 2 ASSD, � 2 CPSD, hS1; cf i 2 (CPSSD �CF) and S2 2 CPSSD .� 2 Cc(�);hS1; cf i 2 Cc(C);S2 2 Cc(B);8�0 2 Subst(S1) [Subst(S2) : �0 � �9>>=>>;) hS1; cf i2S2 2 Cc(CONC(�;C;B)):Operation SEQ : ASSCD ! ASSDThis operation forgets the cut information contained in an abstract sequence withcut information C. It is applied to the result of the last clause of a procedure beforecombining this result with the results of the other clauses.Let C 2 ASSCD and hS; cf i 2 (CPSSD � CF).hS; cf i 2 Cc(C)) S 2 Cc(SEQ(C)):Operation SUBST : ASSCD0 ! ASD0This operation forgets still more information. It extracts the \abstract substitutionpart" of C. It is applied before executing a literal in a clause. See operation EXTGS.Let C 2 ASSCD0 and hS; cf i 2 (CPSSD0 � CF).hS; cf i 2 Cc(C)) Subst(S) � Cc(SUBST(C)):

20 3.3. Abstract SemanticsWe are now in position to present the abstract semantics. Note that we are notconcerned with algorithmic issues here: they are dealt with in Section 4.Extended Abstract Behaviors. Extended abstract behaviors are the abstractcounterpart of the concrete extended behaviors de�ned in Section 2.6.De�nition 3.3. [Extended Abstract Underlying Domain]The extended abstract underlying domain, denoted by EAUD, consists of1. all triples h�; g; ci, where c is a clause of P , g is a pre�x of the body of c,� 2 ASD, and D is the set of variables in the head of c;2. all pairs h�; ci, where c is a clause of P , � 2 ASD, and D is the set ofvariables in the head of c;3. all pairs h�; pr i, where pr is a procedure of P or a su�x of a procedure ofP , � 2 ASD, and D is the set of variables in the head of the clauses of pr.De�nition 3.4. [Extended Abstract Behaviors]An extended abstract behavior is a function from EAUD to ASS[ASSC such that1. every triple h�; g; ci from EAUD is mapped to an abstract sequence with cutinformation C 2 ASSCD0 , where D0 is the set of all variables in c;2. every pair h�; ci from EAUD is mapped to an abstract sequence with cutinformation C 2 ASSCD, where D is the set of variables in the head of c;3. every pair h�; pr i from EAUD is mapped to an abstract sequence B 2 ASSD ,where D is the set of variables in the head of the clauses of pr.The set of extended abstract behaviors is endowed with a structure of partialorder in the obvious way. It is denoted by EAB and its elements are denoted by esat.Abstract Transformation. The abstract semantics is de�ned in terms of two se-mantic functions that are depicted in Figure 3.1. The �rst function E : AB ! EABmaps abstract behaviors to extended abstract behaviors. It is the abstract coun-terpart of the concrete semantic rules of Figure 2.2. The second function TAB :AB ! AB transforms an abstract behavior into another abstract behavior. It isthe abstract counterpart of Rule T1 in De�nition 2.12.Abstract Semantics. The abstract semantics is de�ned as the set of all abstractbehaviors that are both post-�xpoints of the abstract transformation TAB andpre-consistent. The corresponding de�nitions are given �rst; then the rationaleunderlying the de�nitions is discussed.De�nition 3.5. [Post-Fixpoints of TAB]An abstract behavior sat 2 AB is called a post-�xpoint of TAB if and only ifTAB(sat) � sat , i.e., if and only ifTAB(sat)h�; pi � sath�; pi; 8h�; pi 2 AUD:

21TAB(sat)h�; pi = E(sat)h�; pr iwhere pr is the procedure de�ning p,E(sat)h�; pr i =SEQ(C)where C = E(sat)h�; ci if pr ::= cE(sat)h�; pr i = CONC(�;C;B)where B = E(sat)h�; pr 0iC = E(sat)h�; ci if pr ::= c,pr0E(sat)h�; ci = RESTRC(c; C)where C = E(sat)h�; g; cig is the body of cE(sat)h�;<>; ci = EXTC(c; �)E(sat)h�; (g; !); ci = AI-CUT(C)where C = E(sat)h�; g; ciE(sat)h�; (g; l); ci = EXTGS(l; C;B)where B = UNIF-VAR(�0) if l ::= xi=xjUNIF-FUNC(f; �0) if l ::= xi=f(: : :)sath�0; pi if l ::= p(: : :)�0 = RESTRG(l; �00)�00 = SUBST(C)C = E(sat)h�; g; ci.FIGURE 3.1. The Abstract TransformationDe�nition 3.6. [Pre-Consistent Abstract Behaviors]Let 7�! be the concrete semantics of the underlying program, according to De�-nition 2.13. An abstract behavior sat 2 AB is said to be pre-consistent withrespect to 7�! if and only if there exists a concrete behavior 7�!0 such that7�!0 v7�!and such that, for all h�; pi 2 AUD and h�; pi 2 CUD ,� 2 Cc(�);h�; pi 7�!0 S�) S 2 Cc(sath�; pi):In the next section, we show that any pre-consistent post-�xpoint sat of TAB is asafe approximation of the concrete semantics, i.e., it is such that for all h�; pi 2 AUDand h�; pi 2 CUD , � 2 Cc(�);h�; pi 7�! S�) S 2 Cc(sath�; pi):The abstract semantics is de�ned as the set of all pre-consistent post-�xpoints.Indeed, under the current hypotheses on the abstract domains, there is no straight-

22 forward way to choose a \best" abstract behavior among all pre-consistent post-�xpoints. Thus, we consider the problem of computing a reasonably accurate post-�xpoint as a pragmatic issue to be solved at the algorithmic level. In fact, theabstract interpretation algorithm presented in Section 4 is an improvement of thefollowing construction: de�ne the abstract behavior sat? bysat?h�; pi = B?; 8h�; pi 2 AUD :Assume that the domain of abstract sequences is endowed with an upper-boundoperation UB : ASSD �ASSD ! ASSD (not necessarily a least upper bound). Forevery sat1; sat2 2 AB , we de�ne UB(sat1; sat2) byUB(sat1; sat2)h�; pi = UB(sat1h�; pi; sat2h�; pi); 8h�; pi 2 AUD :Let j be an arbitrarily chosen natural number. An in�nite sequence of pre-consistentabstract behaviors sat0; : : : ; sat i; : : : is de�ned as follows:sat0 = sat?;sat i+1 = TAB(sat i) (0 � i < j);sat i+1 = UB(sat i;TAB(sat i)) (j � i):The abstract behaviors sat i are all pre-consistent because sat? is pre-consistent byconstruction, every application of TAB maintains pre-consistency (as proven in thenext section), and each application of UB produces an abstract behavior whose con-cretization contains the concretizations of the arguments. Moreover, assuming thatevery partial order ASSD is �nite or satis�es the �nite ascending chain property,the sequence sat0; : : : ; sat i; : : : has a least upper bound which is the desired pre-consistent post-�xpoint. In case the ASSD contains chains with in�nitely manydistinct elements, UB must be a widening operator [23].The sequence from sat0 to satj is not ascending in general. In fact, sat? is notthe minimum of AB and TAB is not necessarily monotonic nor extensive (i.e.,sat � TAB(sat) does not always hold). From step 0 to j, the computation ofthe sat i simulates as closely as possible the computation of the least �xpoint ofthe concrete transformation. From step j to convergence, all iterates are \lumped"together. All concrete behaviors 7�!j ; 7�!j+1; : : : of the Kleene sequence of the con-crete semantics, are thus included in the concretization of the �nal post-�xpoint sat.So sat describes properties that are true not only for the concrete 7�! semanticsbut also for its approximations 7�!j ; 7�!j+1; : : :. The choice of j is a compromise:a low value ensures a faster convergence while a high value provides a better accu-racy. The abstract interpretation algorithm presented in Section 4 does not iterateglobally over TAB. It locally iterates over E for every needed input pattern h�; piand uses di�erent values of j for di�erent input patterns. Depending on the par-ticular abstract domain, the value can be guessed more or less cleverly. This is therole of the special widening operator of De�nition 4.1. A sample widening operatoris described in Section 5.2, showing how the value of j can be guessed in the caseof a practical abstract domain.3.4. Safety of the Abstract SemanticsWe prove here the safety of our abstract semantics. First, we formally de�ne thenotion of safe approximation. Then, we show that the abstract transformation is

23safe in the sense that, whenever sat safely approximates 7�!, TAB(sat) safely ap-proximates TCB7�! (Theorem 3.1). From this basic result, we deduce that TAB trans-forms pre-consistent abstract behaviors into other pre-consistent abstract behaviors(Theorem 3.2), and that, when sat is a post-�xpoint of the abstract transformationwhich safely approximates a concrete behavior 7�!, it also safely approximates theconcrete behavior TCB7�! (Theorem 3.3). Theorem 3.4 states that abstract behaviorsare, roughly speaking, chain-closed with respect to concrete behaviors. Finally,Theorem 3.5 states our main result, i.e., every pre-consistent post-�xpoint of theabstract transformation safely approximates the concrete semantics.De�nition 3.7. [Safe Approximation]Let 7�!2 CB and sat 2 AB . The abstract behavior sat safely approximates theconcrete behavior 7�! if and only if, for all h�; pi 2 CUD and h�; pi 2 AUD , thefollowing implication holds:� 2 Cc(�);h�; pi 7�! S�) S 2 Cc(sath�; pi):Similarly, let 7�!2 ECB and esat 2 EAB . The extended abstract behavior esatsafely approximates 7�! if and only if, for all h�; pr i; h�; ci; h�; g; ci 2 ECUD andh�; pri; h�; ci; h�; g; ci 2 EAUD , the following implications hold:� 2 Cc(�);h�; pr i 7�! S�) S 2 Cc(esath�; pr i);� 2 Cc(�);h�; ci 7�! hS; cf i�) hS; cf i 2 Cc(esath�; ci);� 2 Cc(�);h�; g; ci 7�! hS; cf i�) hS; cf i 2 Cc(esath�; g; ci):Theorem 3.1. [Safety of the Abstract Transformation]Let 7�!2 CB and sat 2 AB. If sat safely approximates 7�!, then TAB(sat)safely approximates TCB7�! .We �rst establish the following result. Remember that if 7�!2 CB , its extensionin ECB is also denoted by 7�! (see Section 2.6).Lemma 3.1. [Safety of E]Let 7�!2 CB and sat 2 AB. If sat safely approximates 7�!, then E(sat) safelyapproximates 7�! (the extension of 7�! in ECB).Proof. [of Lemma 3.1]The proof follows by structural induction on the syntax of the underlying program.It uses the concrete semantic rules of Figure 2.2, the de�nition of E in Figure 3.1,and the speci�cations of the abstract operations given in Section 3.2. The proof isstraightforward due to the close correspondence of the concrete and the abstractsemantics. We only detail the reasoning for the base case and for the case of a goal(g; l) where l is an atom of the form p(xi1 ; : : : ; xin). The other cases are similar.

24 Base case. Let h�;<>; ci2ECUD and h�;<>; ci2EAUD . Assume that �2Cc(�)and h�;<>; ci 7�! hS; cf i. It must be proven thathS; cf i 2 Cc(E(sat)h�;<>; ci):This relation holds because of the three following facts:hS; cf i = EXTC(c; �) (by R2),EXTC(c; �) 2 Cc(EXTC(c; �)) (by speci�cation of EXTC),E(sat)h�;<>; ci = EXTC(c; �) (by de�nition of E).Induction step. Let h�; (g; l); ci 2 ECUD and h�; (g; l); ci 2 EAUD , where l is anatom of the form p(xi1 ; : : : ; xin). Assume that � 2 Cc(�) and h�; (g; l); ci 7�! hS; cf i.It must be proven thathS; cf i 2 Cc(C); where C = E(sat)h�; (g; l); ci:By Rule R6, there exist program substitutions and program sequences such thath�; g; ci 7�! hS0; cf i (C1)S0 =< �1; : : : ; �i; > (C2)�0k = RESTRG(l; �k) (1 � k � Ns(S)) (C3)h�0k; pi 7�! S0k (1 � k � Ns(S)) (C4)Sk = EXTG(l; �k; S0k) (1 � k � Ns(S)) (C5)S = 2Ne(S)k=1 Sk (C6)Moreover, by de�nition of E(sat), there exist abstract values such thatC = EXTGS(l; C 0; B) (A1)B = sath�0; pi (A2)�0 = RESTRG(l; �00) (A3)�00 = SUBST(C 0) (A4)C 0 = E(sat)h�; g; ci (A5)The following assertions hold. By A5, C1, and the induction hypothesis,hS0; cf i 2 Cc(C 0) (B1):By A4, B1, C2, and the speci�cation of SUBST,�k 2 Cc(�00) (1 � k � Ns(S)) (B2):By A3, B2, C3, and the speci�cation of RESTRG,�0k 2 Cc(�0) (1 � k � Ns(S)) (B3):By A2, B3, C4, and the hypothesis that sat safely approximates 7�!,S0k 2 Cc(B) (1 � k � Ns(S)) (B4):Finally, by A1, B1, B4, C2, C5, C6, and speci�cation of EXTGS,hS; cf i 2 Cc(C):

25Proof. [of Theorem 3.1]The result follows from the de�nition of TAB in Figure 3.1, the de�nition of TCBin Section 2.12, and Lemma 3.1.The next theorem states that the transformation TAB maintains pre-consistency.Theorem 3.2. Let sat 2 AB. If sat is pre-consistent, then TAB(sat) is also pre-consistent.Proof. Let 7�! be the concrete semantics of the underlying program. Since satis pre-consistent, there exists a concrete behavior 7�!0 such that1. 7�!0 v 7�!, and2. sat safely approximates 7�!0.The �rst condition implies that TCB7�!0 v 7�!;since TCB is monotonic and TCB7�! = 7�!.The second condition and Theorem 3.1 imply thatTAB(sat) safely approximates TCB7�!0 :The result follows from the two implied statements and De�nition 3.6.The next two theorems state closure properties of abstract behaviors, which areused to prove the safety of the abstract semantics.Theorem 3.3. Let sat be a post-�xpoint of TAB. Let 7�!2 CB. If sat safely approxi-mates 7�!, then sat also safely approximates TCB7�! .Proof. Let sat safely approximate 7�!. Let h�; pi 2 CUD and h�; pi 2 AUD . Itmust be proven that � 2 Cc(�);h�; pi TCB7�! S)) S 2 Cc(sath�; pi):Assume that the left part of the implication holds. Theorem 3.1 implies thatS 2 Cc(TAB(sat)h�; pi):Since sat is a post-�xpoint and Cc is monotonic,Cc(TAB(sat)h�; pi) � Cc(sath�; pi);and then S 2 Cc(sath�; pi):Theorem 3.4. Let (7�!i)i2N be a chain of concrete behaviors. Let sat 2 AB. If satsafely approximates 7�!i, for all i 2 N, then sat safely approximates (t1i=0 7�!i):

26 Proof. Let us abbreviate (t1i=0 7�!i) by 7�!. It is su�cient to prove that, forany h�; pi 2 AUD and any h�; pi 2 CUD ,� 2 Cc(�);h�; pi 7�! S�) S 2 Cc(sath�; pi):Fix h�; pi, h�; pi, and S satisfying the left part of the implication. By Theorem 2.1,S = t1i=0Si where h�; pi 7�!i Si 8i 2 N:Since sat safely approximates every 7�!i,Si 2 Cc(sath�; pi) for all i 2 N.Finally, since Cc(sath�; pi) is chained-closed,S 2 Cc(sath�; pi):The last theorem states our main result.Theorem 3.5. [Safety of the Abstract Semantics]Let sat be a pre-consistent post-�xpoint of TAB. Then sat safely approximates7�! where 7�! is the concrete semantics of the underlying program.We �rst establish the following statement.Lemma 3.2. Let sat be a pre-consistent post-�xpoint of TAB. There exists a chainof concrete behaviors (7�!i)i2N such that sat safely approximates 7�!i, for alli 2 N and (t1i=0 7�!i) = 7�! where 7�! is the concrete semantics of theunderlying program.Proof. [of Lemma 3.2]The proof is in three steps. First we construct a sequence f7�!0igi2N of lower-approximations of 7�! which is not necessarily a chain; then we modify it to geta chain (7�!i)i2N; �nally, we show that (t1i=0 7�!i) = 7�!. The proof uses thefollowing property of program substitution sequences, whose proof is left to thereader. If S1, S2 and S are program substitution sequences such that S1 v S andS2 v S, then S1 and S2 have a least upper-bound, which is either S1 or S2. Theleast upper-bound is denoted by S1 t S2 in the proof.1. Since sat is pre-consistent, there exists a concrete behavior 7�!0 such thatsat safely approximate 7�!0 and 7�!0 v 7�!. The sequence f7�!0igi2N isde�ned by 7�!00 = 7�!0 and 7�!0i+1 = TCB7�!0i (i 2 N):Since 7�!0 v 7�!, TCB is monotonic and 7�! is a �xpoint, it follows that7�!0i v 7�! (8i 2 N):Moreover, by Theorem 3.3, sat safely approximates every 7�!0i.2. (7�!i)i2N is now constructed by induction over i. The correctness of theconstruction process requires to prove that, after each induction step, therelation 7�!i v 7�! holds. We �rst de�ne7�!0 = 7�!00 :

27Let i 2 N. Assume, by induction, that 7�!0 v : : : v 7�!i v 7�!. Forevery h�; pi 2 CUD , we de�neh�; pi 7�!i+1 (S1 t S2) where � h�; pi 7�!i S1;h�; pi 7�!0i+1 S2:Since 7�!0i+1 v 7�! and 7�!i v 7�!, we have that 7�!i+1 is well-de�ned and7�!i+1 v 7�!. Moreover, since sat safely approximates 7�!i (by induction)and 7�!0i+1, and S1 t S2 is equal either to S1 or S2, in the de�nition of7�!i+1, we have that sat safely approximates every 7�!i+1.3. The Kleene sequence of the concrete semantics is a chain (7�!00i)i2N de�nedas follows: 7�!000 = 7�!? and 7�!00i+1 = TCB7�!00i (i 2 N):Since 7�!? v 7�!0 and TCB is monotonic, it follows, by induction, that7�!00i v 7�!0i v 7�!i v 7�! (8i 2 N):Therefore, by de�nition of the least upper bound and since the least �xpointis the limit of the Kleene sequence,7�! = (t1i=0 7�!00i) v (t1i=0 7�!i) v 7�! :Thus, 7�! = (t1i=0 7�!i):Proof. [of Theorem 3.5]The result is an immediate consequence of Theorem 3.4 and Lemma 3.23.5. Related WorksIn this section we �rst discuss the mathematical approach underlying our abstractsemantics and relate it with the higher-order abstract interpretation frameworksadvocated by P. Cousot and R. Cousot in [24]. Then, we compare our approachwith the abstract semantics for Prolog with control proposed by R. Barbuti et al.in [4], by G. Fil�e and S. Rossi in [34], and by F. Spoto and G. Levi in [84].Cousot and Cousot's Higher-order Abstract Interpretation Frameworks.As mentioned in the introduction, the traditional approach to abstract interpreta-tion can not be applied to approximate the concrete semantics of Section 2. Indeed,we can de�ne a set-based collecting transformation by lifting the concrete seman-tics to sets of program substitution sequences. However, the least �xpoint of thecollecting transformation does not safely approximate the concrete semantics. Theproblem can be solved by restricting to sets of }(CPSD) and }(CPSSD) that enjoysome closure properties ensuring safeness of the least �xpoint. This solution is sim-ilar to the choice of a power-domain structure in denotational semantics [82, 86]:the needed constructions can in fact be viewed as power-domains. However thereis no best way to choose the closure properties. Di�erent closure properties areadequate for di�erent sorts of information. It is therefore advocated by P. Cousot

28 and R. Cousot in [24] that, for higher-order languages, di�erent collecting semanticsshould be de�ned for the same language depending on the kind of properties to beinferred. In our case, at least two dual collecting semantics could be de�ned. Bothof them use sets of program substitution sequences that are chain-closed.1. The �rst semantics considers downwards-closed sets of program substitutionsequences, i.e., such that for any S; S0 2 CPSSD,S 2 �;S0 v S�) S0 2 �:This domain is ordered by inclusion and its minimum is f< ? >g. It is ade-quate to infer non-termination and upper bounds to the length of sequences.In particular, it is adequate for determinacy analysis. However, it is unableto infer termination since < ? > belongs to any set of sequences.2. The second semantics considers upwards-closed sets of program substitutionsequences, i.e., such that for any S; S0 2 CPSSD,S 2 �;S v S0�) S0 2 �:This domain is ordered by � � �0 , �0 � � and its minimum is CPSSD .It is able to infer termination and lower bounds to the length of sequences.It is less adequate than the previous one to infer precise information aboutthe substitutions in the sequences because its least �xpoint corresponds to agreatest �xpoint in a traditional framework ignoring the sequence structure.In both cases, the least �xpoint is well-de�ned because the collecting versions ofthe operations are monotonic, since they have to ensure the closure properties.Moreover, the least �xpoint of the collecting semantics safely approximates theconcrete semantics because all iterates are pre-consistent and the sets are chain-closed. Nevertheless, our formalization has some advantages.1. It can be more e�cient: a single analysis is able to infer all the informationthat can be inferred by the two collecting semantics.2. It can be more accurate: there are pre-consistent post-�xpoints that aremore precise than the intersection of the two collecting semantics.Barbuti et al.'s Abstract Semantics. The abstract semantics proposed by R.Barbuti et al. in [4] aims at modeling control aspects of logic programs such assearch strategy and selection rule. Their semantics is parametric with respect toa \termination theory". The meaning of a program is obtained by composing themeaning of its \logic component" together with a corresponding \termination the-ory" (the \control component"). The latter can be provided either by applyingtechniques of abstract interpretation or by applying proof procedures. In all cases,control information is deduced from outside in the form of a separated terminationanalysis. This is the main di�erence with our framework, where control informa-tion, i.e. information relative to termination or non-termination, is modeled withinthe semantic domains through the notion of substitution sequence.

29Fil�e and Rossi's Abstract Interpretation Framework. The framework pro-posed by G. Fil�e and S. Rossi in [34] consists of a tabled interpreter which exploresOLDT abstract trees decorated with control information about sure success or fail-ure of the goals. Such information is used by the cut operation to prune the OLDT-tree whenever a cut is reached. Sure success is modeled in our framework by abstractsequences representing only non-empty sequences. The abstract semantics de�nedby Fil�e and Rossi is operational and non-compositional while ours is compositionaland based on the �xpoint approach. Moreover, the abstract execution of a goal(g; !) is di�erent. Whenever is known that g surely succeeds, their framework stopsafter generating the �rst "sure" solution, while ours computes the entire abstractsequence for g and then cuts it to maintain at most one solution. Our approachmay thus imply some redundant work. However, if g is used in several contexts,their framework should recognize this situation and expand the OLDT-tree further.Spoto and Levi's Denotational Abstract Semantics. The related work clos-est to ours is the denotational abstract semantics proposed by F. Spoto and G. Leviin [84]. They de�ne a goal-independent and compositional abstract semantics ofProlog modeling the depth-�rst search rule and the cut. Their semantics associatesto any Prolog program a sequence of pairs consisting of a \kernel" constraint andits \observability" part. Intuitively, kernel constraints denote computed answers,while observability constraints give information about divergent computations andcut executions. The main di�erence with our approach is that their semantics isgoal-independent while ours is not. This is due to the fact that our abstract se-mantics is functional, i.e., it associates to each program P a function (an abstractbehavior) mapping every pair h�; pi to an abstract sequence B. However, thischoice is unrelated to our concrete semantics: we could as well abstract the con-crete semantics by a relational abstract semantics [22], making it possible to expressdependencies between input substitutions and the corresponding output substitu-tion sequences. This is the approach of [56] where we express dependencies betweenthe size of input terms and the number of corresponding output substitutions. Wewill go back to this issue at the end of Section 6.2.4. GENERIC ABSTRACT INTERPRETATION ALGORITHMA generic abstract interpretation algorithm is an algorithm that is parametric withrespect to the abstract domains. It can be instantiated by various domains toobtain di�erent data-ow analyses. Several such algorithms have been proposed forProlog [8, 32, 53, 54, 61, 62, 71, 76], but they do not handle the control features ofthe language such that Prolog search rule and cut.The algorithm presented here is essentially an instantiation of the universal �x-point algorithm described in [60] to the abstract semantics of Section 3. In partic-ular, it is quite similar to the algorithm presented in [53, 61]: in fact, the abstractsemantics of Section 3 can be viewed as a proper generalization of the abstractsemantics described in [53, 61], where the sequences of computed answer substitu-tions are no longer abstracted to sets of substitutions.The universal algorithm in [60] is top-down, i.e., it computes a subset of the �x-point (in the form of a set of tuples) containing the output value corresponding toa distinguished input together with all the tuples needed to compute it. Top-down

30 algorithms are naturally used to perform data-ow analyses, where one is interestedin collecting the abstract information corresponding to a class of initial queries de-scribed by the distinguished input. It is more e�cient in general to compute apart of the �xpoint only and this allows one to use in�nite abstract domains, whichare more expressive [23]. Although the instantiation of [60] to our abstract seman-tics is as mechanical as in our previous works (a slightly more general wideningoperator is needed however), the correctness of the algorithm involves some newtheoretical issues: the pre-consistency of the post-�xpoint has now to be proven.Nevertheless, since the novel algorithm is in practice very similar to the algorithmpresented in [61], we only discuss here the extended widening operator which en-sures a good compromise between e�ciency and accuracy. A detailed descriptionof the algorithm and its correctness proof can be found in [59].4.1. Extended WideningThe extended widening operation used by the novel algorithm is de�ned as follows.De�nition 4.1. [Extended Widening] An extended widening on abstract sequencesis a (polymorphic1) operation r : ASSD � ASSD ! ASSD that enjoys thefollowing properties. Let fBigi2N be a sequence of elements of ASSD . Considerthe sequence fB0igi2N de�ned byB00 = B0;B0i+1 = Bi+1rB0i (i 2 N):The following conditions hold:1. B0i � Bi (i 2 N);2. the sequence fB0igi2N is stationary, i.e., there exists j � 0 such that B0i =B0j for all i such that j � i.An extended widening is slightly more general than a widening [23] because thesequence fB0igi2N is not required to be a chain.Let us now explain how the extended widening is used by the algorithm. Givenan input pair h�; pi, the algorithm iterates on the computation of TAB(sat)h�; piuntil convergence, and concurrently updates sat, as follows (recursive calls { whichalso modify sat { are ignored in the discussion):1. B00 = B? is stored in the initial sat as the output for h�; pi;2. Bi results from the i-th execution of TAB(sat)h�; pi;3. B0i = BirB0i�1 is stored in the current sat after the i-th execution ofTAB(sat)h�; pi;4. the loop is exited when Bi+1 � B0i.The loop terminates because there must be some i such that B0i+1 = B0i (other-wise Condition 2 of De�nition 4.1 would be violated), and, hence, Bi+1 � B0i sinceB0i+1 � Bi+1 by Condition 1. The loop can be resumed later on because some1It is parametrized over D.

31values in sat have been updated (Step 1 is omitted in these subsequent executions);all re-executions of the loop terminate for the same reasons as the �rst one; more-over, the loop can only be resumed �nitely many times because no element in satcan be improved in�nitely many often, since there is a j such that B0i = B0j for alli greater or equal to j. Note that a local post-�xpoint is attained each time theloop is exited. Thus a global post-�xpoint is obtained when all loops are termi-nated for all values in sat. The formal characterization of De�nition 4.1 elegantlycaptures the idea that the algorithm sticks as closely as possible to the abstractsemantics during the �rst iterations, and starts lumping the results together onlywhen enough accuracy is obtained, in order to ensure convergence. The advantageof this characterization is that no particular value of j is �xed. So we can thinkof \intelligent" extended widenings that observe how the successive iterates behaveand that enforce convergence exactly at the right time. The extended wideningused in our experimental evaluation is based on this intuitive idea (see Section 5.2).5. CARDINALITY ANALYSISThe abstract interpretation framework for Prolog presented in previous sections hasbeen instantiated by a domain of abstract sequences to perform so-called cardinalityanalysis [6]. Cardinality analysis approximates the number of solutions to a goal andis useful for many purposes such as indexing, cut insertion and elimination [27, 81],dead code elimination, and memory management and scheduling in parallel systems[9, 40]. The analysis subsumes traditional determinacy analysis [25, 27, 39, 81].This section is organized as follows. First we describe how a generic abstractdomain for cardinality analysis, which is parametric with respect to any domain ofabstract substitutions, can be built. Then, we instantiate this generic domain tothe domain of abstract substitutions Pattern [61]. Finally, we discuss experimentalevaluations of the analysis from both accuracy and e�ciency standpoints.5.1. Generic Abstract Domains for Cardinality AnalysisIn this section, generic domains of abstract sequences and abstract sequences withcut information are built. The domains are generic with respect to the informa-tion on the substitutions in the sequences, but they provide speci�c informationabout the sequence structure. The latter consists of lower and upper bounds to thenumber of substitutions in the sequences and information about the nature (i.e., �-nite, incomplete or in�nite) of the sequences. This information allows us to performnon-termination analysis and a limited form of termination analysis. Predicate levelanalyses, like determinacy and functionality [30], which were previously consideredfalling outside the scope of abstract interpretation, can be performed.Abstract Substitutions. The substitution part of our generic domain of abstractsequences is assumed to be an element of an arbitrary domain of abstract substitu-tions ASD. The only requirement on ASD is that it contains a minimum element�; such that Cc(�;) = ;. An abstract domain can always be enhanced with suchan element.

32 Abstract Sequences. The generic domain of abstract sequences manipulatestermination information whose domain is de�ned below.De�nition 5.1. [Termination Information]A termination information t is an element of the set TI = fst ; snt ; ptg endowedwith the ordering � de�ned byt1 � t2 , either t1 = t2 or t2 = pt 8t1; t2 2 TI :The symbol st stands for \sure termination" and it characterizes �nite sequences;snt stands for \sure non termination" and characterizes incomplete and in�nitesequences; pt stands for \possible termination" and corresponds to absence of in-formation. The domain of abstract substitution sequences is de�ned as follows.De�nition 5.2. [Abstract Sequences]Let D be a �nite set of program variables. We denote by ASSD the set of all4-tuples h�;m;M; ti such that � 2 ASD, m 2 N, M 2 N [f1g, and t 2 TI .Informally, � describes all substitutions in the sequences, m and M are lower andupper bounds on the number of substitutions in the sequences, and t is an infor-mation on termination. The ordering on abstract sequences is de�ned as follows.De�nition 5.3. [Ordering on Abstract Sequences]Let B1; B2 2 ASSD.B1 � B2 i� �1 � �2 and m1 � m2 and M1 �M2 and t1 � t2:The set of program substitution sequences described by an abstract sequence B isformally de�ned as follows.De�nition 5.4. [Concretization for Abstract Sequences]Let B=h�;m;M; ti2ASSD. We de�neCc(B) = Sseq1(�) \ Sseq2(m;M) \ Sseq3(t)where Sseq1(�) = fS : S 2 PSSD and Subst(S) � Cc(�)g;Sseq2(m;M) = fS : S 2 PSS and m � Ns(S) �Mg;Sseq3(snt) = fS : S 2 PSS and S is incomplete or in�niteg,Sseq3(st) = fS : S 2 PSS and S is �niteg,Sseq3(pt) = PSS :Monotonicity of the concretization function is a simple consequence of the de�nition.We denote by B? the special abstract sequence h�;; 0; 0; snti which is such thatCc(B?) = f< ? >g as required in Section 3.1. It is easy to prove that for allabstract sequences B 2 ASSD, the set Cc(B) is chain-closed (see [59]).Abstract Sequences with Cut Information. Abstract sequences with cutinformation are obtained by enhancing abstract sequences with information aboutexecution of cuts.Let us �rst de�ne the abstract domain for cut information.

33De�nition 5.5. [Abstract Cut Information]An abstract cut information acf is an element of the setACF =fcut ; nocut ; weakcutg.De�nition 5.6. [Abstract Sequences with Cut Information]Let D be a �nite set of program variables. We denote by ASSCD the set of pairshB; acf i where B 2 ASSD and acf 2 ACF .Informally, cut indicates that a cut has been executed in all sequences, nocut thatno cut has been executed in any sequence, and weakcut that a cut has been executedfor all sequences producing at least one solution. More formally, the concretizationof an abstract sequence with cut information is de�ned as follows.De�nition 5.7. [Concretization for Abstract Sequences with Cut Information]Let B 2 ASSD. We de�neCc(hB; cuti) = fhS; cuti : S 2 Cc(B)g;Cc(hB;nocuti) = fhS; nocuti : S 2 Cc(B)g;Cc(hB;weakcuti) = fhS; cuti : S 2 Cc(B)g[fhS; nocuti : S 2 Cc(B) and S 2 f<>;< ? >gg:5.2. Abstract OperationsOur next task is to provide de�nitions of all abstract operations speci�ed in Sec-tion 3.2. For space reasons, we describe here a subset of the operations, i.e., ex-tended widening, uni�cation, operation treating cut, and concatenation. The otheroperations are described in the appendix. The reader is referred to [59] for thecorrectness proofs.The operations on abstract substitutions which are used in the de�nition of theoperations on abstract sequences will be recalled when needed.Extended Widening: r : ASSD �ASSD ! ASSDWe require that the abstract domain ASD is equipped with a widening operationr0 : ASD � ASD ! ASD. It can be an extended widening, a normal widening,or, if ASD is �nite or enjoys the �nite ascending chain property, any upper boundoperation. The widening on sequences is obtained by taking the least upper boundof the termination components, the minimum of the lower bounds and setting theupper bound to in�nity.Assume that Bold = h�old ;mold ;Mold ; told i and Bnew = h�new ;mnew ;Mnew ; tnew i.The operation r : ASSD �ASSD ! ASSD is de�ned as follows.BnewrBold = h�newr0�old ;mnew ;Mnew ; tnew i if �new 6� �old= h�old ;mnew ;Mnew ; pti if �new � �old and tnew 6� told= h�old ;min(mnew ;mold);1; told i if �new � �old and tnew � told and(mnew <mold or Mnew>Mold)= Bold if Bnew � Bold :The �rst case makes sure that the algorithm iterates until the abstract substitutionpart stabilizes. When it is stable, the widening is applied on sequences.

34 Example. Consider the following program:repeat:repeat :- repeat:The concrete semantics of this program maps the input h�; repeati, where � isthe empty substitution, to the in�nite sequence < �; : : : ; �; : : : >.On this example, because the program has no variables, our domain of abstractsubstitutions only contains two values, say �; and �>, such thatCc(�;) = ;Cc(�>) = f�g:Let B? = h�;; 0; 0; snti. Starting from B?, the algorithm computes the abstractsequencesB0 = B? B00 = B?B1 = h�>; 1; 1; snti B01 = B1rB00 = h�>; 1; 1; sntiB2 = h�>; 2; 2; snti B02 = B2rB01 = h�>; 1;1; sntiB3 = h�>; 2;1; sntiNotice that the widening on sequences is applied when the abstract substitutionpart stabilizes, i.e., after the computation of the abstract sequence B2. The nextiterate B3 satis�es the property that B3 � B02. Hence, according to the discussionin Section 4.1, the execution terminates returning the �nal valueB02 = h�>; 1;1; snti:Observe that B02 safely approximates the concrete in�nite sequence < �; : : : ; �; : : : >.Moreover, it expresses the fact that the execution of repeat surely succeeds at leastonce and surely does not terminate.Uni�cation of Two Variables: UNIF-VAR: ASfx1;x2g ! ASSfx1;x2gGiven an abstract substitution � with domain fx1; x2g, this operation returns anabstract sequence which represents a set of substitution sequences of length 0 or 1(depending upon the success or failure of the uni�cation). The terms bound tox1 and x2 are uni�ed in all these sequences. The operation UNIF-VAR on abstractsequences uses an upgraded version of the operation UNIF-VAR on abstract substi-tutions de�ned in [53, 61]. The latter, in addition to the resulting abstract substi-tution, produces now two ags indicating whether the uni�cation always succeeds,always fails, or can both succeed and fail. The additional information is expressedby the boolean values ss and sf as speci�ed below.Operation UNIF-VAR: ASfx1;x2g ! (ASfx1;x2g � Bool � Bool)Let � 2 ASfx1;x2g and h�0; ss; sf i = UNIF-VAR(�). The following conditions hold:1. 8� 2 Cc(�) : 8� 2 SS : (� 2 mgu(x1�; x2�)) [[��]] 2 Cc(�0));2. ss = true) (8� 2 Cc(�) : x1� and x2� are uni�able);3. sf = true) (8� 2 Cc(�) : x1� and x2� are not uni�able):Based on the upgraded operation UNIF-VAR for abstract substitutions, we provide animplementation of the operation UNIF-VAR for abstract sequences, which is correct

35with respect to the corresponding speci�cation given in Section 3.2.The operation UNIF-VAR: ASfx1;x2g ! ASSfx1;x2g on abstract sequences is de�nedas follows. Let � 2 ASfx1;x2g and h�00; ss ; sf i = UNIF-VAR(�). We have thatUNIF-VAR(�) = B0 where B0 is the abstract sequence h�0;m0;M 0; t0i such that�0 = �00m0 = if ss then 1 else 0M 0 = if sf then 0 else 1t0 = st :Abstract Interpretation of the Cut: AI-CUT: ASSCD0 ! ASSCD0Let C = hh�;m;M; ti; acf i. AI-CUT(C) = hh�0;m;0M 0; t0i; acf 0i where�0 = �m0 = min(1;m)M 0 = min(1;M)t0 = st if m � 1 or t = st= snt if M = 0 and t = snt= pt otherwiseacf 0 = cut if m � 1 or acf = cut= nocut if M = 0 and acf = nocut= weakcut otherwise:Example. Consider the programp(X) :- q(X); !:q(X) :- X = a:q(X) :- X = b:For the sake of simplicity we use a simple domain of abstract substitutions whichcan be seen as the mode component of the Pattern domain [56, 61]. The exampleis intended to illustrate the abstract execution of the operation AI-CUT. Hence, wedo not enter here into the details of the other operations, but the reader is referredto the appendix for their de�nition.The abstract execution of the procedure p called with its argument being avariable is as follows. Let � = X 7! varbe the initial abstract substitution. Let c be the clause of the program de�ning p.First, the abstract sequence with cut information C is computed byC = EXTC(c; �) = hhX 7! var; 1; 1; sti;nocuti:Then, the procedure q that occurs in the body of c is executed with � = SUBST(C)returning the abstract sequenceB = hX 7! ground; 2; 2; sti:Hence, the abstract sequence with cut information C 0 is computed as followsC 0 = EXTGS(q(X); C;B) = hhX 7! ground; 2; 2; sti;nocuti:Now, the operation AI-CUT(C 0) is applied. Following the de�nition above, oneobtains AI-CUT(C 0) = hhX 7! ground; 1; 1; sti; cuti

36 expressing the fact that a cut in the body of c is surely executed. The �nal result isB0 = SEQ(C 0) = hX 7! ground; 1; 1; stistating that the execution of p called with its argument being a variable surelyterminates and succeeds exactly once.Consider now the abstract execution of the procedure p called with a groundargument. Let � = X 7! groundbe the initial abstract substitution. In this case, the abstract sequence with cutinformation C is �rst computed byC = EXTC(c; �) = hhX 7! ground; 1; 1; sti;nocuti:Then, the procedure q is executed with � = SUBST(C) returningB = hX 7! ground; 0; 1; sti:The abstract sequence with cut information C 0 is computed as followsC 0 = EXTGS(q(X); C;B) = hhX 7! ground; 0; 1; sti;nocuti:The operation AI-CUT(C 0) returnsAI-CUT(C 0) = hhX 7! ground; 0; 1; sti;weakcutiexpressing the fact that, in this case, the computation either fails without executingthe cut or succeeds once after executing the cut. The �nal result isB0 = SEQ(C 0) = hX 7! ground; 0; 1; stistating that the execution of p called with a ground argument succeeds at mostonce and surely terminates.The Pattern domain used in our experiments is more elaborated than the simpledomain of abstract substitutions used in this example. However, it does not providemore precision in these cases. A more sophisticated domain where an abstractsequence is represented as h< �1; : : : ; �n >;m;M; ti with < �1; : : : ; �n > beingan explicit sequence of abstract substitutions could return in the �rst case a moreprecise result. Indeed, one could obtain B = hfX 7! ag; fX 7! bg; 2; 2; sti and thenB0 = hfX 7! ag; 1; 1; sti. However, such a domain could not improve the result inthe second case since the fact that either X 7! a or X 7! b would be represented byX 7! ground as we have done above.Abstract Lazy Concatenation. The implementation of the operation CONC iscomplicated here, in order to get accurate results when the domain ASD is in-stantiated to the domain Pattern. The implementation works on enhanced sets ofabstract sequences which allow us to keep individual structural information aboutthe results of every clause in order to detect mutual exclusion of the clauses.Let us motivate the lifting of abstract sequences to enhanced abstract sequences.Lifting an abstract domain to its power set (see e.g., [20, 35]) is sometimes usefulwhen the original abstract domain is not expressive enough to gain a given level

37of accuracy. Replacing an abstract domain by its power set is computationallyexpensive however (see [90]). Sometimes, the accuracy is lost only inside a fewoperations; thus, a good compromise can be to lift the domain only locally, whenthese operations are executed, and to go back to the simple domain afterwards. Thisis exactly what we are going to do for the operation CONC. The lifted version of theabstract domain that we are about to de�ne is useful when the abstract domain isable to express de�nite, but not disjunctive, structural information about terms. Insuch a domain, for instance, the principal functor of the term bound to a programvariable can be either de�nitely known or not known at all; it is not possible toexpress that it belongs to a given �nite set. The domain Pattern used in ourexperiments is an abstract domain of this kind. Disjunctive structural informationis however essential to implement the operation CONC accurately: it allows us todetect mutually exclusive abstract sequences, i.e., abstract sequences that shouldnot be \abstractly concatenated" since they correspond to di�erent concrete inputs.In order to keep disjunctive structural information, our implementation of CONCworks on a �nite set of abstract sequences. This set is \normalized" in some way, inorder to simplify the case analysis in the implementation. Basically, we di�erentiatebetween \surely empty" abstract sequences, approximating only sequences of theform <> or < ? >, and \surely non empty" abstract sequences, approximatingonly sequences of the form < � >:: S. This is useful because sequences such as <>or < ? > are possible outputs for any input, while sequences of the form < � >:: Sare only possible for some inputs. Therefore we only have to check incompatibilityof \surely non empty" abstract sequences. This discussion motivates the followingde�nitions of semi-simple abstract sequences and simple abstract sequences.De�nition 5.8. [Semi-Simple Abstract Sequences]Let B 2 ASSD. We say that B is a semi-simple abstract sequence if1. either, � = �; and m =M = 02. or, � 6= �; and 1 � m �M .De�nition 5.9. [Simple Abstract Sequences]Let B 2 ASSD. We say that B is a simple abstract sequence if it is semi-simpleand t 2 fsnt ; stg.Semi-simple abstract sequences formalize our idea of distinguishing between \surelyempty" and \surely non empty" abstract sequences. Note that, assuming that �;is the only abstract substitution such that Cc(�;) = ;, we have that Cc(B) 6= ; forany semi-simple abstract sequence B.De�nition 5.10. [Enhanced Abstract Sequences]Let D be a �nite set of program variables. We denote by ASSenhD the set ofall sets of the form fB1; : : : ; Bng, where n � 0 and B1; : : : ; Bn are semi-simpleabstract sequences from ASSD. Elements of ASSenhD are called enhanced abstractsequences; they are denoted by SB in the following. The concretization functionCc : ASSenhD ! CSSD is de�ned by Cc(SB) = SB2SB Cc(B):The operation SPLIT1 transforms an arbitrary abstract sequence into an equivalentenhanced abstract sequence.

38 Operation SPLIT1 : ASSD ! ASSenhDThis operation is required to satisfy the property that for every B 2 ASSD ,Cc(SPLIT1(B)) = Cc(B). Let B = h�;m;M; ti. We de�ne SB 0 = SPLIT1(B)as SB 0 = SB1 [SB2 whereSB1 = fh�;; 0; 0; tig if m = 0= ; otherwiseSB2 = fh�;max(1;m);M; tig if � 6= �; and max(1;m) �M= ; otherwise:The operation MERGE is the converse of SPLIT1: it transforms an enhanced abstractsequence into a plain abstract sequence. Most of the time, this operation loses partof the information expressed by the enhanced abstract substitution sequence; butit does not lose any information when the enhanced abstract sequence results froma single application of SPLIT1.Operation MERGE : ASSenhD ! ASSDThe operation MERGE satis�es the following properties:1. For every SB 2 ASSenhD , Cc(SB) � Cc(MERGE(SB))2. For every B 2 ASSD, Cc(MERGE(SPLIT1(B))) = Cc(B).The de�nition of MERGE requires choosing a particular abstract sequence B; suchthat Cc(B;) = ;. We decide that B; = h�;; 1; 0; sti. This choice is arbitrary sincethere is no best (least) representation of the empty set of abstract sequences in thisdomain. Moreover, it uses the binary operation UNION : (ASD � ASD) ! ASD ,which is inherited from our previous framework. The latter is extended to �nitesequences of abstract substitutions as follows:UNION(<>) = �;UNION(< � >) = �; for every � 2 ASDUNION(< �1; : : : ; �n >) = UNION(�1; UNION(< �2; : : : ; �n >)),for all �1; : : : ; �n 2 ASD (n � 2).The operation MERGE can now be de�ned. Let t denote the least upper boundon TI. Let SB 2 ASSenhD such that SB = fB1; : : : ; Bng and Bi = h�i;mi;Mi; tii(1 � i � n). The abstract sequence B0 = MERGE(SB) is such thatB0 = B; if n = 0= B1 if n = 1= hUNION(< �1; : : : ; �n >);min(m1; : : : ;mn);max(M1; : : : ;Mn); t1 t : : : t tni if n � 2:The notion of simple abstract sequence with cut information is also useful to simplifythe case analysis in the implementation of CONC.De�nition 5.11. [Simple Abstract Sequences with Cut Information]Let B 2 ASSD and acf 2 ACF . The abstract sequence with cut informationhB; acf i is said to be simple if B is simple and acf 2 CF .

39The operation SPLIT2 converts an arbitrary abstract sequence with cut informationinto an equivalent set of simple abstract sequences with cut information.Operation SPLIT2 : ASSCD ! }(ASSCD)The operation SPLIT2 satis�es the following properties. For every C 2 ASSCD,1. SC02SPLIT2(C)Cc(C 0) = Cc(C);2. all abstract sequences with cut information in SPLIT2(C) are simple.Its de�nition is simple. We �rst apply the operation SPLIT1 to the abstract sequencepart of C. Then we split the cut information. Finally we split the terminationinformation. Formally, SPLIT2(C) is de�ned as follows.1. Let C = hB; acf i 2 ASSCD. We de�neSPLIT2(C) = SB02SPLIT1(B) SPLIT2(hB0; acf i):2. Let B = h�;m;M; ti 2 ASSD . Assume that B is semi-simple. We de�neSPLIT2(hB;weakcuti) = SPLIT2(hB;nocuti) [SPLIT2(hB; cuti) if m = 0= SPLIT2(hB; cuti) if m � 1:(Remember that, by De�nition 5.8, we also have � = �; and M = 0, in the�rst case, and � 6= �; and m �M , in the second case.)3. Let B = h�;m;M; ti 2 ASSD and cf 2 CF . Assume that B is semi-simple.We de�neSPLIT2(hB; cf i) = fhB; cf ig if t 2 fsnt ; stg;= fhh�;m;M; snti; cf i; hh�;m;M; sti; cf ig if t = pt :Before presenting the implementation of CONC, we still need to specify the operationEXCLUSIVE, which is aimed at detecting incompatible outputs. An implementationof this operation for the domain Pattern is given in Section 5.3.Operation EXCLUSIVE : (ASD �ASD �ASD)! BoolThe operation EXCLUSIVE satis�es the following property. For all �; �1; �2 2 ASD,EXCLUSIVE(�; �1; �2)) :(9� 2 Cc(�); �1 2 Cc(�1); �2 2 Cc(�2); �1; �2 2 SS :��1 = �1 and ��2 = �2):We are now ready to describe the operation CONC.Operation CONC : (ASD �ASSCD �ASSenhD)! ASSenhD .Let � 2 ASD, C1 2 ASSCD and SB2 2 ASSenhD . SB 0 = CONC(�;C1;SB2) is de�nedas follows. We assume that Bi = h�i;mi;Mi; tii.1. Let us assume �rst that C1 = hB1; acf 1i is simple and SB2 = fB2g.(a) Suppose that acf 1 = cut or t1 = snt . In this case, we de�neSB 0 = fB1g:(b) Suppose, on the contrary, that acf 1 = nocut and t1 = st . We de�ne

40 SB 0 = fB2g if M1 = 0= fh�1;m1;M1; t2ig if M1 � 1 and M2 = 0= fhUNION(�1; �2);m1 +m2;M1 +M2; t2ig if M1 � 1 and M2 � 1and :EXCLUSIVE(�; �1; �2)= ; if M1 � 1 and M2 � 1and EXCLUSIVE(�; �1; �2):2. In the general case, we de�neSB 0 = [C2SPLIT2(C1)B2SB2 CONC(�;C; fBg):5.3. Instantiation to PatternThe domain of abstract substitutions Pattern has been introduced in [61] and ithas been used in many of our previous works, e.g.,[32, 62]. The reader is referredto [61] for a detailed description of the domain and of its abstract operations.The Abstract Domain Pattern. The version of Pattern used in the experimen-tal evaluation of Section 5.4 can be best viewed as an instantiation of the genericpattern domain Pat(R) [17] with mode, sharing, and arithmetic components.The key intuition behind Pat(R) is to represent information on some subterms oc-curring in a substitution instead of information on terms bound to variables only.More precisely, Pat(R) may associate the following information with each conside-red subterm: (1) its pattern, which speci�es the main functor of the subterm (ifany) and the subterms which are its arguments; its properties, which are left un-speci�ed and are given in the domain R. In addition to the above information, eachvariable in the domain of the substitution is associated with one of the subterms.It can be expressed that two arguments have the same value (and hence that twovariables are bound together) by associating both arguments with the same sub-term. It should be emphasized that the pattern information may be void. In theory,information on all subterms could be kept but the requirement for a �nite analysismakes this impossible for almost all applications. As a consequence, the domainshares some features with the depth-k abstraction [48], although Pat(R) does notimpose a �xed depth but adjusts it dynamically through upper bound and wideningoperations. Note that the identi�cation of subterms (and hence the link betweenthe structural components and the R-domain) is a somewhat arbitrary choice. InPat(R), subterms are identi�ed by integer indices, say 1; : : : ; n if n subterms areconsidered, and we denote sets of indices by the symbol I .More formally, the pattern and same-value component can be described as follows.The pattern component is a partial function frm : I 6! PatI , from the set of indicesI to the set of patterns over I , i.e., elements of the form f(i1; : : : ; in), where f 2 Fis a functor symbol of arity n and i1; : : : ; in 2 I . When the pattern is unde�ned foran index i, we write frm(i) = undef. The same-value component is a total functionsv : D ! I , where D = fx1; : : : ; xng is the domain of the abstract substitution.A pattern component frm : I 6! PatI denotes a set of families (ti)i2I of terms asde�ned below.Cc(frm) = f(ti)i2I j frm(i) = f(i1; : : : ; in)) ti = f(ti1 ; : : : ; tin);8i; i1; : : : ; in 2 I;8f 2 Fg:

41In order to simulate uni�cation with occur-check, we also assume that every patterncomponent frm satis�es the following condition: the relation �� I � I such thati � j if and only if frm(i) is of the form f(: : : ; j; : : :) must be well-founded.A pair hsv ; frmi with sv : D ! I and frm : I 6! PatI is called structural abstractsubstitution; it denotes a set of program substitutions as follows:Cc(hsv ; frmi) = f� 2 PSD j 9(ti)i2I 2 Cc(frm) : xj� = tsv(xj); 8xj 2 Dg:The R-domain is the generic part which speci�es subterm information by descri-bing properties of a set of tuples < t1; : : : ; tn > where t1; : : : ; tn are terms. As aconsequence, de�ning the R-domain amounts essentially to de�ning a traditionaldomain on substitutions and its operations. We now describe the various compo-nents of the R-domain which can be built as an open product [17].The mode component is described in [61] and associates a mode from the setModes = fvar; ground; novar; noground; ngv; gv; anyg with each subterm. For-mally, it is a total function mo : I ! Modes whose concretization is de�ned asCc(mo) = f(ti)i2I j ti 2 Cc(mo(i)); 8i 2 Ig:The sharing component maintains information about possible sharing between pairsof subterms and is also described in [61]. Formally, it is a symmetrical relationps � I � I whose concretization is de�ned asCc(ps) = f(ti)i2I j var (ti) \ var (tj)) ps(i; j); 8i; j 2 Ig:The arithmetic component is novel and aims at using arithmetic predicates to detectmutual exclusion between clauses. It approximates information about arithmeticrelationships by rational order constraints, i.e., binary constraints of the form i � jand unary constraints of the form i � c, where i; j are indices, � 2 f>;�;=; 6=;�; <gand c is an integer constant. For instance, a built-in X � Y + 2 is approximatedby a constraint X > Y . Formally, an element arithm is a set of rational orderconstraints over indices, whose concretization is de�ned as follows (a constraintbeing satis�ed only if the terms are numbers).Cc(arithm) = f(ti)i2I j 8 i � j 2 arithm : ti � tj and 8 i � c 2 arithm : ti � cg:The Operation EXCLUSIVE. We describe here the implementation of the op-eration EXCLUSIVE on our domain of abstract substitutions. This operation wasnot present in our previous works. It aims at detecting situations where two outputabstract sequences B1 and B2 are incompatible, given that they both originate fromthe same abstract input substitution �. Only the abstract substitution components�1 and �2 of B1 and B2 are useful to detect such situations. Thus the operationEXCLUSIVE has three arguments �, �1, and �2. (See its speci�cation in Section 5.2.)Let us �rst introduce the notion of decomposition of a program substitution withrespect to a structural abstract substitution. It represents the family of terms,occurring in the program substitution, that are given an index by the structuralabstract substitution.De�nition 5.12. [Decomposition of a Program Substitution]Let hsv ; frmi be a structural abstract substitution over domain D = fx1; : : : ; xngand set of indices I . Let also � 2 Cchsv ; frmi. The decomposition of � with respectto hsv ; frmi is the (unique) family of terms (ti)i2I such that

42 � = fx1=tsv(x1); : : : ; xn=tsv(xn)g and (ti)i2I 2 Cc(frm):Existence and unicity of the family (ti)i2I can be proven by an induction argumentthat uses the fact that the relation � over I is well-founded. Unicity holds condi-tional to the fact that I does not contain any "useless" element, i.e., for every i 2 I ,there exists a variable xj 2 D and a set of indices i1; : : : ; ik such that i1 = sv(xj),i1 � : : : � ik, and ik = i. From now on we assume that this condition always holds.The next de�nition models a property of the structural abstract substitutions ob-tained by performing any number of abstract uni�cation steps on another structuralabstract substitution.De�nition 5.13. [Instance of a Structural Abstract Substitution]Let hsv ; frmi and hsv 0; frm 0i be two structural abstract substitutions over thesame domain D = fx1; : : : ; xng and respective sets of indices I and I 0. Letalso im : I ! I 0 be a total function. We say that hsv 0; frm 0i is an instance ofhsv ; frmi with respect to im if the following conditions hold:1. sv 0 = im � sv ;2. for all i; i1; : : : ; im 2 I;frm(i) = f(i1; : : : ; im)) frm 0(im(i)) = f(im(i1); : : : ; im(im)):Moreover, we say that hsv 0; frm 0i is an instance of hsv ; frmi if there exists a functionim such that the conditions hold.The next property holds.Property 5.1. Let hsv ; frmi and hsv 0; frm 0i be two structural abstract substitutions,and let im : I ! I 0 be such that hsv 0; frm 0i is an instance of hsv ; frmi with respectto im. Let also � 2 Cchsv ; frmi, �0 2 Cchsv 0; frm 0i, and � 2 SS . Finally, let(ti)i2I and (t0i)i2I0 be the decompositions of � and �0 with respect to hsv ; frmiand hsv 0; frm 0i, respectively. Then we have�0 = ��) (ti�)i2I = (t0im(i))i2I :The proof is a simple induction on the well-founded relation�, induced on I by frm .The next de�nitions and properties are instrumental to the implementation andcorrectness proof of the operation EXCLUSIVE.De�nition 5.14. [Exclusive Pair of Indices]Let frm1 and frm2 be two pattern components over sets of indices I and J ,respectively. Let also i 2 I and j 2 J .1. We say that hi; ji is directly exclusive with respect to hfrm1; frm2i i� frm1(i) =f(i1; : : : ; ip), frm2(j) = g(j1; : : : ; jq) and either f 6= g or p 6= q.2. We say that hi; ji is exclusive with respect to hfrm1; frm2i i� hi; ji is directlyexclusive with respect to hfrm1; frm2i, or frm1(i) = f(i1; : : : ; ip), frm2(j) =f(j1; : : : ; jp) and there exists k : 1 � k � p such that hik; jki is exclusivewith respect to hfrm1; frm2i.

43Property 5.2. Let frm1 and frm2 be two pattern components over sets of indicesI and J , respectively. Let (ti)i2I 2 Cc(frm1) and (tj)j2J 2 Cc(frm2). Let alsoi 2 I and j 2 J .1. If the pair hi; ji is directly exclusive with respect to hfrm1; frm2i, then theterms ti and tj are compound and they have distinct principal functors.2. If the pair hi; ji is exclusive with respect to hfrm1; frm2i, then the terms tiand tj are distinct (ti 6= tj).We are now in position to provide the implementation of the operation EXCLUSIVEfor the domain Pattern. We just show here a partial implementation which onlyuses the pattern, same-value, and mode components but it gives the idea behindthe complete implementation. For additional details, the reader is referred to [7].Operation EXCLUSIVE : Pattern� Pattern� Pattern! BoolLet �; �1; �2 be abstract substitutions over the same domain D and sets of in-dices I , I1, and I2, respectively. Assume that hsv1; frm1i and hsv 2; frm2i areinstances of hsv ; frmi with respect to im1 and im2, respectively. The value ofEXCLUSIVE(�; �1; �2) is true if and only if there exists i 2 I such that1. mo(i) 2 fngv; novarg and the pair him1(i); im2(i)i is directly exclusive withrespect to hfrm1; frm2i, or2. mo(i) = ground and the pair him1(i); im2(i)i is exclusive with respect tohfrm1; frm2i.Correctness of the implementation follows from Properties 5.1 and 5.2 (see [59]).Prolog's Built-in Predicates. Prolog's built-in predicates such as test predicates(var, ground, and the like) or arithmetic predicates (is, <, . . .) can be handledin essentially the same way as abstract uni�cation. Our implementation actuallyincludes abstract operations that deal with test and arithmetic predicates (see [7]).Other built-in predicates can be accommodated as well, including the predicatesassert and retract. However, the treatment of the latter predicates assumesthat dynamic predicates are disjoint from static predicates, i.e., it assumes that theunderlying program P is not modi�ed. A more satisfactory treatment of dynamicpredicates requires to introduce a new abstract object representing the dynamicprogram; this improvement is a topic for further work.5.4. Experimental EvaluationThe experimental results presented in this section provide evidence of the fact thatthe approach presented in this paper allows one to integrate predicate level analysisto existing variable level analysis at a reasonable implementation cost. Compari-sons with other cardinality and determinacy analyses can be found in Section 6.Benchmarks. Our experiments use our traditional benchmarks (available byanonymous ftp from ftp://ftp.info.fundp.ac.be/pub/users/ble/bench.p) except thatcuts have been reinserted as in the original versions. In addition, some new pro-grams have been added. Boyer is a theorem-prover from the DEC-10 benchmarks,

44 OR PC PCAPrograms I T I T IR TR I T IR TRQsort 13 0.08 17 0.12 1.31 1.50 13 0.08 1.00 1.00Qsort2 15 0.08 19 0.12 1.27 1.50 15 0.09 1.00 1.13Queens 15 0.07 18 0.08 1.20 1.14 18 0.10 1.20 1.43Press1 532 11.77 581 13.11 1.09 1.11 581 13.45 1.09 1.14Press2 197 3.27 200 3.56 1.02 1.09 200 3.56 1.02 1.09Gabriel 78 0.90 84 1.00 1.08 1.11 84 0.98 1.08 1.09Peep 132 3.21 131 18.85 0.99 5.87 131 19.08 0.99 5.94Read 432 23.91 458 25.32 1.06 1.06 458 25.37 1.06 1.06Kalah 115 1.90 121 2.09 1.05 1.10 120 2.11 1.04 1.11Cs 79 2.19 91 3.05 1.15 1.39 90 3.02 1.14 1.38Plan 36 0.21 38 0.30 1.06 1.43 38 0.27 1.06 1.29Disj 64 1.95 68 2.14 1.06 1.10 68 2.12 1.06 1.09Pg 38 0.32 40 0.36 1.05 1.13 39 0.35 1.03 1.09Boyer 56 0.76 56 1.15 1.00 1.51 56 1.17 1.00 1.54Credit 63 0.57 64 0.81 1.02 1.42 64 0.80 1.02 1.40Mean 1.09 1.56 1.05 1.52TABLE 5.1. E�ciency of the Cardinality AnalysisCredit is an expert system from [85]. There are two versions of Qsort which di�erin procedure Partition which uses or does not use auxiliary predicates for thearithmetic built-ins. The benchmarks have been run on a SUN SS-10/20.E�ciency. The e�ciency results are reported in Table 5.1. Several algorithmsare compared: OR is the original GAIA algorithm on Pattern [61], PC is the car-dinality analysis with Pattern and PCA is PC with the abstraction for arithmeticpredicates. I, T, IR and TR are the number of iterations, the execution time (inseconds), the iteration's ratio and the time's ratio respectively. The �rst interestingpoint to notice is the slight increase (about 5% on PCA) in iterations when movingfrom abstract substitutions to abstract sequences, showing the e�ectiveness of ourwidening operator. Even more important perhaps is the fact that the time over-head of the cardinality analysis is small with respect to the traditional analysis:PCA is 1.52 slower than OR. Note that in fact most programs enjoys an even smalleroverhead but Peep is about 6 times slower than OR in PCA. This comes from manyprocedures with many clauses, most of which being not surely cut; much time isspent in the concatenation operation. Finally, note that adding more functionalityin the domain did not slow down the analysis by much.Accuracy. The accuracy results are reported in Table 5.2. For each program wespecify the initial query to which the abstract interpretation algorithm is applied(we denote by a, g and v the modes any, ground and var, respectively). Severalversions of the algorithm are compared with respect to their ability to detect de-terminacy of procedures, which was our primary motivation. P is using only thedomain Pattern (i.e., cuts are ignored), C is only using the cut (i.e., EXCLUSIVE al-ways returns false), and PC, PCA are de�ned as previously. In the table, NP standsfor the number of procedures and D and %D denote, respectively, the number ofdeterministic procedures and the percentage of deterministic procedures detectedby the algorithms. There are several interesting points to notice. First, PCA detects

45P C PC PCAPrograms Query NP D %D D %D D %D D %DQsort qsort(g,v) 3 0 0 0 0 0 0 3 100Qsort2 qsort(g,v) 5 2 40 2 40 2 40 5 100Queens queens(g,v) 5 2 40 0 0 2 40 2 40Press1 test press(v,v) 47 8 17 19 40 19 40 19 40Press2 test press(v,v) 47 12 26 19 40 28 60 28 60Gabriel main(v,v) 17 0 0 4 24 4 24 4 24Peep comppeeppopt(g,v,g) 24 4 17 7 29 16 67 16 67Read read(v,v) 46 11 24 27 59 31 67 31 67Kalah play(v,v) 46 16 35 20 43 33 72 40 87Cs pgenconfig(v) 32 11 34 7 22 11 34 13 41Plan transform(g,g,v) 13 1 8 0 0 1 8 1 8Disj top(v) 28 13 46 11 39 13 46 13 46Pg pdsbm(g,v) 10 2 20 3 30 5 50 6 50Boyer boyer(g) 24 0 0 20 83 20 83 20 83Credit credit(a,a) 26 14 58 11 42 14 54 16 62Mean 24 33 46 58TABLE 5.2. Accuracy of the Cardinality Analysisthat 58% of the procedures are deterministic, although many of these programs infact use heavily the nondeterminism of Prolog. Most of the results are optimal anda nice example is the program Kalah. Second, the cut and input/output patternsare really complementary to improve the analysis. Input/output patterns alone give42% of the deterministic procedures, while the cut detects 56% of the determinis-tic procedures. The abstraction of arithmetic predicates adds 22% of deterministicprocedures. The main lesson here is that all components are of primary importanceto obtain precise results.6. RELATED WORKS ON DETERMINACY ANALYSISDeterminacy of logic programs in general and of Prolog programs in particular is animportant research topic because determinate programs can be implemented moree�ciently than non-determinate programs (often, much more e�ciently). Severalforms of determinacy have been identi�ed, which lead to di�erent kinds of optimiza-tions. In this section, we review a few interesting papers on determinacy analysisat the light of our novel framework for the abstract interpretation of Prolog. Thebene�t of this study is twofold: �rst, it sheds new light on these analyses in thecontext of abstract interpretation; second, it supports the claim that our proposalis appropriate to integrate most existing analyses into a single framework.6.1. Sahlin's Determinacy Analysis for Full PrologThe analysis proposed by D. Sahlin in [81] aims at detecting procedures of a (full)Prolog program that are determinate (i.e., they succeed at most once) or fully-determinate (i.e., they succeed exactly once). The analysis is developed in thecontext of the partial evaluator Mixtus [80] in order to detect situations wherecuts can be \executed" or removed. Sahlin's analysis is not based on abstract

46 interpretation; hence he provides a speci�c correctness proof for it.In this section, we show that the determinacy analysis proposed by Sahlin in [81]is indeed an instance of our framework over his abstract domain.Abstract Domains. Sahlin's analysis completely ignores information on programvariables. The abstract domains are concerned with the sequence structure only:substitutions are completely ignored. Note that no abstract interpretation frame-work available at the time of his writing was adequate to his needs.Abstract Substitutions. Since program variables are ignored, we can assume adomain AS consisting of an arbitrary single element.Abstract Sequences. Sahlin's analysis can be formalized in our framework byde�ning ASS = }(AASS), where AASS = fL; 0; 1; 10; 2; 20g2. We call elements ofAASS, atomic abstract sequences. Their concretization is de�ned as follows:Cc(L) = f< ? >gCc(0) = f <> gCc(1) = fS 2 PSS j Ns(S) = 1 and S is �nitegCc(10) = fS 2 PSS j Ns(S) = 1 and S is incompletegCc(2) = fS 2 PSS j Ns(S) > 1 and S is �nitegCc(20) = fS 2 PSS j Ns(S) > 1 and S is incomplete or in�nitegThe concretization function Cc : ASS ! }(PSS) is de�ned by:Cc(B) = Sb2B Cc(b):The relation � on ASS is naturally de�ned as being set inclusion. The concretiza-tion function is thus clearly monotonic.Abstract Sequences with Cut Information. We de�ne the set ASSC as beingequal to }(AASS � CF). The elements of ASSC are denoted by Ln, 0n, 1n, 10n,2n, 20n, Lc, 0c, 1c, 10c, 2c, 20c, in [81], where the index n stands for nocut, while theindex c stands for cut. The concretization function is de�ned in the obvious way.Extended Widening. In order to instantiate our generic abstract interpretationalgorithm to the above domains, it remains to provide an implementation of thevarious abstract operations. This can be done systematically from the speci�cationsof the operations and the domain de�nitions; we leave it as an exercise to thereader, except for the extended widening, whose implementation is not obvious.The basic intuition behind the extended widening is that it should \observe" howthe abstract sequences evolve between the consecutive iterations in order to ensureconvergence when enough accuracy seems to be attained. In this abstract domain,the abstract sequence Bi produced at step i may intuitively di�er from Bi�1 by thefact that some \incomplete" elements (i.e., L, 10, 20) can be removed and replacedby more \complete" ones. Of course the computation starts with B0 = fLg. Thusthe algorithm waits until \enough incomplete elements have been removed" andthen accumulates the next iteration results to enforce termination. This can beformalized by de�ning a pre-order v over ASS such that B1 v B2 holds when B22We choose to denote the elements of AASS by the same symbols as in [81].

47only contains elements that are \more complete" than some elements of B1 andwhen, conversely, B1 only contains elements that are \less complete" than someelements of B2. We �rst de�ne the relation is strictly less complete than betweenatomic abstract sequences by the table:L < 0 L < 1 L < 10 L < 2 L < 20 10 < 1 10 < 2 10 < 20 20 < 2:Then, for all atomic abstract sequences b1 and b2, we say that b1 is less completethan b2, denoted by b1 v b2, if b1 = b2 or b1 < b2. This relation is lifted to generalabstract sequences as follows:De�nition 6.1. [Computational Pre-Ordering]Let B1; B2 2 ASS . By de�nition,B1 v B2 i� (8b1 2 B1; 9b2 2 B2 such that b1 v b2) and(8b2 2 B2; 9b1 2 B1 such that b1 v b2):We write B1 < B2 to denote the condition (B1 v B2 and B2 6v B1).We are now in position to de�ne the extended widening.De�nition 6.2. [Extended Widening for Sahlin's Domain: B0 = BnewrBold]B0 = Bnew if Bold < Bnew ;= Bnew [Bold otherwise:In fact, the above operation does not ful�ll, strictly speaking, the requirements forbeing an extended widening. It works however if we have Bold v Bnew each time itis applied. This is normally the case if the other abstract operations are carefullyimplemented, since each iteration of the abstract interpretation algorithm shouldreplace every element in Bold by one or several more complete elements. Beforestating what is it actually achieved by the operation r, we need two de�nitions.De�nition 6.3. [Equivalent Abstract Sequences]Let B1; B2 2 ASS . By de�nition,B1 � B2 i� B1 v B2 and B2 v B1:The relation � is an equivalence because v is a pre-order. It can be shown that� determines 42 equivalence classes, of which 28 are a singleton (e.g., ffL; 0; 10gg),10 have 2 elements (e.g., ffL; 0; 20g; fL; 0; 10; 20gg), and 4 have 4 elements (e.g.,ffL; 0; 2g; fL; 0; 2; 20g; fL; 0; 10; 2g; fL; 0; 10; 2; 20gg). It is also important to notethat distinct equivalent abstract sequences always have di�erent concretizations.De�nition 6.4. [Strengthened Computational Ordering]Let B1; B2 2 ASS . By de�nition,B1 �B2 i� B1 < B2 or (B1 � B2 and B1 � B2):The relation � is an order; every ascending sequence B1 � B2 � : : : � Bi : : : isstationary since ASS is �nite.

48 Property 6.1. [Conditional Convergence of the Extended Widening]Let fBigi2N and fB0igi2N be two sequences of elements of ASS such that1. B0i v Bi+1; for all i 2 N;2. B0i+1 = Bi+1rB0i; for all i 2 N.Then we have Bi � B0i, for all i 2 N�, and the sequence fB0igi2N is stationary.Proof. The fact that Bi � B0i, for all i 2 N�, is a direct consequence of thede�nition of the operation r. Moreover, the hypotheses on the sequences ensurethat B01 �B02 � : : :�B0i : : : ; thus the sequence fB0igi2N is stationary.If all abstract operations are congruent with respect to v 3, each iteration of the ab-stract interpretation algorithm ensures that Bold v Bnew , where Bold is the currentvalue in sat and Bnew is the newly computed abstract sequence. Thus, Property 6.1guarantees termination of the abstract interpretation algorithm. Congruence of theabstract operations with respect to v is ensured if they are \as accurate as pos-sible" (which is achieved in [81]); however, proving this property entails a lot ofwork. A simpler solution consists of testing whether Bold v Bnew actually holdsbefore each application of the extending widening. If the condition does not hold,we switch to a cruder form of widening, which simply merges all successive results.Comparison with our Cardinality Analysis. The determinacy informationinferred by means of Sahlin's domain is in general less accurate than our cardinalityanalysis (except maybe in some partial evaluation contexts). For instance, with theformer domain, it is not possible to detect mutually exclusive clauses except whencuts occur in the clauses. As illustrated in Section 5.3, the information providedby the abstract substitution component of our domain is instrumental to detectsure failure, sure success, and mutual exclusion, which all contribute to improvethe accuracy of the determinacy (or cardinality) analysis. Nevertheless, the speci�cinformation about the sequence structure is �ner grained in Sahlin's domain than inours. Consider the abstract sequence fL; 1g; it is approximated, in our domain, byh0; 1; pti, which is actually equivalent to fL; 0; 1; 10g. Thus, it could be interestingto design a domain for abstract sequences similar to our cardinality domain, wherethe sequence component coincides with Sahlin's domain.6.2. Giacobazzi and Ricci's Analysis of Determinate ComputationsThe work of R. Giacobazzi and L. Ricci, described in [39], is also worth beingreviewed in our context. They propose an analysis of functional dependencies [72]between procedure arguments of the success set of pure logic programs. Theiranalysis is a bottom-up abstract interpretation, based on [3, 33]. The analysis alsoinfers groundness information and is intended to be used for parallel logic programoptimization. In our comparison, we focus on the functional dependencies andwe simplify the presentation in order to concentrate on the salient points. First,we provide a de�nition of functional dependency tailored to our framework. Thede�nitions use some notions from Section 5.3.3We would have written monotonic if the relation v was an order, not a pre-order only.

49De�nition 6.5. [Functional Dependency]Let hsv ; frmi be a structural abstract substitution over domain D and set ofindices I . A functional dependency for hsv ; frmi, denoted by J ! j, is a pairconsisting of a subset J of I and an index j 2 I .Let S 2 PSSD be a program substitution sequence such that Subst(S) �Cchsv ; frmi. We say that the functional dependency J ! j holds in S forhsv ; frmi, if for all families of terms (ti)i2I , (t0i)i2I that are decompositions ofsome program substitutions of Subst(S), the following implication is true:(ti)i2J = (t0i)i2J) tj = t0j :Then we de�ne an abstract domain to express functional dependencies.De�nition 6.6. [Abstract Sequences with Functional Dependencies]An abstract sequence with functional dependencies is a triple hsv ; frm; fd i wherehsv ; frmi is a structural abstract substitution over domain D and set of indicesI , and fd is a set of functional dependencies for hsv ; frmi. The concretizationfunction for abstract sequences with functional dependencies is de�ned byCchsv ; frm ; fdi = 8<:S 2 PSSD Subst(S) � Cc(hsv ; frmi) andJ ! j holds in S for hsv ; frmi;for every J ! j 2 fd : 9=; :In fact, the functional dependency component fd is best viewed as an additionalcomponent to the cardinality domain de�ned in Section 5, since its usefulness fordeterminacy analysis depends on the availability of mode information. Let S 2CPSSD be a canonical program substitution sequence. We say that S is functionalif the set Subst(S) is empty or is a singleton. Such sequences model the behavior ofprocedures that cannot produce two or more distinct solutions. Assume that S isthe output sequence corresponding to the input substitution �, for some procedurep. Assume that � 2 Cchsv ; frmi and S 2 Cchsv 0; frm 0; fd 0i where hsv 0; frm 0i ismore instantiated than hsv ; frmi. We can infer that S is functional if there existsJ � I 0 such that fd 0 contains a functional dependency of the form J ! i, for everyi 2 sv 0(D), and if every term tj corresponding to an index j 2 J in a programsubstitution of S is not more instantiated than the corresponding term in �. Thelatter information is easily deduced if we know, for instance, that tj is ground oris a variable. Thus adding a functional dependency component to our cardinalitydomain allows us to infer that output program substitution sequences are functional.It is important to point out that the new component fd expresses a propertyof program substitution sequences, not a property of (single) program substitu-tions. It is meaningless to use functional dependencies in a domain of abstractsubstitutions, because a set of functional dependencies determines a (two valued)condition on a set of program substitution. Either the set veri�es the condition,then no constraint is added, or it does not and the set is rejected as a whole.Thus, a component fd de�nes a set of sets of program substitutions. As a conse-quence, functional dependencies cannot be handled by previous top-down abstractinterpretation frameworks such as [8, 61, 68, 71, 76, 93, 95]. However the abstractinterpretation framework used by [39] is bottom-up and abstracts the success setof the program. The result of an analysis represents a set of possible success sets,

50 i.e., a set of sets of output patterns, which is similar to a set of sets of program sub-stitutions. As far as we know, it is the �rst time that this di�erence of expressivitybetween bottom-up and (previous) top-down abstract interpretation frameworksis pointed out in the literature. The comparison usually concentrates on the factthat bottom-up frameworks are goal independent, i.e., they provide information onthe program as a whole, while top-down frameworks are goal dependent, i.e., theyprovide information about the program and a given initial goal. We believe thata more fundamental di�erence lies in the fact that top-down frameworks are func-tional, i.e., they abstract the behavior of a program by a function between sets ofsets, while bottom-up frameworks are relational, i.e., they abstract the behavior of aprogram by a set of relations. The di�erence between the two approaches has beenpreviously put forward by Cousot and Cousot [22], but not in the context of logicprograms. The functional approach can easily focus on small parts of the programbehavior but looses the dependencies between inputs and outputs; the converseholds for the relational approach. Our novel framework is basically functional, butthe domain of abstract sequences is in some sense relational; thus the frameworkallows us to combine the advantages of both approaches.6.3. Debray and Warren's Analysis of Functional ComputationsIn the previous section, we have shown that functional dependencies are usefulto infer that an output program substitution sequence is functional, i.e., does notcontain two or more distinct program substitutions. Such a sequence may containseveral occurrences of the same program substitution, however. The importanceof functional computations for logic program optimization was advocated early byS. Debray and D. Warren in [30]. In this paper, these authors propose a sophisti-cated algorithm to infer functional computations of a logic program. The analysisexploits functional dependencies and mode information, as well as a set of su�cientconditions to detect mutually exclusive clauses. Their algorithm is not based onabstract interpretation and assumes that functional dependencies and mode infor-mation are given from outside. Thus the algorithm considers an annotated program;it uses a set f?; true; falseg where ? is an initializing value, true means that aprocedure is functional and false means that it is not known whether the procedureis functional. Hence, the set can be viewed as a domain of abstract sequences, withconcretization function Cc : f?; true; falseg ! }(CPSS) de�ned byCc(?) = f< ? >g;Cc(true) = fS 2 CPSS j Subst(S) is empty or is a singleton.g;Cc(false) = CPSS :All aspects of their analysis can be accommodated in our approach by providingsuitable abstract domains. An abstract domain consisting of our cardinality domainaugmented with a functional dependency component would probably be fairly ac-curate. Moreover, in our approach, all analyses can be performed at the same timeand interact with each other, making it possible to get a better accuracy.7. CONCLUSIONThis paper has introduced a novel abstract interpretation framework, capturingthe depth-�rst search strategy and the cut operation of Prolog. The framework is

51based on the notion of substitution sequences and the abstract semantics is de�nedas a pre-consistent post-�xpoint of the abstract transformation. Abstract inter-pretation algorithms need chain-closed domains and a special widening operatorto compute the semantics. This approach overcomes some of the limitations ofprevious frameworks. In particular, it broadens the applicability of the abstractinterpretation approach to new analyses and can potentially improve the precisionof existing analyses. On the practical side, in this paper, we have only shown thatour approach allows one to integrate - e�ciently and at a low conceptual cost - apredicate level analysis (i.e., determinacy analysis) to variable level analyses clas-sically handled by abstract interpretation. However, the improvement on classicalanalyses is marginal because, due to our design choices for the abstract sequencedomain (i.e., a simple extension of Pattern), the new system behaves almost asthe previous version of GAIA for variable level analyses. Nevertheless, the newframework opens a door for de�ning and exploiting more sophisticated domains forabstract sequences.REFERENCES1. K. Apt. From Logic Programming to Prolog. International Series in ComputerScience, Prentice Hall, 1997.2. R. Barbuti and R. Giacobazzi. A Bottom-Up Polymorphic Type Inference in LogicProgramming. Science of Computer Programming, 19(3):281{313, 1992.3. R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-Based Bottom-Up Abstract Interpretation of Logic Programs. ACM Transactionson Programming Languages and Systems, TOPLAS, 15(1):133-181, 1993.4. R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modelling Prolog Control.Journal of Logic and Computation, 3(6):579{603, 1993.5. M. Baudinet. Proving Termination Properties of Prolog Programs: a SemanticApproach. Journal of Logic Programming, 14(1&2):1{29, 1992.6. C. Braem, B. Le Charlier, S. Modard and P. Van Hentenryck. Cardinality Analy-sis of Prolog. In M. Bruynooghe, editor, Proceedings of the International LogicProgramming Symposium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.7. C. Braem and S. Modard. Abstract Interpretation for Prolog with Cut: CardinalityAnalysis. Master's thesis, Institut d'Informatique, University of Namur, Belgium,September 1994.8. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of LogicPrograms. Journal of Logic Programming, 10(2):91{124, 1991.9. F. Bueno and M. Hermenegildo. Results on Automatic Translation from Pro-log to the Andorra Kernel Language. Technical Report, Universidad Politecnicade Madrid, Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain,September 1991.10. D. Cabeza Gras and M. Hermenegildo. Extracting Non-Strict Independent And-Parallelism Using Sharing and Freeness Information. In [55], pages ? 1994.11. J.H. Chang, A.M. Despain, and D. DeGroot. And-Parallelism of Logic Programsbased on a Static Data Dependency Analysis. In Proceedings of the 30th IEEECompcon Spring (COMPCON'85) , Los Alamitos, California, 1985. IEEE Com-puter Sciety Press.

52 12. M. Codish, D. Dams, and E. Yardeni. Derivation and Safety of an Abstract Uni�ca-tion Algorithm for Groundness and Aliasing Analysis. In K. Furukawa, editor, Pro-ceedings of the Eighth International Conference on Logic Programming (ICLP'91),Paris, France, June 1991. MIT Press.13. P. Codognet and G. Fil�e. Computations, Abstractions and Constraints in LogicPrograms. In Proceedings of the Fourth International Conference on ComputerLanguages (ICCL'92), Oakland, April 1992.14. M.M. Corsini. (Yet) an Abstract Domain and Uni�cation for Accurate Groundnessand Sharing Analysis based on Graphs Traversing. In ICLP'91 Pre-ConferenceWorkshop on Semantics-Based Analysis of Logic Programs, INRIA Rocquencourt,France, June 1991.15. A. Cortesi and G. Fil�e. Abstract Interpretation of Logic Programs: an AbstractDomain for Groundness, Sharing, Freeness and Compoundness Analysis. In Pro-ceedings of ACM Symposium on Partial Evaluation and Semantics-Based ProgramManipulation (PEPM'91), 1991. ACM Press.16. A. Cortesi, G. Fil�e, and W. Winsborough. Prop revisited: Propositional Formulaas Abstract Domain for Groundness Analysis. In Proceedings of the Sixth An-nual IEEE Symposium on Logic in Computer Science (LICS'91), July 1991. IEEEComputer Society Press.17. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of AbstractDomains for Logic Programming. In Proceedings of the 21th ACM Symposiumon Principles of Programming Languages (POPL'94), Portland, Oregon, January1994.18. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type Analysis of Prolog UsingType Graphs. Journal of Logic Programming, 22(3):179{209, 1995.19. P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model forStatic Analysis of Programs by Construction or Approximation of Fixpoints. InProceedings of the 4th ACM Symposium on Principles of Programming Languages(POPL'77), Los Angeles, California, January 1977. ACM Press.20. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. InProceedings of the 6th ACM Symposium on Principles of Programming Languages(POPL'79), Los Angeles, California, January 1979. ACM Press.21. P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Pro-grams. Journal of Logic Programming, 13(2&3):103{179, 1992.22. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logicand Computation, 2(4):511{547, 1992.23. P. Cousot and R. Cousot. Comparing of the Galois Connection and Widen-ing/Narrowing Approaches to Abstract Interpretation (invited paper). InM. Bruynooghe and M. Wirsing, editors, Proceedings of the Fourth InternationalWorkshop on Programming Language Implementation and Logic Programming(PLILP'92), LNCS, Leuven, Belgium, August 1992. Springer-Verlag.24. P. Cousot and R. Cousot. Higher-Order Abstract Interpretation (and Applica-tion to Comportment Analysis Generalizing Strictness, Termination, Projectionand PER Analysis of Functional Languages). (Invited paper). In Proceedings ofthe Sixth International Conference on Computer Languages (ICCL'94), Toulouse,France, May 1994. IEEE Computer Society Press, Los Alamitos, California. (In-vited paper).

5325. S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C. Sekar. ExtractingDeterminacy in Logic Programs. In Proceedings of the Tenth International Con-ference on Logic Programming (ICLP'93), Budapest, Hungary, June 1993. MITPress.26. A. de Bruin and E. de Vink. Continuation Semantics for Prolog with Cut. InProceedings of TAPSOFT'89, LNCS, 1989. Springer-Verlag.27. S.K. Debray. Static Inference of Modes and Data Dependencies in Logic Pro-grams. ACM Transactions on Programming Languages and Systems (TOPLAS),11(3):418{450, 1989.28. S.K. Debray and P. Mishra. Denotational and Operational Semantics for Prolog.Journal of Logic Programming, 5(1):61{91, 1988.29. S.K. Debray and D.S. Warren. Automatic Mode Inference for Logic Programs.Journal of Logic Programming, 5(3):207{229, 1988.30. S.K. Debray and D.S. Warren. Functional Computations in Logic Programs. ACMTransactions on Programming Languages and Systems (TOPLAS), 11(3):451{481,1989.31. B. Demoen, P. Van Roy, and Y.D. Willems. Improving the Execution Speed ofCompiled Prolog with Modes, Clause Selection and Determinism. In H. Ehrig, R.Kowalski, G. Levi, and U. Montanari, editors, Proceedings of TAPSOFT'87, LCSvol. 250, 1987.32. V. Englebert, B. Le Charlier, D. Roland, and P. Van Hentenryck. Generic Ab-stract Interpretation Algorithms for Prolog: Two Optimization Techniques andtheir Experimental Evaluation. Software Practice and Experience, 23(4):419{459,1993.33. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling ofthe Operational Behaviour of Logic Languages. Theoretical Computer Science,69(3):289{318, 1989.34. G. Fil�e and S. Rossi. Static Analysis of Prolog with Cut. Proceedings ofFourth International Conference on Logic Programming and Automated Reason-ing (LPAR'93), LNCS vol. 698, July 1993. Springer{Verlag.35. G. Fil�e and F. Ranzato. Improving Abstract Interpretations by Systematic Liftingto the Powerset. In M. Bruynooghe, editor, Proceedings of the International LogicProgramming Symposium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.36. Y. Gang and X. Zhiliang. An E�cient Type System for Prolog. In Proceedings ofIFIP Congress 86, 1986.37. T. W. Getzinger. The Costs and Bene�ts of Abstract Interpretation-Driven PrologOptimization. In [55], pages 1{25, 1994.38. R. Giacobazzi and L. Ricci. Pipeline Optimizations in AND-Parallelism by Ab-stract Interpretation. In D.H.D. Warren and P. Szeredi, editors, Proceedings ofSeventh International Conference on Logic Programming (ICLP'90), pages 291{305, Jerusalem, Israel, 1990. The MIT Press.39. R. Giacobazzi and L. Ricci. Detecting Determinate Computations by Bottom-UpAbstract Interpretation. In Proceedings of ESOP'92, pages 167{181. Springer-Verlag, 1992.40. M.V. Hermenegildo. An Abstract Machine for Restricted AND-Parallel Executionof Logic Programs. In Proceedings of Third International Conference on LogicProgramming (ICLP'86), LNCS vol. 225, July 1986. Springer-Verlag.

54 41. M.V. Hermenegildo, R. Warren, and S.K. Debray. Global Flow Analysis as aPractical Compilation Tool. Journal of Logic Programming, 13(4):349{367, 1992.42. D. Jacobs and A. Langen. Accurate and E�cient Approximation of Variable Alias-ing in Logic Programs. In E.L. Lusk and R.A. Overbeek, editors, Proceedings ofthe North American Conference on Logic Programming (NACLP'89), Cleveland,Ohio, October 1989. MIT Press.43. D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent ANDParallelism. Journal of Logic Programming, 13(2&3):291{314, 1992.44. G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-gram Variables by Means of Abstract Interpretation. Journal of Logic Program-ming, 13(2&3):205{258, 1992.45. T.P. Jensen and T.� . Mogensen. A Backwards Analysis for Compile-TimeGarbage Collection. In N. Jones, editor, Proceedings Third European Symposiumon Programming (ESOP'90), LNCS vol. 432, 1990. Springer-Verlag.46. N.D. Jones and A. Mycroft. Stepwise Development of Operational and Deno-tational Semantics for Prolog. In Sten-�Ake Tarnlund, editor, Proceedings of theSecond International Conference on Logic Programming, (ICLP'92), 1984.47. N.D. Jones and H. S�ndergaard. A Semantic-Based Framework for the AbstractInterpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Inter-pretation of Declarative Languages, chapter 6, 1987. Ellis Horwood.48. T. Kanamori and T. Kawamura. Analysing Success Patterns of Logic Programsby Abstract Hybrid Interpretation. Technical report, ICOT, 1987.49. T. Kanomori and K. Horiuchi. Type Inference in Prolog and its Application. InProceedings of 9th IJCAI, pages 704{709, 1985.50. R.B. Kieburtz. Precise Typing of Abstract Data Type Speci�cation. In Proceedingsof Tenth ACM Symposium Principles of Programming Languages (POPL'83), 1983.ACM Press.51. F. Klu�zniak. Type Synthesis for Ground Prolog. In J.-L. Lassez, editor, Proceedingsof the Fourth International Conference on Logic Programming (ICLP'87), pages788{816, Melbourne, Australia, May 1987. MIT Press.52. F. Klu�zniak. Compile-Time Garbage Collection for Ground Prolog. In R.A. Kowal-ski and K.A. Bowen, editors, Proceedings of the Fifth International Conference onLogic Programming (ICLP'88), Seattle, Washington, August 1988. MIT Press.53. B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A Generic Abstract Interpre-tation Algorithm and its Complexity Analysis. In K. Furukawa, editor, Proceedingsof the Eighth International Conference on Logic Programming (ICLP'91), Paris,France, June 1991. MIT Press.54. B. Le Charlier, O. Degimbe, L. Michel, and P. Van Hentenryck. OptimizationTechniques for General Purpose Fixpoint algorithms: Practical E�ciency for theAbstract Interpretation of Prolog. In Cousot P., editor, Proceedings of the ThirdInternational Workshop on Static Analysis (WSA'93), LNCS vol. 724, Padova,September 1993. Springer-Verlag.55. B. Le Charlier (Ed.). Proceedings of the First International Static Analysis Sympo-sium (SAS'94), LNCS vol. 864, Namur, Belgium, September 1994. Springer-Verlag.56. B. Le Charlier, C. Lecl�ere, S. Rossi and A. Cortesi. Automated Veri�cation ofProlog Programs. Journal of Logic Programming, 39(1&3):3{42, 1999.

5557. B. Le Charlier and S. Rossi. Sequence-Based Abstract Semantics of Prolog. Techni-cal Report RR-96-001, Facult�es Universitaires Notre-Dame de la Paix, Institutd'Informatique, Namur, Belgium, February 1996.58. B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpreta-tion Framework which Accurately Handles Prolog Search-Rule and the Cut. InM. Bruynooghe, editor, Proceedings of the International Logic Programming Sym-posium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.59. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence-Based Abstract Inter-pretation of Prolog. Technical Report RR-97-001, Facult�es Universitaires Notre-Dame de la Paix, Institut d'Informatique, Namur, Belgium, January 1997.60. B. Le Charlier and P. Van Hentenryck. A General Top-Down Fixpoint Algorithm(revised version). Technical Report RR-93-022, Facult�es Universitaires Notre-Damede la Paix, Institut d'Informatique, Namur, Belgium, June 1993.61. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a GenericAbstract Interpretation Algorithm for Prolog. ACM Transactions on ProgrammingLanguages and Systems (TOPLAS), 16(1):35{101, 1994.62. B. Le Charlier and P. Van Hentenryck. Reexecution in Abstract Interpretation ofProlog. Acta Informatica, 32(3):209{270, 1995.63. D. Leivant. Polymorphic Type Inference. In Proceedings of Tenth ACM SymposiumPrinciples of Programming Languages (POPL'83), 1983. ACM Press.64. J.W. Lloyd. Foundations of Logic Programming. Springer Series: SymbolicComputation{Arti�cial Intelligence. Springer-Verlag, second edition, 1987.65. A. Marien and B. Demoen. On the Management of Choicepoint and EnvironmentFrames in the WAM. In E. L. Lusk and R.A. Overbeek, editors, Proceedings ofthe North American Conference on Logic Programming (NACLP'89), pages 1030{1047, Cleveland, Ohio, October 1989. MIT Press.66. A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The Impact of AbstractInterpretation: an Experiment in Code Generation. In Proceedings of the SixthInternational Conference on Logic Programming (ICLP'89), pages 33{47, Lisbon,Portugal, June 1989. MIT Press.67. K. Marriott. Frameworks for Abstract Interpretation. Acta Informatica, 30(2):103{129, 1993.68. K. Marriott and H. S�ndergaard. Notes for a Tutorial on Abstract Interpreta-tion of Logic Programs. In North American Conference on Logic Programming(NACLP'89), Cleveland, Ohio, 1989.69. K. Marriott and H. S�ndergaard. Semantics-based Dataow Analysis of LogicPrograms. In G. Ritter, editor, Proceedings of IFIP'89, San Fransisco, California,1989.70. M. Meier. Recursion versus Iteration in Prolog. In K. Furukawa, editor, Proceedingsof the Eighth International Conference on Logic Programming (ICLP'91), Paris,France, June 1991. MIT Press.71. C. Mellish. Abstract Interpretation of Prolog Programs. In S. Abramsky andC. Hankin, editors, Abstract Interpretation of Declarative Languages, chapter 8,Ellis Horwood Limited.72. A.O. Mendelzon. Functional Dependencies in Logic Programs. In Proceedings ofthe Eleventh International Conference on Very Large Data Bases, 1985.

56 73. A. Mulkers. Deriving Live Data Structures in Logic Programs by Means of Ab-stract Interpretation. PhD thesis, Department of Computer Science, KatholiekeUniversiteit Leuven, Belgium, 1991.74. A. Mulkers, W. Winsborough, and M. Bruynooghe. Analysis of Shared Data Struc-tures for Compile-Time Garbage Collection in Logic Programs. In D.S. Warren andP. Szeridi, editors, Proceedings of the Seventh International Conference on LogicProgramming (ICLP'90), Jerusalem, Israel, June 1990. MIT Press.75. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing andFreeness of Program Variables Through Abstract Interpretation. In K. Furukawa,editor, Proceedings of the Eight International Conference on Logic Programming(ICLP'91), Paris, France, June 1991. MIT Press.76. K. Muthukumar and M. Hermenegildo. Compile-Time Derivation of VariableDependency Using Abstract Interpretation. Journal of Logic Programming,13(2&3):315{347, 1992.77. A. Mycroft and R.A. O'Keefe. A Polymorphic Type System for Prolog. Arti�cialIntelligence, 23(3):295{307, 1984.78. U. Nilsson. Systematic Semantic Approximations of Logic Programs. In P. Deran-sart and J. Ma luszy�nski, editors, Proceedings of the International Workshop on Pro-gramming Language Implementation and Logic Programming (PLILP'90), LNCSvol. 456, Link�oping, Sweden, August 1990. Springer-Verlag.79. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical ReportDAIMI FN-19, CS Department, University of Aarhus, 1981.80. D. Sahlin. Mixtus: An Automatic Partial Evaluator for Full Prolog. New Genera-tion Computing, 12(1):7{51, 1993.81. D. Sahlin. Determinacy Analysis for Full Prolog. In Proceedings of ACMSymposium on Partial Evaluation and Semantics-B ased Program Manipulation(PEPM'91), 1991. ACM Press.82. D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc., 1988.83. Z. Somogyi. A System of Precise Modes for Logic Programs. In E. Shapiro,editor, Proceedings of the Third International Conference on Logic Programming(ICLP'86), LNCS vol. 225, London, England, July 1986. Springer-Verlag.84. F. Spoto and G. Levi. A Denotational Semantics for Prolog. In M. Falaschi, M.Navarro, and A. Policriti, editors, Proceeding of APPIA-GULP-PRODE'97, Grado,Italy, June 1997.85. L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques.MIT Press, Cambridge Mass., 1986.86. J. Stoy. Denotational Semantics: The Scott-Strachey Approach to ProgrammingLanguage Theory. MIT Press, Cambridge Mass., 1977.87. H. Tamaki and T. Sato. OLD-Resolution with Tabulation. In E. Shapiro, ed-itor, Proceedings of the Third International Conference on Logic Programming(ICLP'86), LNCS vol. 225, London, England, July 1986. Springer-Verlag.88. A. Taylor. Removal of Dereferencing and Trailing in Prolog Compilation. In Pro-ceedings of the Sixth International Conference on Logic Programming (ICLP'89),Lisbon, Portugal. Cambridge Mass., 1989.89. K. Ueda. Making Exhaustive Search Programs Deterministic, part II. In J.L.Lassez, editor, Proceedings of the Fourth International Conference on Logic Pro-gramming (ICLP'87), volume 2, Melbourne, Australia. Cambridge Mass., 1987.

5790. P. Van Hentenryck, O. Degimbe, B. Le Charlier, and L. Michel. The Impact ofGranularity in Abstract Interpretation of Prolog. In Cousot P., editors, Proceedingsof the Third International Workshop on Static Analysis (WSA'93), LNCS vol. 724,Padova, September 1993. Springer-Verlag.91. P. Van Roy, B. Demoen, and Y.D. Willems. Improving the Execution Speed ofCompiled Prolog with Modes, Clause Selection, and Determinism. In H. Ehrig,R. Kowalski, G. Levi, and U. Montanari, editors, Proceedings of the Interna-tional Joint Conference on Theory and Practice of Software Development, (TAP-SOFT'87), volume 2, LNCS vol. 250, Pisa, Italy, 1987.92. P. Van Roy and A. Despain. High-Performance Computing with the AquariusCompiler. IEEE Computer, 25(1):54-68, January 1992.93. D.S. Warren. Memoization for Logic Programs. Communications of the ACM,35(3), March 1992.94. R. Warren, M.V. Hermenegildo, and S.K. Debray. On the Practicality of GlobalFlow Analysis of Logic Programs. In R.A. Kowalski and K.A. Bowen, editors, Pro-ceedings of the Fifth International Conference on Logic Programming (ICLP'88),Seattle, Washington, August 1988. MIT Press.95. W. Winsborough. Multiple Specialization Using Minimal-Function Graph Seman-tics. Journal of Logic Programming, 13(4), 1992.96. J. Xu and D.S. Warren. A Type Inference System for Prolog. In R.A. Kowalsky andK.A. Bowen, editors, Proceedings of the Fifth International Conference on LogicProgramming (ICLP'88), Seattle, Washington, August 1988. MIT Press.97. E. Yardeni and E. Shapiro. A Type System for Logic Programs. Journal of LogicProgramming, 10(1/2/3&4):125{153, 1991.

58 APPENDIXWe complete here the description of the abstract operations started in Section 5.2.The correctness proofs of all the abstract operations can be found in [59]. Thede�nitions below have been added in order to allow the reader to check the detailsof the examples in Section 5.2.Extension at Clause Entry: EXTC(c; �) : ASD ! ASSCD0The implementation reuses the homonymous operation from the previous frame-work, which is speci�ed as follows.Operation EXTC(c; �) : ASD ! ASD0Let � 2ASD, �2CPSD , and �0 2PSD0 such that xi�0 = xi� (8i : 1 � i � n) andxn+1�0, . . . , xm�0 are distinct standard variables not belonging to codom(�): Then� 2 Cc(�)) [[�0]] 2 Cc(EXTC(c; �)):Hence, the EXTC operation on sequences is de�ned byEXTC(c; �) = hhEXTC(c; �); 1; 1; sti;nocuti:Restriction at Clause Exit: RESTRC(c; �) : ASSCD0 ! ASSCDThe treatment of this operation is similar to the previous one. We �rst specify theabstract substitution version of the operation.Operation RESTRC(c; �) : ASD0 ! ASDLet �2ASD0 and �2CPSD0 . We have� 2 Cc(�)) [[�jD]] 2 Cc(RESTRC(c; �)):Hence, the RESTRC operation on sequences is de�ned byRESTRC(c; C) = hRESTRC(c; �);m;M; acf i:Restriction before a Call: RESTRG(l; �) : ASD0 ! ASD000This operation is simply inherited from the previous framework.Uni�cation of a Variable and a Functor: UNIF-FUNC(f; �) : ASD ! ASSDThe treatment of this operation is identical to the treatment of the UNIF-VAR op-eration and then is omitted.Extension of the Result of a Call: EXTGS(l; �; �) : ASSCD0�ASSD000 ! ASSCD0This operation reuses the operation EXTG from the previous framework. The reusedoperation has to ful�ll the speci�cation just below.Operation EXTG(l; �; �) : ASD0 �ASD000 ! ASD0Let �1 2 ASD0 and �2 2 ASD000 . Let �1 2 CPSD0 and �2 2 PSD000 be such thatxij �1 = xj�2 (8j : 1 � j � n0). Let � 2 SS such that dom(�) � codom(�2). Letfz1; : : : ; zrg = codom(�1) n codom(�2). Let y1; : : : ; yr be distinct standard variablesnot belonging to codom(�1)[codom(�). Let � = fz1=y1; : : : ; zr=yr; y1=z1; : : : ; yr=zrg.Under these assumptions,

59�1 2 Cc(�1);�2� 2 Cc(�2)�) [[�1��]] 2 Cc(EXTG(l; �1; �2)):The implementation of EXTGS is as follows.�0 = EXTG(l; �1; �2);m0 = m1m2 if t2 = st ;= min(1;m1)m2 otherwise;M 0 = min(1;M1)M2 if t2 = snt ;= M1M2 otherwise;t0 = snt if t1 = snt or (t2 = snt and m1 � 1);= st if t1 = st and (t2 = st or M1 = 0);= pt otherwise;acf 0 = acf :Operation SEQ : ASSCD ! ASSDWe de�ne SEQ(hB; acf i) = B:Operation SUBST : ASSCD0 ! ASD0We de�ne SUBST(hh�;m;M; ti; acf i) = �:

