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2 � Annalisa Bossi et al.The programmer should be responsible for the logi part. The ontrol should betaken are of by the logi programming system.In reality, logi programming is far from this ideal. Without the programmerbeing aware of the ontrol and writing programs aordingly, most logi programswould be hopelessly ineÆient or even non-terminating.One aspet of ontrol in logi programs is the seletion rule, stating whih atomin a query is seleted in eah derivation step. The standard seletion rule in logiprogramming languages is the �xed left-to-right rule of Prolog. While this ruleis appropriate for many appliations, there are situations, e.g., in the ontext ofparallel exeutions or the test-and-generate paradigms, that require a more exibleontrol mehanism, namely, dynami sheduling, where the seletable atoms aredetermined at runtime.To demonstrate that on the one hand, the left-to-right seletion rule is some-times inappropriate, but that on the other hand, the seletion mehanism must beontrolled in some way, onsider the following programs APPEND and IN ORDER:% append(Xs,Ys,Zs)  Zs is the result of onatenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List)  List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs)  in order(Left,Ls),in order(Right,Rs),append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ : read tree(Tree), in order(Tree,List), write list(List):where read tree and write list are de�ned elsewhere. If read tree annot readthe whole tree at one { say, it reeives the input from a stream { it would benie to be able to run the \proesses" in order and write list on the availableinput. This an only be done properly if one uses a dynami seletion rule (Prolog'srule would all in order only after read tree has �nished, while other �xed ruleswould immediately diverge and/or have an unwanted behavior1. Suh a mehanismis provided in modern logi programming languages in the form of delay delarations(also alled when delarations [Naish 1986℄). In the above program, in order to avoidnontermination one an delare that prediates in order, append and write listan be seleted only if their �rst argument is not just a variable. Formally,delay in order(T, ) until nonvar(T).delay append(Ls, , ) until nonvar(Ls).1For instane, the �xed rule that selets always the seond atom in a lause body, and that seletsthe �rst one only when the body ontains only one atom an lead to nontermination, as the queryin order(Tree, List) an easily diverge. The same applies to the rule that always selets therightmost atom in a query, with the extra problem that write list(List) would be alled with anon-instantiated argument: if write list is non-baktrakable (as many IO prediates are) thiswould imply that this seletion rule yields to a wrong output.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 3delay write list(Ls, ) until nonvar(Ls).These delarations prevent in order, append and write list from being seleted\too early", i.e., when their arguments are not \suÆiently instantiated". Notethat instead of having interleaving \proesses", one an also selet several atomsin parallel, as long as the delay delarations are respeted. This approah to par-allelism has been �rst proposed by Naish [Naish 1988℄ and { as observed by Aptand Luitjes [Apt and Luitjes 1995℄ { \has an important advantage over the onesproposed in the literature in that it allows us to parallelize programs written ina large subset of Prolog by merely adding to them delay delarations, so withoutmodifying the original program".Compared to other mehanisms for user-de�ned ontrol, e.g., using the ut opera-tor in onnetion with built-in prediates that test for the instantiation of a variable(var or ground), delay delarations are more ompatible with the delarative har-ater of logi programming. Nevertheless, many important delarative propertiesthat have been proven for logi programs do not apply to programs with delaydelarations. The problem is mainly related to the fat that delay delarationsmight ause deadlok situations, in whih no atom in the query respets its delaydelaration. For instane, for suh programs the well-known equivalene betweenmodel-theoreti and operational semantis does not hold. As an example, onsiderthe query append(X,Y,Z) with the exeution mehanism desribed above: it doesnot sueed (it deadloks) and this is in ontrast with the fat that (in�nitely many)instanes of append(X,Y,Z) are ontained in the least Herbrand model of APPEND.In order to provide a haraterization of dynami sheduling that is reasonablyabstrat and hene amenable to semanti analysis, Smaus [Smaus 1999a℄ introduedinput onsuming derivations, a formalism very similar to the one of Moded GHC[Ueda and Morita 1994℄. The de�nition of input onsuming program relies on theonept of mode. A moded program is a program in whih eah atom's argumentsare partitioned into input and output ones. Output arguments are those whih anbe produed by the omputation proess, while input arguments should be onlyonsumed. Roughly speaking, in an input onsuming program only atoms whoseinput arguments are not instantiated through the uni�ation step are allowed to beseleted.In [Bossi et al. 2001℄ we have demonstrated that { in many ases { the adoption ofthe \natural" delay delarations is equivalent to onsidering only input onsumingderivations. This is the ase { for instane { for the programs mentioned above(together with their natural mode append(I,I,O)2, in order(I,O)): under normalirumstanes, the adoption of the just stated delay delarations enfores nothingbut a restrition to input onsuming derivations. In both ases, whether we onsiderseletion rules de�ned in terms of a programming language onstrut suh as delaydelarations, or whether we onsider input onsuming derivations, we speak of LPwith dynami sheduling.The ontribution. The adoption of dynami sheduling has as ultimate goal thatof ensuring the termination of the program under onstrution, by preventing pos-2In this mode, the �rst two positions are onsidered input positions, while the rightmost one isan output one. ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



4 � Annalisa Bossi et al.sible diverging derivations. Nevertheless, while for pure PROLOG programs (i.e.,logi programs employing the �xed leftmost seletion rule) there exist results har-aterizing when a program is terminating [Apt and Pedreshi 1994℄, no suh har-aterization has been found yet for programs with dynami sheduling. In addition,there are relatively few ontributions onerning the termination of programs withdynami sheduling.In this paper we takle the problem of establishing the termination of inputonsuming logi programs. For this, we restrit our attention to the lass of simplymoded programs, whih are programs that are, in a well-de�ned sense, onsistentwith respet to the intended produer/onsumer behavior (modes). As also shownby the benhmarks reported in [Bossi et al. 2001℄, most pratial programs aresimply moded.The main ontribution of this paper is a full haraterization of the lass of simplymoded input terminating logi programs, i.e., simply moded programs whose inputonsuming derivations starting from a simply moded query are �nite.In order to provide suh a result, we had to de�ne a new delarative seman-tis that allows us to apture the inter-argument relationships of input-onsumingprograms. Sine dynami sheduling also allows for parallelism, in this ontext itis important to model the result of partial (i.e., inomplete) derivations. In fat,partial omputed answer substitutions may ativate suspended proesses by meansof interleaving therefore inuening the termination of the system. To apturethis appropriately, we de�ned a denotational semantis modeling omputed answersubstitutions of inomplete derivations and enjoying a model-theoretial readingas well as a natural bottom-up onstrutive de�nition. We demonstrate that thissemantis is orret and fully abstrat with respet to the omputed substitutionsof partial derivations.A �rst attempt to takle this problem has been presented in [Smaus 1999b℄ andextended in [Bossi et al. 2002℄ where we de�ned the lass of input terminating pro-grams, i.e., programs whose input onsuming derivations are �nite, and haraterizethe sublass of simply moded quasi reurrent programs. It is worth strething thatthis latter lass inludes only programs whose termination does not depend on theso-alled inter-argument relationships and therefore it does not inlude programssuh that quiksort, transpose, list tree. Further omparisons are reported inthe onluding setion.Struture of the paper. The rest of this paper is organized as follows. The nextsetion introdues some preliminaries. Setion 3 shows some useful properties of in-put onsuming derivations. Setion 4 provides a result on denotational semantis forpartial input onsuming derivations. Setion 5 provides a suÆient and neessaryriterion for termination of programs using input onsuming partial derivations.In Setion 6 we report additional examples. Setion 7 disusses related work anddraws some onlusions.2. PRELIMINARIESThe reader is assumed to be familiar with the terminology and the basi results oflogi programs and their semantis [Apt 1990; 1997; Lloyd 1987℄. In this setionwe introdue a few notions that will be used in the sequel.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 52.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data onstrutors C and a de-numerable set of variable symbols V . For any syntati objet o, we denote byVar(o) the set of variables ourring in o. A syntati objet is linear if everyvariable ours in it at most one. A substitution � is a mapping from V to T .Given a substitution � = fx1=t1; : : : ; xn=tng, we say that fx1; : : : ; xng is its domain(denoted by Dom(�)), and Var(ft1; : : : ; tng) is its range (denoted by Ran(�)).Note that Var(�) = Dom(�) [ Ran(�). We denote by � the empty substitution:Dom(�) = Ran(�) = ;. Given a substitution � and a syntati objet E, we de-note by �jE the restrition of � to the variables in Var(E), i.e., �jE(x) = �(x)if x 2 Var(E), otherwise �jE(x) = x. If t1; : : : ; tn is a permutation of x1; : : : ; xnthen we say that � is a renaming. The omposition of substitutions is denoted byjuxtaposition, i.e., ��(x) = �(�(x)). The result of the appliation of a substitution� to a term t is said an instane of t and it is denoted by t�. We say that t is avariant of t0, written t � t0, if t and t0 are instanes of eah other. A substitution �is a uni�er of terms t and t0 if t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0. An mgu � of terms t and t0 is alled relevant i�Var(�) � Var(t) [ Var(t0).2.2 Programs and DerivationsLet P be a �nite set of prediate symbols. An atom is an objet of the formp(t1; : : : ; tn) where p 2 P is an n-ary prediate symbol and t1; : : : ; tn 2 T . Givenan atom A, we denote by Rel(A) the prediate symbol of A. A query is a �nite,possibly empty, sequene of atoms A1; : : : ; Am. The empty query is denoted by2. Following the onvention adopted in [Apt 1997℄, we use boldfae haraters todenote sequenes of objets: so, for instane, t denotes a sequene of terms, while Bis a query (i.e., a possibly empty sequene of atoms). A lause is a formula H  Bwhere H is an atom (the head) and B is a query (the body). When B is empty,H  B is simply written H and is alled a unit lause. A program is a �nite setof lauses. We denote atoms by A;B;H; : : : ; queries by Q;A;B;C;R; : : : ; lausesby ; d; : : : ; and programs by P .Computations are onstruted as sequenes of \basi" steps. Consider a non-empty query A; B;C and a lause . Let H  B be a variant of  variable disjointfrom A; B;C. Let B and H unify with mgu �. The query (A;B;C)� is alleda resolvent of A; B;C and  with seleted atom B and mgu �. A derivation stepis denoted by A; B;C �=)P; (A;B;C)�. The lause H  B is alled its inputlause. The atom B is alled the seleted atom of A; B;C.If P is lear from the ontext or  is irrelevant then we drop the referene tothem. A derivation is obtained by iterating derivation steps. A maximal sequeneÆ : Q0 �1=)P;1 Q1 �2=)P;2 � � �Qn �n+1=)P;n+1 Qn+1 � � �is alled a derivation of P [ fQ0g provided that for every step the standardizationapart ondition holds, i.e., the input lause employed is variable disjoint from theinitial query Q0 and from the substitutions and the input lauses used at earliersteps.Derivations an be �nite or in�nite. If Æ : Q0 �1=)P;1 � � � �n=)P;n Qn is a �niteACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



6 � Annalisa Bossi et al.pre�x of a derivation, also denoted by Æ : Q0 ��! Qn with � = �1 � � � �n, we say thatÆ is a partial derivation and � is a partial omputed answer substitution of P [ fQ0g.If Æ is maximal and ends with the empty query then � is alled omputed answersubstitution (.a.s., for short). In this ase we say that the derivation is suessful.A �nite derivation is alled failed if it ends with a non-empty query Q and thereis no input lause whose head uni�es with the seleted atom of Q. The length of a(partial) derivation Æ, denoted by len(Æ), is the number of derivation steps in Æ.The following de�nition of D-step is due to Smaus [Smaus 1999a℄.De�nition 2.1 (D-step).| Let A; B;C �=) (A;B;C)� be a derivation step. We say that eah atomin B� is a diret desendant of B, and for eah atom E in (A;C), E� is a diretdesendant of E. We say that E is a desendant of F if the pair (E;F ) is in thereexive, transitive losure of the relation is a diret desendant of.| Consider a derivation Q0 �1=) � � � �i=) Qi � � � �j=) Qj �j+1=) Qj+1 � � �. We saythat Qj �j+1=) Qj+1 � � � is a D-step if D is a subquery of Qi and the seleted atomin Qj is a desendant of an atom in D.Intuitively, a D-step ourring in a derivation Æ is a derivation step that onernsthe derivation of the subquery D of some query in Æ.2.3 Moded ProgramsModes are a ommon tool for veri�ation. A mode is a funtion that labels as inputor output the positions of eah prediate in order to indiate how the argumentsof a prediate should be used. A program (resp. a query, an atom) is alled modedwhenever it is provided with a mode.De�nition 2.2 (mode). A mode for a prediate symbol p of arity n, is a funtionmp from f1; : : : ; ng to fI ;Og.If mp(i) = I (resp. O), we say that i is an input (resp. output) position of p(with respet to mp). In examples, we often indiate the mode by writing the atomp(mp(1); : : : ;mp(n)), e.g., append(I ; I ;O).We assume that eah prediate symbol has a unique mode assoiated to it; multi-ple modes may be obtained by simply renaming the prediates. We denote by In(Q)(resp. Out(Q)) the sequene of terms �lling in the input (resp. output) positionsof prediates in Q. Moreover, when writing an atom as p(s; t), we are indiatingthat s is the sequene of terms �lling in its input positions and t is the sequene ofterms �lling in its output positions.In the literature, several orretness riteria onerning the modes have beenproposed, e.g., niely and well-modedness [Apt 1997℄. In the sequel of the paper wewill restrit ourselves to programs and queries whih are simply moded [Apt andEtalle 1993℄.De�nition 2.3 (simply moded). A lause H  B1; : : : ; Bn is simply moded if| Out(B1; : : : ; Bn) is a linear vetor of variables,| Var(In(H)) \Var(Out(B1; : : : ; Bn)) = ;,| for all i 2 [1::n℄, Var(Out(Bi)) \ Var(In(B1; : : : ; Bi)) = ;.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 7A query B is simply moded if the lause q  B is simply moded, where q is anyvariable-free atom. A program is simply moded if all of its lauses are.Thus a lause is simply moded if the output positions of body atoms are �lled inby distint variables, and every variable ourring in an output position of a bodyatom does not our in an earlier input position. In partiular, every unit lause issimply moded.Example 2.4.| The program APPEND of the introdution in the mode append(I ; I ;O) is simplymoded.| The following program REVERSE with aumulator in the mode de�ned belowis simply moded.mode reverse(I,O).mode reverse a(I,O,I)reverse(Xs,Ys)  reverse a(Xs,Ys,[℄).reverse a([℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs)  reverse a(Xs,Ys,[X|Zs℄).In De�nition 2.3, if we drop the ondition that output positions of body atomsare �lled in by variables then we obtain the de�nition of niely moded programsand queries. Therefore the lass of simply moded programs is properly ontainedin the lass of niely moded programs.2.4 Input Consuming DerivationsThe notion of input onsuming derivation was introdued in [Smaus 1999a℄ asformalism for desribing dynami sheduling in an abstrat way and is de�ned asfollows.De�nition 2.5 (input onsuming).| A derivation step A; B;C �=) (A;B;C)� is input onsuming if In(B)� =In(B).| A derivation is input onsuming if all its derivation steps are input onsuming.Example 2.6. Consider the program REVERSE with aumulator in the modesde�ned above. The derivation Æ of REVERSE [ freverse([X1,X2℄,Zs)g depitedbelow is input onsuming.Æ: reverse([X1,X2℄,Zs) ) reverse a([X1,X2℄,Zs,[ ℄) )reverse a([X2℄,Zs,[X1℄) ) reverse a([ ℄,Zs,[X2,X1℄) ) 2.Allowing only input onsuming derivations is a form of dynami sheduling, sinewhether or not an atom an be seleted depends on its degree of instantiation atruntime. Given a non-empty query, if no atom is resolvable via an input onsumingderivation step and no failure arises, then we say that the query deadloks.In previous works many important properties of input onsuming derivationshave been proven by onsidering various lasses of programs and queries. In thisartile, we fous on the simply moded ones, but we onsider results that hold onlyACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



8 � Annalisa Bossi et al.for this lass as well as results that hold for larger lasses, e.g., the lass of nielymoded programs and queries.The following lemma is a straightforward onsequene of [Apt and Luitjes 1995,Lemma 30℄.Lemma 2.7. In a input onsuming derivation, every resolvent of a niely (resp.simply) moded query and a niely (resp. simply) moded lause is niely (resp. sim-ply) moded.The following result has been proven in [Bossi et al. 2002℄ for niely modedprograms and queries. It states that the only variables of a niely moded querythat an be \a�eted" through the omputation of an input onsuming derivationwith a niely moded program are those ourring in some output positions.Lemma 2.8. Let the program P and the query Q be niely moded. Let alsoQ ��! Q0 be a (partial) input onsuming derivation of P [ fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.The next lemma shows that input onsuming derivations are invariant underrenaming.Lemma 2.9. Let P be a program, Q be a query and Æ : Q ��! Q0 be a (partial)input onsuming derivation of P [ fQg. Then, for any renaming � there exists a(partial) input onsuming derivation Æ0 : Q� #�! Q0� where # = ��1��.Proof. First notie that(1) if  is a lause renamed apart with respet to a query Q then � is renamedapart with respet to Q�,(2) if A and H are uni�able with mgu � then A� and H� are uni�able with mgu��1��,(3) if In(A�) = In(A) then In(A���1��) = In(A��) = In(A�).Consider now the list of lauses 1; : : : ; n employed in Æ and the orresponding list ofmgu's, �1; : : : ; �n, where � = �1; � � � ; �n. By (1) and (2) we an onstrut a derivationÆ0 starting from Q� with input lauses 1�; : : : ; n� and uni�ers ��1�1�; : : : ; ��1�n�.We obtain a derivation Æ0 : Q� #�! Q0� whih is input onsuming (by (3)) and whoseomputed answer substitution is # = (��1�1�)(��1�2�) � � � (��1�n�) = ��1�1 � � � �n� =��1��.We reall below the Left-Swithing Lemma that has been proven in [Bossi et al.2002℄.Lemma 2.10 (Left-Swithing). Let the program P and the query Q0 be nielymoded. Let Æ be a partial input onsuming derivation of P [ fQ0g of the formÆ : Q0 �1=)1 Q1 � � �Qn �n+1=)n+1 Qn+1 �n+2=)n+2 Qn+2where| Qn is a query of the form A; A;B; B;C,| Qn+1 is a resolvent of Qn and n+1 wrt. B,| Qn+2 is a resolvent of Qn+1 and n+2 wrt. A�n+1.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 9Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 suh that�n+1�n+2 = �0n+1�0n+2and Æ0 : Q0 �1=)1 Q1 � � �Qn �0n+1=)n+2 Q0n+1 �0n+2=)n+1 Qn+2where Æ0 is input onsuming and| Æ and Æ0 oinide up to the resolvent Qn,| Q0n+1 is a resolvent of Qn and n+2 wrt. A,| Qn+2 is a resolvent of Q0n+1 and n+1 wrt. B�0n+1,| Æ and Æ0 oinide after the resolvent Qn+2.Lemma 2.10 suggests the following de�nition whih introdues a way of orderingthe seleted atoms in an input onsuming derivation of a simply moded query.De�nition 2.11. A partial derivation Æ : Q0 =) Q1 � � � =) Qn of a simplymoded query Q0 proeeds left-to-right if whenever an atom B is seleted in a re-solvent Qi : A; B;C then no A-step is performed in the rest of the derivationQi+1 �! Qn.The next orollary is an immediate onsequene of the Left-Swithing Lemma.Intuitively, it says that any resolvent in an input onsuming derivation of a simplymoded query an be obtained by an input onsuming derivation whih proeedsleft-to-right.Corollary 2.12. Let the program P and the query A;B be simply moded. Sup-pose that Æ : A;B ��! C is a (partial) input onsuming derivation of P [ fA;Bg.Then there exist C1 and C2 and a (partial) input onsuming derivation Æ0 thatproeeds left-to-right of the formÆ0 : A;B �1�! C1;B�1 �2�! C1;C2suh that len(Æ) = len(Æ0), C = C1;C2, � = �1�2, all the A-steps are performed inthe pre�xA;B �1�! C1;B�1, all the B-steps are performed in the suÆx C1;B�1 �2�!C1;C2 and C1�2 = C1.Proof. By repeatedly applying the Left Swithing Lemma, Æ is equivalent to aderivation Æ0 in whih all the A-steps are arried out before the B-steps. C1;B�1is the resolvent that we obtain after arrying out the A-steps. By the persisteneof simply-moded queries (Lemma 2.7), C1;B�1 is simply-moded. Therefore, byLemma 2.8, �2 has no inuene on C1 (i.e., C1�2 = C1).3. SIMPLY LOCAL SUBSTITUTIONSWhen input onsuming derivations are applied to simply moded programs andqueries, important properties follow from the way lauses beome instantiated dur-ing the derivation proess. We introdue simply loal substitutions to reet thisinstantiation mehanism. A lause := H  B1; : : : ; Bn beomes instantiated byits \aller" the atom that is resolved using ) and its \allees" (the lauses used toACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



10 � Annalisa Bossi et al.resolve the body atoms of ). Thus, a simply loal substitution is de�ned as theomposition of several substitutions, �0; �1 : : : ; �n, one for eah atom in the givenlause, suh that �0 binds the input variables of the head of the lause, and eah �i(i > 0) reates a binding between the output variables and the input terms of Bi(instantiated by the previous substitutions �0; : : : ; �i�1). The de�nition involvesvariable sets v0; v1; : : : ; vn. Intuitively, the variables in v0 ome from the \aller"and the variables in v1; : : : ; vn ome from the \allees".De�nition 3.1 (simply loal substitution). Let � be a substitution. We say that� is simply loal wrt. the lause H  B1; : : : ; Bn if there exist substitutions�0; �1 : : : ; �n and disjoint sets of fresh (wrt. ) variables v0; v1; : : : ; vn suh that� = �0�1 � � ��n where| Dom(�0) � Var(In(H)) and Ran(�0) � v0,| for i 2 [1::n℄,Dom(�i) � Var(Out(Bi)) and Ran(�i) � Var(In(Bi)�0�1 � � ��i�1) [ vi.The substitution � is simply loal wrt. a query B if � is simply loal wrt. the lauseq  B where q is any variable-free atom.Given a simply loal substitution �, we all the set of fresh variables of � theunion of the sets v0; v1; : : : ; vn introdued in the above de�nition.Note that in the ase of a simply loal substitution wrt. a query, �0 is the emptysubstitution, sine Dom(�0) � Var(q) where q is an (imaginary) variable-free atom.Example 3.2. Consider the program APPEND with the modes append(I,I,O)and its reursive lause : append([HjXs℄; Ys; [HjZs℄)  append(Xs; Ys; Zs):The substitution � = fXs=[℄; Ys=W; Zs=Wg is simply loal wrt. . In fat, let �0 =fXs=[℄; Ys=Wg and �1 = fZs=Wg be two substitutions and v0 = fWg and v1 = ; betwo disjoint sets of fresh (wrt. ) variables. Aording to De�nition 3.1, we have � =�0�1, Dom(�0) � Var(In(append([HjXs℄; Ys; [HjZs℄))), Ran(�0) � v0, Dom(�1) �Var(Out(append(Xs; Ys; Zs))) and Ran(�1) � Var(In(append(Xs; Ys; Zs))�0) [ v1.Consider now the queryQ : append([a; X; ℄; Ys; Zs); append(Zs; [b℄; Ls):The substitution � = fZs=[a,X,|Ys℄g is simply loal wrt. Q. In fat � = �1�2where �1 = fZs=[a,X,|Ys℄g and �2 is the empty substitution, and v1 and v2 areempty sets of variables.The following property follows immediately from De�nition 3.1.Proposition 3.3. Let the lause  be simply moded and � be a renaming. If thesubstitution � is simply loal wrt.  then the substitution ��1�� is simply loal wrt.�.The next lemma provides us with a means of omposing substitutions whih aresimply loal with respet to piees of queries provided that they satisfy the followingvariable ompatible property.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 11De�nition 3.4. Let #1 be a substitution simply loal wrt. A and #2 be simplyloal wrt. B#1. Then #1 and #2 are variable ompatible wrt. A and B if| the set of fresh variables of #1 is disjoint from the set of fresh variables of #2,| Var(A;B) is disjoint from the set of fresh variables of #1 and #2.When two substitutions are variable ompatible then we have a way of ombiningthem as desribed below.Lemma 3.5. Let the query A;B be simply moded. There exists a substitution �simply loal wrt. A;B i� � = #1#2 where| #1 = �jA = �jOut(A) is simply loal wrt. A,| #2 = �jB = �jOut(B) simply loal wrt. B#1,| #1 and #2 are variable ompatible wrt. A and B.Proof. Let A = A1; : : : ; Ai and B = Ai+1; : : : ; An.)) Let � = �1 � � ��n be aording to De�nition 3.1. By de�nition of simply loalsubstitution and properties of simply moded queries, for every k; j 2 [1::n℄ and k 6=j, Dom(�k) \ Dom(�j) = ;, Out((Ak+1; : : : ; An)�1 � � ��k) = Out(Ak+1; : : : ; An)and ((A1; : : : ; Ak)�1 � � ��k)�k+1 � � ��n = (A1; : : : ; Ak)�1 � � ��k. Thus �jA = �1 � � ��iis simply loal wrt. A and �i+1 � � ��n is simply loal wrt. (Ai+1; : : : ; An)�1 � � ��i.() Let #1 = �1 � � ��i and #2 = �i+1 � � ��n. To prove that #1#2 = �1 � � ��n is sim-ply loal wrt. A;B, it is suÆient to observe that by de�nition of simply loal sub-stitution and properties of simply moded queries, Out((Ai+1; : : : ; An)�1 � � ��i) =Out(Ai+1; : : : ; An) and hene for all j 2 [i+ 1::n℄, Dom(�j) � Var(Out(Aj)). Thefat that #1 and #2 are variable ompatible ensures that the omposition #1#2 satis-�es the requirement on fresh variables in the de�nition of simply loal substitution.Analogously, one an prove the following result whih allows us to ombine simplyloal substitutions applied to a lause rather than to a query.Lemma 3.6. Let the lause  : H  B be simply moded. There exists a substi-tution � simply loal wrt.  i� � = #0#1 where| #0 = �jH = �jIn(H) is simply loal wrt. H  ,| #1 = �jB = �jOut(B) simply loal wrt. B#0,| #0 and #1 are variable ompatible wrt. H and B.The following de�nition introdues a property of mgu's whih an be naturallysatis�ed by input onsuming derivations, as shown in the subsequent lemma. Theproof of the lemma is reported in the appendix.De�nition 3.7 (simply loal mgu). Let the atoms A and H be variable disjoint,A be simply moded and � be a mgu of A and H suh that In(A�) = In(A). Wesay that � is a simply loal mgu of A and H if � = �0�1 where �0 is simply loalwrt. the lause H  and �1 is simply loal wrt. the atom A.Lemma 3.8. Let the atoms A and H be variable disjoint and A be simply moded.Suppose that there exists # = mgu(A;H) suh that In(A#) = In(A). Then thereexist a simply loal mgu � of A and H.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



12 � Annalisa Bossi et al.Note that previous Lemma 3.8 together with Theorem 3.18 in [Apt 1997℄ (onderivations with di�erent mgu's), ensures us that as long as we are interested inproperties whih are invariant under renaming, we an safely assume that all themgu's employed in an input onsuming derivation of a simply moded program witha simply moded query are simply loal.Example 3.9. Consider the prediate p=2 in the mode p(I ;O) and the atomsA = p(f(X; Y); Z) H = p(W; U):Note that there exists an mgu # of A and H suh that In(A#) = In(A). In fat,there are atually two relevant mgus whih enjoy this property:#1 = fW=f(X; Y); U=Zg #2 = fW=f(X; Y); Z=Ugbut only the seond one is simply loal. Note also that when A and H are variabledisjoint and # is a simply loal mgu of A and H then the variables in Out(A) donot our anymore in A#.The next lemma shows a persisteny property of simply loal substitutions. Itprovides one of the key intuitions for the development of the bottom-up semantisof next setion. Its proof is reported in the appendix.Lemma 3.10. Let Q : A;R be a simply moded query, Q0 : (B;R)# and Q #=) Q0be an input onsuming derivation step obtained by using the simply moded lause : H  B and the simply loal mgu #. Let � be a substitution simply loal wrt. Q0suh that the set of fresh variables of � is disjoint from Var(Q) and Var(). Then(#�)jQ is simply loal wrt. Q.4. A DENOTATIONAL SEMANTICS FOR PARTIAL DERIVATIONSAs we mentioned in the introdution, input onsuming derivations an be used tomodel parallelism, and in this ontext it is very important to model the results ofpartial omputations. Indeed, standard semantis for onurrent logi languagessuh as CCP [Etalle et al. 2002; Saraswat and Rinard 1990℄ and GHC [Ueda andFurukawa 1988℄ often apture suh intermediate results, or in any ase, the resultsof non-suessful omputations [de Boer and Palamidessi 1991℄. In fat, input on-suming programs an have a reative nature: the (partial) result of a omputationmay trigger another omputation by instantiating suÆiently the input positionsof another atom so that it beomes resolvable. Beause of this, when one wants toharaterize for instane termination, the adoption of a semantis modeling inter-mediate results beomes essential.In this setion we de�ne a denotational semantis that models partial omputedanswer substitutions of input onsuming derivations of simply moded programs andqueries. We will later see how this semantis allows us to haraterize terminationof input onsuming derivations.4.1 Immediate onsequene operatorIn prediate logi, an interpretation states whih formulas are true and whih onesare not. For our purposes, it is onvenient to formalize this by de�ning an interpre-tation I as a set of atoms losed under variane. Based on this notion and simplyloal substitutions, we now de�ne a restrited notion of model.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 13De�nition 4.1 (simply loal model). Let M be an interpretation. We say thatM is a simply loal model of a lause  : H  B1; : : : ; Bn if for every substitution� simply loal wrt. , if B1�; : : : ; Bn� 2M then H� 2M . (1)M is a simply loal model of a program P if it is a simply loal model of eah lauseof it.Clearly a simply loal model is not neessarily a model in the lassial sense,sine the substitution � in (1) is required to be simply loal. For example, giventhe program fq(1):; p(X)  q(X):g with modes q(I ); p(O), a model must ontainthe atom p(1), whereas a simply loal model does not neessarily ontain p(1), sinefX=1g is not simply loal wrt. p(X)  q(X): On the other hand, any term model(see [Apt 1997℄) is a simply loal model, while there are Herbrand models whihare not simply loal.We now show that there exists a minimal simply loal model and that it isbottom-up omputable. For this we need the following operator TSLP on interpre-tations.De�nition 4.2 (TSLP operator). Given a program P and an interpretation I , wede�ne T slP (I) = fH� j 9  : H  B1; : : : ; Bn variant of a lause in P;� is simply loal wrt. ;B1�; : : : ; Bn� 2 Igand TSLP (I) = (T slP + id)(I) = I [ T slP (I):It is easy to show that both T slP and TSLP are monotoni and ontinuous on thelattie where interpretations are ordered by set inlusion. We onsider powers ofan operator T whih are de�ned in the standard way as follows: T " 0(I) = I ,T " (i+ 1)(I) = T (T " i(I)), and T " !(I) = S1i=0 T " i(I).We now show that if I onsists of simply moded atoms then TSLP " !(I) is asimply loal model of P ontaining I . In the following we denote by SM P the setof all simply moded atoms of the extended Herbrand universe of P . The proof ofthe next proposition is reported in the appendix.Proposition 4.3. Let P be simply moded and I � SM P be an interpretation.Then TSLP " !(I) is the least simply loal model of P ontaining I.The following lemma relates partial input onsuming derivations of simply modedprograms and queries with powers of the TSLP operator. It is the key result to relatethe operational semantis of partial input onsuming derivations to the denotationalsemantis introdued below. The proof is reported in the appendix.Lemma 4.4. Let the program P and the query A be simply moded and I � SM Pbe an interpretation. The following statements are equivalent:(i) there exists an input onsuming derivation Æ : A #�!P C with C � I,(ii) there exists a substitution � simply loal wrt. A, suh that A� � TSLP " !(I),where A# and A� are variant.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



14 � Annalisa Bossi et al.4.2 Modeling the results of partial derivationsThe results of partial input onsuming derivations of simply moded queries in simplymoded programs are aptured by the following operational semantis.De�nition 4.5 (partial .a.s. semantis). Let the program P be simply moded.OSMP (P ) = fA�jA is simply moded and there exists A ��!P C with C � SM P g:The next theorem shows that the denotational semantis provided by the leastsimply loal model of P ontaining SM P is orret and fully abstrat with respetto the operational semantis of partial omputed answer substitutions OSMP (P ).The proof follows immediately by Lemma 4.4 above.Theorem 4.6. Let P be simply moded. Then OSMP (P ) = TSLP " !(SM P ).In the following we denote by PM SLP the least simply loal model of P ontainingSM P .Example 4.7. Consider again program APPEND. PM SLAPPEND is obtained by repeat-edly applying the TSLP operator, starting from any simply moded atom, i.e., an atomof the form append(s; t; x) where s and t are arbitrary terms but x is a variable notourring in s or in t. Hene,PM SLAPPEND = fappend([t1; : : : ; tm℄; t; [t1; : : : ; tmjt℄)g[ fappend(s; t; x) j x is a fresh variable g[ fappend([t1; : : : ; tmjs℄; t; [t1; : : : ; tmjx℄) j x is a fresh variablegwhere s; t; t1; : : : ; tm are arbitrary terms, and m � 0Consider now the query append([a; b; jX℄; Y; Z). The substitution �=fZ=[a; bjZ0℄gis simply loal wrt. that query and append([a; b; jX℄; Y; [a; bjZ0℄) 2 PM SLAPPEND. Us-ing Theorem 4.6, we an onlude that the query has a partial derivation withomputed answer �. Following the same reasoning, we an also onlude that thequery has a partial derivation with omputed answer �0 = fZ=[ajZ0℄g.5. TERMINATIONIn this setion, we show how the denotational semantis an be used to give aharaterization of termination of input onsuming derivations, in a similar way asthis has been done previously for LD-derivations [Apt and Pedreshi 1994; Ruggieri1997℄.Input onsuming derivations were originally oneived as an abstrat and \rea-sonably strong" assumption about the seletion rule in order to prove termina-tion [Smaus 1999b℄. The �rst result in this area was a suÆient riterion appliableto well- and niely moded programs. This was improved upon by dropping therequirement of well-modedness, whih means that one also aptures termination bydeadlok.The previous approahes are appliable as long as eah reursive lause in theprogram is diret reursive, i.e., the struture upon whih the reursion is arried outis passed diretly from the lause head to the reursive all in the body. Typially,this means that the lause has the form p(: : : ; s; : : :)  A; p(: : : ; t; : : :);C, where tis a proper subterm of s.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 15In this setion we de�ne the lass of simply aeptable programs whih inludesprograms whose termination annot be proven without taking into aount inter-argument relations. This means that for a lause p(: : :)  A; p(: : :);C, we needto take into aount how A and C might instantiate the body atom p(: : :) inorder to establish termination. In this ase, simply loal models and simply loalsubstitutions onvey the needed information.5.1 Simply Aeptable ProgramsNote that programs without reursion terminate trivially. In order to deal withmutually reursive proedures we need the following standard de�nitions [Apt 1997℄.De�nition 5.1. Let P be a program, p and q be relations. We say that p refersto q in P if there is a lause in P with p in the head and q in the body; p dependson q in P , and we write p w q, if (p; q) is in the reexive and transitive losureof the relation refers to; p and q are mutually reursive, written p ' q, if p and qdepend on eah other (i.e., p w q and q w p). We also write p = q when p w q andq 6w p.To prove termination, it is ommon to use some measure of size for atoms in aquery, often alled level mapping. To show termination of moded programs, it isnatural to use moded level mappings, where it is made expliit that the level of anatom depends only on its input positions. This onept was originally de�ned forground atoms [Etalle et al. 1999℄. Generalizing the de�nition to arbitrary atoms isruial for showing termination of input onsuming derivations.De�nition 5.2 (moded level mapping). A funtion j j is a moded level mapping ifit maps atoms into N and for any two atoms A and B, if A and B have the sameprediate symbol and the same terms in their input positions, then jAj = jBj.In other words, the level of an atom has to be independent from the termsourring in its output positions. For our purposes it is not neessary to requirethat the level mapping is invariant under renaming, yet this being the most ommonase.We now provide the entral de�nitions of this setion.De�nition 5.3 (input terminating). A program is alled input terminating wrt. agiven lass C of queries if all its input onsuming derivations starting in query inC are �nite.In partiular, we say that P is input terminating wrt. simply moded queries if foreah simply moded query Q, all input onsuming derivations of P [ fQg terminate.The basi notion for proving input termination is simply aeptability, whih isin analogy to aeptability [Apt and Pedreshi 1994℄.De�nition 5.4 (simply aeptable). Let P be a program and M a simply loalmodel of P ontaining SM P . A lause  is simply aeptable wrt. the moded levelmapping j j and M if for every variant H  A; B;C of  and every substitution �simply loal wrt. ,if A� 2M and Rel(H) ' Rel(B) then jH�j > jB�j:ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



16 � Annalisa Bossi et al.The program P is simply aeptable wrt. M if there exists a moded level mappingj j suh that eah lause of P is simply aeptable wrt. j j and M . We also saythat P is simply aeptable if it is simply aeptable wrt. some M and moded levelmapping j j.The di�erene between aeptability and simply aeptability is that aeptabil-ity is based on the lassial notion of model and onsequently on ground instanesof a lause, whereas simply aeptability is based on simply loal models ontain-ing SMP . These models allow us to model orretly the behaviour indued by thedynami sheduling and to apture the results of partial omputations. Anotherimportant di�erene with aeptability is that the level mapping dereasing is nowrequired for mutually reursive alls only.It is important to realize why we need to model partial results. Consider thefollowing programq(a)  q(a).p(a)  fail.mode q(I)mode p(O)Notie that the query q(X) terminates by deadlok, while q(a) loops. Now on-sider the query p(X),q(X). This query an yield to a nonterminating omputationbeause the query p(X), before failing, reports the partial answer fX/ag. If { inorder to prove termination { we referred to a lassial model (modeling only su-essful derivations) then we would not be able to see that the above program oulddiverge, beause we would not onsider fX/ag as a possible answer substitution.In the next two setions, we prove that simply aeptability is a suÆient andneessary riterion for input termination wrt. simply moded queries.5.2 SuÆieny of Simply AeptabilityThe following orollary of [Bossi et al. 2002, Lemma 22℄ allows us to restrit ourattention to queries ontaining only one atom.Corollary 5.5. Let P be a simply moded program. P is input terminating wrt.simply moded queries if and only if for eah simply moded atomi query A all inputonsuming derivations of P [ fAg are �nite.>From now on, we say that a relation p is de�ned in the program P if p oursin a head of a lause of P , and that P extends the program R if no relation de�nedin P ours in R.The following theorem shows that simply aeptability is a suÆient riterion forinput termination wrt. simply moded queries, and an be used in a modular way.Theorem 5.6. Let P and R be two simply moded programs suh that P extendsR. Let M be a simply loal model of P [ R ontaining SM P . Suppose that| R is input terminating wrt. simply moded queries,| P is simply aeptable wrt. M (and a moded level mapping j j).Then P [R is input terminating wrt. simply moded queries.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 17Proof. First, for eah prediate symbol p, we de�ne depP (p) to be the numberof prediate symbols it depends on: depP (p) = #fqj q is de�ned in P and p w qg.Clearly, depP (p) is always �nite. Further, it is immediate to see that if p ' q thendepP (p) = depP (q) and that if p = q then depP (p) > depP (q).We an now prove our theorem. By Corollary 5.5, it is suÆient to prove thatfor any simply moded atomi query A, all input onsuming derivations of P [ fAgare �nite.First notie that if A is de�ned in R then the result follows immediately fromthe hypothesis that R is input terminating wrt. simply moded queries and that Pis an extension of R. So we an assume that A is de�ned in P .For the purpose of deriving a ontradition, assume that Æ is an in�nite inputonsuming derivation of (P [ R) [ fAg suh that A is de�ned in P . ThenÆ : A #1=) (B1; : : : ; Bn)#1 #2=) � � �where  : H  B1; : : : ; Bn is the input lause used in the �rst derivation step and#1 = mgu(A;H). Clearly, (B1; : : : ; Bn)#1 has an in�nite input onsuming deriva-tion in P [R. By Corollary 2.12 and Lemma 3.8, for some i 2 [1::n℄ and for somesubstitution #02,(1) there exists an in�nite input onsuming derivation of (P [ R) [ fAg of the formA #1=) (B1; : : : ; Bn)#1 #02�! C; (Bi; : : : ; Bn)#1#02 � � � ;(2) there exists an in�nite input onsuming derivation of P [ fBi#1#02gboth employing only simply loal mgu's.Let � = (#1#02)j. It is not diÆult to see that � is simply loal wrt.  (this is aonsequene of Proposition A.1, reported in the appendix). Consider the instaneH�  (B1; : : : ; Bn)� of . By Theorem 4.6, (B1; : : : ; Bi�1)� 2M .We show that (2) annot hold, by indution on hdepP (Rel(A)); jAji with respetto the ordering � de�ned by: hm;ni � hm0; n0i if either m > m0 or m = m0 andn > n0.Base. Let depP (Rel(A)) = 0 (jAj is arbitrary). In this ase, A does not dependon any prediate symbol of P , thus all the Bi as well as all the atoms ourring inits desendants in any input onsuming derivation are de�ned in R. The hypothesisthat R is input terminating wrt. simply moded queries ontradits (2) above.Indution step. We distinguish two ases:(1) Rel(H) = Rel(Bi),(2) Rel(H) ' Rel(Bi).In ase (a) we have depP (Rel(A)) = depP (Rel(H�)) > depP (Rel(Bi�)): Therefore,hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji:In ase (b), from the hypothesis that P is simply aeptable wrt. j j and M , � issimply loal wrt.  and (B1; : : : ; Bi�1)� 2M , it follows that jH�j > jBi�j. Considerthe partial input onsuming derivation A ��! C; (Bi; : : : ; Bn)�. By Lemma 2.8 andthe fat that j j is a moded level mapping, we have that jAj = jA�j = jH�j. Hene,hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji.In both ases, the ontradition follows by the indutive hypothesis.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



18 � Annalisa Bossi et al.% quiksort(Xs, Ys)  Ys is an ordered permutation of Xs.quiksort(Xs,Ys)  quiksort dl(Xs,Ys,[℄).1: quiksort dl([X|Xs℄,Ys,Zs)  partition(Xs,X,Littles,Bigs),quiksort dl(Bigs,Ys1,Zs),quiksort dl(Littles,Ys,[X|Ys1℄).quiksort dl([℄,Xs,Xs).2: partition([X|Xs℄,Y,[X|Ls℄,Bs)  X =< Y, partition(Xs,Y,Ls,Bs).3: partition([X|Xs℄,Y,Ls,[X|Bs℄)  X > Y, partition(Xs,Y,Ls,Bs).partition([℄,Y,[℄,[℄). Fig. 1. The QUICKSORT programThe above theorem suggests proving termination in a modular way, i.e., extendinga program that is already known to be input terminating wrt. simply moded queriesby a program that is simply aeptable. Of ourse, this theorem holds in partiularif the former program is empty.Theorem 5.7. Let P be a simply moded program. If P is simply aeptable thenit is input terminating wrt. simply moded queries.Proof. The proof follows from Theorem 5.6, by setting R = ;.Example 5.8. Figure 1 shows quiksort using a form of di�erene lists [Ster-ling and Shapiro 1986, program 15.3℄ (we permuted two body atoms for the sakeof larity). This program is simply moded wrt. the modefquiksort(I ;O); quiksort dl(I ;O ; I ); partition(I ; I ;O ;O); =<(I ; I );>(I ; I )g.We show that it is simply aeptable. We start by de�ning the level mapping.De�ne funtion len aslen([hjt℄) = 1 + len(t);len(a) = 0 if a is not of the form [hjt℄:We use the following moded level mapping (where positions with are irrelevant):jquiksort dl(l; ; )j = len(l);jpartition(l; ; ; )j = len(l):The level mapping of all other atoms an be set to 0. Conerning the simply loalmodel, the ruial aspet with respet to termination is that it has to express thedependeny between the list lengths of the arguments of partition. To this end,the simplest solution is to hoose it so that M restrited to partition ontainsexatly the atoms of the form partition(t1; t2; t3; t4) wherelen(t1) � len(t3) and len(t1) � len(t4): (2)The presene (or absene) of other atoms is irrelevant for showing simple-aeptability,so the simplest way of building a simply loal model is that of adding all other atomsACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 19not de�ning partition. LetM = fpartition(t1; t2; t3; t4) j len(t1) � len(t3) and len(t1) � len(t4)g[ fquiksort dl(r; s; t) j for all r; s; tg[ fquiksort(r; s) j for all r; sg[ f=<(r; s); >(r; s) j for all r; sg:Notie that M inludes all simply moded atoms. It is easy to show that the pro-gram is simply aeptable wrt. M and j j and hene input terminating wrt. simplymoded queries. In fat:| Consider 1, the �rst lause de�ning quiksort dl. For every substitution�, simply loal wrt. 1, we have to show that- If partition(Xs; X; Littles; Bigs)� 2M , thenjquiksort dl([XjXs℄; Ys; Zs)�j > jquiksort dl(Bigs; Ys1; Zs)�j.This follows immediately from the de�nition of level mapping j j and the fat thatsine partition(Xs; X; Littles; Bigs)� 2M , we have len(Bigs)� � len(Xs)�.- If (partition(Xs; X; Littles; Bigs); quiksort dl(Bigs; Ys1; Zs))� 2 M , thenjquiksort dl([XjXs℄; Ys; Zs)�j> jquiksort dl(Littles; Ys; [XjYs1℄)�j.This is analogous to the previous point and follows by the de�nition of j j and thefat that sine partition(Xs; X; Littles; Bigs)� 2M , len(Littles)� � len(Xs)�.| Next, we onsider 2. We have to show that for eah simply loal substitution� suh that (X =< Y)� 2M ,jpartition([X|Xs℄,Y,[X|Ls℄,Bs)�j > jpartition(Xs,Y,Ls,Bs)�j.This follows diretly from the de�nition of j j (the fat that (X =< Y)� 2 M is notused here).| Finally, we onsider the other lauses. Clause 3 is handled as 2, while allother ones are not reursive (not even mutually), and therefore they are triviallysimply aeptable.There is one aspet we have negleted so far, namely that the program ontainsalls to (built-in) prediates =< and > without de�ning lauses. However, theseprediates are oneptually de�ned by fat lauses suh as 1>0:, whih are triviallysimply aeptable.By Theorem 5.7 we have that every query of the form quiksort(t ; x ), where x isa variable disjoint from t, yields a �nite input onsuming derivation. In partiular,Theorem 5.7 shows that the query quiksort(Y,X) yields terminating input on-suming derivations. These derivations terminate by deadlok, while by droppingthe requirement of input onsuming resolution steps it is easy to build a non-terminating derivation starting in that query. This shows that Theorem 5.7 allowsus to apture termination by deadlok, as further on�rmed by the neessity resultswe will provide in the next setion.It is worth remarking that with the tool of [Bossi et al. 2002℄ it is not possibleto prove that QUICKSORT is input terminating (wrt. simply moded queries). This isbeause in that paper the onept of quasi-reurrent program, whih has the samerole as that of simply aeptable program, does not take into aount the preseneof inter-argument relationships, (whih in the above example are present in theform of equation (2)). ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



20 � Annalisa Bossi et al.The following ontrived example shows the neessity of referring to simply loalsubstitutions.Example 5.9. Consider the program4: q(a)  q(X).together with the mode q(I). Every simply moded query terminates (either byfailure or by deadlok). Take the level mapping jq(t)j = 1 if t is not a variableand jq(x)j = 0 otherwise. We now show that 4 is simply aeptable wrt. j j andany simply loal model M . In fat, for every � simply loal wrt. 4 we have thatq(X)� = q(X): sine Out(q(X)) = ;, we have that X 62 Dom(�). Moreover triviallyq(a)� = q(a). Therefore jq(a)�j > jq(X)�j, whih implies simply aeptability.Notie that if we drop the requirement that � must be simply loal then we wouldhave no guarantee that jq(a)�j > jq(X)�j: simply let � = fX=ag.5.3 Neessity of Simply AeptabilityWe now prove the onverse of Theorem 5.7, namely that our riterion for provinginput termination wrt. simply moded queries is also neessary. For this we needsome new de�nitions as well as some new preliminary results in the spirit of thosein [Apt and Pedreshi 1994℄.The �rst de�nition onerns a onept analogous to that of SLD-trees in theontext of input onsuming derivations.De�nition 5.10 (IC-tree). Let P be a program and Q be a query. An IC-treefor P [ fQg is a tree suh that| its root is Q,| every node Q0 has exatly one desendant Q00 for every atom A of Q0 andevery lause  suh that Q00 is an input onsuming resolvent of Q0 wrt. A and .Informally, an IC-tree for P [ fQg groups all the input onsuming derivations ofP [ fQg modulo the hoies of the renaming of the program lauses used and thehoies of the mgu's.Notie that it an happen that a node ontains no seletable atom, in whih aseit has no hildren.Branhes of IC-trees are input onsuming derivations. Therefore we an hara-terize input termination in terms of IC-trees.Lemma 5.11. A IC-tree for P [ fQg is �nite i� all input onsuming onsumingderivations of P [ fQg are �nite.Proof. By de�nition, the IC-trees are �nitely branhing. The laim now followsby the lassial result of K�onig.Analogously to the ase of aeptability, we measure atoms by ounting thenumber of nodes in the orresponding IC-tree. For a program P and a query Q,we denote by nodes iP (Q) the number of nodes in an IC-tree for P [ fQg. We needone last property of IC-trees.Lemma 5.12. Let the program P and the query A; B be simply moded. Supposethat P is input terminating wrt. simply moded queries and that A� 2 PM SLP , where� is a simply loal substitution wrt. A. Then nodes iP (A; B) � nodes iP (B�).ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 21Proof. Consider an IC-tree T for P [ fA; Bg. By the hypothesis that A� 2PM SLP , it follows that there exists a substitution # suh that { by Lemma 4.4 {A #�!P C is a (partial) input onsuming derivation and A� � A#. Hene thereexists an input onsuming derivation A; B #�!P C; B# and B� � B#. Clearly,by de�nition of IC-tree, nodes iP (A; B) � nodes iP (B#) = nodes iP (B�). Hene thethesis.We are now in the position to prove that the lass of simply aeptable programsomprises all the programs input terminating wrt. simply moded queries.Theorem 5.13. Let P be a simply moded program. If P is input terminatingwrt. simply moded queries then P is simply aeptable.In partiular, it is simply aeptable wrt. PM SLP and a moded level mapping whihis invariant under renaming.Proof. We show that there exists a moded level mapping j j for P suh that Pis simply aeptable wrt. j j and PM SLP . We reall that PM SLP is the least simplyloal model of P ontaining SM P .Given an atom A, we denote with A� an atom obtained from A by replaing theterms �lling in its output positions with fresh distint variables. Clearly, we havethat A� is simply moded. Then we de�ne the following moded level mapping forP : jAj = nodes iP (A�):Notie that the level jAj of an atom A is independent from the terms �lling in itsoutput positions, i.e., j j is a moded level mapping. Moreover, sine P is inputterminating wrt. simply moded queries and A� is simply moded, all the input on-suming derivations of P [ fA�g are �nite. Therefore, by Lemma 5.11, nodes iP (A�)is de�ned (and �nite), and thus jAj is de�ned (and �nite) for every atom A.We now prove that P is simply aeptable wrt. j j and PM SLP .Let  : H  A; B;C be a lause of P and H�  A�;B�;C� be an instane of where � is a simply loal substitution wrt. . We show thatif A� 2 PM SLP and Rel(H) ' Rel(B) then jH�j > jB�j:Consider a variant 0 : H 0  A0; B0;C0 of  variable disjoint from (H�)�.Let � be a renaming suh that 0 = �. Clearly, (H�)� and H 0 unify. Let� = mgu((H�)�; H 0) = mgu((H�)�; H�) be a simply loal mgu of (H�)� andH 0. Then it holds that Dom(�) � Var(Out((H�)�)) [ Var(In(H�)). Hene(A0; B0;C0)� = (A; B;C)��, and(H�)� �=) (A; B;C)��is an input onsuming derivation step, i.e., (A; B;C)�� is a desendant of (H�)�in an IC-tree for P [ f(H�)�g.Moreover, (A; B;C)�� � (A; B;C)(��)jIn(H) = (A; B;C)�jIn(H).Let � = �jIn(H)�jOut(A)�jOut(B;C). Hene, by Lemmas 3.5 and 3.6, �jOut(A) isACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



22 � Annalisa Bossi et al.simply loal wrt. A�jIn(H). Therefore, we have thatjH�j = nodes iP ((H�)�) (by de�nition of j j)> nodes iP ((A; B;C)�jIn(H)) (by de�nition of IC-tree)� nodes iP ((A; B)�jIn(H)) (by de�nition of IC-tree)� nodes iP ((B�jIn(H)�jOut(A)) (by Lemma 5.12)= nodes iP ((B�)�) (sine � is simply loal wrt. )= jB�j (by de�nition of j j):5.4 A CharaterizationSummarizing, we have haraterized input termination by simply aeptability.Theorem 5.14. A simply moded program P is simply aeptable if and onlyif it is input terminating wrt. simply moded queries. In partiular, if P is inputterminating wrt. simply moded queries, then it is simply aeptable wrt. PM SLP anda moded level mapping whih is invariant under renaming.Proof. By Theorem 5.7 and Theorem 5.13.The following example shows how we an use Theorem 5.14 to reason abouttermination of a program.Example 5.15. Consider the following program PERMUTE.% permute(Xs,Ys)  Ys is a permutation of the list Xs1: permute([X|Xs℄,Ys)  insert(Zs,X,Ys), permute(Xs,Zs).permute([℄,[℄).% insert(Xs,X,Ys)  Ys is the result of inserting X into the list Xs2: insert([U|Xs℄,X,[U|Zs℄)  insert(Xs,X,Zs).insert(Xs,X,[X|Xs℄).First, let us onsider it together with the mode permute(O ; I ); insert(O ;O ; I ).Notie that the program is simply-moded. It is immediate to hek that the programis not input terminating in this mode: by repeatedly seleting the rightmost atom,the query permute(Xs,Ys) generates an in�nite input onsuming derivation. Thisis basially due to the fat that 1 has a variable in its input position. Therefore,the reursive all in the body an always be seleted.This suggests that one ould obtain input termination by replaing 1 by:1': permute([X|Xs℄,[Y|Ys℄)  insert(Zs,X,[Y|Ys℄), permute(Xs,Zs).Call the resulting program PERMUTE2. This program is still nonterminating (thequery permute(Xs,[Y|Ys℄) has an in�nite input onsuming derivation). However,this is not so obvious, and in essene, it has �rst been observed by Naish [Naish1993℄, in the ontext of programs with delay delarations. We an use The-orem 5.13 to demonstrate that and to understand why PERMUTE2 does not in-put terminate. We show that the program annot be simply aeptable wrt.PM SLPERMUTE2 and a moded level mapping whih is invariant under renaming. ByACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 23applying TSLP one to the the simply moded atom insert(Xs0; X0; Zs0) (Xs0; X0; Zs0are fresh variables), one sees that insert([U0jXs0℄; X0; [U0jZs0℄) 2 PM SLPERMUTE2. Thesubstitution fY=U0; Ys=Zs0; Zs=[U0jXs0℄; X=X0g is simply loal wrt. 1'. Therefore,for 1' to be simply aeptable, by Theorem 5.13, there would have to be a modedlevel mapping invariant under renaming suh that jpermute([X0jXs℄; [U0jZs0℄)j >jpermute(Xs; [U0jXs0℄)j. This is a ontradition sine a moded level mapping de-pends only on the input arguments (the seond argument of permute).Naish [Naish 1993℄ suggested to obtain a terminating program by replaing 2with its most spei� variant:2': insert([U|Xs℄,X,[U|[H|T℄℄)  insert(Xs,X,[H|T℄).Call the resulting program PERMUTE3. We show that PERMUTE3 is input termi-nating.3 Note that PERMUTE3 is simply moded, and onsider the following levelmapping: jpermute( ; l)j = len(l);jinsert( ; ; l)j = len(l):Conerning the simply loal model, the ruial aspet with respet to terminationis that it has to express the dependeny between the lengths of the third and �rstarguments of insert. We de�ne:M = fpermute(l;m) j for all l;mg[ finsert(m; a; l) j either insert(m; a; l) is simply modedor len(l) > len(m) gNotie that this model ontains also non-ground atoms. We have to verify thatM isa simply-loal model. The only non-trivial proof obligation onerns 2'. Now forany, not even neessarily simply loal, substitution �, insert(Xs; X; [HjT℄)� 2 Mimplies insert([UjXs℄; X; [Uj[HjT℄℄)� 2M . Hene M is a simply-loal model.We show that PERMUTE3 is simply aeptable wrt.M and j j. Conerning 1', wemust show that for every substitution �, simply loal wrt. 1', insert(Zs; X; [YjYs℄)� 2M implies jpermute([XjXs℄; [YjYs℄)�j > jpermute(Xs; Zs)�j. By the de�nitions ofM and j j, this even holds for arbitrary �. For the remaining lauses, it is imme-diate to hek that they are simply-aeptable. It follows that PERMUTE3 is inputterminating wrt. simply moded queries.To onlude, onsider the program PERMUTE4: that is, PERMUTE together with themodes permute(I ;O); insert(I ; I ;O). In this ase, in order to make the programsimply moded we have to permute the two body atoms of the �rst permute lause(but see the remark below) i.e., permute is rede�ned aspermute([X|Xs℄,Ys)  permute(Xs,Zs), insert(Zs,X,Ys).permute([℄,[℄).Notie that the program is now input terminating wrt. simply moded queries.This is in fat the natural mode of the PERMUTE program. To demonstrate the3We noted in [Smaus et al. 1998℄ that Naish's proposal for obtaining a terminating programdoes not work: For example, the query permute(Xs,[1,2℄) still loops. Indeed, following Naish'sproposal we get an input terminating program. The problem is that his delay delarations do notensure input onsuming derivations, as noted in [Smaus 1999a℄.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



24 � Annalisa Bossi et al.termination one an apply Theorem 5.7 using any simply loal model togetherwith the following moded level mapping:jpermute(l; )j = len(l);jinsert(l; ; )j = len(l):In PERMUTE4 we reordered the body atoms of a program, but this was atuallyan unneessary operation.Remark 5.16. Everything we state in this artile that applies to the lass ofsimply-moded programs (resp. queries) applies to the lass of permutation simplymoded programs (queries) as well, i.e., to those programs and queries that aresimply moded possibly after a permutation of body atoms. For the sake of notationsimpliity, we avoid to refer to this in a strutural way.6. OTHER EXAMPLESIn this setion we provide additional explanatory examples.Example 6.1. Consider the following program LISTTREE for onverting a listl into a binary tree t with labeled nodes, so that t ontains as labels exatly theelements of l, in the same left-to-right order (in an also be used to onvert t intol).% list tree(L,T)  L is a list and T is a binary tree with labelled nodes% ontaining the same elements in a left-to-right orderlist tree([℄,void).1: list tree([H|T℄,tree(TA,X,TB))  extrat([H|T℄,LA,X,LB),list tree(LA,TA),list tree(LB,TB).% extrat(Xs,Ys,X,Zs)  Xs is the result of onatenating Ys, [X℄ and Zs2: extrat([X|L℄,[℄,X,L).3: extrat([X|[H|T℄℄,[X|S℄,Y,R) extrat([H|T℄,S,Y,R).mode list tree(I,O)mode extrat(I,O,O,O)This program is simply moded. We now show that it is simply aeptable; for thiswe employ the following moded level mapping:jlist tree(l; )j = len(l);jextrat(l; ; ; )j = len(l):Conerning the simply loal model, the ruial aspet with respet to terminationis that it has to express the dependeny between the lengths of the arguments ofextrat. We de�neM = flist tree(l; t) j for all l; tg[ fextrat(l; l1; x; l2) j either l1; l2; l are distint variables;or len(l) > len(l1) and len(l) > len(l2) g:ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 25We have to verify that M is indeed a simply-loal model.First, we have to show that M is a simply-loal model of the lauses de�ninglist tree. This is however trivial, sineM ontains all instanes of list tree(X,Y).Seondly, we have to show that M is a simply-loal model of 2. We have toshow that for eah � simply-loal wrt. 2 extrat([XjL℄; [℄; X; L)� 2 M . But thisholds by the model de�nition and the fat that for any substitution �, we have thatlen([XjL℄�) > len([℄�) and len([XjL℄�) > len(L�).Thirdly, we have to show that M is a simply-loal model of 3. Considerany substitution � suh that extrat([HjT℄; S; Y; R)� 2 M . Sine [H|T℄� an-not be a variable, by the de�nition of M , len([Xj[HjT℄℄�) > len([XjS℄�) andlen([Xj[HjT℄℄�) > len(R�); thus extrat([Xj[HjT℄℄; [XjS℄; Y; R)� 2 M . ThereforeM is a simply-loal model of 3.Finally, we show that the program is simply aeptable wrt. M and j j and heneinput terminating wrt. simply moded queries. The only non-trivial ase is lause1. For every simply loal substitution �, we must show that(1) If extrat([HjT℄; LA; X; LB)� 2Mthen jlist tree([HjT℄; tree(TA; X; TB))�j > jlist tree(LA; TA)�j.(2) If extrat([HjT℄; LA; X; LB)�; list tree(LA; TA)� 2Mthen jlist tree([HjT℄; tree(TA; X; TB))�j > jlist tree(LB; TB)�j.Both impliations follow immediately from the de�nition of j j and of M .Observe that it is essential that we have the non-variable term [HjT℄ in 1,rather than simply a variable. Also, in 3, we must have [HjT℄ rather than simplya variable. Otherwise, the program would not be input terminating.Example 6.2. Consider the following program TRANSPOSE for transposing a ma-trix. A matrix is represented as a list of lists: [[a,b,℄,[1,2,3℄℄ is a matrix withtwo rows and 3 olumns. Note the degenerate ases: [[℄,[℄℄ is the matrix with 0olumns and 2 rows, while [℄ is not a matrix (though it ould be regarded as anymatrix with 0 rows but an unknown number of olumns).% transpose(M,N)  N is the transposed matrix of matrix M.transpose(M,[℄) no ols matrix(M).1: transpose([R|Rs℄,[C|Cs℄) ut ol([R|Rs℄,C,M2),transpose(M2,Cs).% ut ol(M,C,N)  C is the �rst olumn of the matrix M% and N is obtained by removing C from M2: ut ol([℄,[℄,[℄).3: ut ol([[E|Es℄|Rs℄,[E|C2℄,[Es|Rs2℄) ut ol(Rs,C2,Rs2).% no ols matrix(M)  matrix M has zero width (no olumns)no ols matrix([℄).4: no ols matrix([[℄|Rs℄) no ols matrix(Rs).mode transpose(I,O)mode ut ol(I,O,O)mode no ols matrix(I).ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



26 � Annalisa Bossi et al.This program is simply moded. We now show that it is simply aeptable. Themoded level mapping uses len and the usual term size norm and is de�ned as follows:jtranspose(m; )j = size(m);jut ol(m; ; )j = len(m);jno ols matrix(m)j = len(m):where size(f(t1; : : : ; tn)) = 1 + size(t1) + � � �+ size(tn) for n � 0, and size(t) = 0 ift is a variable.Conerning the simply loal model, the ruial aspet with respet to terminationis that it has to express the dependeny between the row widths of the arguments ofut ol. More spei�ally, in lause 1, [RjRs℄ is a matrix (a list of rows), and M2is obtained from [RjRs℄ by utting o� the �rst element in eah row. This dereasein row width is ruial for termination. We de�neM = ftranspose(m;n) j for all m;n g[ fut ol(m; r; n) j either ut ol(m; r; n) is simply-modedor m = n = [℄or size(m) > size(n) g[ fno ols matrix(m) j for all m g:We now verify thatM is a simply-loal model. We have non-trivial proof obligationsfor 2 and 3. Conerning 2, ut ol([℄; [℄; [℄) 2M by onstrution. Conern-ing 3, onsider an arbitrary (not even neessarily simply-loal) substitution � suhthat ut ol(Rs; C2; Rs2)� 2M . There are three ases.| If ut ol(Rs; C2; Rs2)� is simply-moded, thenRs2� is a variable, thussize([[EjEs℄jRs℄�) > size([EsjRs2℄�) and thereforeut ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� 2M .| If Rs� � Rs2� � [℄, thenut ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� � ut ol([[EjEs℄℄; [EjC2℄; [Es℄)�,and sine size([[EjEs℄℄�) > size([Es℄�), it follows thatut ol([[EjEs℄℄; [EjC2℄; [Es℄)� 2M .| If size(Rs�) > size(Rs2�), thensize([[EjEs℄jRs℄�) > size([EsjRs2℄�), thusut ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� 2M .Thus in all ases, ut ol([[EjEs℄jRs℄; [EjC2℄; [EsjRs2℄)� 2M . Therefore M is amodel of 3. We now show that the program is simply aeptable wrt.M and j j andhene input terminating wrt. simply moded queries. Consider 1: for every substi-tution �, simply loal wrt. 1, we have to show that if ut ol([RjRs℄; C; M2)� 2M ,then jtranspose([RjRs℄; [CjCs℄)�j > jtranspose(M2; Cs)�j. This holds by the de�-nition of M . Next, onsider 3. For every substitution �, it is easy to see thatjut ol([[EjEs℄jRs℄; [EjC℄; [EsjRs2℄)�j > jut ol(Rs; C; Rs2)�j. Equivalently,for lause 4, it is immediate to hek that for any �, jno ols matrix([[℄jRs℄)�j >jno ols matrix(Rs)�j. All other lauses are trivially simply aeptable. Hene thethesis.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 276.1 Delay DelarationsIn pratial systems, dynami seletion rules are implemented by means of on-struts suh as delay delarations and blok delarations. Delay delarations, ad-voated by van Emden and de Luena [van Emden and de Luena 1982℄ wereintrodued expliitly in logi programming by Naish [Naish 1983℄.In a previous paper [Bossi et al. 2001℄ we have argued that in most ases de-lay delarations are employed exatly to guarantee that the derivations are inputonsuming. We have also provided a tehnial result establishing that under somesyntatially hekable onditions the use of delay delarations is equivalent to re-striting to input onsuming derivations. This allows one to apply Theorems 4.6and 5.14 to a large lass of programs employing delay delarations, thereby pro-viding suh programs with a model-based semantis for partial derivations, and aresult haraterizing their termination.In this setion we report some examples showing the analogies between the use ofdelay delarations and the restrition to input onsuming derivations. Just for thissubsetion, we assume the reader to be familiar with the notion and the notationof delay delarations.Example 6.3. Consider again APPEND, in mode append(I,I,O) with the delaydelarations we mentioned in the introdution, namelydelay append(Ls, , ) until nonvar(Ls).append([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).In pratie, this delay delaration an be seen as a ompiler diretive stating thatthe seletion rule is allowed to selet an atom of the form append(t1,t1,t3) i� t1is a non-variable term. A derivation that respets this diretive is alled delay-respeting.This is the natural delay delaration of the program and ahieves the purpose thatmost natural queries are fored to terminate4. Now, it is easy to hek that everySLD derivation starting in a simply moded query is similar to an input onsumingderivation if and only if it is delay-respeting.Thus, for APPEND we an say that input onsuming derivations model in a or-ret and omplete way the operational behavior determined by the above delaydelaration. Formally, when we onsider simply moded queries, we have that:- we an employ Theorem 5.14 to demonstrate termination,- by Theorem 4.6, PM SLP haraterizes its behavior in terms of the intermediateomputed answer substitutions.Example 6.4. Consider PERMUTE4, i.e., PERMUTE of Example 5.15, with themodes permute(I ;O); insert(I ; I ;O). Consider the following delay delarationsfor it:4An interesting example suggested by K. R. Apt of a ontrived query that does not terminate inombination of the above program is append([X|Xs℄,[℄,Xs). Notie that this query is not simplymoded. This demonstrates also the need for restriting to a lass of \well formed" programs andqueries suh as that of simply moded ones.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



28 � Annalisa Bossi et al.delay permute(Xs, ) until nonvar(Xs)delay insert(Xs, , ) until nonvar(Xs)The meaning of these delarations is equivalent to that of the previous example.It is not diÆult to see that for the above program, for every derivation startingin a simply-moded query, the derivation is input onsuming if and only if it isdelay-respeting.Example 6.5. Consider again QUICKSORT. In the ontext of dynami sheduling,its standard delay delarations are:delay quiksort(Xs, ) until nonvar(Xs).delay quiksort dl(Xs, , ) until nonvar(Xs).delay partition(Xs, , , ) until nonvar(Xs).delay =<(X,Y) until ground(X) and ground(Y).delay >(X,Y) until ground(X) and ground(Y)While the �rst three delarations are equivalent to those used above, the last twostate that an atom of the form a =< b (resp. a > b) an be seleted i� both a andb are ground terms.Now, if we think of the built-ins > and =< as being de�ned by a program on-taining in�nitely many ground fats of the form >(n,m), with n and m being twoappropriate integers, the derivations respeting the above delay delarations areexatly the input onsuming ones.7. CONCLUSION AND RELATED WORKSIn this artile, we have studied the termination of input onsuming programs. Inorder to do this, we have provided a denotational semantis for input onsumingderivations that models the results of inomplete derivations. This semantis usesa variant of the well-known TP -operator.In a previous paper [Bossi et al. 2000℄ we have introdued a di�erent semantisfor input onsuming programs. The two semantis, however, are quite orthogonalto eah other: while that of [Bossi et al. 2000℄ models exlusively the result of su-essful derivations and requires the program to be well-moded and niely-moded, thesemantis used here models the results of also inomplete derivations and requiresprograms and queries to be simply moded.As mentioned in Subsetion 4.2, in the ontext of parallelism and onurreny[Naish 1988℄, one an have derivations that never sueed, and yet ompute substitu-tions. Thus we have provided a denotational semantis for suh programs/programminglanguages, whih goes beyond the usual suess-based SLD-resolution mehanismof logi programming.Input onsuming derivations bear a ertain resemblane with derivations in thelanguage ofModed (Flat) GHC [Ueda and Morita 1994℄. Atually, input-onsumingprograms an be seen as a simpli�ed version of moded GHC, and the results weprovide here an be thus applied to some moded GHC programs. We want to notehowever that Moded (F)GHC is a full-edged programming paradigm, while input-onsuming programs are meant for abstration purposes. In fat, Moded (F)GHCenjoys a more omplex omputational mehanisms: In (F)GHC, a lause has theform H  G jB, where G is alled a guard. An atom A an be resolved usingACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 29H  G jB only when A is an instane of H and G� is entailed, where � is anmgu of A and H . The atom A an beome instantiated only later via expliituni�ations ourring in B. In Moded (F)GHC, there are (non-trivial) onditionson lauses ensuring that when an argument position in A is input, then the lauseused to resolve A will never (not even via later resolution steps) ause any bindingsto that position.Falashi et al. [Falashi et al. 1997℄ have de�ned a denotational semantis for CLPprograms with dynami sheduling of a somewhat di�erent kind: the semantis ofa query is given by a set of losure operators; eah operator is a funtion modelinga possible e�et of resolving the query on a program state (i.e., onstraint on theprogram variables). Their semantis is the analogue of the bottom-up s-semantisfor usual logi programs, where atoms are mapped to their set of answers. Inthis respet, it orresponds to the semantis de�ned in [Bossi et al. 2000℄. Theapproah presented here is more suited to termination proofs sine we deal withpartial answers.Conerning termination, we have provided a neessary and suÆient riterionfor termination, appliable to a wide lass of programs, namely the lass of simplymoded programs. In previous papers, [Bossi et al. 2002; Smaus 1999b℄ we havealready addressed the problem of the termination of input onsuming programs.The results we present here onstitute a big improvement wrt. [Bossi et al. 2002;Smaus 1999b℄ in that we an now apture (by means of the model) the inter-argument relationships in the bodies of the lauses. This improvement allows usto give a neessary and suÆient ondition for termination. In fat, we an nowprove the termination of programs employing a non-trivial reursion sheme suhas QUICKSORT, PERMUTE3, TRANSPOSE; this was not possible using previous suÆientonditions of [Bossi et al. 2002; Smaus 1999b℄ (though, with the tools of [Bossi et al.2002; Smaus 1999b℄ we ould prove the termination of PERMUTE4, whih employsdiret reursion).Finally, we have provided some examples showing analogies between the use ofdelay delarations and input onsuming derivations. A tehnial result demonstrat-ing equivalene (under some syntatially-hekable assumption) is given in [Bossiet al. 2001℄.To onlude, we disuss some other works about termination of programs withdynami sheduling. First note that those works are usually about termination ofprograms with delay delarations, whereas we onsider the more abstrat notion ofinput onsuming derivations. As has been argued before [Smaus 1999b℄, this allowsus to see more learly whih programs terminate under whih assumptions aboutthe seletion rule.Apt and Luitjes [Apt and Luitjes 1995℄ give onditions for the termination ofappend, but those are ad-ho and do not address the general problem. Naish [Naish1993℄ gives heuristis to ensure termination, but no formal results.There are several works in this area making assumptions about the seletion rulethat are stronger than assuming input onsuming derivations [L�uttringhaus-Kappel1993; Marhiori and Teusink 1999; Martin and King 1997℄.Marhiori and Teusink [Marhiori and Teusink 1999℄ assume a loal seletion rule,that is a rule under whih only most reently introdued atoms an be resolved inACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



30 � Annalisa Bossi et al.eah step. Moreover, it is assumed that an atom is only seleted one it is boundedwith respet to a level mapping, that is, any instane of the seleted atom has alevel that is below a ertain bound. This is in ontrast to our approah where anyseleted atom, even one that is non-ground in its input, has a well-de�ned level,but this level is not stable under instantiation.Martin and King [Martin and King 1997℄ ahieve a similar e�et by boundingthe depth of the omputation introduing auxiliary prediates.It is more diÆult to assess L�uttringhaus-Kappel [L�uttringhaus-Kappel 1993℄sine his ontribution is mainly to generate delay delarations automatially ratherthan prove termination. However in some ases, the delay delarations that aregenerated require an argument of an atom to be a rigid list before that atom anbe seleted, whih is similar to the above approahes [Marhiori and Teusink 1999;Martin and King 1997℄. Suh uses of delay delarations go well beyond ensuringthat derivations are input onsuming.Some authors have onsidered a seletion rule stating that in eah derivationstep, the leftmost seletable atom is seleted [Apt and Luitjes 1995; Boye 1996;Naish 1993℄. Due to the problem of simultaneously reawaken atoms, this rule isatually not exatly the one implemented in most Prolog versions, but this hasbeen orreted by proposing the left-based derivations [Smaus et al. 2001℄. Hereit is enough to reall that suh derivations \prefer" to selet atoms that our onthe left of a query, whih is an assumption made in addition to input onsumingderivations. As already shown (Left Swithing Lemma) for niely or simply modedprograms and queries this assumption does not inuene the set of omputed answersubstitutions but may a�et partial omputed answer as well as termination.A survey lassifying logi programs aording to the seletion rules for whihthey terminate an be found in [Pedreshi et al. 2002℄. Among others, this surveyonsiders input termination and termination wrt. loal seletion rules as mentionedabove [Marhiori and Teusink 1999℄.The spei� problem of termination of input onsuming derivations has beentreated also in [Bossi et al. 2002℄ where niely moded programs have been studied.By applying those results to simply moded programs we obtain a haraterization ofa proper subset of input terminating and simply moded programs. This lass doesnot ontain programs like quiksort whose termination proof needs informationon partial omputed answer substitutions.APPENDIXProof of Lemma 3.8. First notie that, sine A is a simply-moded atom,Var(In(A)) \ Var(Out(A)) = ;; therefore, by properties of mgu's (see [Apt 1997,Corollary 2.25℄), there exist substitutions �0 and �1 suh that| �0 = mgu(In(A); In(H)),| �1 = mgu(Out(A)�0;Out(H)�0),| �0�1 = mgu(A;H),and all those mgu's are relevant. Sine, by hypothesis, # = mgu(A;H) andIn(A#) = In(A), In(A) is an instane of In(H). In partiular, In(H)�0 = In(A)and thusACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 31| Dom(�0) � Var(In(H)),| Ran(�0) � Var(In(A)).Sine Var(In(A)) is fresh wrt. H , this means that �0 is simply loal wrt. thelause H  . Moreover, by relevane of �0, simple modedness of A and the fatthat A and H are variable disjoint, it follows that Dom(�0) \ Var(Out(A)) = ;.Hene, �1 = mgu(Out(A);Out(H)�0). By simple modedness of A, the fat thatOut(A) is sequene of distint variables and that �1 is relevant, we an assume thatOut(A)�1 = Out(H)�0 and thus| Dom(�1) � Var(Out(A)),| Ran(�1)�Var (Out(H)�0)�Ran(�0)[Var(Out(H))�Var (In(A))[Var (Out(H)).Sine Var(Out(H)) is fresh wrt. A, this means that �1 is simply loal wrt. thequery A.Proof of Lemma 3.10. Sine both Q and  are simply moded, by Lemma 2.7also Q0 is simply moded. Then by Lemma 3.5 there exist � and � suh that(a) � = ��;(b) � = �jB# is simply loal wrt. B#;() � is simply loal wrt. R#�;(d) � and � are variable ompatible wrt. B# and R#.The proof proeeds by proving that(a1) (#�)jQ = (#�)jA�;(b1) (#�)jA is simply loal wrt. A;(1) � is simply loal wrt. R(#�)jA;(d1) (#�)jA and � are variable ompatible wrt. A and R.The result will follow by applying again Lemma 3.5.(a1) follows from the fat that (#�)jA� = (#�)jQ� = (#��)jQ = (#�)jQ.To prove (b1) we prove that(b11) Dom(#�)jA � Var(Out(A))(b12) Ran(#�)jA � Var(In(A)) [ V where V \ Var(A) = ;.(b11) Dom(#�)jA � Dom(#jA) [ Dom(�jA). Now, Dom(#jA) � Var(Out(A)),sine # is a simply loal mgu of A andH , and Dom(�jA) � Var(Out(B#))\Var (A),sine � is simply loal wrt. B#. Then, Dom(�jA) � Var(Out(B)) \ Var(A), sineDom(#) \Var(Out(B)) = ;. But, Var(Out(B)) \Var(A) = ;, by standardizationapart.(b12) SineRan(#jA) � Var(Out(H)), Ran((#�)jA) � Var(Out(H))[Var (In(A))[Var(B)[ V1 � Var(In(A))[ V1 [Var() where V1 is the set of fresh variables of �and V1[Var() is disjoint from A by standardization apart and lemma's hypothesis.(1) holds sine � is simply loal wrt. R#� and R(#�)jA = R(#�)jQ = R#�.Finally, (d1) follows from (d), the assumption on the fresh variables of � (whihimplies that the sets of fresh variables of � and � are are disjoint from Var(Q) andVar()) and the fat that # is a simply loal mgu.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



32 � Annalisa Bossi et al.Proof of Lemma 4.3. We �rst prove that TSLP " !(I) is a �xpoint of TSLP . InfatTSLP (TSLP " !(I)) = TSLP " !(I) [ T slP (TSLP " !(I))= Si�0 TSLP " i(I) [Si�0 T slP (TSLP " i(I))= Si�0(TSLP " i(I) [ T slP (TSLP " i(I)))= Si�0 TSLP " i(I)= TSLP " !(I):We now prove that TSLP " !(I) is the least �xpoint of TSLP ontaining I .Let J be a �xpoint of TSLP ontaining I , i.e., I � J = TSLP (J). We prove thatTSLP " !(I) � J . More preisely, we prove by indution on i, that for all i � 0,TSLP " i(I) � J .Base. i = 0. In this ase TSLP " 0(I) = I � J .Indution step. i > 0. In this ase TSLP " i(I) = TSLP (TSLP " i� 1(I)). By theindutive hypothesis, TSLP " i� 1(I) � J . By monotoniity of TSLP , TSLP " i(I) =TSLP (TSLP " i� 1(I)) � TSLP (J) = J .By de�nition of simply loal models and of TSLP , we have that J is a simply loalmodel of P ontaining I i� TSLP (J) � J and I � J . This proves that TSLP " !(I)is the least simply loal model of P ontaining I .Proof of Lemma 4.4. (i) ) (ii): We �rst assume that Æ proeeds left-to-rightand employs only simply loal mgu's and prove that: #jA is simply loal wrt. Aand A# � TSLP " !(I). The general ase follows from Corollary 2.12 and Theorem3.18 in [Apt 1997℄ on derivations employing di�erent mgu's.We proeed by indution on the length of Æ.Base. len(Æ) = 0. In this ase A = C � I and # = � (the empty substitution).The thesis follows from the fat that, by de�nition of TSLP , I � TSLP " !(I).Indution step. len(Æ) > 0. Let A = L; A;R and A be the leftmost atom of Asuh that there is some A-step in Æ (and hene there are no L-steps in Æ). Assumealso that  : H  B is the input lause used in the �rst derivation step of Æ and #1is the simply loal mgu of A and H used in this step. By Corollary 2.12,Æ : A #1=) (L;B;R)#1 #2�! L;C0suh that C = L;C0, # = #1#2 and L#1 = L#1#2 = L.Hene L � I � TSLP " !(I) (3)and there exists the input onsuming derivation: Æ0 : (B;R)#1 #2�! C0 wherelen(Æ0) = len(Æ)� 1 and (B;R)#1 is simply moded.By the indutive hypothesis, #2j(B;R)#1 is simply loal wrt. (B;R)#1 and(B;R)#1#2 � TSLP " !(I): (4)Note also that sine #1#2 is omputed in a derivation of (A;R), by standardiza-tion apart and Lemma 3.10 we have that(#1#2j(B;R)#1)j(A;R) = (#1#2)j(A;R) is simply loal wrt. (A;R): (5)ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



Termination of Simply Moded Logi Programs with Dynami Sheduling � 33Sine (#1#2)jL = " and (#1#2)j(A;R) is simply loal wrt. (A;R) and the fat thatvariable ompatibility is guaranteed by standardization apart, by Lemma 3.5(#1#2)j(L;A;R) is simply loal wrt. (L; A;R): (6)To onlude the proof it remains to shown thatA#1#2 � TSLP " !(I): (7)Then, the result will follow from (3), (4), (6) and (7).In order to prove (7) note that #1 is a simply loal mgu of A and H , so (#1)jH issimply loal wrt. H  . Moreover, by Lemma 3.5, (#2)jB#1 is simply loal wrt. B#1.Note also that, by standardization apart, #1jH and #2jB#1 are variable ompatiblewrt. H and B. Hene, by Lemma 3.6, (#1)jH(#2)jB#1 = (#1#2)j is simply loalwrt. .By De�nition 4.2 and property (4), this proves thatH(#1)jH(#2)jB#1 = H#1#2 = A#1#2 � TSLP " !(I)(ii) ) (i): Let A� � TSLP " !(I) with A : A1; : : : ; An. Let k be the minimumindex suh that A� 2 TSLP " k(I). The proof proeeds by indution on k.Base. k = 0. In this ase, A� � TSLP " 0(I) = I with � simply loal wrt.A. Sine both A and A� onsist of simply moded atoms, and � is a simply loalsubstitution wrt. A, it follows that � is just a renaming of the output variables ofA. The thesis follows by taking # to be the empty substitution and Æ to be thederivation of length zero.Indution step. k > 0. We proeed by indution on n, the number of atoms inthe query.Base. n = 1. In this ase A = A, � is simply loal wrt. A and A� 2 TSLP " k(I).By de�nition of TSLP and Proposition 3.3, there exist a variant  : H  B of alause of P variable disjoint from A and a substitution # suh that# is simply loal wrt.  (8)B# � TSLP " (k � 1)(I) (9)A� = H#: (10)By (8) and Lemma 3.6 there exist �0 and �1 suh that # = �0�1, �0 = #jH issimply loal wrt. H  and �1 is simply loal wrt. B�0.Hene, by (9) and the indutive hypothesis on k, there exists an input onsumingderivation Æ0 : B�0 #2�! Cwhere C � I and B�0#2 � B�0�1.Note also that H�0�1 � H�0#2, sine the only variables of H�0 whih an bea�eted by �1 or #2 are those ourring also in B�0.Finally, note that by Proposition 3.3 we an assume Var(A) \ Var() = ; andthen by (10) and the fat that � is simply loal wrt. A (whih implies that In(A) =In(A�)), ��0 is a simply loal mgu of A and H , andACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.



34 � Annalisa Bossi et al. Æ : A ��0=) B�0 #2�! Cis an input onsuming derivation where A��0#2 = H�0#2 � H# = A�.Indution step. n > 1. In this ase A = A;R and A� 2 TSLP " k(I). By Lemma3.5 there exist �1 and �2 suh that � = �1�2, �1 = �jA is simply loal wrt. A and �2is simply loal wrt. R�1, and �1 and �2 are variable ompatible wrt. A and R. Bythe indutive hypothesis on n, Æ1 : A #1�! C1where C1 � I and A#1 and A�jA = A� are variant.Again by the indutive hypothesis on n, there exists an input onsuming deriva-tion Æ02 : R�1 #02�! C02where C02 � I and R�1#02 � R�1�2. Sine R�1 � R#1, by Lemma 2.9 there existsÆ2 : R#1 #2�! C2where C2 � I and R#1#2 � R�1#02. Without loss of generality, we an assumethat the input lauses used in Æ2 are standardized apart wrt. Æ1.Then there exist Æ, Æ : A;R #1�! C1;R#1 #2�! C1C2suh that A#1#2 and A� are variant.The following result is a orollary of the above proof. It states that the relationbetween omputed answers of input onsuming derivations employing simply loalmgu's and simply loal substitutions.Proposition A.1. Let A be a simply moded query and P a simply moded pro-gram. Let Æ : A #1=) C1 #2�! C2 be an input onsuming derivation in P thatproeeds left-to-right and employs only simply loal mgu's. Let  : H  B be theinput lause used in the �rst derivation step of Æ and #1 be a simply loal mguemployed in this step. Then (#1#2)jA is simply loal wrt. A and (#1#2)j is simplyloal wrt. .Proof. It follows from (5) in the proof of Lemma 4.4 (the proof above).REFERENCESApt, K. R. 1990. Logi Programming. In Handbook of Theoretial Computer Siene, J. vanLeeuwen, Ed. Vol. B: Formal Models and Semantis. Elsevier and The MIT Press, Amsterdamand Cambridge, MA, 495{574.Apt, K. R. 1997. From Logi Programming to Prolog. Prentie Hall, London.Apt, K. R. and Etalle, S. 1993. On the uni�ation free Prolog programs. In Proeedings of theConferene on Mathematial Foundations of Computer Siene (MFCS'93), A. Borzyszkowskiand S. Sokolowski, Eds. Leture Notes in Computer Siene, vol. 711. Springer-Verlag, Berlin,Germany, 1{19.ACM Transations on Computational Logi, Vol. ??, No. ??, ?? 20??.
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