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Abstract. The analysis of fork-join queueing systems has played an im-
portant role for the performance evaluation of distributed systems where
parallel computations associated with the same job are carried out and
a job is considered served only when all the parallel tasks it consists of
are served and then joined. The fork-join nodes that we consider con-
sist of K ≥ 2 parallel servers each of which is equipped with two FCFS
queues, namely the service-queue and the join-queue. The former stores
the tasks waiting for being served while the latter stores the served tasks
waiting for being joined. When the queueing station is saturated, i.e.,
the service-queues are never empty, we observe that the join-queue sizes
tend to grow infinitely even if the expected service times at the servers
are the same. In fact, this is due to the variance of the service time
distribution. To tackle this problem, we propose a simple service-rate
control mechanism, and show that under the exponential assumption on
the service times, we can analytically study a set of relevant performance
indices. We show that by selectively reducing the speed of some servers,
significant energy saving can be achieved.

1 Introduction

Fork-join queueing stations have been extensively studied in the literature
because of their wide applications in the context of distributed and parallel
systems. Such queueing stations behave as follows: jobs arrive according to a
certain arrival process and are forked into K tasks that are enqueued in the
service-queues and then served by independent servers. Once a task is served, it
is enqueued in the join-queue waiting for the service completions of all the other
tasks of the job it belongs to. Once all the tasks of a job are served, the join
operation is performed and the job leaves the system. In this work we assume
that all the queues implement a First Come First Served (FCFS) discipline.

Fork-join queues have found applications in a wide variety of domains in
computer science and telecommunication networks. For instance, in [21] the au-
thors study the response times of multiprocessor systems by means of fork-join
networks, in [10] the authors consider parallel communication systems and in
[12] a RAID system is studied by simulating a fork-join station.

Unfortunately, despite their importance, few analytical results are known for
fork-join stations. One of the reasons is the complexity of the model consisting



of two sets of queues, the service-queues and the join-queues, and no general
decomposition result is available at the state of the art [1]. Many works have
considered the fork-join station under heavy traffic (see, e.g., [13]) and provided
approximations of the expected response time based on the analysis of the as-
sociated reflecting Brownian motion [18]. In this scenario we observe that when
K >> 2 the join-queues tend to be very long because each served task has to
wait for the completion of the slowest of its siblings (which may also be enqueued
at their servers). In [20] the authors observe that such a system can be highly in-
efficient both because it handles long join-queues and because the servers work at
maximum speed even if their join-queue length is very long. Significant energy
saving can be obtained by slowing down the servers that have already served
more tasks than others.

1.1 Contribution

In this work we introduce a rate control mechanism for the station’s servers
that allows us to control the join-queue lengths and to reduce the system’s
power consumption. The importance of containing the size of the output buffer
and reducing the energy consumption is well-known in the literature, e.g., [22, 23,
20]. In contrast with [20], we do not require the estimation of the amount of work
needed by a task, but we base our algorithm on a single state variable associated
with each server. We assume that each server has a neighbour defined to form
a circular dependency. For instance, the neighbour of server i can be server
(i mod K)+1. If a server has completed less or equal tasks than its neighbour then
it works at maximum speed, otherwise it reduces its speed by a certain factor.
Therefore, each server has to maintain a single variable that is incremented
by 1 at each local task completion, while it is decremented by 1 when a task
completion occurs at its neighbour. Our contribution includes an analytically
tractable model of such a rate control mechanism. We start by considering the
Flatto-Hahn-Wright (FHW) model [8, 25] in saturation, i.e., the service times are
modelled by independent and identically distributed (i.i.d.) exponential random
variables, the join operation is instantaneous, and the service-queues are never
empty. We show that even in the case of two servers (K = 2), the stochastic
process modelling the join-queue lengths is unstable because of the variance in
the service times. Conversely, by the introduction of our rate-control mechanism
we show that, for any K ≥ 2, the process underlying the join-queue lengths
becomes stable and their expectation is finite. Moreover, we are able to derive an
analytical expression for the system’s throughput. The stationary probabilities,
the marginal stationary probabilities and the throughput are expressed in terms
of Kummer’s confluent hypergeometric functions. In general, the evaluation of
such functions can be done by numerical approximations, but in our case the
evaluation points are such that a closed form expression is always known.

Finally, we study by simulation the behaviour of our algorithm when the
service times are not exponentially distributed and show the impact of the service
times’ coefficients of variation (CV) on the performance indices.
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1.2 Related work

In [9] the authors extend their previous work on fork-join queueing networks
in order to include join nodes and apply an approximate analysis to study their
stationary performance indices based on a decomposition technique or an iter-
ative solution of tractable models. In [8, 25] the authors introduce the so called
Flatto-Han-Wright model [18] consisting of only two exponential servers. They
derive the stability conditions and propose an approximate analysis as well as
some exact results on the conditional join-queue lengths. In [17] the authors pro-
vide the exact expression of the mean response time for the FHW model, when
K = 2 and the service times are i.i.d. exponential random variables. They also
give an approximation technique to study the models with K > 2. In [2, 3] the
authors study the stability conditions for a set of fork-join queueing networks. In
[18] the author applies the method based on the heavy traffic assumption that
lead to important results in queueing network analysis for studying the fork-join
queueing nodes. Order statistics has been used to solve a class of fork-join queues
with block-regular structure in [7].

The work that is probably closer to the one proposed here is [20] where
the authors propose to reduce the energy consumption of a fork-join station by
slowing down the servers that work on tasks with lower needs. They devise a
scheduling algorithm and prove an optimality property. However, in contrast to
what we propose here, the method requires the estimation of the tasks’ service
demands which is not always possible. In [22, 23] the authors propose an ap-
proach based on the order statistics that introduces deterministic delays at the
servers aiming at reducing the task dispersion. The delays are determined so
that the 100αth percentile of variability of the distributions obtained once the
delays are inserted is minimised.

1.3 Structure of the paper

The paper is structured as follows. In Section 2 we introduce the problem
that we aim to address and describe the algorithm that we propose. In Section 3
we provide an analytical model for the performance evaluation of the algorithm
under the assumptions of saturated station and exponential service time dis-
tributions. Section 4 studies the performance of the rate-control algorithm by
using the results of the previous section and the stochastic simulation. Finally,
Section 5 gives some concluding remarks.

2 Rate-control algorithm

In this section we formally introduce the problem we are studying and the
rate-control algorithm that we propose. In the following sections we study the
performance of such an algorithm in terms of throughput and energy saving.
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Fig. 1: Fork-join queueing station with K = 3 servers

2.1 Problem statement

Let us consider a fork-join queueing system with K servers as depicted in
Figure 1. We consider a saturated model, i.e., there is always a job waiting to
be processed. As a consequence the service-queues always contain at least one
task. The service times are modelled by i.i.d. continuous time random variables
and we initially assume that the join operation occur immediately after all the
tasks belonging to the same job are served. All the queues follow a FCFS dis-
cipline. Clearly, if the expected service time at the servers is not the same, and
if a rate-control mechanism is not applied, then the join-queue length of the
fastest server tend to grow infinitely as time t → ∞. Less obvious is the case
in which all the service times are independent and identically distributed, i.e.,
with the same mean. In these cases, the variance of the service time causes an
unbounded growth of the join-queue population, i.e., the expected join-queue
lengths at the servers tend to infinity as t → ∞. In Figure 2 we show a tran-
sient simulation of the saturated model with three service time distributions:
Erlang-2, hyperexponential and exponential. The confidence intervals have been
build on 15 independent executions of the simulation with a confidence of 95%.
The plot supports the intuition that higher coefficient of variations in the ser-
vice times make the expected queue lengths grow faster. We formally prove the
model instability if the service times are exponentially distributed.

Proposition 1. In the long run, the saturated fork-join model with K ≥ 2,
i.i.d. exponential service times, immediate join, has an infinite expectation of
the join-queue length.

Proof. For brevity, we give the proof for K = 2. The state space of the model is

S = {(n1, n2) : n1 = 0 ∨ n2 = 0, ni ∈ N} ,

where ni denotes the join-queue length of server i. The transitions are from state
(0, n2) to (0, n2 +1) or to (0, n2−1) and from state (n1, 0) to (n1 +1, 0) or (n1−
1, 0). Since the service times are exponentially distributed, then the stochastic
process is a continuous time Markov chain, and specifically it is a random walk
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Fig. 2: Growth of the expected join-queue length for K = 20 servers, exponential
(CV = 1), Erlang-2 (CV =

√
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on the line. In this CTMC all the rates are equal and hence the states are not
positive recurrent. Therefore, let Q be the random variable associated with the
join-queue length for one of the two servers at a time t0, with t0 → ∞, then
E[Q] =∞. If K > 2 the proof is similar but the CTMC is multidimensional. ut

We devise an algorithm that dynamically controls the service rates (e.g., by
scaling the operating frequency of the processors) with the following aims:

– Having a finite expectation of the join-queue lengths;
– Maintaining the throughput at reasonable high levels;
– Reducing the overall energy consumption by controlling the servers’ rates.

Moreover, we will see that if the service rates are exponentially distributed, then
a Markovian model with analytically tractable solution exists, therefore one can
tackle problems of optimisation or capacity planning that would be expensive to
address by stochastic simulation.

2.2 The rate-control algorithm

The main idea of the algorithm is to slow down the servers that have already
completed their work on many tasks whereas the servers that have served less
tasks will work at maximum speed. Since it would be unrealistic to assume that
each server can take a decision about its own speed by knowing the global state of
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the system, we introduce a policy that implements a rate-control strategy by just
maintaining a single integer state variable. Let us label each of the K servers with
integer numbers in {1, . . . ,K} and define the following neighbourhood relation:
for each server k we define its neighbour ne(k) as:

ne(k) =

{
k + 1 if k < K

1 if k = K
.

Let nk denote the state variable of each server. When server k completes a
task, then nk is increased by 1, while when its neighbour completes a task nk
is decreased by 1. In other words, nk maintains the difference between the join-
queue length of server k and ne(k). Let µ(nk) be the local state dependent service
rate at a server (recall that they are all stochastically identical), then:

µ(nk) =

{
µ

nk+1 if nk ≥ 0

µ otherwise
. (1)

Intuitively, when a server k has completed less or the same number of tasks
than ne(k) then it works at its full service speed, otherwise it slows down in a
proportional way with the number of exceeding jobs. Notice that for server k, the
key point for regulating the join-queue length is to consider the difference in the
queue lengths of the servers rather than the total length of its join queue. Indeed
this latter value could be high because of some delay in the join operation, while
the mechanism that we propose is based on balancing the number of tasks served
by each server.

3 Analytical model for the rate-control mechanism

In this section we consider the FHW model equipped with our rate control
mechanism, i.i.d. exponentially distributed service times, immediate join and in
saturation. Let us consider the vector n = (n1, . . . , nK) of the state variables

of each server, and observe that at each time epoch we have
∑K
k=1 nk = 0.

We aim at studying the stochastic process n(t) on the state space S = {n =

(n1, . . . , nK) : nk ∈ Z ,
∑K
k=1 nk = 0}. Since the service rates are the only

events that cause a state change, from the fact that they are exponentially
distributed we conclude that n(t) is a homogeneous CTMC. Although we will
derive a product-form expression for the invariant measure of n(t), it is worth
of notice that n(t) is not reversible for K > 2. In fact, consider state (0, 0, 0)
and assume that server 2 completes a task taking the state of the process to
(−1, 1, 0). It should be clear that there does not exist any transition bringing
back the model to (0, 0, 0). One path that brings back the model state to (0, 0, 0)
is that consisting of a sequence of transitions associated with one task completion
at servers 1 and 3.

Before proceeding with the analysis we have to introduce the regularized
Kummer’s confluent hypergeometric function M(a, b, x) defined as follows (the
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first equality shows an alternative common notation):

M(a, b, x) = 1F̃1(a; b;x) =
1

Γ (b)
M(a, b, x) a, b ∈ N+ , (2)

where M(a, b, x) is the Kummer’s confluent hypergeometric function defined by
the series

M(a, b, x) = 1F1(a; b;x) =

∞∑
k=0

(a)k
(b)k

xk

k!
a, b ∈ N+ , (3)

Γ is the Euler’s Gamma function and (y)k is the Pochhammer’s symbol, i.e.,
(y)k = y(y + 1) · · · (y + k − 1).

Theorem 1. Given the CTMC n(t), we have that:

1. n(t) is ergodic, i.e., it admits a unique stationary distribution πK(n);
2. The stationary distribution is given by the following expression:

πK(n) =
1

GK

1∏K
i=1(niδni>0)!

(4)

where we assume that empty products are equal to 1 and δP is 1 if proposition
P is true, 0 otherwise and

GK = 1 +

K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j) . (5)

We base the proof of the theorem on few lemmas: first we assume the er-
godicity and derive the model’s product-form expression. Then, we show that
the normalising constant GK is finite (thanks to the properties of the Kummer’s
confluent hypergeometric function) for finite K and hence the CTMC must be
ergodic.

Lemma 1. Assume that n(t) is ergodic and hence admits a unique stationary
distribution. Then, its expression is that of Equation (4) where:

GK =
∑
n∈S

1∏K
i=1(niδni>0)!

. (6)

Proof. The proof can be obtained by substitution of Equation (4) in the system
of global balance equations of the CTMC or by noticing that the process is dy-
namically reversible [11, 15, 14, 16]. Let n = (n1, . . . , nK) and let its renaming be
ρ(n) = (nK , . . . , n1), then by [11, Thm 1.14] we have to prove that Equation (4)
satisfies:

π(n)µ(nk) = π(ρ(n + 1k − 1k−1))µ(nk−1 − 1) ,

where 1k is a K-size vector with a 1 in the k-th position and zeros elsewhere
and we assumed 10 = 1K and n0 = nK . ut
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Notice that since S is an infinite set, at the moment the fact that GK is finite,
i.e., the infinite series (6) converges, depends on the assumption of ergodicity.
We now algebraically prove that (6) and (5) are equivalent and converge. As a
consequence the CTMC n(t) is ergodic.

Lemma 2. The series (6) is equivalent to the expression given by Equation (5)
which is finite for any K ∈ N, K ≥ 2.

Proof. Let P(n) be the multiset with all the non-negative components of n,
i.e., P(n) = {ni : ni ≥ 0} and observe that for all the states n′ such that
P(n′) = P(n) the expression under the sum symbol of Equation (6) is the same.
Let 1 ≤ j ≤ K−1 and (x1, . . . , xj) be a tuple such that xi ≥ 0 for all i = 1, . . . , j

and
∑j
i=1 xj = n, with n ≥ 0. Basically, j denotes the number of non-negative

components in a state and n their sum. Notice that, given j and n we can
count how many states have exactly j non-negative components whose sum is
n. This is given by the product of the number of non-negative solutions of the
Diophantine’s equation y1 + . . . + yj = n multiplied by the number of strictly
positive solutions of the Diophantine’s equation y1 + . . . + yK−j = n (since
the sum of all the state components is 0), i.e., we can rewrite the normalising
constant as:

GK = 1 +

K−1∑
j=1

∞∑
n=K−j

∑
x:x1+...+xj=n

1∏j
t=1 xt!

(
K

j

)

·
(

n− 1

K − j − 1

)
= 1 +

K−1∑
j=1

(
K

j

) ∞∑
n=K−j

jn

n!

(
n− 1

K − j − 1

)
,

where the last equality follows from the multinomial theorem. Notice that the
boundaries of j in the external summatory start from 1 (there cannot be any state
with all negative components) and terminate at K − 1. Indeed, the only state
with all non-negative components is 0 that we take into account by summing 1
at the beginning of the right-hand-side.
We can rewrite Equation (2) as:

M(a, b, x) =

∞∑
k=0

(a)k
Γ (b+ k)

xk

k!
b ∈ N+. (7)
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So we have:

GK = 1 +

K−1∑
j=1

(
K

j

) ∞∑
w=0

jw+K−j

(w +K − j)!

(
w +K − j − 1

K − j − 1

)

= 1 +

K−1∑
j=1

(
K

j

) ∞∑
w=0

jw+K−j

(w +K − j)!
(K − j)w

w!

= 1 +

K−1∑
j=1

(
K

j

)
jK−j

∞∑
w=0

jw

Γ (w +K − j + 1)

(K − j)w
w!

= 1 +

K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j)

where the last equality follows from Equation (7) with a = K − j, b = K − j+ 1
and x = j. Finally, we observe that 1 < GK < ∞ since its definition does
not involve any infinite sum and function M evaluated at the specified integer
parameters is always finite and non-negative. ut

Proof of Theorem 1. The theorem follows straightforwardly by Lemmas 1
and 2. ut

In order to derive the expression for the marginal distribution of the join-
queue lengths we have to consider that although the state space of each single
queue ranges from −∞ to +∞, the joint state space is not the Cartesian product
of the single state spaces. Therefore, the knowledge of GK is not sufficient to
obtain the marginal distribution. A similar situation arises when studying closed
queueing networks. However, while for closed product-form queueing networks
several algorithms have been proposed, e.g., [5, 4, 6], in our case we are able to
express the marginal distributions in terms of (regularized) Kummer’s hyperge-
ometric functions evaluated in points whose closed-form solution is known.

Let us consider the definition of GK given by Equation (6), and let GNk be
the normalising constant defined as:

GNk =
∑

n∈SN
k

1∏k
i=1(niδni>0)!

,

where SNk = {(n1, . . . , nk) :
∑k
i=1 ni = N}. Note that GK = G0

K . Then, we can
write the marginal distribution as:

π∗K(n) =
1

(nδn>0)!

G−nK−1
G0
K

. (8)

The following Lemma gives the expression for GNk for arbitrary k ≥ 1 and N ∈ Z.

Lemma 3. The expression for GNk is:
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– If N ≥ 0:

GNk =
(kµ)N

N !
+ µN

k−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j) .

– If N < 0 and 2 ≤ k ≤ −N :

GNk =

(
−N − 1

k − 1

)
µN +µN

k−1∑
j=1

(
k

j

)(
−N − 1

k − j − 1

)
M(−N,−N − k+ j+ 1, j) .

– If N < 0 and k > −N :

GNk = µN
k+N−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j)

+ µN
K−1∑
j=k+N

(
k

j

)(
−N − 1

k − j − 1

)
M(−N,−N − k + j + 1, j)

– If k = 1:

GN1 =

{
µN/N ! if N ≥ 0

µN if N < 0

Proof. The proof is based on hypergeometric function manipulations.

In Figure 3b we show the distribution of π∗K(n) for K = 2, 5, 10, 15. Notice that
while for K = 2 the distribution is symmetric with respect to n = 0, this is
not true for K > 2. Moreover, by increasing the value of K, numerical evidences
suggest that there may exist a limiting distribution for the marginal probabilities
(and hence for the throughput and the power consumption). Another important
aspect is the observation that the expression of πK and π∗K in terms of (regular-
ized) Kummer’s confluent functions allows us to have a symbolic expression for
the stationary probabilities as shown in Figure 3a for K = 3.

One of the most important performance indices for a rate-control algorithm
is the throughput, i.e., the number of join performed by the station per unit
of time. In fact, by slowing down some servers we surely decrease the system’s
throughput. We are able to provide an analytical expression for the station’s
throughput that depends on the number of servers K and the service rate µ.

Lemma 4. The throughput XK(µ) of the model in steady-state is:

XK(µ) =
µ

KGK

(
K +

K−1∑
j=1

(
K

j

)
j
(
jK−j+1 M(K − j,K − j + 2, j)

− (j − 1)K−j+1 M(K − j,K − j + 2, j − 1)

+ (K − j)jK−j−1M(K − j,K − j + 1, j
))

. (9)
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K XK(µ)

2
4µ(e− 1)

K(2e− 1)

3
9µ(e2 − e+ 1)

K(1 + 3e2)

4
8µ(2e3 + 3e− 2)

K(4e3 + 6e2 + 2e− 1)

5
25µ(6e4 + 12e3 − 11e+ 6)

2K(15e4 + 60e35e+ 30E2 − 5e+ 3)

6
6µ(24e5 + 120e4 + 120e3 − 40e2 + 53e− 24)

K(24e5 + 180e4 + 200e3 + 20e2 + 9e− 4)

7
147µ(40e6 + 360e5 + 600e4 + 100e3 + 120e2 − 103e+ 40)

4K(210e6 + 2520e5 + 5250e4 + 2100e3 + 210e2 − 77e+ 30)

Table 1: Analytical expression of the throughput for the FHW model with K
severs.

Proof. The proof is based on hypergeometric function manipulations.

In Table 1 we show the analytical expression of the throughput for some
values of K.

The numerical evaluations of both GNk and of XK(µ) rely on the computation
of the confluent hypergeometric function M(a, b, z) with parameters a ∈ N+,
b ∈ N+ and b > a. Indeed, if a and b are non-negative integers, then the series
(3) converges for all finite x. In particular, for b > a, M(a, b, z) converges to [19]:

M(a, b, x) =

(
ex

a−1∑
k=0

(1− a)k (−x)k

k! (2− b)k

−
b−a−1∑
k=0

(1− b+ a)k x
k

k! (2− b)k

)
(2− b)a−1 x1−b

(a− 1)!
. (10)

4 Numerical evaluation

In this section we study the sensitivity of the throughput, the expected join-
queue length and the power consumption with respect to the distribution of the
service times. Then, we study the performance in terms of throughput and energy
consumption of the model implementing the rate-control algorithm under the
assumptions introduced in Section 3. We consider three important performance
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indices: the system throughput, the expected join-queue lengths and the power
consumption. While for the first index Lemma 4 gives us its analytical expression,
for the latter two indices we rely on the stochastic simulation and on the bounded
approximation described in Section 4.1, respectively.

4.1 The power consumption

Since our rate-control mechanism reduces the computation speed of the sev-
ers, this can be interpreted as a reduction of the operating frequency leading to a
reduction of the overall server power consumption. Clearly, the minimum power
consumption with maximum throughput corresponds to a situation in which the
servers work at a constant maximum rate, but we have already discussed that
the drawback of this approach is the infinite growth of the join-queue length in
saturated models.

Under the assumptions of Section 3 we know the analytical expression of the
marginal stationary distribution for each server (see Equation (8) and Lemma 3).
This allows us to define a lower and upper bound of the energy consumption by
truncation of the probabilities. Given an integer E > 0, the expected power
consumption in steady-state PK is bounded by:

−1∑
i=−E

π∗K(i) +

E−1∑
i=0

π∗K(i)
1

(i+ 1)3
< PK <

−1∑
i=−E

π∗K(i)

+

E−1∑
i=0

π∗K(i)
1

(i+ 1)3
+ (1−

E−1∑
i=−E

π∗K(i)) ,

where we have assumed that the sever at maximum speed consumes 1 unit of
energy for unit of time, and that the power consumption depends on the cube
of the operating frequency, i.e.:

PK =

−1∑
i=−∞

π∗K(i) +

∞∑
i=0

π∗K(i)
1

(i+ 1)3
.

Clearly, more accurate models of the relation between operating frequency and
power consumption can be considered, but this is out of the scope of this paper,
especially because this relation depends on the intrinsic characteristics of the
processors [20]. It is important to notice that with small values of E ' 10 we
obtain tight bounds for the energy consumption as shown in Figure 3c.

4.2 Sensitivity analysis

The analytical model proposed in Section 3 requires that the service times are
state dependent i.i.d. exponential random variables. Under this assumption, and
by considering a saturated model with immediate join, we proved the stability
of the process modelling the join-queue lengths. Clearly, we expect to find a
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sensitivity of the performance indices on the distribution of the service times,
because it is its variance the cause of the join-queue length growth in the model
without the rate-control mechanism. Figures 3d-3f show the three considered
performance indices for a saturated model with immediate join. The indices with
exact or approximated analytical expression have not been simulated, while the
others have been obtained via stochastic simulation. For each scenario we run
15 independent experiments and considered the confidence interval of 95%. The
widths of the confidence intervals are all below 1% of the measure and are too
small to be visible in the plots. The warm up periods have been removed by
using the Welch’s method [24]. The service time distributions have mean 1 and
the Erlang 2 has a coefficient of variations of

√
2/2 while the Hyper-Exponential

has a coefficient of variation of 1.31.

4.3 Performance of the algorithm as function of the number of
servers

In this section we focus on the saturated FHW model with immediate join
and study the impact of the number of servers K on the performance indices. Fig-
ures 3d, 3e and 3f show the system’s throughput, the expected queue length for
the join-queues and the power consumption for each server when the maximum
service rate is µ = 1. Notice that the expected queue length is for each server
and is obtained by stochastic simulation. We notice that while the throughput
decreases very slowly with the growth of the number of servers (e.g., for K = 150
servers we compute a throughput of 0.677), the expected join-queue lengths tend
to grow with the number of servers and hence for large models the benefits of the
rate-adaptation algorithm are lower. As for the power consumption, the power
consumption is significantly lower than the reference value of the model without
rate-control, 1. For instance for K = 6 the throughput is XK(1) ' 0.70 while
the power consumption PK ' 0.54.

5 Conclusion

In this paper we have proposed a rate-control mechanism for fork-join sta-
tions designed to maintain the join-queue lengths finite in the long run, even
when the station is saturated. We observed that the variance in the service time
distribution causes an unbounded increase of the join-queue lengths. Informally,
the idea behind our rate-control mechanism is to reduce the operating speed of
the servers that have served more customers while maintaining at the maximum
level the speed of the other servers. Each server maintains a state variable which
is incremented at a local service completion event and is decremented at a ser-
vice completion event occurring at a neighbour server. The servers maintain their
maximum speed if the state variable is not positive, otherwise they reduce their
speed. This allows for both a control of the join-queue length and a reduction on
the system’s power consumption. However, we also observed a reduction in the
system’s throughput. Despite the few analytical results available for fork-join
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stations, we have provided the analytical expression for the steady-state distri-
bution of the rate-control model and derived the marginal distributions for each
server and the system’s throughput under the FHW assumptions. The stationary
distributions and the performance indices are expressed in terms of Kummer’s
confluent hypergeometric functions which are evaluated at special points that
require the computations of finite sum. We resorted to the simulation for study-
ing the impact of the rate-control algorithm on stations with different service
time distributions and the experiments have supported the intuition that the
performance degrades with the increase of the variance in the service time dis-
tribution. The main strengths of the proposed mechanism are the easiness of
implementation, since the algorithm is basically stateless and does not require
nor the estimation of the jobs’ service times as in [20], neither the knowledge
of the service time distributions as in [22, 23], and the effectiveness in drasti-
cally reducing the expected join-queue lengths with respect to the models not
implementing any rate-control mechanism for the servers.

With respect to a solution which addresses the problem of containing the
join-queue length based on a rate adaptation mechanism that considers for each
server its associated join-queue length, our approach has the advantage that
its implementation is independent of the system’s parameters since it aims at
balancing the total work performed by each server. Conversely, the join-queues
may be long because the join operation’s rate is close to the system’s throughput
and hence considering only its instantaneous state for deciding the service rate
can be counter-productive.

Future work includes the derivation of the analytical expression for other
performance indices in the case of the saturated FHW model. Moreover, we aim
at introducing a parameterisation of the algorithm so that we can control the
servers’ speed more accurately, e.g., by reducing the service rate for positive
states n by αn+ 1, where 0 < α < 1 is a parameter that regulates the trade-off
between the throughput and the expected join-queue length. However, at the
moment, no analytical solution for such a model is known.
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