
Reexeution-based Analysis of Logi Programswith Delay DelarationsAgostino Cortesi1, Baudouin Le Charlier2, and Sabina Rossi11 Dipartimento di Informatia, Universit�a Ca' Fosari di Venezia,via Torino 155, 30172 Venezia, Italyfortesi,srossig�dsi.unive.it2 Institut d'Informatique, University of Namur21 rue Grandgagnage, B-5000 Namur, Belgiumble�info.fundp.a.beAbstrat. A general semantis-based framework for the analysis of logiprograms with delay delarations is presented. The framework inor-porates well known re�nement tehniques based on reexeution. Theonrete and abstrat semantis express both deadlok information andquali�ed answers.1 IntrodutionIn order to get more eÆieny, users of urrent logi programming environments,like Situs-Prolog [13℄, Prolog-III, CHIP, SEPIA, et., are not fored to usethe lassial Prolog left-to-right sheduling rule. Dynami sheduling an beapplied instead where atom alls are delayed until their arguments are suÆientlyinstantiated, and proedures are augmented with delay delarations.The analysis of logi programs with dynami sheduling was �rst investigatedby Marriott et al. in [18, 11℄. A more general (denotational) semantis of this lassof programs, extended to the general ase of CLP, has been presented by Falashiet al. in [12℄, while veri�ation and termination issues have been investigated byApt and Luitjes in [2℄ and by Marhiori and Teusink in [17℄, respetively.In this paper we disuss an alternative, stritly operational, approah tothe de�nition of onrete and abstrat semantis for logi programs with delaydelarations.The main intuitions behind our proposal an be summarized as follows:- to de�ne in a uniform way onrete, olleting, and abstrat semantis, inthe spirit of [14℄: this allows us to easily derive orretness proofs of thewhole analyses;- to de�ne the analysis as an extension of the framework depited in [14℄:this allows us to reuse existing ode for program analysis, with minimaladditional e�ort;- to expliitly derive deadlok information (possible deadlok and deadlokfreeness) produing, as a result of the analysis, an approximation of onretequali�ed answers;

- to apply the reexeution tehnique developed in [15℄: if during the exeutionof an atom a a deadlok ours, then a is allowed to be reexeuted at asubsequent step.The main di�erene between our approah and the ones already presentedin the literature is that we are mainly foussed on analysis issues, in partiularon deadlok and no-deadlok analysis. This motivates the hoie of a stritlyoperational approah, where deadlok information is expliitly maintained.In this paper we present an extension of the spei�ation of the GAIA ab-strat interpreter [14℄ to deal with dynami sheduling. We design both a on-rete and an abstrat semantis, as well as a a generi algorithm that omputesa �xpoint of the abstrat semantis. This is done following the lassial abstratinterpretation methodology.The main idea is partitioning literals of a goal g into three sets: literalswhih are delayed, literals whih are not delayed and have not been exeutedyet, and literals whih are allowed to be reexeuted as they are not delayed buthave already been exeuted before and fallen into deadlok. This partitioningdramatially simpli�es both onrete and abstrat semantis with respet to theapproah depited in [8℄, where a preliminary version of this work was presented.Our approah uses the reexeution tehnique whih exploits the well knownproperty of logi programming that a goal may be reexeuted arbitrarily oftenwithout a�eting the semantis of the program. This property has been pointedout sine 1987 by Bruynooghe [3, 4℄ and subsequently used in abstrat interpreta-tion to improve the preision of the analysis [15℄. In this framework, reexeutionallows to improve the auray of deadlok analysis, and its appliation may betuned aording to omputational onstraints.The rest of the paper is organized as follows. In the next setion we reall somebasi notions about logi programs with delay delarations. Setion 3 depitsthe onrete operational semantis whih serves as a basis for the new abstratsemantis introdued in Setion 4. Corretness of our generi �xpoint algorithmis disussed. Setion 5 onludes the paper.2 Logi Programs with Delay DelarationsLogi programs with delay delarations onsist of two parts: a logi program anda set of delay delarations, one for eah of its prediate symbols.A delay delaration assoiated for an n-ary prediate symbol p has the formDELAY p(x1; : : : ; xn) UNTIL Cond(x1; : : : ; xn)where Cond (x1; : : : ; xn) is a formula in some assertion language. We are not on-erned here with the syntax of this language sine it is irrelevant for our purposes.The meaning of suh a delay delaration is that an atom p(t1; : : : ; tn) an be se-leted in a query only if the ondition Cond(t1; : : : ; tn) is satis�ed. In this asewe say that the atom p(t1; : : : ; tn) satis�es its delay delaration.2

A derivation of a program augmented with delay delarations sueeds if itends with the empty goal; while it deadloks if it ends with a non-empty goalno atom of whih satis�es its delay delaration. Both suessful and deadlokedderivations ompute quali�ed answers, i.e., pairs of the form h�; di where d isthe last goal (that is a possibly empty sequene of delayed atoms) and � isthe substitution obtained by onatenating the omputed mgu's from the initialgoal. Notie that, if h�; di is a quali�ed answer for a suessful derivation thend is the empty goal and � restrited to the variables of the initial goal is theorresponding omputed answer substitution. We denote by qansP (g) the set ofquali�ed answers for a goal g and a program P .We restrit our attention to delay delarations whih are losed under instan-tiation, i.e., if an atom satis�es its delay delaration then also all its instanes do.Notie that this is the hoie of most of the logi programming systems dealingwith delay delarations suh as IC-Prolog, NU-Prolog, Prolog-II, Sistus-Prolog,Prolog-III, CHIP, Prolog M, SEPIA, et.The following example illustrates the use of delay delarations in logi pro-gramming.Example 1. Consider the program PERMUTE disussed by Naish in [19℄.% perm(Xs,Ys) Ys is a permutation of the list Xsperm(Xs,Ys) Xs = [℄, Ys = [℄.perm(Xs,Ys) Xs = [X|X1s℄, delete(X,Ys,Zs), perm(X1s,Zs).% delete(X,Ys,Zs) Zs is the list obtained by removing X from the list Ysdelete(X,Ys,Zs) Ys = [X|Zs℄.delete(X,Ys,Zs) Ys = [X1|Y1s℄, Zs = [X1|Z1s℄, delete(X,Y1s,Z1s).Clearly, the relation delaratively given by perm is symmetri. Unfortunately,the behavior of the program with Prolog (using the leftmost seletion rule) isnot. In fat, given the queryQ1 := perm(Xs; [a; b℄):Prolog will orretly baktrak through the answers Xs = [a; b℄ and Xs = [b; a℄.However, for the query Q2 := perm([a; b℄; Xs):Prolog will �rst return the answer Xs = [a; b℄ and on subsequent baktrakingwill fall into an in�nite derivation without returning answers anymore.For languages with delay delarations the program PERMUTE behaves sym-metrially. In partiular, if we onsider the delay delarations:DELAY perm(Xs,) UNTIL nonvar(Xs).DELAY delete(, ,Zs) UNTIL nonvar(Zs).the query Q2 above does not fall into a deadlok.3

P 2 Programs P ::= pr1; : : : ; prn (n > 0)pr 2 Proedures pr ::= 1; : : : ; n (n > 0) 2 Clauses ::= h : �g:h 2 ClauseHeads h ::= p(x1; : : : ; xn) (n � 0)g 2 LiteralSequenes g ::= l1; : : : ; ln (n � 0)l 2 Literals l ::= a j ba 2 Atoms a ::= p(xi1 ; : : : ; xin) (n � 0)b 2 Built-ins b ::= xi = xj j xi1 = f(xi2 ; : : : ; xin)p 2 ProedureNamesf 2 Funtorsxi 2 ProgramVariablesFig. 1. Abstrat Syntax of Normalized ProgramsUnder the assumption that delay delarations are losed under instantiation,the following result, whih is a variant of Theorem 4 in Yelik and Zahary [21℄,holds.Theorem 1. Let P be a program augmented with delay delarations, g be a goaland g0 be a permutation of g. Then qansP (g) and qansP (g0) are equals modulothe ordering of delayed atoms.It follows that both suessful and deadloked derivations are \independent"from the hoie of the seletion rule. Moreover, Theorem 1 allows us to treatgoals as multisets instead of sequenes of atoms.3 The Conrete Operational SemantisIn this setion we desribe a onrete operational semantis for pure Prologaugmented with delay delarations. The onrete semantis is the link betweenthe standard semantis of the language and the abstrat one. We assume apreliminary knowledge of logi programming (see, [1, 16℄).3.1 Programs and SubstitutionsPrograms are assumed to be normalized aording to the syntax given in Fig. 1.The variables ourring in a literal are distint; distint proedures have distintnames; all lauses of a proedure have exatly the same head; if a lause uses mdi�erent program variables, these variables are x1; : : : ; xm. If g := a1; : : : ; an wedenote by g n ai the goal g0 := a1; : : : ; ai�1; ai+1; : : : ; an.We assume the existene of two disjoint and in�nite sets of variables: programvariables, whih are ordered and denoted by x1, x2, . . . , xi, . . . , and standardvariables whih are denoted by letters y and z (possibly subsripted). Programsare built using program variables only.A program substitution is a set fxi1=t1; : : : ; xin=tng, where xi1 ; : : : ; xin aredistint program variables and t1, . . . , tn are terms (built with standard variables4

only). Program substitutions are not substitutions in the usual sense; they arebest understood as a form of program store whih expresses the state of the om-putation at a given program point. It is meaningless to ompose them as usualsubstitutions. The domain of a program substitution � = fxi1=t1; : : : ; xin=tng,denoted by dom(�), is the set of program variables fxi1 ; : : : ; xing. The applia-tion xi� of a program substitution � to a program variable xi is de�ned onlyif xi 2 dom(�): it denotes the term bound to xi in �. Let D be a �nite set ofprogram variables. We denote by PSD the set of program substitutions whosedomain is D.3.2 Conrete BehaviorsThe notion of onrete behavior provides a mathematial model for the in-put/output behavior of programs. To simplify the presentation, we do not pa-rameterize the semantis with respet to programs. Instead, we assume given a�xed underlying program P augmented with delay delarations.We de�ne a onrete behavior as a relation from input states to output statesas de�ned below. The input states have the form- h�; pi, where p is the name of a proedure and � is a program substitution alsoalled ativation substitution. Moreover, � 2 PSfx1;:::;xng, where x1; : : : ; xnare the variables ourring in the head of every lause of p.The output states have the form- h�0; �i, where �0 2 PSfx1;:::;xng and � is a deadlok state, i.e., it is an elementfrom the set fÆ; �g, where Æ stands for de�nite deadlok, while � stands for nodeadlok. In ase of no deadlok, �0 restrited to the variables fx1; : : : ; xngis a omputed answer substitution (the one orresponding to a suessfulderivation), while in ase of deadlok, �0 is the substitution part of a quali�edanswer to p and oinides with a partial answer substitution for it.We use the relation symbol 7�! to represent onrete behaviors, i.e., we writeh�; pi 7�! h�0; �i: this notation emphasizes the similarities between this onretesemantis and the strutural operational semantis for logi programs de�nedin [15℄. Conrete behaviors are intended to model suessful and deadlokedderivations of atomi queries.3.3 Conrete Semanti RulesThe onrete semantis of an underlying program P with delay delarations isthe least �xpoint of a ontinuous transformation on the set of onrete behav-iors. This transformation is de�ned in terms of semanti rules that naturallyextend onrete behaviors in order to deal with lauses and goals. In partiular,a onrete behavior is extended through intermediate states of the form h�; iand h�; g d; g e; g ri, where is a lause and g d; g e; g r is a partition of a goal5

g suh that: g d ontains all literals in g whih are delayed, g e ontains all lit-erals in g whih are not delayed and have not been exeuted yet, g r ontainsall literals in g whih are allowed to be reexeuted, i.e., all literals that are notdelayed and have already been exeuted but fallen into a deadlok.{ Eah pair h�; i, where is a lause, � 2 PSfx1;:::;xng and x1; : : : ; xn are thevariables ourring in the head of , is related to an output state h�0; �i,where �0 2 PSfx1;:::;xng and � 2 fÆ; �g is a deadlok state;{ Eah tuple h�; g d; g e; g ri, where � 2 PSfx1;:::;xmg and x1; : : : ; xm are thevariables ourring in (g d; g e; g r), is related to an output state h�0; �i,where �0 2 PSfx1;:::;xmg and � 2 fÆ; �g is a deadlok state.We briey reall here the onrete operations whih are used in the de�nitionof the onrete semanti rules depited in Fig. 2. The reader may refer to [14℄for a omplete desription of all operations but the last one, SPLIT, that is brandnew.- EXTC is used at lause entry: it extends a substitution on the set of variablesourring in the body of the lause.- RESTRC is used at lause exit: it restrits a substitution on the set of variablesourring in the head of the lause.- RETRG is used when a literal l ourring in the body of a lause is ana-lyzed. Let fxi1 ; : : : ; xing be the set of variables ourring in l. This opera-tion expresses a substitution on variables xi1 ; : : : ; xin in terms of the formalparameters x1; : : : ; xn.- EXTG it is used to ombine the analysis of a built-in or a proedure all(expressed in terms of the formal parameters x1; : : : ; xn) with the ativatingsubstitution.- UNIF-FUNC and UNIF-VAR are the operations that atually perform the uni�-ation of equations of the form xi = xj or xi1 = f(xi2 ; : : : ; xin), respetively.- SPLIT is a new operation: given a substitution � and a goal g, it partitionsg into the set of atoms g d whih do not satisfy the orresponding delaydelarations, and then are not exeutable, and the set of atoms g e whihsatisfy the orresponding delay delarations, and then are exeutable.The de�nition of the onrete semanti rules proeeds by indution on thesyntati struture of program P . Rule R1 de�nes the result of exeuting a pro-edure all: this is obtained by exeuting any lause de�ning it. Rule R2 de�nesthe result of exeuting a lause: this is obtained by exeuting its body underthe same input substitution after splitting the body into two parts: exeutableliterals and delayed literals. Rule R3 de�nes the result of exeuting the emptygoal, generating a suessful output substitution. Rule R4 de�nes a deadlok sit-uation that yields a de�nite deadlok information Æ. Rules R5 to R8 speify theexeution of a literal. First, the literal is exeuted produing an output substitu-tion �3; then reexeutable atoms are (re)exeuted through the auxiliary relationh�3; g ri 7�!r h�4; �g ri: its e�et is to re�ne �3 into �4 and to remove from g rthe atoms that are ompletely solved in �4 returning the new list of reexeutable6

 is a lause de�ning ph�; i 7�! h�0; �iR1 h�; pi 7�! h�0; �i
 := h : �g�1 = EXTC(; �)hg d; g ei = SPLIT(�1; g)h�1; g d; g e;< >i 7�! h�2; �i�0 = RESTRC(; �2)R2 h�; i 7�! h�0; �iR3 h�;< >;< >< >; i 7�! h�; �i either g d 6=< > or g r 6=< >R4 h�; g d;< >; g ri 7�! h�; Æi�g e := g e n bb := xi = xj�1 = RESTRG(b; �)�2 = UNIF VAR(�1)�3 = EXTG(b; �; �2)h�3; g ri 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR5 h�; g d; g e; g ri 7�! h�0; �i
�g e := g e n bb := xi = f(xi1 ; : : : ; xin)�1 = RESTRG(b; �)�2 = UNIF FUNC(b; �1)�3 = EXTG(b; �; �2)h�3; g ri 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR6 h�; g d; g e; g ri 7�! h�0; �i�g e := g e n aa := p(xi1 ; : : : ; xin)�1 = RESTRG(a; �)h�1; pi 7�! h�2; �i�3 = EXTG(a; �; �2)h�3; g ri 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR7 h�; g d; g e; g ri 7�! h�0; �i
�g e := g e n aa := p(xi1 ; : : : ; xin)�1 = RESTRG(a; �)h�1; pi 7�! h�2; Æi�3 = EXTG(a; �; �2)h�3; g r:ai 7�!r h�4; �g rih�g d; �g0ei = SPLIT(�4; g d)h�4; �g d; �g e [�g0e; �gri 7�! h�0; �iR8 h�; g d; g e; g ri 7�! h�0; �iFig. 2. Conrete Semanti Rules

7

atoms �g r; �nally, the sequene of delayed atoms with the new substitution �4is partitioned in two sets: the atoms that are still delayed and those that havebeen awakened. Rules R5 and R6 speify the exeution of built-ins and use theuni�ation operations. Rules R7 and R8 de�ne the exeution of an atom a inthe ase that a has not been onsidered yet. The �rst rule applies when theexeution of a is deadlok free; while the seond rule applies when the exeutionof a with the urrent ativation substitution falls into deadlok: in this ase, ais moved in the reexeutable atoms list.The reexeutable rules de�ning the auxiliary relation 7�!r an be easilyobtained aording to the methodology in [15℄.The onrete semantis of a program P with delay delarations is de�ned as a�xpoint of this transition system. We an prove that this operational semantis issafe with respet to the standard resolution of programs with delay delarations.4 Colleting and Abstrat SemantisAs usual in the Abstrat Interpretation approah [9, 10℄, in order to de�ne anabstrat semantis we proeed in three steps. First, we depit a olleting se-mantis, by lifting the onrete semantis to deal with sets of substitutions.Then, any abstrat semantis will be de�ned as an abstration of the olletingsemantis: it is suÆient to provide an abstrat domain that enjoys a Galoisonnetion with the onrete domain }(Subst), and a suite of abstrat opera-tions that safely approximate the onrete ones. Finally, we draw an algorithmto ompute a (post-)�xpoint of an abstrat semantis de�ned this way.The olleting semantis an be trivially obtained from the onrete one by- replaing substitutions with sets of substitutions;- using �, standing for possible deadlok, instead of Æ;- rede�ning all operations in order to deal with sets of substitutions (as donein [14℄).In partiular, the olleting version of operation SPLIT, given a set of substitu-tions �, will partition a goal g into the set of atoms g d whih do not satisfy theorresponding delay delarations for some � 2 �, and the set of atoms g e whihdo satisfy the orresponding delay delarations for some � 2 �. Notie that thisapproah is sound, i.e., if an atom is exeuted at the onrete level then it willbe also at the abstrat level. However, sine some atoms an be put both in g dand in g e some level of impreision ould arise.One the olleting semantis is �xed, deriving abstrat semantis is almostan easy job. Any domain abstrating substitutions an be used to desribe ab-strat ativation states. Similarly to the onrete ase, we distinguish amonginput states, e.g., h�; pi where � is an approximation of a set of ativation sub-stitutions, and output states, e.g., h�0; �i where �0 is an approximation of a setof output substitutions and � 2 f�; �g is an abstrat deadlok state. Clearly,the auray of deadlok analysis will depend on the mathing between delaydelarations and the information represented by the abstrat domains. It is easy8

to understand, by looking at the onrete semantis presented above, that veryfew additional operations should be implemented on an abstrat substitutiondomain like the ones in [6, 7, 14℄, while a great amount of existing spei�ationand oding an be reused for free.TAB(sat) = f(�; p; h�0; �i) : (�; p) is an input state and h�0; �i = Tp(�; p; sat)g.Tp(�; p; sat) = UNION(h�1; �1i : : : ; h�n; �ni)where h�i; �ii = T(�; i; sat),1; : : : ; n are the lauses de�ning p.T(�; ; sat) = hRESTRC(; �0); �iwhere h�0; �i = Tb(EXTC(; �); g d; g e;< >; sat),hg d; g ei = SPLIT(�; b) where b is the body of .Tb(�;< >;< >;< >; sat) = h�; �i.Tb(�; g d;< >; g r; sat) = h�; �iwhere either g d or g r is not empty:Tb(�; g d; l:g e; g r; sat) = Tb(�4; �g d; g e:�g e; �g r; sat)where h�g d; �g ei = SPLIT(�4; g d)h�4; �g ri = Tr(�3; g r; sat) if � = �,Tr(�3; g r:l; sat) if � = �,�3 = EXTG(l; �; �2),h�2; �i = sat (�1; p) if l is p(� � �)hUNIF VAR(�1); �i if l is xi = xj ,hUNIF FUNC(l; �1); �i if l is xi = f(� � �),�1 = RESTRG(l; �).Tr(�; (a1; : : : ; an); sat) = u1i=1h�i; giiwhere h�0; g0i = h�; (a1; : : : ; an)i�i+1 = REFINE(�i; Tr(�i; a1; sat); : : : ; Tr(�i; an; sat)) (i � 1)gi+1 = fai j i 2 f1; : : : ; ng and h�; �i = Tr(�i; ai; sat)gTr(�; a; sat) = hRENAME(a; �2); �iwhere h�2; ki = sat(�1; p) if a is p(� � �)�1 = RESTRG(a; �).Fig. 3. The abstrat transformationFig. 3 reports the �nal step in the Abstrat Interpretation piture desribedabove: an abstrat transformation that abstrats the onrete semantis rules.The abstrat semantis is de�ned as a post-�xpoint of transformation TAB on9

sets of abstrat tuples, sat, as de�ned in the piture. An algorithm omputingthe abstrat semantis an be de�ned by simple modi�ation of the reexeution�xpoint algorithm presented in [15℄. The reexeution funtion Tr is in the spiritof [15℄. It uses the abstrat operations REFINE and RENAME, where- REFINE is used to re�ne the result � of exeuting an atom by ombining itwith the results obtained by reexeution of atoms in the reexeutable atomlists starting from � itself;- RENAME is used after reexeution of an atom a: it expresses the result ofreexeution in terms of the variables xi1 ; : : : ; xin ourring in a.As already observed before, most of the operations that are used in the algo-rithm are simply inherited from the GAIA framework [14℄. The only exeptionis SPLIT, whih depends on a given set of delay delarations.The orretness of the algorithm an be proven the same way as in [14℄ and[15℄. What about termination ? The exeution of Tb terminates sine the numberof literals in g d and g e dereases of exatly one at eah reursive all. The fatthat the exeution of Tr terminates depends on some hypothesis on the abstratdomain suh as to be a omplete lattie (when this is not the ase, and it is justa po, an additional widening operation is usually provided by the domain).Example 2. Consider again the program PERMUTE illustrated above. Using oneof our domains for abstrat substitutions, like Pattern (see [5, 20℄), and startingfrom an ativation state of the form perm(ground,var) our analysis returns theabstrat quali�ed answer hperm(ground; ground); �i, whih provides the infor-mation that any onrete exeution, starting in a query of perm with the �rstargument being ground and the seond one being variable, is deadlok free.5 ConlusionsThe framework presented in this paper is part of a projet aimed at integratingmost of the work, both theoretial and pratial, on abstrat interpretation oflogi programs developed by the authors in the last years. The �nal goal is to geta pratial tool that takles a variety of problems raised by the reent researhand development diretions in delarative programming. Dynami sheduling isan interesting example in that respet, as most of urrent logi programmingenvironments integrate this feature.In the next future, we plan to adapt the existing implementations of GAIAsystems in order to pratially evaluate the auray and eÆieny of the thisframework.AknowledgmentsThis work has been partially supported by the Italian MURST Projets \Inter-pretazione Astratta, Type Systems e Analisi Control-Flow", and \Certi�azioneautomatia di programmi mediante interpretazione astratta".10

Referenes1. K. R. Apt. From Logi Programming to Prolog. Prentie Hall, 1997.2. K. R. Apt and I. Luitjes. Veri�ation of logi programs with delay delarations.Leture Notes in Computer Siene, 936:66{80, 1995.3. M. Bruynooghe. A pratial framework for the abstrat interpretation of logiprograms. Journal of Logi Programming, 10(2):91{124, February 1991.4. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstrat interpreta-tion: Towards the global optimization of Prolog programs. In Proeedings of the1987 Symposium on Logi Programming, pages 192{204, San Franiso, California,August 1987. Computer Soiety Press of the IEEE.5. A. Cortesi, G. Fil�e, and W. Winsborough. Optimal groundness analysis usingpropositional logi. Journal of Logi Programming, 27(2):137{167, May 1996.6. A. Cortesi, B. Le Charlier, and P. Van Hentenryk. Combination of abstrat do-mains for logi programming. In Proeedings of the 21th ACM SIGPLAN{SIGACTSymposium on Priniples of Programming Languages (POPL'94), Portland, Ore-gon, January 1994.7. A. Cortesi, B. Le Charlier, and P. Van Hentenryk. Combination of abstratdomains for logi programming: open produt and generi pattern onstrution.Siene of Computer Programming, 28(1{3):27{71, 2000.8. A. Cortesi, S. Rossi, and B. Le Charlier. Operational semantis for reexeution-based analysis of logi programs with delay delarations. Eletroni Notes in The-oretial Computer Siene, 48(1), 2001. http://www.elsevier.nl/loate/ents.9. P. Cousot and R. Cousot. Abstrat interpretation: A uni�ed lattie model for statianalysis of programs by onstrution or approximation of �xpoints. In ConfereneReord of Fourth ACM Symposium on Programming Languages (POPL'77), pages238{252, Los Angeles, California, January 1977.10. P. Cousot and R. Cousot. Systemati design of program analysis frameworks.In Conferene Reord of Sixth ACM Symposium on Programming Languages(POPL'79), pages 269{282, Los Angeles, California, January 1979.11. M. Garia de la Banda, K. Marriott, and P. Stukey. EÆient analysis of logiprograms with dynami sheduling. In J. Lloyd, editor, Pro. Twelfth InternationalLogi Programming Symposium, pages 417{431. MIT Press, 1995.12. M. Falashi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Constraint logiprogramming with dynami sheduling: A semantis based on losure operators.Information and Computation, 137(1):41{67, 1997.13. Intelligent Systems Laboratory, Swedish Institute of Computer Siene, POBox 1263, S-164 29 Kista, Sweden. SICStus Prolog User's Manual, 1998.http://www.sis.se/isl/sistus/sistus to.html.14. B. Le Charlier and P. Van Hentenryk. Experimental Evaluation of a GeneriAbstrat Interpretation Algorithm for Prolog. ACM Transations on ProgrammingLanguages and Systems (TOPLAS), 16(1):35{101, January 1994.15. B. Le Charlier and P. Van Hentenryk. Reexeution in abstrat interpretation ofProlog. Ata Informatia, 32:209{253, 1995.16. J.W. Lloyd. Foundations of Logi Programming. Springer Series: SymboliComputation{Arti�ial Intelligene. Springer-Verlag, seond, extended edition,1987.17. E. Marhiori and F. Teusink. Proving termination of logi programs with delaydelarations. In John Lloyd, editor, Proeedings of the International Symposium onLogi Programming, pages 447{464, Cambridge, Deember 4{7 1995. MIT Press.11

18. K. Marriott, M. Garia de la Banda, and M. Hermenegildo. Analyzing logi pro-grams with dynami sheduling. In Pro. 21st Annual ACM Symp. on Priniplesof Programming Languages, pages 240{253. ACM Press, 1994.19. L. Naish. Negation and ontrol in Prolog. Number 238 in Leture Notes in Com-puter Siene. Springer-Verlag, New York, 1986.20. P. Van Hentenryk, A. Cortesi, and B. Le Charlier. Evaluation of the domain Prop.Journal of Logi Programming, 23(3):237{278, June 1995.21. K. Yelik and J. Zahary. Moded type systems for logi programming. In Pro-eedings of the Sixteenth Annual ACM Symposium on Priniples of ProgrammingLanguages (POPL'89), pages 116{124, 1989.

12

