
Termination of Well-Typed Logi ProgramsAnnalisa Bossi, Nioletta Coo, Sabina RossiDipartimento di InformatiaUniversit�a di Venezia - C�a Fosarivia Torino, 155, 30172 Mestre-Venezia, Italyfbossi,oo,srossig�dsi.unive.itAbstratWe onsider an extended de�nition of well-typed programs to generallogi programs, i.e., logi programs with negated literals in the body ofthe lauses. This is a quite large lass of programs whih properly inludesall the well-moded ones. We study termination properties of well-typedgeneral logi programs while employing the Prolog's left-to-right seletionrule. We introdue the notion of typed aeptable program and providean algebrai haraterization for the lass of well-typed programs whihterminate on all well-typed queries.1 IntrodutionIn studying termination of logi programs two main diretions an be reognizedas learly desribed in [18℄. The �rst one is intended to algebraially hara-terize lasses of programs and queries terminating wrt. a spei� interpreter,suh as termination wrt. SLD-resolution [3, 11℄, LD-resolution [10, 22℄, LDNF-resolution [9, 12℄, SLD-resolution with dynami sheduling [14, 25℄. The seondone is intended to automatize the veri�ation by de�ning suÆient onditionsfor termination wrt. the standard Prolog interpreter [27, 20, 13, 21, 19℄.In this paper we follow the �rst approah: we de�ne and haraterize thelass of well-typed typed terminating programs, namely well-typed general pro-grams terminating wrt. LDNF-resolution for any well-typed general query.These programs and queries may ontain negated literals; they are moded andtyped and they satisfy some orretness onditions relating the types of inputarguments to the types of output arguments.Our work is in the style of Apt and Pedreshi in [9℄ for haraterizing lefttermination of general programs. We introdue the notion of typed aeptabili-ty and prove that it is both a neessary and a suÆient ondition for typedtermination. Our proposal exploits the well-behavior properties of well-typedprograms and queries similarly to what has be done in [22℄ for well-modedde�nite programs. Atually, our present proposal an also be interpreted as1

an extension of [22℄ to general programs. In fat, when we onsider de�niteprograms and the set of ground terms as the only possible type, the lass ofwell-typed programs and queries oinides with the lass of well-moded ones.Hene, in this paper, we give also a full haraterization of well-terminatingprograms.Well-typed de�nite programs and queries has been introdued by Bronsard etal. in [15℄ and studied also by Apt et al. in [6, 7℄. The extension of this notion togeneral logi programs has been introdued in [12℄ where we study modular andinremental tehniques for proving termination properties of general programswrt. LDNF-resolution. In that paper we already observe how well-behaviorproperties of programs an greatly simplify suh veri�ation proofs. These ideashave been further developed in the present work and are used in the proofs.Well-typed programs form an interesting lass of programs, sine they in-lude the majority of the programs used in pratie. In fat modes and types anbe viewed as an abstrat spei�ation of the intended meaning of the de�nedprediates, while well-typedness guarantees that the orretness wrt. suh aspei�ation is preserved through omputations [8℄. Both notions of well-modedand well-typed programs are largely exploited in the development of logi pro-grams and are inorporated in the most reent proposals of logi languages suhas Merury [26℄.The lass of typed terminating programs is inluded neither in the lassof left terminating programs, i.e., programs terminating for any ground query,nor in the lass of well-terminating programs, i.e., programs terminating forany well-moded query. As an example let us onsider the following programROTATE. Given a list l ontaining at least one ground element di�erent from 0,it omputes a permutation of l with a non-zero element as the �rst element.rotate([0|Xs℄,Ys) append(Xs,[0℄,Zs), rotate(Zs,Ys).rotate([X|Xs℄,[X|Xs℄) :zero(X).zero(0).append([℄,Ys,Ys).append([X|Xs℄,Ys,[X|Zs℄) append(Xs,Ys,Zs).The intended use of rotate is to give the �rst argument in input and toobtain the seond one in output. It is easy to see that the program ROTATEterminates for all queries of the form rotate(s; t), where s is a list ontain-ing at least one ground element di�erent from 0. Moreover, ROTATE is neitherleft terminating nor well-terminating sine it does not terminate for all groundqueries whose �rst argument is a list of zero's. The intended and orret use ofthis program an be aptured by mode and type spei�ations formalizing thefat that the program is intended to be alled with an appropriate list in input.Intuitively, the program ROTATE is well-typed wrt. suh spei�ations sine,whenever we all it with a query respeting the intended use, all the suballswill also respet suh an intended use.The paper is organized as follows. In Setion 2 a few preliminary de�nitionsare given, in partiular we briey reall the notion of LDNF-resolution, and the2

onepts of omplete model, level mapping and bounded atom. In Setion 3the de�nition of well-typedness, extended to general programs and queries, isrealled and its properties are proved. Typed termination is also de�ned in thissetion. In Setion 4 the onepts of typed level mappings and typed aepta-bility are introdued. We prove that a well-typed program, typed aeptablewrt. a typed level mapping and some omplete model, is typed terminating.In Setion 5 we prove that typed aeptability is also a neessary onditionfor typed termination. Setion 6 briey ompares our proposal with other ap-proahes. In the Appendix the proofs of some tehnial results used in the paperare given.2 PreliminariesWe use standard notation and terminology of logi programming (see [1, 2, 23℄).Just note that general logi programs are alled normal logi programs in [23℄.A general lause is a onstrut of the form H L1; : : : ; Ln with (n � 0),whereH is an atom and L1; : : : ; Ln are literals (i.e., either atoms or the negationof atoms). In turn, a general query is a possibly empty �nite sequene of literalsL1; : : : ; Ln, with (n � 0). A general program is a �nite set of general lauses1.As in the paper we deal with general queries, lauses and programs, we omitfrom now on the quali�ation \general", unless some onfusion might arise.For a literal L, we denote by rel(L) the prediate symbol of L.Following the onvention adopted by Apt in [2℄, we use bold haraters todenote sequenes of objets (so that L indiates a sequene of literals L1; : : : ; Ln,while t indiates a sequene of terms t1; : : : ; tn).For a given program P , we use the following notations: BP for the Herbrandbase of P , ground(P) for the set of all ground instanes of lauses from P ,omp(P) for the Clark's ompletion of P [17℄.We onsider the LDNF-resolution, and following Apt and Pedreshi's ap-proah in studying the termination of general programs [9℄, we view the LDNF-resolution as a top-down interpreter whih, given a general program P and ageneral query Q, attempts to build a searh tree for P [fQg by onstrutingits branhes in parallel. The branhes in this tree are alled LDNF-derivationsof P [fQg and the tree itself is alled LDNF-tree of P [fQg. Negative literalsare resolved using the negation as failure rule whih alls for the onstrution ofa subsidiary LDNF-tree. If during this subsidiary onstrution the interpreterdiverges, the (main) LDNF-derivation is onsidered to be in�nite.By termination of a general program we atually mean termination of theunderlying interpreter. Hene in order to ensure termination of a query Q in aprogram P , we require that all LDNF-derivations of P [fQg are �nite.For an LDNF-desendant of P [fQg we mean any query ourring duringthe LDNF-resolution of P [fQg, inluding Q and all the queries ourringduring the onstrution of the subsidiary LDNF-trees for P [fQg.1In the examples through the paper, we will adopt the syntati onventions of Prolog sothat eah query and lause ends with the period \." and \ " is omitted in the unit lauses.3

Let P be a program and p and q be relations. We say that p refers to q ifthere is a lause in P that uses p in its head and q in its body; p depends on q if(p; q) is in the reexive, transitive losure of the relation refers to. We say thatp and q are mutually reursive and write p ' q, if p depends on q and q dependson p. We also write p = q, when p depends on q but q does not depend on p.We denote by NegP the set of relations in P whih our in a negative literalin a lause of P and by Neg�P the set of relations in P on whih the relations inNegP depend. P� denotes the set of lauses in P de�ning a relation of Neg�P .In the sequel we refer to the standard de�nition of model of a program andmodel of the ompletion of a program (see [1, 2℄ for details). In partiular weuse the following notion of omplete model for a program.De�nition 2.1 (Complete Model) A modelM of a program P is alled om-plete if its restrition to the relations from Neg�P is a model of omp(P�).The notion of bounded atom that we will use in the sequel is based on thefollowing de�nition of level mapping, originally due to Bezem [11℄ and Cave-don [16℄.De�nition 2.2 (Level Mapping) A level mapping for a program P is a fun-tion j j : BP ! N of ground atoms to natural numbers. By onvention, thisde�nition is extended in a natural way to ground literals by putting j:Aj = jAj.For a ground literal L, jLj is alled the level of L.De�nition 2.3 (Bounded Atom) Let P be a program and j j be a level map-ping for P . An atom A is alled bounded wrt. j j if the set of all jA0j, whereA0 is a ground instane of A, is �nite. In this ase we denote by max jAj themaximum value in this set.Notie that if an atom A is bounded then, by de�nition of level mapping,also the orresponding negative literal, :A, is bounded. Note also that thisde�nition is equivalent to the de�nition of bounded query introdued in [9℄ whenatomi queries are onsidered. In fat, in ase of atomi queries the notion ofboundedness does not depend on a model.In this paper we also use the following notion of extension of a programwhihformalizes the situation where a program uses another one as a subprogram.De�nition 2.4 (Extension) Let P and R be two programs. A relation p isde�ned in P if p ours in a head of a lause of P ; a literal L is de�ned in P ifrel(L) is de�ned in P ; P extends R, denoted by P = R, if no relation de�nedin P ours in R.Informally, P extends R if P de�nes new relations with respet to R. Notethat P and R are independent if no relation de�ned in P ours in R and norelation de�ned in R ours in P , i.e., P = R and R = P .We onsider also hierarhies of programs, namely hains of extensions.De�nition 2.5 (Hierarhy of Programs) Let P1; : : : ; Pn be programs suhthat for all i 2 f1; : : : ; n�1g, Pi+1 = (P1[� � �[Pi). Then we all Pn = � � � = P1a hierarhy of programs. 4

3 Well-Typed ProgramsIn this setion, we reall the de�nition of well-typed general program given in[12℄ and show some properties of the programs in this lass.The notion of well-typedness relies both on the onepts of mode and type.De�nition 3.1 (Mode) Consider an n-ary prediate symbol p. By a mode forp we mean a funtion mp from f1; : : : ; ng to the set f+;�g. If mp(i) =00 +0 thenwe all i an input position of p; if mp(i) =00 �00 then we all i an output positionof p. By a moding we mean a olletion of modes, one for eah prediate symbol.The following very general de�nition of a type is suÆient for our purposes.De�nition 3.2 (Type) A type is a set of terms losed under substitution.Assume as given a spei� set of types, denoted by Types, whih inludesAny, the set of all terms, and Ground the set of all ground terms.De�nition 3.3 (Type Assoiated with a Position of an Atom) A typefor an n-ary prediate symbol p is a funtion tp from f1; : : : ; ng to the set Types.If tp(i) = T , we all T the type assoiated with the position i of p. Assuming atype tp for the prediate p, we say that a literal p(s1; : : : ; sn) is orretly typedin position i if si 2 tp(i).In a typed program we assume that every prediate p has a �xed mode mpand a �xed type tp assoiated with it and we denote it byp(mp(1) : tp(1); : : : ;mp(n) : tp(n)):So, for instane, we write append(+ : List ;+ : List ;� : List) to denote the om-mon use of append where the �rst two argument positions are input positions,the last one is an output position, and the type assoiated with eah argumentposition is List , i.e., the set of all lists.The notion of well-typed queries and programs relies on the following oneptof type judgment.De�nition 3.4 (Type Judgment) By a type judgment we mean a statementof the form s : S) t : T: We say that a type judgment s : S) t : T is true, andwrite j= s : S) t : T; if for all substitutions �, s� 2 S implies t� 2 T.For example, the type judgments (x : Nat ; l : ListNat)) ([xjl℄ : ListNat)and ([xjl℄ : ListNat)) (l : ListNat) are both true.A notion of well-typed program has been �rst introdued by Bronsard et al.in [15℄ and studied also by Apt and Etalle in [6℄ and by Apt and Luitjes in [7℄.This notion was developed for de�nite programs. In [12℄ we extend it to generalprograms as de�ned below.In the following de�nition, we assume that is : Is is the sequene of typedterms �lling in the input positions of Ls and os : Os is the sequene of typedterms �lling in the output positions of Ls.5

De�nition 3.5 (Well-Typed)� A query L1; : : : ; Ln is alled well-typed if for all j 2 f1; : : : ; ngj= oj1 : Oj1 ; : : : ;ojk : Ojk) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1.� A lause L0 L1; : : : ; Ln is alled well-typed if for all j 2 f1; : : : ; ngj= i0 : I0;oj1 : Oj1 ; : : : ;ojk : Ojk) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1, andj= i0 : I0;oj1 : Oj1 ; : : : ;ojh : Ojh) o0 : O0where Lj1 ; : : : ; Ljh are all the positive literals in L1; : : : ; Ln.� A program is alled well-typed if all of its lauses are well-typed.The di�erene between this de�nition and the one usually given for de�niteprograms is that the orretness of the terms �lling in the output positions ofnegative literals annot be used to dedue the orretness of the terms �llingin the input positions of a rightmost literal (or the output positions of thehead in a lause). The two de�nitions oinide either for de�nite programsor general programs whose negative literals have all argument positions beinginput positions.Example 3.6 Consider again the program ROTATE of the introdution: it iswell-typed wrt. the modes and types spei�ed belowrotate(+ : List�;� : List�)zero(+ : Any)append(+ : List�;+ : List�;� : List�)where List* denotes the set of all (possibly non-ground) lists ontaining at leastone ground element di�erent from 0.Note that well-typedness does not imply orret typedness in all argumentpositions: an atomi query is well-typed if it is orretly typed in its inputpositions and a unit lause p(s : S; t : T) is well-typed if j= s : S) t : T.De�nition 3.7 (Corret Typedness) Let P be a typed program. We say thatan atom is orretly typed if it is orretly typed in all its argument positions.A query is orretly typed if all its positive literals are orretly typed and allits negative literals are orretly typed in all their input positions. A lause isorretly typed if both the body and the head are orretly typed.6

Note that orret typedness of a well-typed query is ensured just by requiringorret typedness of the output positions of the positive literals, while orrettypedness of a well-typed lause is ensured just by requiring orret typednessof the input positions of the head and of the output positions of the positiveliterals in the body.In the literature we �nd many properties of well-typed de�nite programswhih hold also for general programs. Here we reall some of them we will usein the rest of the paper.Remark 3.8 If Q := L1; : : : ; Ln is a non-empty well-typed query, then all pre-�xes, L1; : : : ; Li with i 2 f1; : : : ; ng, of it are well-typed too. In partiular, its�rst literal L1 is well-typed.The next Lemma states that well-typed queries are losed under LDNF-resolution. It has been proved by Bronsard et. al. in [15℄ for de�nite programsand extended to general programs in [12℄.Lemma 3.9 Let P and Q be a well-typed program and a well-typed query, re-spetively. Then all LDNF-desendants of P [fQg are well-typed.Lemma 3.10 Let P and Q be a well-typed program and a well-typed query,respetively. Let � be a omputed answer substitution of a suessful LDNF-derivation of P [fQg. Then Q� is orretly typed.Proof. The proof follows by a straightforward generalization of Corollary 10.9and Corollary 10.10 in [2℄ to LDNF-resolution.In what follows we denote by ground� (P) the set of all orretly typed groundinstanes of lauses of P . The proof of the following result is reported in theAppendix.Theorem 3.11 Let P and Q be a well-typed program and a well-typed query,respetively, and M be a omplete model of ground� (P). If there is a suessfulLDNF-derivation of P[fQg with omputed answer substitution � thenM j= Q�.We now de�ne the termination property we fous on.De�nition 3.12 (Typed Termination) A program P is alled typed termi-nating if all LDNF-derivations of P starting in a well-typed query Q are �nite.The following property holds.Lemma 3.13 Let P be a well-typed program. P is typed terminating i� for allwell-typed positive literals A, all LDNF-derivations of P [fAg are �nite.Proof. Clearly, if P is typed terminating then for all well-typed positive literalsA, all LDNF-derivations of P [fAg are �nite.Suppose now that for all well-typed positive literals A, all LDNF-derivationsof P [fAg are �nite. By Lemma 3.9 and Remark 3.8 all seleted literals inall LDNF-derivations of P starting in a well-typed query Q are well-typed.Moreover, if all LDNF-derivations of P [fAg are �nite then also all LDNF-derivations of P [f:Ag are �nite. Then P is typed terminating.7

4 Typed Aeptable ProgramsIn order to prove typed termination of well-typed programs we introdue theonept of typed aeptable program.We �rst de�ne the onept of typed level mapping.De�nition 4.1 (Typed Level Mapping) Let P be a typed program and j jbe a level mapping for P . We say that j j is a typed level mapping for P if� every well-typed atom de�ned in P is bounded wrt. j j.Example 4.2 Consider the program ROTATE of the introdution. The followingis a typed level mapping for ROTATE.jrotate(l1 ; l2)j = jl1 jlength0jzero(x)j = 0jappend(l1 ; l2 ; l3)j = jl1 jlengthwhere for a term t, if t is a list then jt jlength0 is the length of the maximal pre�xof t made by zero's, otherwise it is 0, while jt jlength is equal to the length of thelist, otherwise it is 0.For well-typed programs, we introdue the following notion of typed aept-ability. It is in the same style of the notion of well-aeptability introdued in[22℄, but as we disuss later on there is a main di�erene in the requirement onthe level mapping.De�nition 4.3 (Typed Aeptable Program) Let P be a well-typed pro-gram, j j be a typed level mapping for P andM be a omplete model of ground� (P).� A lause of P is alled typed aeptable wrt. j j and M if for everyground instane A A; B;B of it suh that A is orretly typed in itsinput positions,if M j= A and rel(A) � rel(B) then jAj > jBj:� P is alled typed aeptable wrt. j j and M if all its lauses are.Notie that in the de�nition of typed aeptability we only require to om-pare the level of the head with the level of the \reahable" mutually reursiveliterals in lause bodies. This is a muh weaker requirement than the one givenin both the notions of aeptability and of semi-aeptability, introdued in[9, 10℄ for proving left termination. In fat, in [9, 10℄, all the \reahable" literalsin the bodies have to be measured.We �rst prove a result whih provides an inremental method for provingtyped termination.Theorem 4.4 Let P and R be two programs suh that P extends R and P [Ris well-typed. Let M be a omplete model of ground� (P [R). Suppose that8

(i) if the prediate symbols p and q are both de�ned in P then neither p = qnor q = p (i.e., either they are mutually reursive or independent),(ii) P is typed aeptable wrt. a typed level mapping j j and M ,(iii) R is typed terminating.Then P [R is typed terminating.Proof. By Lemma 3.13, it is suÆient to prove that for all well-typed positiveliterals A, all LDNF-derivations of (P [R) [fAg are �nite. Let us onsider awell-typed atom A.If A is de�ned in R, then the thesis trivially holds by (iii).If A is de�ned in P , by de�nition of typed level mapping, A is bounded wrt.j j and then max jAj is de�ned. The proof proeeds by indution on max jAj.Base. Let max jAj = 0. In this ase, by (i) and (ii), if : H L is a lauseof P suh that H uni�es with A and L is non-empty, then all literals in L arede�ned in R. The thesis follows by (iii).Indution step. Let max jAj > 0. It is suÆient to prove that for all diretdesendants (L1; : : : ; Ln) in the LDNF-tree of (P [R)[fAg, if �i is a omputedanswer for (P [R) [f(L1; : : : ; Li�1)g then all LDNF-derivations of (P [R) [fLi�ig are �nite.Let : H L01; : : : ; L0n be a lause of P suh that � = mgu(H;A). Forall i 2 f1; : : : ; ng, let Li = L0i� and �i be a omputed answer for (P [R) [f(L1; : : : ; Li�1)g. By Remark 3.8 and Lemma 3.9, eah literal Li�i is well-typed.We distinguish two ases.If Li�i is de�ned in R then the thesis follows by (iii).Suppose that Li�i is de�ned in P . Li�i is bounded sine it is well-typed.We prove that max jAj > max jLi�ij. The thesis will follow by the indutionhypothesis.First of all, by hypothesis (i), rel(Li�i) � rel(H 0).Let be a substitution suh that Li�i is a ground instane of Li�i. Thenthere exists 0 suh that (L1; : : : ; Li�1)0 is a ground instane of (L1; : : : ; Li�1)�i,�0 is a ground instane of and Li0 = Li�i. By the fats that A is well-typedand L1; : : : ; Li is a pre�x of an LDNF-desendant of (P [R) [fAg, it followsthat L1; : : : ; Li is well-typed. Hene, by Theorem 3.11, M j= (L1; : : : ; Li�1)0.Moreover, sine A is orretly typed in its input positions and A� = H� itfollows that H� is orretly typed in its input positions. Then,jLi�ij = jLi0j= jL0i�0j (sine Li = L0i�)< jH�0j (sine P is typed aeptable wrt. M and j j)= jA�0j (sine � = mgu(H;A)):Then we an onlude that max jAj > max jLi�ij.Let us now prove our general result.9

Theorem 4.5 Let P be a well-typed program, j j be a typed level mapping forP and M be a omplete model of ground� (P).� If P is typed aeptable wrt. j j and M then P is typed terminating.Proof. We deompose P into a hierarhy of n � 1 programs P := P1 [: : :[Pnsuh that Pn = : : : = P1 and for every i 2 f1; : : : ; ng if the relation symbolspi and qi are both de�ned in Pi then neither pi = qi nor qi = pi (i.e., eitherthey are mutually reursive or independent). Moreover, for eah Pi, we onsiderthe level mapping j ji de�ned in the following way: if A is de�ned in Pi thenjAji = jAj else jAji = 0. Notie that eah j ji is a typed level mapping and eahPi is typed aeptable wrt. j ji and M .We prove that for all well-typed queries Q, all LDNF-derivations of P [fQgare �nite. By indution on n.Base. Let n = 1. This ase follows immediately by Theorem 4.4, by puttingP = P1 and R empty.Indution step. Let n > 1. Also this ase follows by Theorem 4.4, by puttingP = Pn, and R = P1 [: : : [Pn�1. In fat,� if the prediate symbols pn and qn are both de�ned in Pn then neitherpn = qn nor qn = pn;� Pn is typed aeptable wrt. j jn and M ;� (P1 [: : : [Pn�1) is typed terminating, by the indutive hypothesis.Example 4.6 The well-typed program ROTATE in the modes and types of Exam-ple 3.6 is typed aeptable wrt.� the typed level mapping of Example 4.2, and� a omplete model M of ground� (ROTATE) suh thatM j= append(s ; [0℄; t) i� jsjlength0 = jtjlength0:It is worth notiing that the ondition of typed aeptability o�ers an ex-tremely powerful and simple method for proving typed termination of a well-typed program. Consider a program (for instane the program MAP COLOR in[10℄) omposed by many de�nitions of independent reursive relations and a\main" proedure whih orretly alls suh relations. All what we have to dohere for proving typed termination is to prove termination independently foreah reursive de�nition on its orret alls.
10

5 Charaterizing Typed Terminating ProgramsIn this setion we prove the onverse of Theorem 4.5. This provides us with anexat haraterization of well-typed, typed terminating general programs.Similarly to what has been done in [9℄ suh a haraterization is limitedto non-oundering programs. We reall that an LDNF-derivation ounders ifthere ours in it or in any of its subsidiary LDNF-trees a query with the �rstliteral being non-ground and negative. An LDNF-tree is alled non-ounderingif none of its branhes ounders.To prove the onverse of Theorem 4.5 we analyze the size of �nite LDNF-trees.We need the following lemma from [9℄, where for a program P and a queryQ, nodesP (Q) denotes the total number of nodes in the LDNF-tree of P [fQgand in all its subsidiary LDNF-trees.Lemma 5.1 [9℄ Let P be a program and Q be a query suh that the LDNF-treeof P [fQg is �nite and non-oundering. Then(i) for all substitutions �, the LDNF-tree of P [fQ�g is �nite and non-oundering and nodesP (Q�) � nodesP (Q);(ii) for all pre�xes Q0 of Q, the LDNF-tree of P [fQ0g is �nite and non-oundering and nodesP (Q0) � nodesP (Q);(iii) for all non-root nodes Q0 in the LDNF-tree of P [fQg, nodesP (Q0) <nodesP (Q).We will use the following notion.De�nition 5.2 (Non-Floundering on Well-Typed Atoms) Let P be a ty-ped program. We say that P is non-oundering on well-typed atoms if noLDNF-derivation starting in a well-typed atom ounders.Notie that if P is a well-typed program, the previous ondition is satis�edwhenever all positions of negative literals ourring in the lause bodies areinput positions and have types whih imply groundness.The following result is proved in the Appendix.Theorem 5.3 Let P be a well-typed program suh that P is typed terminatingand non-oundering on well-typed atoms. ThenfA 2 BP j A is well-typed and there is a suessful LDNF-derivation of P[fAggis a omplete model of ground� (P).We are now ready to prove the main result of this setion.Theorem 5.4 Let P be a well-typed program, non-oundering on well-typedatoms. 11

� If P is typed terminating then there exists a typed level mapping j j and aomplete model M for ground� (P) suh that P is typed aeptable wrt. j jand M .Proof. Let us de�ne a level mapping for P as follows: for all A 2 BPjAj = nodesP (A) if A is well-typedjAj = 0 otherwise:Assume that P is typed terminating. Then the level mapping j j for P is well-de�ned. Moreover, it is a typed level mapping. Note that by de�nition, forA 2 BP , nodesP (:A) > nodesP (A) = jAj = j:Aj; so nodesP (:A) > j:Aj:Let M be the omplete model for ground� (P) of Theorem 5.3.We prove that P is typed aeptable wrt. j j and M .Take a lause A A; B;B of P and a ground instane A� A�;B�;B� ofit suh that A� is orretly typed in its input positions. We need to show thatif M j= A� and rel(A�) � rel(B�) then jA�j > jB�j:Let � be an mgu of A� and A, then � = �Æ for some Æ. We have:jA�j = nodesP (A�) (by de�nition of j j)> nodesP (A�;B�;B�) (by Lemma 5.1 (iii) and the fat that(A�;B�;B�) is a resolvent of P [fA�g)� nodesP (A�;B�;B�) (by Lemma 5.1 (i), sine � = �Æ)� nodesP (B�;B�) (by Lemma 5.1 (iii), sine M j= A�)� nodesP (B�) (by Lemma 5.1 (ii))= jB�j (by de�nition of j j):6 ConlusionsIn this paper we propose a new termination property for general logi programs:typed termination. A general program is typed terminating if it terminates forany well-typed query. We follow the style introdued by Apt and Pedreshifor left termination in [9℄, and give an algebrai haraterization of well-typed,typed terminating programs. To this end we use the onepts of typed levelmappings, namely level mappings for whih any well-typed query is bounded,and typed aeptability. We also prove that, for well-typed programs, typedaeptability is a neessary and suÆient ondition for typed termination.Most of the programs we write are well-typed and typed termination seemsto be a very natural termination property for them. Furthermore typed aept-ability supplies a very simple way to prove termination sine it requires onlyto ompare the levels of \reahable" mutually reursive literals. Thus in thetermination proofs very simple level mappings an be used by exploiting boththe independene and the hierarhial dependene among prediate de�nitions.12

Moreover the lass of typed terminating programs is inluded neither into thelass of left terminating programs nor into the lass of well-terminating ones. Infat there are well-typed programs whih terminate for all well-typed queries,but they do not terminate for all ground queries or for all well-moded ones.The present haraterization of typed termination is also a generalizationof our previous work on well-termination [22℄. In fat in [22℄ we onsider onlyde�nite programs while for typed termination we onsider general programs.Moreover, when we restrit our type system to the only type Ground, i.e., theset of ground terms, well-typed programs oinide with well-moded ones. Amoded level mapping is also a typed level mapping, sine all well-moded atomiqueries are bounded wrt. a moded level mapping. But the reverse is not true,namely a typed level mapping is not a moded level mapping, hene our presentrequirement of a typed level mapping is less restritive. In [22℄ it was not possibleto prove that any well-moded well-terminating program is well-aeptable: thisproperty was proved only for a sublass of well-moded programs, the simply-moded ones. By weakening the ondition on the level mapping, now we obtaina full haraterization for well-terminating programs.Another approah whih an apture typed termination is the one proposedby Pedreshi and Ruggeri in [24℄. They give a general framework for provingpartial and total orretness of general logi programs wrt. Pre/Post spei�a-tions. Clearly with Pre/Post spei�ations also moding and typing propertiesan be desribed and well-typing an be expressed. They basially onsiderwell-asserted programs, as they are alled in [8℄, whih are a generalization ofwell-typed ones. On the other hand, for proving termination they adopt thelassial notion of aeptability de�ned in [9℄, thus they require a level mappingfor omparing all \reahable" literals in program lauses not only the reursiveones. This is a muh stronger requirement than our, it produes in generalmore ompliated level mappings and termination proofs, and in some ases itmay make impossible to �nd a proof, even for programs whih are typed termi-nating. This is due to the fat that they annot give a full haraterization ofwell-asserted programs terminating for well-asserted queries.Referenes[1℄ K. R. Apt. Introdution to Logi Programming. In J. van Leeuwen, edi-tor, Handbook of Theoretial Computer Siene, volume B: Formal Modelsand Semantis, pages 495{574. Elsevier, Amsterdam and The MIT Press,Cambridge, 1990.[2℄ K. R. Apt. From Logi Programming to Prolog. Prentie Hall, 1997.[3℄ K. R. Apt and M. Bezem. Ayli programs. New Generation Computing,9(3&4):335{363, 1991.
13

[4℄ K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of delarativeknowledge. In J. Minker, editor, Foundation of Dedutive Databases andLogi Programming, pages 89{148. Morgan Kaufmann, 1988.[5℄ K. R. Apt and H. C. Doets. A new de�nition of SLDNF-resolution. Journalof Logi Programming, 18(2):177{190, 1994.[6℄ K. R. Apt and S. Etalle. On the uni�ation free Prolog programs. InA. Borzyszkowski and S. Sokolowski, editors, Proeedings of the Confereneon Mathematial Foundations of Computer Siene (MFCS 93), volume 711of Leture Notes in Computer Siene, pages 1{19. Springer-Verlag, 1993.[7℄ K. R. Apt and I. Luitjes. Veri�ation of logi programs with delay de-larations. In A. Borzyszkowski and S. Sokolowski, editors, Proeedings ofthe Fourth International Conferene on Algebrai Methodology and Soft-ware Tehnology, (AMAST'95), volume 936 of Leture Notes in ComputerSiene, pages 1{19. Springer-Verlag, 1995.[8℄ K. R. Apt and E. Marhiori. Reasoning about Prolog programs: frommodes through types to assertions. Formal Aspets of Computing,6(6A):743{765, 1994.[9℄ K. R. Apt and D. Pedreshi. Reasoning about termination of pure Prologprograms. Information and Computation, 106(1):109{157, 1993.[10℄ K. R. Apt and D. Pedreshi. Modular termination proofs for logi andpure Prolog programs. In G. Levi, editor, Advanes in Logi ProgrammingTheory, pages 183{229. Oxford University Press, 1994.[11℄ M. Bezem. Strong termination of logi programs. Journal of Logi Pro-gramming, 15(1&2):79{97, 1993.[12℄ A. Bossi, N. Coo, S. Etalle, and S. Rossi. Termination in a hierarhyof general logi programs. Tehnial Report CS-2001-05, Dipartimento diInformatia, Universit�a Ca' Fosari Di Venezia, Italy, Marh 2001.[13℄ A. Bossi, N. Coo, and M. Fabris. Norms on terms and their use in provinguniversal termination of a logi program. Theoretial Computer Siene,124:297{328, 1994.[14℄ A. Bossi, S. Etalle, and S. Rossi. Properties of input-onsuming deriva-tions. Theory and Pratie of Logi Programming (TPLP), to appear, 2000.Available on CoRR: http://arXiv.org/abs/s/0101023.[15℄ F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of dire-tionality for proving termination of logi programs. In K. R. Apt, editor,Proeedings of the Joint International Conferene and Symposium on LogiProgramming, pages 321{335. MIT Press, 1992.14

[16℄ L. Cavedon. Continuity, onsisteny and ompleteness properties for logiprograms. In G. Levi and M. Martelli, editors, Proeedings of the SixthInternational Conferene on Logi Programming, pages 571{584. The MITpress, 1989.[17℄ K. L. Clark. Negation as failure rule. In H. Gallaire and G. Minker, editors,Logi and Data Bases, pages 293{322. Plenum Press, 1978.[18℄ D. De Shreye and S. Deorte. Termination of logi programs: the never-ending story. Journal of Logi Programming, 19-20:199{260, 1994.[19℄ D. De Shreye and K. Vershaetse. Deriving linear size relations forlogi programs by abstrat interpretation. New Generation Computing,13(2):117{154, 1995.[20℄ D. De Shreye, K. Vershaetse, and M. Bruynooghe. A framework foranalyzing the termination of de�nite logi programs with respet to allpatterns. In ICOT Sta�, editor, Proeedings of the International Confereneon Fifth Generation Computer Systems (FGCS'92), Tokio, pages 481{488.ICOT, 1992.[21℄ S. Deorte, D. De Shreye, and M. Fabris. Automati inferene of norms: amissing link in automati termination analysis. In D. Miller, editor, Pro.Tenth International Logi Programming Symposium, number 526 in LetureNotes in Computer Siene, pages 420{436. Springer-Verlag, 1993.[22℄ S. Etalle, A. Bossi, and N. Coo. Termination of well-moded programs.Journal of Logi Programming, 38(2):243{257, 1999.[23℄ J. W. Lloyd. Foundations of Logi Programming. Symboli Computation{ Arti�ial Intelligene. Springer-Verlag, Berlin, 1987. Seond edition.[24℄ D. Pedreshi and S. Ruggieri. Veri�ation of Logi Programs. Journal ofLogi Programming, 39(1{3):125{176, 1999.[25℄ J.-G. Smaus. Proving termination of input-onsuming logi programs. InD. De Shreye, editor, Proeedings of the 16th International Conferene onLogi Programming, pages 335{349. MIT Press, 1999.[26℄ Z. Somogyi, F. Henderson, and T. Conway. Merury: aneÆient purely delarative logi programming language. InAustralian Computer Siene Conferene, 1995. available athttp://www.s.mu.oz.au/merury/papers.html.[27℄ K. Vershaetse and D. De Shreye. Deriving termination proofs for logiprograms using abstrat proedures. In K. Furukawa, editor, Proeedingsof the 8th International Conferene on Logi Programming, pages 301{315.MIT Press, 1991. 15

A AppendixIn this appendix we report the proofs of the tehnial results used in the paper.Let us �rst establish the following laim.Claim 1 Let P and Q be a well-typed program and a well-typed query, respe-tively. The following statements hold.(i) If the LDNF-tree of ground(P)[fQg is �nitely failed then also the LDNF-tree of ground� (P) [fQg is �nitely failed.(ii) If there is a suessful LDNF-derivation of ground(P)[fQg then there isa suessful LDNF-derivation of ground� (P) [fQg.Proof. By simultaneous indution on k = rank(T ; #) where(1) in ase (i), T is the �nitely failed LDNF-tree of ground(P) [fQg and# = �,(2) in ase (ii), T is the LDNF-tree of ground(P)[fQg ontaining a suessfulLDNF-derivation and # is its omputed answer substitution.For a formal de�nition of rank(T ; #) the reader is referred to [5℄. Intuitively, kdenotes the number of subsidiary trees that the interpreter would explore duringthe onstrution of the �nitely failed LDNF-tree of ground(P)[fQg in ase (i),or the suessful LDNF-derivation of ground(P) [fQg in ase (ii).Base. k = 0. In this ase no subsidiary tree is explored during the onstru-tion of the LDNF-tree of ground(P) [fQg.(i) Let the LDNF-tree of ground(P)[fQg be �nitely failed. Sine ground(P) �ground� (P), the LDNF-tree of ground� (P) [fQg is �nitely failed too.(ii) Let Æ be a suessful LDNF-derivation of ground(P) [fQg. We provethat all lauses from ground(P) used to resolve an atom in Æ are orretly typedand thus belong to ground� (P). Indeed, let := H L be a lause of ground(P)and A be a seleted atom in Æ suh that A and H unify. By properties ofLDNF-resolution, sine there exists a suessful derivation of ground(P)[fAg,then there exists a suessful derivation of ground(P) [fHg too. Hene, byLemma 3.10, H is orretly typed. Moreover, sine L is an LDNF-resolvent ofground(P) [fAg, then there exists also a suessful derivation of ground(P) [fLg. Again, by Lemma 3.10, L is orretly typed. This proves that the lause is orretly typed and thus belong to ground� (P).Indution step. k > 0.(i) Let the LDNF-tree of ground(P)[fQg be �nitely failed. The proof followsby a seondary indution on the depth h of this tree. Let Q := L1; : : : ; Ln.Base. h = 1. We distinguish two ases.(a) L1 is a positive literal. In this ase there is no lause in ground(P)whose head uni�es with L1. Sine ground(P) � ground� (P), then there is alsono lause in ground� (P) whose head uni�es with L1, i.e., the LDNF-tree ofground� (P) [fQg is �nitely failed. 16

(b) L1 is a negative literal. Let L1 = :A. In this ase, there exists asuessful LDNF-derivation of ground(P)[fAg. By the prinipal indution onk, there exists also a suessful LDNF-derivation of ground� (P) [fAg. Thisproves that the LDNF-tree of ground� (P) [fQg is �nitely failed.Indution step. h > 1. Again we distinguish two ases.(a) L1 is a positive literal. In this ase, all diret LDNF-desendants ofground(P) [fQg have a �nitely failed LDNF-tree in ground(P). From thefat that ground(P) � ground� (P), it follows that the set of diret LDNF-desendants of ground� (P)[fQg is ontained in the set of diret LDNF-desen-dants of ground(P) [fQg. The thesis follows by the seondary indution on h,sine the depth of the subtrees is smaller than h.(b) L1 is a negative literal. Let L1 = :A. Sine h > 1, the LDNF-tree ofground(P) [fAg is �nitely failed. By the prinipal indution on k, the LDNF-tree of ground� (P) [fAg is �nitely failed too. Hene L2; : : : ; Ln is the diretLDNF-desendant both of ground(P) [fQg and of ground� (P) [fQg. Thethesis follows by the seondary indution on h.(ii) Let Æ be a suessful LDNF-derivation of ground(P) [fQg and k > 0.By the prinipal indution on k, all the subsidiary trees explored during theonstrution of Æ are �nitely failed in ground� (P). Moreover, as in the basease for k = 0, for all positive literals seleted in Æ, we an prove that all inputlauses are orretly typed and thus belong to ground� (P). This proves thatthere exists a suessful LDNF-derivation of ground� (P) [fQg.We are now in position to prove Theorem 3.11.Theorem 3.11 Let P and Q be a well-typed program and a well-typed query,respetively, and M be a omplete model of ground� (P). If there is a suessfulLDNF-derivation of P[fQg with omputed answer substitution � thenM j= Q�.Proof Suppose that there is a suessful LDNF-derivation of P [fQg withomputed answer �. For any ground instane Q0 of Q�, there is a suess-ful LDNF-derivation of ground(P) [fQ0g, by properties of LDNF-resolution.Thus, there is a suessful LDNF-derivation of ground� (P) [fQ0g, by Claim1 (ii). Let M be a omplete model of ground� (P). By soundness of LDNF-resolution wrt. ompletion [17℄, for any ground instane Q0 of Q�, M j= Q0, i.e.,M j= Q�.Let us reall the following theorem due to Apt, Blair and Walker [4℄ whihprovides a method for verifying whether an interpretation is a model of omp(P).It uses the following de�nition.De�nition A.1 (Supported Model) A model M of a program P is alledsupported if for all ground atoms A, I j= A implies that I j= L for some generallause A L 2 ground(P).Theorem A.2 A Herbrand interpretation I is a model of omp(P) i� it is asupported model of P . 17

We an then prove the following theorem.Theorem 5.3 Let P be a well-typed program suh that P is typed terminatingand non-oundering on well-typed atoms. ThenfA 2 BP j A is well-typed and there is a suessful LDNF-derivation of P[fAggis a omplete model of ground� (P).Proof. Let M be the setfA 2 BP jA is well-typed and there is a suessful LDNF-derivation of P[fAgg:We show that M is a Herbrand model of omp(ground� (P)). To this end, weuse Theorem A.2 and show that M is a supported model of ground� (P).To establish that M is a model of ground� (P), assume by ontradition thatsome lause A L from ground� (P) is false in M . Then M j= L and M 6j= A.Sine P is typed terminating and non-oundering on well-typed atoms, M 6j= Aimplies that the LDNF-tree for P [fAg is �nitely failed and non-oundering.For some ground substitution , A L = (A0 L0) where := A0 L0is a lause from P . Thus A and A0 unify.Let L0� be the resolvent of P [fAg with the input lause . The LDNF-treeof P[fL0�g is also �nitely failed and non-oundering. As L is an instane of L0�,by Lemma 5.1 (i) we have that the LDNF-tree for P [fLg is non-oundering.Moreover, it is �nitely failed, sine the queries ourring in the LDNF-tree ofP [fLg are all instanes of the queries ourring in the LDNF-tree of P [fL0�g.But the fat that L is well-typed and the LDNF-tree of P [fLg is �nitely failedand non-oundering ontradits the hypothesis that M j= L.To establish that M is a supported model of ground� (P), onsider A 2 BPsuh that M j= A, and let be the �rst input lause used in a suessful LDNF-derivation of P [fAg. Let L0� be the resolvent of P [fAg from the lause .Clearly, a suessful LDNF-derivation for P [fL0�g with omputed answer �an be extrated from the suessful LDNF-derivation of P [fAg. Let L be aground instane of L0��. By Lemma 3.10, both A and L are orretly typed.Hene A L 2 ground� (P). By properties of LDNF-resolution there exists asuessful LDNF-derivation for P [fLg, hene M j= L. This establishes thatM is a supported interpretation for ground� (P).

18

