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ABSTRACT
We present a framework for modelling ad-hoc Wireless Sen-
sor Networks (WSNs) and studying both their connecti-
vity properties and their performances in terms of energy
consumption, throughput and other relevant indices. Our
framework is based on a probabilistic process calculus where
system executions are driven by Markovian probabilistic sche-
dulers, allowing us to translate process terms into discrete
time Markov chains (DTMCs) and use the probabilistic mo-
del checker PRISM to automatically evaluate/estimate the
connectivity properties and the energy costs of the networks.
To the best of our knowledge, this is the first work that pro-
poses a unique framework for studying qualitative (e.g., by
proving the equivalence of components or the correctness
of a behaviour) and quantitative aspects of WSNs using a
tool that allows both exact and approximate (via Monte
Carlo simulation) analyses. We demonstrate our framework
at work by considering different communication strategies
based on gossip routing protocols, for a typical topology
and a mobility scenario.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems—modeling techniques; C.2.1 [Computer-Communi-
cation Networks]: Network architecture and design—Wire-
less Communication
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Theory, reliability
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) [2] are collections of

spatially distributed sensing devices equipped with limited
computing and radio communication capabilities. They are
employed in a variety of applications, ranging from military
surveillance to health care or assisted living, and from smart
cities to environmental monitoring. A typical sensor network
is characterized by a large number of sensor nodes, which are
densely deployed, and have frequent topology changes due to
the mobility of its devices. Nodes communicate using wire-
less transmission in a specified range, with communication
between nodes implemented in terms of routing protocols. A
critical issue in wireless sensor networks is the limited avail-
ability of energy within the network devices. Therefore, ju-
dicious choice of routing protocols that can reduce the nodes’
power consumption is crucial, not only for the performance
of each single node, but also for the throughout of the net-
work lifetime. In this paper we introduce a framework for
the specification, modelling and automated analysis or sim-
ulation of connectivity properties and the evaluation or esti-
mation of energy consumption in ad-hoc WSNs. The frame-
work is based on a variant of the Probabilistic Energy-aware
Broadcast Unicast and Multicast (PEBUM) calculus intro-
duced in [5], and supports the automatic performance eval-
uation through (approximate) probabilistic model checking,
e.g., using the PRISM model checker [9]. The advantages
of using a process algebra rely on its compositional nature
which allows us to decompose both the model construction
and the qualitative analysis. Concerning the quantitative
analysis we take advantage of the various kind of properties
which can be specified in terms of a temporal logic and ver-
ified using the model checking technique. The proposed cal-
culus is built around nodes, representing the sensor devices
of the systems, and locations, identifying the position cells
across which each device may move inside the network. Node
mobility is governed by probability distributions. Instead,
wireless synchronisations are controlled by sequential pro-
cesses inside the nodes: each transmission broadcasts a mes-
sage within a given transmission range. The semantics of our
calculus is inspired by Segala’s probabilistic automata [15]
driven by schedulers to resolve the nondeterministic choice
among the probability distributions over target states. Dif-
ferently from [5], in this work we assume that nodes are not
equipped with a unique identifier and they all share the same
transmission frequency. These choices reflect the fact that
transmissions in ad-hoc sensor networks are directed to a ge-
ographical location rather than to a specific node and, due to
the low-cost hardware of sensors, only one frequency is used



Networks Processes

M,N ::= 0 Empty network P,Q ::= 0 Inactive process
| [P ]Jl Sensor Node | (x̃).P Input
|M1|M2 Parallel composition | 〈w̃〉L,r.P Output

| [w1 = w2]P,Q Matching
| A〈w̃〉 Recursion

Table 1: Syntax

at a given time [17]. Moreover, in contrast to [6, 5], in this
paper we employ Makovian probabilistic schedulers, mapping
the non-deterministic choices among the different actions a
system may enable into probability distributions. As a con-
sequence, the labelled transition system underlying process
terms is a discrete time Markov chain (DTMC), which can
be used for automatically performing a range of qualitative
and quantitative analyses by means of probabilistic model
checking, e.g., using PRISM. We define a probabilistic ob-
servational congruence in the style of [13] to equate networks
exhibiting the same connectivity behaviour. As in [5], and
in contrast to [12], the notion of observability is associated
with specific locations in the network reflecting the fact that
in ad-hoc WSNs the transmissions are not addressed to spe-
cific nodes but to specific locations. We provide a coinduc-
tive characterization of the observational congruence based
on a probabilistic labelled bisimilarity. Finally, we define an
energy-aware preorder over networks, to contrast networks
having the same behaviour, but different energy costs. We
use our framework for a comparative study of gossip based
routing protocols for wireless ad-hoc sensor networks. We
address the problem of the state space explosion using the
statistical model checking implemented in PRISM. The pa-
per is organised as follows. Section 2 presents the calculus,
its observational semantics expressed in terms of behavioural
equivalences and a characterization of it based on a notion
of probabilistic bisimilarity. In Section 3 an energy-aware
preorder over networks is defined: it allows us to compare
the average energy cost of different networks but exhibiting
the same connectivity behaviour. Finally, in Section 4, gos-
sip based routing protocols for different scenarios are con-
sidered and we show the framework at work studying the
sensitivity of the performances of these protocols to some
configuration parameters. Finally, Section 5 discusses the
related bibliography and concludes the paper.

2. A CALCULUS FOR WSN
We present a variant of the PEBUM calculus presented in

[5] which focuses on the main features of ad-hoc wireless
sensor networks. Specifically, nodes are not equipped with a
unique identifier and only one transmission frequency is used.

Syntax. We use letters l for locations, r for transmission
radii, x and y for variables. Closed values contain locations,
transmission radii and any basic value (booleans, integers,
...). Values include also variables. We use u and v for closed
values and w for (open) values. We write ṽ, w̃ for tuples of
values. We write N for the set of all networks and Loc for
the set of all locations. While movements may be assumed
to be continuous, we identify locations as the countable set
of cells that constitute the observing areas within the net-
work. The syntax of our calculus is shown in Table 1. This

is defined in a two-level structure: the lower one for pro-
cesses, the upper one for networks. Networks are collections
of sensor nodes running in parallel and communicating mes-
sages. As usual, 0 denotes the empty network and M1|M2

denotes the parallel composition of two networks. We denote
by

∏
i∈IMi the parallel composition of the networks Mi, for

i ∈ I. [P ]Jl denotes a sensor node located at the physical
location l and executing the process P . J is the transition
matrix of a discrete time Markov chain modelling node mo-
bility: each entry Jlk is the probability that the sensor node
located at l moves to the location k. Hence,

∑
k∈Loc Jlk = 1

for all locations l ∈ Loc. Static nodes inside a network are
associated with the identity Markov chain, i.e., the identity
matrix Jll = 1 for all l ∈ Loc and Jlk = 0 for all l 6= k.
Processes are sequential and live within the nodes: 0 is the
inactive process; (x̃).P is ready to listen to a transmission,
while 〈w̃〉L,r.P is ready to transmit. In (x̃).P , the variables
in x̃ are bound with scope in P . As to the output form, the
tag r represents the transmission radius of the sender, while
the tag L is used to maintain the set of physical locations
of the intended recipients: L = Loc represents a broadcast
transmission, while a finite set of locations L denotes a mul-
ticast communication (unicast if L is a singleton). As stated
in the introduction, communication protocols for ad-hoc sen-
sor networks are usually intended to reach a certain location,
rather than a specific device, due to the absence of global
identifiers associated with the sensor devices. The remain-
ing syntactic forms are standard: [w1 = w2]P,Q behaves as
P if w1 = w2, and as Q otherwise. A〈w̃〉 is the process de-

fined via a (possibly recursive) definition A(x̃)
def
= P , with

|x̃| = |w̃| where x̃ contains all variables appearing free in P .
Probability distributions for networks. We denote by µJ

l

the probability distribution associated with a node located
at l with transition matrix J, i.e., the function over Loc such
that µJ

l (k) = Jlk for all k ∈ Loc. Let M be a network. We
denote by M{[P ]Jk/[P ]Jl } the network obtained by replacing
l with k inside the sensor node [P ]Jl . We also denote by
JMKµJ

l
the probability distribution over networks induced

by µJ
l and defined by: for all networks M ′,

JMKµJ
l
(M ′) =

 µJ
l (k) if M ′ = M{[P ]Jk/[P ]Jl }

0 otherwise.

Intuitively, JMKµJ
l
(M ′) is the probability that the networkM

evolves to M ′ due to the movement of the sensor node [P ]Jl .
We say thatM ′ is in the support of JMKµJ

l
if JMKµJ

l
(M ′) 6= 0.

We write JMK∆ for the Dirac distribution on the network M ,
i.e., the probability distribution defined as: JMK∆(M) = 1
and JMK∆(M ′) = 0 for all M ′ 6= M . Finally, we let θ range
over {µJ

l | J is a transition matrix and l ∈ Loc} ∪ {∆}.



(R-Bcast)
[〈ṽ〉L,r.P ]Jl |

∏
i∈I [(x̃i).Pi]

Ji

li
−→J[P ]Jl |

∏
i∈I [Pi{ṽ/x̃i}]J

i

li
K∆

where ∀i ∈ I.d(l, li) ≤ r and |x̃i| = |ṽ|

(R-Move)
[P ]Jl −→J[P ]Jl KµJ

l

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 2: Reduction Semantics

Reduction semantics. The dynamics of the calculus is
specified by the probabilistic reduction relation (−→) described

in Table 2: it takes the form M−→JM ′Kθ denoting a transi-
tion that leaves from M and leads to a probability distri-
bution JM ′Kθ. As usual, reduction relies on structural con-
gruence (≡), such that, e.g., M |N ≡ N |M , (M |N)|M ′ ≡
M |(N |M ′) and M |0 ≡ M . Nodes cannot be created or de-
stroyed, and move autonomously. Node connectivity is veri-
fied by looking at the physical location and the transmission
radius of the sender: a message broadcast by a node is re-
ceived only by the nodes that lie in the area delimited by the
transmission radius of the sender. We presuppose a function
d(·, ·) which returns the distance between two locations.

Rule (R-Bcast) models the transmission of a tuple of mes-
sages ṽ by a sensor node located at l and using a radius r.
The index set I may be empty, i.e., the rule can be applied
even if no nodes are ready to receive. The radius r associ-
ated with the output action denotes the transmission radius
of that communication which may depend on the energy con-
sumption strategy adopted by the surrounding protocol. All
the nodes that lie in the range of the sender (i.e., such that
d(l, li) ≤ r) will receive the messages. Rule (R-Move) deals
with node mobility: a node [P ]Jl executing a move action
will reach a location with a probability described by the dis-
tribution µJ

l that depends on the Markov chain J statically
associated with the node. The remaining rules are standard.
Given a network M , we write M−→θN if M−→JM ′Kθ and N
is in the support of JM ′Kθ. Following [6], an execution for M

is a (possibly infinite) sequence of steps M−→θ1M1−→θ2M2....
Observational Semantics. According to a standard prac-

tice, we formalise the observational semantics of our cal-
culus in terms of a notion of barb that provides the ba-
sic unit of observation [13]. As in other calculi for wire-
less communication, the definition of barb is naturally ex-
pressed in terms of message transmission. We denote by
behave(M) = {JM ′Kθ |M −→ JM ′Kθ} the set of the possible
behaviours of M . In order to solve the nondeterminism in
a network execution, we consider each possible probabilistic
transition M −→ JM ′Kθ as arising from a probabilistic sched-
uler defined as follows.

Definition 1 (Scheduler). A probabilistic scheduler
is a total function F assigning to a network M a distribution
φ on the set behave(M).

We denote by Sched the set of all probabilistic schedulers.
Given a network M and a scheduler F , we define the set of
all executions starting from M and driven by F as:

ExecFM = {e = M0−→p1θ1M1−→p2θ2M2... |M0 ≡M and

∀j > 0 : Mj−1 −→ JM ′jKθj , pj = F (Mj−1)(JM ′jKθj )
and Mj is in the support of JM ′jKθj}.

For a finite execution e = M−→p1θ1M1...−→pkθkMk ∈ ExecFM
starting from M and driven by a scheduler F we define

PFM (e) = p1 · JM ′1Kθ1(M1) · ... · pk · JM ′kKθk (Mk)

where ∀j ≤ k, pj = F (Mj−1)(JM ′jKθj ). We denote by

last(e) the final state of a finite execution e, by ej the

prefix M−→p1θ1M1 . . .−→pjθjMj of length j of the execution

e = M−→p1θ1M1 · · · −→pjθjMj−→pj+1θj+1Mj+1 · · · , and by e↑
the set of ē such that e≤prefixē. We write M →F

∗ M
′ if there

exists a finite execution e ∈ ExecFM with last(e) = M ′.
We define the probability space on the executions start-

ing from a given network M as follows. Given a scheduler
F , σFieldFM is the smallest sigma field on ExecFM that con-
tains the basic cylinders e ↑, where e ∈ ExecFM . The prob-
ability measure ProbFM is the unique measure on σFieldFM
such that ProbFM (e ↑) = PFM (e). Given a measurable set
of networks H, we denote by ExecFM (H) the set of exe-
cutions starting from M and crossing a state in H. For-
mally ExecFM (H) = {e ∈ ExecFM | last(ej) ∈ H for some
j}. We denote the probability for a network M to evolve
into a network in H, according to the policy given by F ,
as ProbFM (H) = ProbFM (ExecFM (H)). Note that the use of
probabilistic schedulers allows us to model networks as dis-
crete time Markov chains (DTMCs). This is the result of the
application of a two level probability distribution: the reduc-
tion semantics maps a network M into a probability distri-
bution in the set behave(M) while, in turn, the probabilistic
scheduler maps M into a probability distribution φ over the
probability distributions in the set behave(M), giving rise
to a fully probabilistic model.

The notion of barb introduced below denotes an observ-
able transmission with a certain probability according to a
fixed scheduler. We first introduce a notion of strong barb:
for a network M , we write M ↓K when M ≡ [〈ṽ〉L,r.P ]Jl |M ′
with ∅ 6= K ⊆ L and forall k ∈ K, d(l, k) ≤ r. Roughly, a
transmission is observable only if at least one location in the
set of the intended recipients is able to receive the message.
We say that a network M has a barb with probability p at
the set K of locations, according to the scheduler F , written
M⇓FpK, if ProbFM ({M ′|M →F

∗ M
′ ↓K}) = p. Intuitively, for

a given network M and scheduler F , if M⇓FpK then there
is a positive probability that M , driven by F , performs a
transmission and at least one of the intended recipients is
able to correctly listen to it. In the following, we introduce a
notion of probabilistic observational congruence relative to a
specific set of schedulers F ∈ Sched. Since our semantics is
contextual, we need to ensure that the set of schedulers we
consider allows the specific networks we analyse to interact
with any possible context. Hence for a set F of schedulers
we define the contextual superset FC of F , as the largest set
of schedulers allowing networks to interact with any pos-



(Output)
−

〈ṽ〉L,r.P
ṽL,r−−−→ P

(Input)
−

(x̃).P
ṽ−→ P{ṽ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 6= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′

A〈ṽ〉 η−→ P ′
A(x̃)

def
= P

Table 3: LTS rules for Processes

sible context even when driven by F (see [4] for a formal
definition). It holds that SchedC = Sched. Hereafter, a
context C[·] is a term with a hole defined by the grammar:
C[·] ::= [·] | [·]|M | M |[·]. Our probabilistic observational
congruence relative to a specific set of schedulers is defined
as follows.

Definition 2. Given a set F ⊆ Sched and a relation R
over networks:
- R is barb preserving relative to F if MRN and M⇓FpK
for some F ∈ FC implies that ∃ F ′ ∈ FC such that N⇓F

′

p K.
- R is reduction closed relative to F if MRN implies that
∀ F ∈ FC ∃ F ′ ∈ FC such that ∀ C ∈ N/R, ProbFM (C) =

ProbF
′

N (C).
- R is contextual if MRN implies that C[M ]RC[N ] for ev-
ery context C[·].
- Probabilistic observational congruence relative to F , writ-
ten ∼=Fp , is the largest symmetric relation over networks which
is reduction closed, barb preserving and contextual.

Two networks are related by ∼=Fp if they exhibit the same
probabilistic (connectivity) behaviour relative to F . In the
next section a bisimulation-based proof technique for ∼=Fp is
developed in order to provide an efficient method to check
whether two networks are related by ∼=Fp .

Deciding the Observational Congruence. We express the
semantics of the calculus in terms of labelled transition sys-
tems (LTS) which are built upon two sets of rules: one for
processes and one for networks. Table 3 presents the LTS

rules for processes. Transitions are of the form P
η−→ P ′,

where η ranges over input and output actions: η ::= ṽ | ṽL,r.
Table 4 presents the LTS rules for networks. Transitions

are of the form M
γ−→ JM ′Kθ, where M is a network and

JM ′Kθ is a distribution over networks. Probabilities are used
to model the mobility of nodes. Tag γ ranges over the labels:

γ ::= L!ṽ[l, r] | ?ṽ@l |R!ṽ@K | τ.

Rule (Snd) models the sending of tuple ṽ to a specific set
L of locations with transmission radius r, while rule (Rcv)
models the reception of ṽ at l. Rule (Bcast) models the
broadcast message propagation: all the nodes lying within
the transmission cell of the sender may receive the message,
regardless of the fact that they lie in one of the locations in
L. Rule (Obs) models the observability of a transmission:
every transmission may be detected (and hence observed)
by any recipient lying in one of the observation locations
within the transmission cell of the sender. The label R!ṽ@K
represents the transmission of the tuple ṽ of messages: the
set R is the set of all the locations receiving the message,
while its subset K contains only the locations where the
transmission is observed. Rule (Lose) models message loss.

As usual, τ -transitions denote non-observable actions. Rule
(Move) models node mobility according to the probability
distribution µJ

l . Finally, (Par) is standard.
Based on the LTS semantics, we define a probabilistic la-

belled bisimilarity that is a characterisation of our probabilis-
tic observational congruence. It is built upon the actions:

α ::=?ṽ@l | R!ṽ@K | τ.

We write lbehave(M) for the set of all possible behaviors

of M , that is lbehave(M) = {(α, JM ′Kθ) | M
α−→ JM ′Kθ}. A

scheduler1 for the labelled semantics is a function F assign-
ing a probability to each pair (α, JMKθ) ∈ lbehave(M) with
a network M . We denote by LSched the set of schedulers
for the LTS semantics. A labelled execution e of a network
M driven by a scheduler F is a finite (or infinite) sequence

of steps: M
α1−−→p1θ1 M1

α2−−→p2θ2 M2...
αk−−→pkθk Mk. With

abuse of notation, we define ExecFM , last(e), ej and e ↑ as
for unlabeled executions.

Since we are interested in weak observational equivalences,
that abstract over τ -actions, we introduce the notion of weak
action as follows: =⇒ is the transitive and reflexive closure
of

τ−→;
α

=⇒ denotes =⇒ α−→=⇒ ∀α 6= τ . We write
α̂

=⇒ for the
weak action

α
=⇒ if α 6= τ , and =⇒ otherwise. We denote by

ExecFM (
α

=⇒, H) the set of all executions that, starting from
M , according to the scheduler F , lead to a network in the set
H by performing

α
=⇒. We define the probability of reaching

a network in H from M by performing
α

=⇒, according to a
scheduler F as ProbFM (

α
=⇒, H) = ProbFM (ExecFM (

α
=⇒, H)).

For F ⊆ Sched, we denote by F̂C ⊆ LSched its contextual
superset for the LTS semantics (see [4]).

Definition 3. Let M and N be two networks. An equiv-
alence relation R over networks is a probabilistic labelled
bisimulation relative to a set F of schedulers, if MRN im-
plies: for all schedulers F ∈ F̂C there exists a scheduler
F ′ ∈ F̂C such that for all α and for all classes C ∈ N/R:

- if α 6=?ṽ@l then ProbFM (
α−→, C) = ProbF

′
N (

α̂
=⇒ C);

- if α =?ṽ@l then either ProbFM (
α−→, C) = ProbF

′
N (

α
=⇒, C) or

ProbFM (
α−→, C) = ProbF

′
N (=⇒, C).

Probabilistic labelled bisimilarity relative to F , written ≈Fp ,
is the largest probabilistic labelled bisimulation relative to F
over networks.

Probabilistic labelled bisimilarity is a characterization of
our probabilistic observational congruence [4].

Theorem 1. M ∼=Fp N if and only if M ≈Fp N.

1We abuse notation and still use F to denote a scheduler for
the LTS semantics.



(Snd)
P

ṽL,r−−−→ P ′

[P ]Jl
L!ṽ[l,r]−−−−→ J[P ′]Jl K∆

(Rcv)
P

ṽ−→ P ′

[P ]Jl
?ṽ@l−−−→ J[P ′]Jl K∆

(Bcast)
M

L!ṽ[l,r]−−−−→ JM ′K∆ N
?ṽ@l′−−−→ JN ′K∆

M |N L!ṽ[l,r]−−−−→ JM ′|N ′K∆

d(l, l′) ≤ r

(Obs)
M

L!ṽ[l,r]−−−−→ JM ′K∆

M
R!ṽ@K−−−−→ JM ′K∆

R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r} K = R ∩ L, K 6= ∅

(Lose)
M

L!ṽ[l,r]−−−−→ JM ′K∆

M
τ−→JM ′K∆

(Move)
[P ]Jl

τ−→ J[P ]Jl KµJ
l

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ

Table 4: LTS rules for Networks

3. MEASURING ENERGY CONSUMPTION
In this section, based on the LTS semantics, we define a

preorder over networks which allows us to study the perfor-
mances, in terms of energy consumption, of different net-
works, but exhibiting the same connectivity behaviour. For
this purpose we associate an energy cost with labelled tran-
sitions as follows. For a transmission with radius r, let

En(r) = Enelec × packet len + Enampl × packet len× r2

where Enelec (nJ/b) is the energy dissipated to run the trans-
mitter circuit, while Enampl (pJ/b/m2) is the radio amplifier
energy (see [11]). We define

Cost(M,N) =


En(r) if M

L!ṽ[l,r]−−−−→∆ N
for some L, ṽ, l and r

0 otherwise

For an execution e = M0
α1−−→θ1 M1

α2−−→θ2 M2...
αk−−→θk Mk,

Cost(e) =
∑k

i=1
Cost(Mi−1,Mi).

Let H be a set of networks; we denote by PathsFM (H) the
set of all executions from M ending in H and driven by F
which are not prefix of any other execution ending in H.
More formally, PathsFM (H) = {e ∈ ExecFM (H) | last(e) ∈
H and ∀e′ such that e <prefix e

′, e′ 6∈ PathsFM (H)}.

Definition 4. The average cost of reaching a set of net-
works H from an initial network M according to the sched-
uler F is

CostFM (H) =

∑
e∈PathsF

M
(H)Cost(e)× PFM (e)∑

e∈PathsF
M

(H)P
F
M (e)

.

The average cost is computed by weighting the cost of each
execution by its probability according to F and normalized
by the overall probability of reaching H.

Definition 5. Let H be a countable set of sets of net-
works and let F ⊆ LSched a set of schedulers. We write

N vFH M,

if N ≈Fp M and, ∀ schedulers F ∈ LSched and ∀ H ∈ H, ∃ a

scheduler F ′ ∈ LSched such that CostF
′

N (H) ≤ CostFM (H).
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Figure 1: Topology of the Static Network (SN)

4. STUDYING GOSSIP PROTOCOLS
Gossip protocols are a family of communication protocols

inspired by the way that gossiping disseminates informa-
tion in social networks. A gossip protocol is a variant of
the flooding algorithm, where each node forwards a message
with some probability to reduce the overhead of the rout-
ing protocols. Gossiping based routing protocols are com-
monly used in large-scale networks (see, e.g., [3, 10, 7]) to re-
duce the number of retransmissions and the energy cost. In
this section we show that our framework is suitable for pro-
viding an integrated automatic analysis of the gossip strat-
egy in terms of both connectivity maintenance and energy
consumption. In particular, we assume that, when a node
receives a message, it forwards it with a fixed probability
psend and discards it with probability 1− psend. Common
values for psend ranges from 0.6 to 0.8: it is shown that,
in practical scenarios, these values provide a reduction of
more than 30% of the forwarding transmissions without de-
teriorating the network connectivity [7]. Here we consider
two different network configurations on a rectangular area
of 50 × 100m. We assume omnidirectional antenna and a
fixed transmission power for each sensor node, which covers
circular areas with a radius of 10m. In the following, we
denote by [Pi]

J
l the sensor node i located at l, executing the

process Pi and moving according to the transition matrix
J. We study the behaviour of the networks by varying the
value of the parameter psend. The first network we con-
sider consists of 50 static nodes, evenly distributed within
the network area (see Figure 1). Node mobility is charac-
terised by the identity matrix I. In our tests, we consider a
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Figure 2: Topology of the Mobile Network (MN)

fixed receiver [P50]I50, while the sender node’s location varies
in the set {12, 23, 35, 37, 44}, in order to study how the con-
nectivity behaviour of the network changes, depending on
the distance between the sender node and the receiver. The
network is expressed by the term:

Mj
def
=

∑50

i=1
[Pi]

I
i ,

with j ∈ {12, 23, 35, 37, 44}, and Pi
def
= (xi).〈xi〉{50},10.Pi,

∀i 6∈ {j, 50}, Pj
def
= 〈xj〉{50},10.Pj , P50

def
= (x50).P50, mod-

elling the communication between [Pj ]
I
j and [P50]I50.

The second configuration consists of 25 mobile sensor nodes
again evenly distributed within the network area. Each sen-
sor node can move between two adjacent locations, mod-
elling the instability caused by, e.g., environmental condi-
tions (see Figure 2). The probability distribution associated
with node mobility can be captured by the transition ma-
trix J such that: Jl(l+5) = J(l+5)l = ε ∀l ∈ {5, 15, 25, 35, 45},
and Jl(l+1) = J(l+1)l = ε for all the other odd locations in
the network area, and Jll = 1− ε for all the locations, with
0 < ε < 1. Notice that the choice of ε and the definition of
the scheduler allow us to model the relative speed between
movements and transmissions. Henceforth we assume that
ε = 0.8. This network is expressed by the term:

Nh ≡
∑25

i=1
[Pi]

J
(2i−1),

with h ∈ {12, 17, 22}, where Pi ≡ (xi).〈xi〉{45,50},10.Pi, ∀i 6∈
{h, 25}, Ph ≡ 〈xh〉{45,50},10.Ph and P25 ≡ (x25).P25, mod-

elling the communication between [Ph]J(2h−1) and [P25]Jz , with
z ∈ {45, 50} the set of locations where we expect to find P25.
We model several different gossip strategies by varying the
value of psend in the interval [0.6 − 1.0]. In particular, for
each value of psend we assume a set Fpsend of schedulers such
that, at each step, the probability for each node to perform
a synchronisation or a movement is the same. Moreover,
we do not consider message loss due to link failure or other
environmental causes: a message can be lost only when a
node discards it, consistently with the protocol. The anal-
ysis is performed using the PRISM model checker [8] (see
the Appendix for details). The first step of our methodol-
ogy consists in translating the process algebraic definition of
our networks into the language supported by PRISM. This
can be achieved in a purely algorithmic way. In general the
exact analyses of real WSNs’ models is unfeasible due to the
explosion of the state space of the model. For this reason,
we choose to perform an exact analysis to study problems of
equivalences or performances in case of small components,
e.g., to replace a network’s node with a functionally equiva-
lent one that has better performances in terms of through-

put or energy consumption. Conversely, when studying the
overall properties of wide WSNs we apply the approximate
model checking (also known as statistical model checking),
that relies on a Monte Carlo simulation of the underlying
DTMC. As a consequence, PRISM will compute estimates
of the desired indices rather then results, whose precision is
controlled by means of confidence interval specifications (ab-
solute width and confidence). When simulation is adopted,
the estimates are obtained by sampling, i.e., generating a
large number of random paths through the process under-
lying the model, hence avoiding the generation of whole
DTMC. In our case studies we assume that the sender node
keeps retransmitting the same packet until the destination
node receives it. The outcomes of this study allow us to
determine the expected number of retransmissions of the
same packet that are needed to reach the intended recipient
or, in more detail, which is the number of retransmissions
needed in order to reach the destination with a probability
higher than a given threshold. Our goal is the comparison
between the different network configurations, according to
the definition of energy aware preorder introduced in Sec-
tion 3. Concerning the termination of the simulations, the
next proposition states that, by varying the sender location,
the packet eventually reaches the intended recipient.

Proposition 1.

(i) ∀Fpsend, psend ∈ [0.6−1.0] and ∀j1, j2 ∈ {12, 23, 35, 37, 44}

Mj1 ≈
Fpsend
p Mj2 .

(ii) ∀Fpsend, psend ∈ [0.6− 1.0] and ∀h1, h2 ∈ {12, 17, 22}

Nh1 ≈
Fpsend
p Nh2 .

Once we proved that the networks we are considering have
the same connectivity, we are ready to compare their en-
ergy costs, by changing the value of psend and the distance
among the sender and the receiver. Using the PRISM model
checker, we exploit the possibility of defining reward mea-
sures to compute the energy cost function defined in Sec-
tion 3. Assuming that the energy spent for each transmis-
sion is fixed and that all the nodes have the same physical
characteristics, we simply count the number of transmissions
rather than summing their energy cost. The cost function
is expressed in terms of a Probabilistic Computation Tree
Logic (PCTL) formula in the PRISM property specification
language, augmented with rewards (or costs), which are real-
valued quantities associated with states and/or transitions
(see the Appendix for more details). Specifically, we verify
the formula R =? [F goal], which expresses the cumulative
expected energy cost to complete the communication.

Validation of the simulator. We have validated our simu-
lator by comparing our estimates with those obtained in [7]
(see Figure 3 and 4).

Simulation of static Networks. The estimates for the static
network are shown in Figure 5. The simulations have been
performed with an average of 10000 experiments, a maxi-
mum confidence interval width of 1% of the estimated mea-
sure based on 95% of confidence. The plots show how the
distance between sender and receiver critically influences the
energy performance of the algorithm. For a distance larger
then 30m we have a monotonic decreasing plot showing that,
for large distances, the gossip protocol can cause energy
waste. Using the standard flooding strategy (psend = 1.0)



Figure 3: (SN) Fraction of nodes reached by a trans-
mission

Figure 4: (MN) Fraction of nodes reached by a
transmission

all the cases converge to 49, because each node will forward
the message exactly one time. We can verify that there exists
a preorder among different network configurations within
the confidence of the simulation.

Proposition 2. For all psend ∈ {0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9, 1.0} and for all j1 < j2 ∈ {12, 23, 35, 37, 44} it

holds that Mj1 v
Fpsend

H Mj2 , where H is the set of network
configurations where the communication has been success-
fully completed.

Figure 6 shows the expected number of retransmissions
that the sender node must perform before the communica-
tion is successfully completed. Notice that the smaller is the
value of psend, the higher is the probability that the mes-
sage is lost during the path, forcing a new transmission (for
the sake of simplicity we don’t model the acknowledges, but
we assume that the sender node will wait for an acknowledge
until a timeout occurs, then it will transmit again); hence,
even if a small value of psend reduces the forwarding ex-
plosion, it may increase the number of replications.

Simulation of networks with mobility. Figure 7 shows the
estimates of the expected energy cost for a successful trans-
mission in the WSN with mobility.

The mobility of the nodes critically increases the size of
the state space, hence the obtained results have wider confi-
dence intervals than those of the static network simulation,
based on 95% of confidence. However, the results are very
similar to the previous case: for distances larger than 25m
the gossip protocol causes a very high energy waste.

Proposition 3. For all psend ∈ {0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9, 1.0} and for all h1 < h2 ∈ {12, 17, 22}, it holds

that Nh1 v
Fpsend

H Nh2 where H is the set of network con-

Figure 5: (SN) Expected energy cost

Figure 6: (SN) Expected number of transmissions
for a successful communication

figurations where the communications has been successfully
completed.

Figure 8 shows the average number of retransmissions that
the sender must perform before the communication has suc-
cessfully completed.

5. RELATED WORK AND CONCLUSIONS
A large amount of research on sensor networks has been

recently reported in the last decade. Several papers address
the problem of studying the energy consumption for specific
communication protocols. For instance, in [18] the authors
define a Markov reward process (see, e.g., [14]) modelling
some protocols for point to point reliable transmissions. A
steady-state quantitative analysis is then obtained, and from
this the average performance indices are computed. In [1],
Bernardo et al. present a methodology to predict the impact
of power management techniques on system functionality
and performance. In [16], the authors define a set of metrics
to analyse the energy consumption which are then estimated
through simulation, and show how some modifications in the
protocols can improve their efficiency. In [7], gossip proto-
cols running on WSNs are studied but the authors develop
an ad hoc simulator to estimate their performances. Con-
versely, in our setting, a general purpose tool, e.g., PRISM,
can be used since the performance indices or properties to be
evaluated (or estimated) can be formally specified accord-
ing to a rigorous logic. Moreover, with respect to all the
above mentioned contributions, the model we propose here
aims at providing a common framework for automatically
perform both qualitative and quantitative analyses. The
energy preorder defined in Section 3 can be efficiently de-
cided for small networks’ components using model checking
methods and hence one may decide to replace a node with



Figure 7: (MN) Expected energy cost

Figure 8: (MN) Expected number of transmissions
for a successful communication

another which is behaviourally equivalent but less energy
consuming; conversely, when the complexity of the process
underlying the model makes exact analyses unfeasible, ap-
proximate (or statistical) model checking can be employed.
This corresponds to the well-known Monte Carlo simulation;
using the temporal logic implemented in the tool, one can
verify a proposition within a certain level of confidence (e.g.,
the network equipped with a certain protocol is connected
with a confidence of 99.9%). To the best of our knowledge
such a qualitative and quantitative approach supported by
the same tool represents a novelty in the study of WSNs.
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