
Theory and Pratie of Logi Programming, vol. 2, n. 3, pag. 263-291, 2002. 1On Modular Termination Proofs ofGeneral Logi ProgramsANNALISA BOSSI, NICOLETTA COCCO, SABINA ROSSIDipartimento di Informatia, Universit�a Ca' Fosari di Veneziavia Torino 155, 30172 Venezia, ItalySANDRO ETALLEDepartment of Computer Siene, University of TwenteP.O. Box 217, 7500 AE Enshede, The NetherlandsandCWI { Center for Mathematis and Computer Siene,P.O. Box 94079, 1090 GB Amsterdam, The NetherlandsAbstratWe propose a modular method for proving termination of general logi programs (i.e.,logi programs with negation). It is based on the notion of aeptable programs, but itallows us to prove termination in a truly modular way. We onsider programs onsisting ofa hierarhy of modules and supply a general result for proving termination by dealing witheah module separately. For programs whih are in a ertain sense well-behaved, namelywell-moded or well-typed programs, we derive both a simple veri�ation tehnique and aniterative proof method. Some examples show how our system allows for greatly simpli�edproofs. 1 IntrodutionIt is standard pratie to takle a large proof by deomposing it into more managea-ble piees (lemmata or modules) and proving them separately. By omposing appro-priately these simpler results, one an then obtain the �nal proof. This methodologyhas been reognized an important one also when proving termination of logi pro-grams. Moreover most pratial logi programs are engineered by assembling dif-ferent modules and libraries, some of whih might be pre-ompiled or written in adi�erent programming language. In suh a situation, a ompositional methodologyfor proving termination is of ruial importane.The �rst approah to modular termination proofs of logi programs has beenproposed by Apt and Pedreshi in (Apt and Pedreshi 1994). It extends the seminalwork on aeptable programs (Apt and Pedreshi 1993) whih provides an algebraiharaterization of programs terminating under Prolog left-to-right seletion rule.The lass of aeptable programs ontains programs whih terminate on groundqueries. To prove aeptability one needs to determine a measure on literals (levelmapping) suh that, in any lause, the measure of the head is greater than themeasure of eah body literal. This implies the dereasing of the measure of the



2 A. Bossi, N. Coo, S. Etalle, and S. Rossiliterals resolved during any omputation starting from a ground or bounded queryand hene termination.The signi�ane of a modular approah to termination of logi programs has beenreognized also by other authors; more reent proposals an be found in (Pedreshiand Ruggieri 1996, Marhiori 1996, Verbaeten, Sagonas and De Shreye 1999, Etalle,Bossi and Coo 1999, Verbaeten, Sagonas and De Shreye 2001).All previous proposals (with the exeption of (Verbaeten et al. 1999, Etalle et al.1999)) require the existene of a relation between the level mappings used to proveaeptability of distint modules. This is not ompletely satisfatory: it would benie to be able to put together modules whih were independently proved termi-nating, and be sure that the resulting program is still terminating.We propose a modular approah to termination whih allows one to reason inde-pendently on eah single module and get a termination result on the whole program.We onsider general logi programs, i.e., logi programs with negation, employingSLDNF-resolution together with the leftmost seletion rule (also alled LDNF-resolution) as omputational mehanism. We onsider programs whih an be di-vided into modules in a hierarhial way, so that eah module is an extension of theprevious ones. We show that in this ontext the termination proof of the entire pro-gram an be given in terms of separate proofs for eah module, whih are naturallymuh simpler than a proof for the whole program. While assuming a hierarhy stillallows one to takle most real-life programs, it leads to termination proofs whih,in most ases, are extremely simple.We haraterize the lass of queries terminating for the whole program by intro-duing a new notion of boundedness, namely strong boundedness. Intuitively, strongboundedness aptures the queries whih preserve (standard) boundedness throughthe omputation. By proving aeptability of eah module wrt. a level mappingwhih measures only the prediates de�ned in that module, we get a terminationresult for the whole program whih is valid for any strongly bounded query. When-ever the original program is deomposed into a hierarhy of small modules, thetermination proof an be drastially simpli�ed with respet to previous modularapproahes. Moreover strong boundedness an be naturally guaranteed by ommonpersistent properties of programs and queries, namely properties preserved throughLDNF-resolution suh as well-modedness (Dembi�nski and Maluszy�nski 1985) orwell-typedness (Bronsard, Lakshman and Reddy 1992).The paper is organized as follows. Setion 2 ontains some preliminaries. In par-tiular we briey reall the key onepts of LDNF-resolution, aeptability, bound-edness and program extension. Setion 3 ontains our main results whih show howtermination proofs of separate programs an be ombined to obtain proofs of largerprograms. In partiular we de�ne the onept of strongly bounded query and weprove that for general programs omposed by a hierarhy of n modules, eah oneindependently aeptable wrt. its own level mapping, any strongly bounded queryterminates. In Setion 4 we show how strong boundedness is naturally ensuredby some program properties whih are preserved through LDNF-resolution suh aswell-modedness and well-typedness. In Setion 5 we show how these properties allowus to apply our general results also for proving termination of modular programs



Theory and Pratie of Logi Programming 3in an iterative way. In Setion 6 we ompare our work with Apt and Pedreshi'sapproah. Other related works and onluding remarks are disussed in Setion 7.2 PreliminariesWe use standard notation and terminology of logi programming (Lloyd 1987, Apt1990, Apt 1997). Just note that general logi programs are alled in (Lloyd 1987)normal logi programs.2.1 General Programs and LDNF-ResolutionA general lause is a onstrut of the formH  L1; : : : ; Lnwith (n � 0), where H is an atom and L1; : : : ; Ln are literals (i.e., either atoms orthe negation of atoms). In turn, a general query is a possibly empty �nite sequeneof literals L1; : : : ; Ln, with (n � 0). A general program is a �nite set of generallauses1. Given a query Q := L1; : : : ; Ln, a non-empty pre�x of Q is any queryL1; : : : ; Li with i 2 f1; : : : ; ng. For a literal L, we denote by rel(L) the prediatesymbol of L.Following the onvention adopted in (Apt 1997), we use bold haraters to denotesequenes of objets (so that L indiates a sequene of literals L1; : : : ; Ln, while tindiates a sequene of terms t1; : : : ; tn).For a given program P , we use the following notations: BP for the Herbrand baseof P , ground(P ) for the set of all ground instanes of lauses from P , omp(P ) forthe Clark's ompletion of P (Clark 1978).Sine in this paper we deal with general queries, lauses and programs, we omitfrom now on the quali�ation \general", unless some onfusion might arise.We onsider LDNF-resolution, and following Apt and Pedreshi's approah instudying the termination of general programs (Apt and Pedreshi 1993), we viewLDNF-resolution as a top-down interpreter whih, given a general program P anda general query Q, attempts to build a searh tree for P [ fQg by onstrutingits branhes in parallel. The branhes in this tree are alled LDNF-derivations ofP [ fQg and the tree itself is alled LDNF-tree of P [ fQg. Negative literals areresolved using the negation-as-failure rule whih alls for the onstrution of a sub-sidiary LDNF-tree. If during this subsidiary onstrution the interpreter diverges,the (main) LDNF-derivation is onsidered to be in�nite. An LDNF-derivation is�nite also if during its onstrution the interpreter enounters a query with the�rst literal being negative and non-ground. In suh a ase we say that the LDNF-derivation ounders.1 In the examples through the paper, we will adopt the syntati onventions of Prolog so thateah query and lause ends with the period \." and \ " is omitted in the unit lauses.



4 A. Bossi, N. Coo, S. Etalle, and S. RossiBy termination of a general program we atually mean termination of the under-lying interpreter. Hene in order to ensure termination of a query Q in a programP , we require that all LDNF-derivations of P [ fQg are �nite.By an LDNF-desendant of P [ fQg we mean any query ourring during theLDNF-resolution of P [ fQg, inluding Q and all the queries ourring during theonstrution of the subsidiary LDNF-trees for P [ fQg.For a non-empty query Q, we denote by �rst(Q) the �rst literal of Q. Moreoverwe de�ne CallP (Q) = f�rst(Q0) j Q0 is an LDNF-desendant of P [ fQgg. It isworth noting that if :A 2 CallP (Q) and A is a ground atom, then A 2 CallP (Q)too. Notie that, for de�nite programs, the set CallP (Q) oinides with the allset Call (P; fQg) in (De Shreye, Vershaetse and Bruynooghe 1992, Deorte, DeShreye and Vandeasteele 1999).The following trivial proposition holds.Proposition 1Let P be a program and Q be a query. All LDNF-derivations of P [ fQg are �nitei� for all positive literals A 2 CallP (Q), all LDNF-derivations of P [fAg are �nite.2.2 Aeptability and BoundednessThe method we are going to use for proving termination of modular programs isbased on the onept of aeptable program (Apt and Pedreshi 1993). In order tointrodue it, we start by the following de�nition, originally due to (Bezem 1993)and (Cavedon 1989).De�nition 2 (Level Mapping)A level mapping for a program P is a funtion j j : BP ! N of ground atoms tonatural numbers. By onvention, this de�nition is extended in a natural way toground literals by putting j:Aj = jAj. For a ground literal L, jLj is alled the levelof L.We will use the following notations. Let P be a program and p and q be relations.We say that p refers to q if there is a lause in P that uses p in its head and q inits body; p depends on q if (p; q) is in the reexive, transitive losure of the relationrefers to. We say that p and q are mutually reursive and write p ' q, if p dependson q and q depends on p. We also write p = q, when p depends on q but q does notdepend on p.We denote by NegP the set of relations in P whih our in a negative literal ina lause of P and by Neg�P the set of relations in P on whih the relations in NegPdepend. P� denotes the set of lauses in P de�ning a relation of Neg�P .In the sequel we refer to the standard de�nition of model of a program and modelof the ompletion of a program, see (Apt 1990, Apt 1997) for details. In partiularwe need the following notion of omplete model for a program.De�nition 3 (Complete Model)A model M of a program P is alled omplete if its restrition to the relations fromNeg�P is a model of omp(P�).



Theory and Pratie of Logi Programming 5Notie that if I is a model of omp(P ) then its restrition to the relations in Neg�Pis a model of omp(P�); hene I is a omplete model of P .The following notion of aeptable program was introdued in (Apt and Pe-dreshi 1993). Apt and Pedreshi proved that suh a notion fully haraterizes left-termination, namely termination wrt. any ground query, both for de�nite programsand for general programs whih have no LDNF-derivations whih ounder.De�nition 4 (Aeptable Program)Let P be a program, j j be a level mapping for P and M be a omplete model of P .P is alled aeptable wrt. j j and M if for every lause A A; B;B in ground(P )the following impliation holds:if M j= A then jAj > jBj:Note that if P is a de�nite program, then both P� and Neg�P are empty and Man be any model of P .We also need the notion of bounded atom.De�nition 5 (Bounded Atom)Let P be a program and j j be a level mapping for P . An atom A is alled boundedwrt. j j if the set of all jA0j, where A0 is a ground instane of A, is �nite. In thisase we denote by max jAj the maximum value in this set.Notie that if an atom A is bounded then, by de�nition of level mapping, alsothe orresponding negative literal, :A, is bounded.Note also that, for atomi queries, this de�nition oinides with the de�nitionof bounded query introdued in (Apt and Pedreshi 1993) in order to haraterizeterminating queries for aeptable programs. In fat, in ase of atomi queries thenotion of boundedness does not depend on a model.2.3 Extension of a ProgramIn this paper we onsider a hierarhial situation where a program uses another oneas a subprogram. The following de�nition formalizes this situation.De�nition 6 (Extension)Let P and R be two programs. A relation p is de�ned in P if p ours in a headof a lause of P ; a literal L is de�ned in P if rel(L) is de�ned in P ; P extends R,denoted P = R, if no relation de�ned in P ours in R.Informally, P extends R if P de�nes new relations with respet to R. Note thatP and R are independent if no relation de�ned in P ours in R and no relationde�ned in R ours in P , i.e. P = R and R = P .In the sequel we will study termination in a hierarhy of programs.De�nition 7 (Hierarhy of Programs)Let P1; : : : ; Pn be programs suh that for all i 2 f1; : : : ; n�1g, Pi+1 = (P1[� � �[Pi).Then we all Pn = � � � = P1 a hierarhy of programs.



6 A. Bossi, N. Coo, S. Etalle, and S. Rossi3 Hierarhial TerminationThis setion ontains our main results whih show how termination proofs of sepa-rate programs an be ombined to obtain proofs of larger programs. We start witha tehnial result, dealing with the ase in whih a program onsists of a hierar-hial ombination of two modules. This is the base both of a generalization to ahierarhy of n programs and of an iterative proof method for termination presentedin Setion 5. Let us �rst introdue the following notion of P -losed lass of queries.De�nition 8 (P-losed Class)Let C be a lass of queries and P be a program. We say that C is P -losed if itis losed under non-empty pre�x (i.e., it ontains all the non-empty pre�xes ofits elements) and for eah query Q 2 C, every LDNF-desendant of P [ fQg isontained in C.Note that if C is P -losed, then for eah query Q 2 C, CallP (Q) � C.We an now state our �rst general theorem. Notie that if P extends R and Pis aeptable wrt. some level mapping j j and model M , then P is aeptable alsowrt. the level mapping j j0 and M , where j j0 is de�ned on the Herbrand base of theunion of the two programs BP[R and it takes the value 0 on the literals whih arenot de�ned in P (and hene, in partiular, on the literals whih our in P but arede�ned in R). This shows that in eah module it is suÆient to ompare only thelevel of the literals de�ned inside it, while we an ignore literals de�ned outside themodule. In the following we make use of this observation in order to assoiate toeah module in a hierarhy a level mapping whih is independent from the ontext.Theorem 9Let P and R be two programs suh that P extends R, M be a omplete model ofP [ R and C be a (P [ R)-losed lass of queries. Suppose that� P is aeptable wrt. a level mapping j j and M ,� for all queries Q 2 C, all LDNF-derivations of R [ fQg are �nite,� for all atoms A 2 C, if A is de�ned in P then A is bounded wrt. j j.Then for all queries Q 2 C, all LDNF-derivations of (P [ R) [ fQg are �nite.ProofBy the fat that C is (P [R)-losed and Proposition 1, it is suÆient to prove thatfor all positive literals A 2 C, all LDNF-derivations of (P [R)[ fAg are �nite. Letus onsider an atom A 2 C.If A is de�ned in R, then the thesis trivially holds by hypothesis.If A is de�ned in P , A is bounded wrt. j j by hypothesis and thus max jAj isde�ned. The proof proeeds by indution on max jAj.Base. Let max jAj = 0. In this ase, by aeptability of P , there are no lausesin P whose head uni�es with A and whose body is non-empty. Hene, the thesisholds.Indution step. Let max jAj > 0. It is suÆient to prove that for all diret desen-dants (L1; : : : ; Ln) in the LDNF-tree of (P [ R) [ fAg, if �i is a omputed answerfor P [ fL1; : : : ; Li�1g then all LDNF-derivations of (P [R) [ fLi�ig are �nite.



Theory and Pratie of Logi Programming 7Let  : H 0  L01; : : : ; L0n be a lause of P suh that � = mgu(H 0; A). LetH = H 0�and for all i 2 f1; : : : ; ng, let Li = L0i� and �i be a substitution suh that �i is aomputed answer of L1; : : : ; Li�1 in P [ R.We distinguish two ases. If Li is de�ned in R then the thesis follows by hypoth-esis.Suppose that Li is de�ned in P . We prove that Li�i is bounded and max jAj >max jLi�ij. The thesis will follow by the indution hypothesis.Let  be a substitution suh that Li�i is ground. By soundness of LDNF-resolution (Clark 1978), there exists 0 suh that M j= (L1; : : : ; Li�1)0 and �0is a ground instane of  and Li0 = Li�i. ThereforejLi�ij = jLi0j= jL0i�0j (sine Li = L0i�)< jH 0�0j (sine P is aeptable)= jA�0j (sine � = mgu(H 0; A)):Sine A is bounded, we an onlude that Li�i is bounded and also that max jAj >max jLi�ij.We are going to extend the above theorem in order to handle the presene ofmore than two modules. We need to introdue more notation. Let us onsider thease of a program P onsisting of a hierarhy Rn = : : : = R1 of distint modules,and satisfying the property that eah module, Ri, is aeptable wrt. a distintlevel mapping, j ji, and a omplete model, M , of the whole program. Under theseassumptions we identify a spei� lass of queries whih terminate in the wholeprogram. We haraterize the lass of terminating queries in terms of the followingnotion of strong boundedness. This lass enjoys the property of being P -losed.De�nition 10 (Strongly Bounded Query)Let the program P := R1 [ : : :[Rn be a hierarhy Rn = : : : = R1 and j j1; : : : ; j jnbe level mappings for R1; : : : ; Rn, respetively. A query Q is alled strongly boundedwrt. P and j j1; : : : ; j jn if� for all atoms A 2 CallP (Q), if A is de�ned in Ri (with i 2 f1; : : : ; ng) thenA is bounded wrt. j ji.Notie that the notion of boundedness for an atom (see De�nition 5) does notdepend on the hoie of a partiular model of P . As a onsequene, also the de�-nition of strong boundedness does not refer to any model of P ; however, it refersto the LDNF-derivations of P . For this reason, a ground atom is always boundedbut not neessarily strongly bounded. On the other hand, if A is strongly boundedthen it is bounded too.The following remark follows immediately.Remark 11Let the query Q be strongly bounded wrt. P and j j1; : : : ; j jn, where P is a hierarhyRn = � � � = R1 . Let i 2 f1; : : : ; ng. If Q is de�ned in R1[ : : :[Ri then Q is stronglybounded wrt. R1 [ : : : [ Ri and j j1; : : : ; j ji.



8 A. Bossi, N. Coo, S. Etalle, and S. RossiIn order to verify whether a query Q is strongly bounded wrt. a given program Pone an perform a all-pattern analysis (Janssen and Bruynooghe 1992, Gabbrielliand Giaobazzi 1994, Codish and Demoen 1995) whih allows us to infer informationabout the form of the all-patterns, i.e., the atoms that will be possibly alledduring the exeution of P [fQg. However this is not the only way for guaranteeingstrong boundedness. There are lasses of programs and queries for whih strongboundedness an be proved in a straightforward way. This is shown in the followingsetion.Let us illustrate the notion of strong boundedness through an example.Example 12Let LIST01 be the following program whih de�nes the proper lists of 0's and 1's,i.e. lists ontaining only 0's and 1's and at least two distint elements, as follows:r1: list01([ ℄,0,0).r2: list01([0|Xs℄,s(N0),N1)  list01(Xs,N0,N1).r3: list01([1|Xs℄,N0,s(N1))  list01(Xs,N0,N1).r4: length([ ℄,0).r5: length([X|Xs℄,s(N))  length(Xs,N).r6: plist01(Ls)  list01(Ls,N0,N1),:length(Ls,N0), :length(Ls,N1).Let us distinguish two modules in LIST01: R1 = fr1; r2; r3; r4; r5g and R2 = fr6g(R2 extends R1). Let j j1 be the natural level mapping for R1 de�ned by:jlist01(ls;n0 ;n1 )j1 = jls jlengthjlength(ls;n)j1 = jnjsizewhere for a term t , if t is a list then jt jlength is equal to the length of the list,otherwise it is 0, while jt jsize is the number of funtion symbols ourring in theterm t . Let also j j2 be the trivial level mapping for R2 de�ned by:jplist01(ls)j2 = 1and assume that jLj2 = 0, if L is not de�ned in R2.Let us onsider the following sets of atomi queries for LIST01 := R1 [ R2:Q1 = flist01(ls;n0 ;n1 )j ls is a list, possibly non-ground, of a �xed lengthg;Q2 = flength(ls;n)j n is a ground term of the form either 0 or s(s(...(0)))g;Q3 = fplist01(ls)j ls is a list, possibly non-ground, of a �xed lengthg.By de�nition of j j1, all the atoms inQ1 andQ2 are bounded wrt. j j1. Analogously,all the atoms in Q3 are bounded wrt. j j2. Notie that for all atoms A 2 CallP (Qj),with j 2 f1; 2; 3g, there exists k 2 f1; 2; 3g suh that A 2 Qk. Hene, if A is de�nedin Ri then A is bounded wrt. j ji. This proves that the set of queries Q1, Q2 andQ3 are strongly bounded wrt. LIST01 and j j1, j j2.Here we introdue our main result.



Theory and Pratie of Logi Programming 9Theorem 13Let P := R1 [ : : : [ Rn be a program suh that Rn = : : : = R1 is a hierarhy,j j1; : : : ; j jn be level mappings for R1; : : : ; Rn, respetively, and M be a ompletemodel of P . Suppose that� Ri is aeptable wrt. j ji and M , for all i 2 f1; : : : ; ng.� Q is a query strongly bounded wrt. P and j j1; : : : ; j jn.Then all LDNF-derivations of P [ fQg are �nite.ProofLet Q be a query strongly bounded wrt. P and j j1; : : : ; j jn. We prove the theoremby indution on n.Base. Let n = 1. This ase follows immediately by Theorem 9, where P = R1, Ris empty and C is the lass of strongly bounded queries wrt. R1 and j j1, and thefat that a strongly bounded atom is also bounded.Indution step. Let n > 1. Also this ase follows by Theorem 9, where P = Rn,R = R1[ : : :[Rn�1 and C is the lass of strongly bounded queries wrt. R1[ : : :[Rnand j j1; : : : ; j jn. In fat,� Rn is aeptable wrt. j jn and M ;� for all queries Q 2 C, all LDNF-derivations of (R1 [ : : : [ Rn�1) [ fQg are�nite, by Remark 11 and the indutive hypothesis;� for all atoms A 2 C, if A is de�ned in Rn then A is bounded wrt. j jn, byde�nition of strong boundedness.Here are a few examples applying Theorem 13.Example 14Let us reonsider the program of Example 12. In the program LIST01, R1 andR2 are aeptable wrt. any omplete model and the level mappings j j1 and j j2,respetively. We already showed that Q1;Q2 and Q3 are strongly bounded wrt.LIST01 and j j1, j j2. Hene, by Theorem 13, all LDNF-derivations of LIST01[fQg,where Q is a query in Q1;Q2 or Q3, are �nite.Notie that in the previous example the top module in the hierarhy, R2, ontainsno reursion. Hene it is intuitively lear that any problem for termination annotdepend on it. This is reeted by the fat that the level mapping for R2 is ompletelytrivial. This shows how the hierarhial deomposition of the program an simplifythe termination proof.Example 15Consider the sorting program MERGESORT (Apt 1997):1: mergesort([ ℄,[ ℄).2: mergesort([X℄,[X℄).3: mergesort([X,Y|Xs℄,Ys)  split([X,Y|Xs℄,X1s,X2s),



10 A. Bossi, N. Coo, S. Etalle, and S. Rossimergesort(X1s,Y1s),mergesort(X2s,Y2s),merge(Y1s,Y2s,Ys).4: split([ ℄,[ ℄,[ ℄).5: split([X|Xs℄,[X|Ys℄,Zs)  split(Xs,Zs,Ys).6: merge([ ℄,Xs,Xs).7: merge(Xs,[ ℄,Xs).8: merge([X|Xs℄,[Y|Ys℄,[X|Zs℄)  X<=Y, merge(Xs,[Y|Ys℄,Zs).9: merge([X|Xs℄,[Y|Ys℄,[Y|Zs℄)  X>Y, merge([X|Xs℄,Ys,Zs).Let us divide the program MERGESORT into three modules, R1; R2; R3, suh thatR3 = R2 = R1 as follows:� R3 := f1; 2; 3g, it de�nes the relation mergesort,� R2 := f4; 5g, it de�nes the relation split,� R1 := f6; 7; 8; 9g, it de�nes the relation merge.Let us onsider the natural level mappingsjmerge(xs; ys ; zs)j1 = jxsjlength + jys jlengthjsplit(xs; ys ; zs)j2 = jxsjlengthjmergesort(xs; ys)j3 = jxs jlengthand assume that for all i 2 f1; 2; 3g, jLji = 0 if L is not de�ned in Ri.All ground queries are strongly bounded wrt. the program MERGESORT and thelevel mappings j j1; j j2; j j3. Moreover, sine the program is a de�nite one, R1 andR2 are aeptable wrt. any model and the level mappings j j1 and j j2, respetively,while R3 is aeptable wrt. the level mapping j j3 and the model M below:M =[mergesort(Xs; Ys)℄[ [merge(Xs; Ys; Zs)℄[fsplit([ ℄; [ ℄; [ ℄)g[fsplit([x ℄; [ ℄; [x ℄)j x is any ground termg[fsplit([x ℄; [x ℄; [ ℄)j x is any ground termg[fsplit(xs; ys ; zs)j xs; ys ; zs are ground terms andjxsjlength � 2; jxsjlength > jys jlength; jxsjlength > jzs jlengthgwhere we denote by [A℄ the set of all ground instanes of an atom A.Hene, by Theorem 13, all LDNF-derivations of MERGESORT[ fQg, where Q is aground query, are �nite.Note that by exhanging the roles of R1 and R2 we would obtain the same result.In fat the de�nition of merge and split are independent from eah other.4 Well-Behaving ProgramsIn this setion we onsider the problem of how to prove that a query is stronglybounded. In fat one ould argue that heking strong boundedness is more diÆultand less abstrat than heking boundedness itself in the sense of (Apt and Pedreshi



Theory and Pratie of Logi Programming 111993): we have to refer to all LDNF-derivations instead of referring to a model,whih might well look like a step bakwards in the proof of termination of a program.This is only partly true: in order to hek strong boundedness we an either employtools based on abstrat interpretation or onentrate our attention only on programswhih exhibit useful persistene properties wrt. LDNF-resolution.We now show how the well-established notions of well-moded and well-typedprograms an be employed in order to verify strong boundedness and how they anlead to simple termination proofs.4.1 Well-Moded ProgramsThe onept of a well-moded program is due to (Dembi�nski and Maluszy�nski 1985).The formulation we use here is from (Rosenblueth 1991), and it is equivalent to thatin (Drabent 1987). The original de�nition was given for de�nite programs (i.e.,programs without negation), however it applies to general programs as well, justby onsidering literals instead of atoms. It relies on the onept of mode, whih isa funtion that labels the positions of eah prediate in order to indiate how thearguments of a prediate should be used.De�nition 16 (Mode)Consider an n-ary prediate symbol p. By a mode for p we mean a funtion mpfrom f1; : : : ; ng to the set f+;�g. If mp(i) = + then we all i an input positionof p; if mp(i) = � then we all i an output position of p. By a moding we mean aolletion of modes, one for eah prediate symbol.In a moded program, we assume that eah prediate symbol has a unique modeassoiated to it. Multiple moding may be obtained by simply renaming the predi-ates. We use the notation p(mp(1); : : : ;mp(n)) to denote the moding assoiatedwith a prediate p (e.g., append(+;+;�)). Without loss of generality, we assume,when writing a literal as p(s; t), that we are indiating with s the sequene of terms�lling in the input positions of p and with t the sequene of terms �lling in theoutput positions of p. Moreover, we adopt the onvention that p(s; t) ould denoteboth negative and positive literals.De�nition 17 (Well-Moded)� A query p1(s1; t1); : : : ; pn(sn; tn) is alled well-moded if for all i 2 f1; : : : ; ngVar(si) � i�1[j=1Var(tj):� A lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is alled well-moded if for alli 2 f1; : : : ; n+ 1g Var(si) � i�1[j=0Var(tj):� A program is alled well-moded if all of its lauses are well-moded.



12 A. Bossi, N. Coo, S. Etalle, and S. RossiNote that well-modedness an be syntatially heked in a time whih is linearwrt. the size of the program (query).Remark 18If Q is a well-moded query then all its pre�xes are well-moded.The following lemma states that well-moded queries are losed under LDNF-resolution. This result has been proved in (Apt and Pellegrini 1994) for LD-derivationsand de�nite programs.Lemma 19Let P and Q be a well-moded program and query, respetively. Then all LDNF-desendants of P [ fQg are well-moded.ProofIt is suÆient to extend the proof in (Apt and Pellegrini 1994) by showing that ifa query :A;L1; : : : ; Ln is well-moded and A is ground then both A and L1; : : : ; Lnare well-moded. This follows immediately by de�nition of well-modedness. If A isnon-ground then the query above has no desendant.When onsidering well-moded programs, it is natural to measure atoms only intheir input positions (Etalle et al. 1999).De�nition 20 (Moded Level Mapping)Let P be a moded program. A funtion j j is a moded level mapping for P if it is alevel mapping for P suh that� for any s, t and u, jp(s; t)j = jp(s;u)j.Hene in a moded level mapping the level of an atom is independent from theterms in its output positions.The following Remark and Proposition allow us to exploit well-modedness forapplying Theorem 13.Remark 21Let P be a well-moded program. If Q is well-moded, then �rst(Q) is ground inits input position and hene it is bounded wrt. any moded level mapping for P .Moreover, by Lemma 19, every well-moded query is strongly bounded wrt. P andany moded level mapping for P .Proposition 22Let P := R1 [ : : : [ Rn be a well-moded program and Rn = : : : = R1 a hierarhy,and j j1; : : : ; j jn be moded level mappings for R1; : : : ; Rn, respetively.Then every well-moded query is strongly bounded wrt. P and j j1; : : : ; j jn.Example 23Let MOVE be the following program whih de�nes a permutation between two listssuh that only one element is moved. We introdue modes and we distinguish thetwo uses of append by renaming it as append1 and append2.



Theory and Pratie of Logi Programming 13mode delete(+;�;�).mode append1(�;�;+).mode append2(+;+;�).mode move(+;�).r1: delete([X|Xs℄,X,Xs).r2: delete([X|Xs℄,Y,[X|Ys℄)  delete(Xs,Y,Ys).r3: append1([ ℄,Ys,Ys).r4: append1([X|Xs℄,Ys,[X|Zs℄)  append1(Xs,Ys,Zs).r5: append2([ ℄,Ys,Ys).r6: append2([X|Xs℄,Ys,[X|Zs℄)  append2(Xs,Ys,Zs).r7: move(Xs,Ys)  append1(X1s,X2s,Xs),delete(X1s,X,Y1s), append2(Y1s,[X|X2s℄,Ys).Let us partition MOVE into the modules R1 = fr1; r2; r3; r4; r5; r6g and R2 = fr7g(R2 extends R1). Let j j1 be the natural level mapping for R1 de�ned by:jappend1(xs; ys ; zs)j1 = jzsjlengthjappend2(xs; ys ; zs)j1 = jxsjlength.jdelete(xs; x ; ys)j1 = jxsjlength.R2 does not ontain any reursive de�nition hene let j j2 be the trivial level mappingde�ned by:jmove(xs; ys)j2 = 1and assume that jLj2 = 0, if L is not de�ned in R2.The program MOVE := R1 [ R2 is well-moded and hene by Proposition 22 everywell-moded query is strongly bounded wrt. MOVE and j j1, j j2.Example 24Let R1 be the program whih de�nes the relations member and is, R2 be theprogram de�ning the relation ount and R3 be the program de�ning the relationdiff with the moding and the de�nitions below.mode member(+;+).mode is(�;+).mode diff(+;+;+;�).mode ount(+;+;�).r1: member(X,[X|Xs℄).r2: member(X,[Y|Xs℄)  member(X,Xs).r3: diff(Ls,I1,I2,N)  ount(Ls,I1,N1), ount(Ls,I2,N2),N is N1-N2.r4: ount([ ℄,I,0).r5: ount([H|Ts℄,I,M)  member(H,I), ount(Ts,I,M1),M is M1+1.r6: ount([H|Ts℄,I,M)  : member(H,I), ount(Ts,I,M).



14 A. Bossi, N. Coo, S. Etalle, and S. RossiThe relation diff(ls; i1 ; i2 ;n), given a list ls and two hek-lists i1 and i2 , de�nesthe di�erene n between the number of elements of ls ourring in i1 and thenumber of elements of ls ourring in i2 . Clearly R3 = R2 = R1. It is easy to seethat R1 is aeptable wrt. any omplete model and the moded level mappingjmember(e; ls)j1 = jls jlengthR2 is aeptable wrt. any omplete model and the moded level mapping:jount(ls; i ;n)j2 = jls jlengthand R3 is aeptable wrt. any omplete model and the trivial moded level mapping:jdiff(ls; i1 ; i2 ;n)j3 = 1where jLji = 0, if L is not de�ned in Ri.The program DIFF := R1 [ R2 [ R3 is well-moded. Hene, by Proposition 22,every well-moded query is strongly bounded wrt. DIFF and j j1, j j2, j j3.Note that the lass of strongly bounded queries is generally larger than the lassof well-moded queries. Consider for instane the program MOVE and the query Q :=move([X1; X2℄; Ys); delete(Ys; Y; Zs) whih is not well-moded sine it is not groundin the input position of the �rst atom. However Q an be easily reognized to bestrongly bounded wrt. MOVE and j j1, j j2 de�ned in Example 23. We will ome bakto this query later. 4.2 Well-Typed ProgramsA more re�ned well-behavior property of programs, namely well-typedness, an alsobe useful in order to ensure the strong boundedness property.The notion of well-typedness relies both on the onepts of mode and type. Thefollowing very general de�nition of a type is suÆient for our purposes.De�nition 25 (Type)A type is a set of terms losed under substitution.Assume as given a spei� set of types, denoted by Types, whih inludes Any,the set of all terms, and Ground the set of all ground terms.De�nition 26 (Type Assoiated with a Position)A type for an n-ary prediate symbol p is a funtion tp from f1; : : : ; ng to the setTypes. If tp(i) = T , we all T the type assoiated with the position i of p. Assuminga type tp for the prediate p, we say that a literal p(s1; : : : ; sn) is orretly typed inposition i if si 2 tp(i).In a typed program we assume that every prediate p has a �xed mode mp anda �xed type tp assoiated with it and we denote it byp(mp(1) : tp(1); : : : ;mp(n) : tp(n)):So, for instane, we write



Theory and Pratie of Logi Programming 15append(+ : List ;+ : List ;� : List)to denote the moded atom append(+;+;�) where the type assoiated with eahargument position is List , i.e., the set of all lists.We an then talk about types of input and of output positions of an atom.The notion of well-typed queries and programs relies on the following onept oftype judgement.De�nition 27 (Type Judgement)By a type judgement we mean a statement of the form s : S) t : T: We say thata type judgement s : S) t : T is true, and write j= s : S) t : T; if for all substi-tutions �, s� 2 S implies t� 2 T.For example, the type judgements (x : Nat ; l : ListNat) ) ([xjl℄ : ListNat) and([xjl℄ : ListNat)) (l : ListNat) are both true.A notion of well-typed program has been �rst introdued in (Bronsard et al.1992) and also studied in (Apt and Etalle 1993) and in (Apt and Luitjes 1995).Similarly to well-moding, the notion was developed for de�nite programs. Here weextend it to general programs.In the following de�nition, we assume that is : Is is the sequene of typed terms�lling in the input positions of Ls and os : Os is the sequene of typed terms �llingin the output positions of Ls.De�nition 28 (Well-Typed)� A query L1; : : : ; Ln is alled well-typed if for all j 2 f1; : : : ; ngj= oj1 : Oj1 ; : : : ;ojk : Ojk ) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1.� A lause L0  L1; : : : ; Ln is alled well-typed if for all j 2 f1; : : : ; ngj= i0 : I0;oj1 : Oj1 ; : : : ;ojk : Ojk ) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1, andj= i0 : I0;oj1 : Oj1 ; : : : ;ojh : Ojh ) o0 : O0where Lj1 ; : : : ; Ljh are all the positive literals in L1; : : : ; Ln.� A program is alled well-typed if all of its lauses are well-typed.Note that an atomi query is well-typed i� it is orretly typed in its input positionsand a unit lause p(s : S; t : T) is well-typed if j= s : S) t : T.The di�erene between De�nition 28 and the one usually given for de�nite pro-grams is that the orretness of the terms �lling in the output positions of negativeliterals annot be used to dedue the orretness of the terms �lling in the inputpositions of a literal to the right (or the output positions of the head in a lause).The two de�nitions oinide either for de�nite programs or for general programswhose negative literals have only input positions.As an example, let us onsider the trivial program



16 A. Bossi, N. Coo, S. Etalle, and S. Rossip(� : List).q(+ : List).p([℄).q([℄).By adopting a straightforward extension of well-typedness to normal programswhih onsiders also the outputs of negative literals, we would have that the query:p(a); q(a) is well-typed even if a is not a list. Moreover well-typedness would notbe persistent wrt. LDNF-resolution sine q(a), whih is the �rst LDNF-resolvent ofthe previous query, is no more well-typed. Our extended de�nition and the lassialone oinide either for de�nite programs or for general programs whose negativeliterals have only input positions.For de�nite programs, well-modedness an be viewed as a speial ase of well-typedness if we onsider only one type: Ground. With our extended de�nitions ofwell-moded and well-typed general programs this is no more true. We ould havegiven a more ompliated de�nition for well-typedness in order to apture also well-modedness as a speial ase. For the sake of simpliity, we prefer to give two distintand simpler de�nitions.Remark 29If Q is a well-typed query, then all its non-empty pre�xes are well-typed. In parti-ular, �rst(Q) is well-typed.The following Lemma shows that well-typed queries are losed under LDNF-resolution. It has been proved in (Bronsard et al. 1992) for de�nite programs.Lemma 30Let P and Q be a well-typed program and query, respetively. Then all LDNF-desendants of P [ fQg are well-typed.ProofSimilarly to the ase of well-moded programs, to extend the result to general pro-grams it is suÆient to show that if a query Q := :A;L1; : : : ; Ln is well-typed thenboth A and L1; : : : ; Ln are well-typed. In fat, by Remark 29, :A = �rst(Q) iswell-typed and by De�nition 28, if the �rst literal in a well-typed query is negative,then it is not used to dedue well-typedness of the rest of the query.It is now natural to exploit well-typedness in order to hek strong boundedness.Analogously to well-moded programs, there are level mappings that are more nat-ural in presene of type information. They are the level mappings for whih everywell-typed atom is bounded. By Lemma 30 we have that a well-typed query Q isstrongly bounded wrt. a well-typed program P and any suh level mapping. Thisis stated by the next proposition.Proposition 31Let P := R1 [ : : :[Rn be a well-typed program and Rn = : : : = R1 be a hierarhy,and j j1; : : : ; j jn be level mappings for R1; : : : ; Rn, respetively. Suppose that forevery well-typed atom A, if A is de�ned in Ri then A is bounded wrt. j ji, for i 2f1; : : : ; ng. Then every well-typed query is strongly bounded wrt. P and j j1; : : : ; j jn.



Theory and Pratie of Logi Programming 17Example 32Let us onsider again the modular proof of termination for MOVE := R1 [R2, whereR1 de�nes the relations append1, append2 and delete, while R2, whih extendsR1, de�nes the relation move. We onsider the moding of Example 23 with thefollowing types:delete(+ : List ;� : Any;� : List)append1(� : List ;� : List ;+ : List)append2(+ : List ;+ : List ;� : List)move(+ : List ;� : List).Program MOVE is well-typed in the assumed modes and types.Let us onsider the same level mappings as used in Example 23. We have alreadyseen that R2 is aeptable wrt. j j2 and any model, and R1 is aeptable wrt. j j1and any model. By de�nition of j j2 and j j1, one an easily see that� every well-typed atom A de�ned in Ri is bounded wrt. j ji.Hene, by Proposition 31,� every well-typed query is strongly bounded wrt. MOVE and j j1, j j2.Let us onsider again the query Q := move([X1; X2℄; Ys); delete(Ys; Y;Zs) whihis not well-moded but it is well-typed. We have that Q is strongly bounded wrt.MOVE and j j1, j j2, and onsequently, by Theorem 13, that all LDNF-derivations ofMOVE[ fQg are �nite.Example 33Consider the program COLOR MAP from (Sterling and Shapiro 1986) whih generatesa oloring of a map in suh a way that no two neighbors have the same olor. Themap is represented as a list of regions and olors as a list of available olors. Inturn, eah region is determined by its name, olor and the olors of its neighbors,so it is represented as a term region(name,olor,neighbors), where neighborsis a list of olors of the neighboring regions.1: olor map([ ℄,Colors).2: olor map([Region|Regions℄,Colors)  olor region(Region,Colors),olor map(Regions,Colors).3: olor region(region(Name,Color,Neighbors),Colors)  selet(Color,Colors,Colors1)subset(Neighbors,Colors1).4: selet(X,[X|Xs℄,Xs).5: selet(X,[Y|Xs℄,[Y|Zs℄)  selet(X,Xs,Zs).6: subset([ ℄,Ys).7: subset([X|Xs℄,Ys)  member(X,Ys), subset(Xs,Ys).8: member(X,[X|Xs℄).9: member(X,[Y|Xs℄)  member(X,Xs).



18 A. Bossi, N. Coo, S. Etalle, and S. RossiConsider the following modes and types for the program COLOR MAP:olor map(+ : ListRegion ;+ : List)olor region(+ : Region ;+ : List)selet(+ : Any ;+ : List ;� : List)subset(+ : List ;+ : List)member(+ : Any ;+ : List)where� Region is the set of all terms of the form region(name,olor,neighbors)with name; olor 2 Any and neighbors 2 List ,� ListRegion is the set of all lists of regions.We an hek that COLOR MAP is well-typed in the assumed modes and types.We an divide the program COLOR MAP into four distint modules, R1; R2; R3; R4,in the hierarhy R4 = R3 = R2 = R1 as follows:� R4 := f1; 2g de�nes the relation olor map,� R3 := f3g de�nes the relation olor region,� R2 := f4; 5; 6; 7g de�nes the relations selet and subset,� R1 := f8; 9g de�nes the relation member.Eah Ri is trivially aeptable wrt. any model M and the simple level mappingj ji de�ned below:jolor map(xs; ys)j4 = jxs jlengthjolor region(x ; xs)j3 = 1jselet(x ; xs; ys)j2 = jxsjlengthjsubset(xs; ys)j2 = jxsjlengthjmember(x ; xs)j1 = jxsjlengthwhere for all i 2 f1; 2; 3; 4g, jLji = 0, if L is not de�ned in Ri.Moreover, for every well-typed atom A and i 2 f1; 2; 3; 4g, if A is de�ned in Rithen A is bounded wrt. j ji. Hene, by Proposition 31,� every well-typed query is strongly bounded wrt. the program COLOR MAP andj j1; : : : ; j j4.This proves that all LDNF-derivations of the program COLOR MAP starting in a well-typed query are �nite. In partiular, all the LDNF-derivations starting in a queryof the form olor map(xs; ys), where xs is a list of regions and ys is a list, are �nite.Note that in proving termination of suh queries the hoie of a model is irrelevant.Moreover, sine suh queries are well-typed, their input arguments are required tohave a spei�ed struture, but they are not required to be ground terms as in thease of well-moded queries. Hene, well-typedness allows us to reason about a largerlass of queries with respet to well-modedness.This example is also disussed in (Apt and Pedreshi 1994). In order to proveits termination they de�ne a partiular level mapping j j, obtained by ombining



Theory and Pratie of Logi Programming 19the level mappings of eah module, and a speial model M wrt. whih the wholeprogram COLOR MAP is aeptable. Both the level mapping j j and the model M arenon-trivial. 5 Iterative Proof MethodIn the previous setion we have seen how we an exploit properties whih arepreserved by LDNF-resolution, suh as well-modedness and well-typedness, for de-veloping a modular proof of termination in a hierarhy of programs. In this setionwe show how these properties allow us to apply our general result, i.e., Theorem 9,also in an iterative way.Corollary 34Let P and R be two programs suh that P [ R is well-moded and P extends R,and M be a omplete model of P [R. Suppose that� P is aeptable wrt. a moded level mapping j j and M ,� for all well-moded queries Q, all LDNF-derivations R [ fQg are �nite.Then for all well-moded queries Q, all LDNF-derivations of (P [R)[fQg are �nite.ProofLet C be the lass of well-moded queries of P [ R. By Remark 18 and Lemma 19,C is (P [ R)-losed. Moreover� P is aeptable wrt. a moded level mapping j j and M , by hypothesis;� for all well-moded queries Q, all LDNF-derivations of R [ fQg are �nite, byhypothesis;� for all well-moded atoms A, if A is de�ned in P then A is bounded wrt. j j,by Remark 21, sine j j is a moded level mapping.Hene by Theorem 9 we get the thesis.Note that this result allows one to inrementally prove well-termination for gen-eral programs thus extending the result given in (Etalle et al. 1999) for de�niteprograms.A similar result an be stated also for well-typed programs and queries, providedthat there exists a level mapping for P implying boundedness of atomi well-typedqueries.Corollary 35Let P and R be two programs suh that P [R is well-typed and P extends R, andM be a omplete model of P [ R. Suppose that� P is aeptable wrt. a level mapping j j and M ,� every well-typed atom de�ned in P is bounded wrt. j j,� for all well-typed queries Q, all LDNF-derivations of R [ fQg are �nite.Then for all well-typed queries Q, all LDNF-derivations of (P [R)[fQg are �nite.



20 A. Bossi, N. Coo, S. Etalle, and S. RossiProofLet C be the lass of well-typed queries of P [R. By Remark 29 and Lemma 30, Cis (P [R)-losed. Moreover� P is aeptable wrt. a level mapping j j and M , by hypothesis;� for all well-typed queries Q, all LDNF-derivations of R [ fQg are �nite, byhypothesis;� for all well-typed atoms A, if A is de�ned in P then A is bounded wrt. j j, byhypothesis.Hene by Theorem 9 we have the thesis.Example 36Let us onsider again the program COLOR MAP with the same modes and types asin Example 33. We apply the iterative termination proof given by Corollary 35 toCOLOR MAP.First step. We an onsider at �rst two trivial modules, R1 := f8; 9g whihde�nes the relation member, and R0 := ;. We already know that� R1 is aeptable wrt. any modelM and the level mapping j j1 already de�ned;� all well-typed atoms A, de�ned in R1, are bounded wrt. j j1;� for all well-typed queries Q, all LDNF-derivations of R0 [ fQg are trivially�nite.Hene, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of (R1 [R0) [ fQg are �nite.Seond step. We an now iterate the proess one level up. Let us onsider thetwo modules, R2 := f4; 5; 6; 7g whih de�nes the relations selet and subset,and R1 := f8; 9g whih de�nes the relation member and it is equal to (R1 [ R0)of the previous step. We already showed in Example 33 that� R2 is aeptable wrt. any modelM and the level mapping j j2 already de�ned;� all well-typed atoms A, de�ned in R2, are bounded wrt. j j2;� for all well-typed queries Q, all LDNF-derivations of R1 [ fQg are �nite.Hene, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of (R2 [R1) [ fQg are �nite.By iterating the same reasoning for two steps more, we an prove that all LDNF-derivations of the program COLOR MAP starting in a well-typed query are �nite.Our iterative method applies to a hierarhy of programs where on the lowest module,R, we require termination wrt. a partiular lass of queries. This an be a weakerrequirement on R than aeptability as shown in the following ontrived example.Example 37Let R de�ne the prediate lount whih ounts the number of natural numbers ina list.



Theory and Pratie of Logi Programming 21lount(+ : List ;� : Nat)nat(+ : Any).r1: lount([ ℄,0).r2: lount([X|Xs℄,s(N))  nat(X), lount(Xs,N).r3: lount([X|Xs℄,N)  : nat(X), lount(Xs,N).r4: lount(0,N)  lount(0,s(N)).r5: nat(0).r6: nat(s(N))  nat(N).R is well-typed wrt. the spei�ed modes and types. Note that R annot be aept-able due to the presene of lause r4. On the other hand, the program terminatesfor all well-typed queries.Consider now the following program P whih extends R. The prediate split,given a list of lists, separates the list elements ontaining more than max naturalnumbers from the other lists:split(+ : ListList ;� : ListList ;� : ListList)>(+ : Nat ;+ : Nat)<=(+ : Nat ;+ : Nat)p1: split([ ℄,[ ℄,[ ℄).p2: split([L|Ls℄,[L|L1℄,L2)  lount(L,N), N > max,split(Ls,L1,L2).p3: split([L|Ls℄,L1,[L|L2℄)  lount(L,N), N <= max,split(Ls,L1,L2).where ListList denotes the set of all lists of lists, and max is a natural number.The program P [ R is well-typed. Let us onsider the simple level mapping j j forP de�ned by:jsplit(ls; l1 ; l2 )j = jls jlengthwhih assigns level 0 to any literal not de�ned in P . Note that� P is aeptable wrt. the level mapping j j and any omplete model M ,� all well-typed atoms de�ned in P are bounded wrt. j j,� for all well-typed queries Q, all LDNF-derivations of R [ fQg are �nite.Hene, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of (P [R) [ fQg are �nite.This example shows that well-typedness ould be useful to exlude what mightbe alled \dead ode".6 Comparing with Apt and Pedreshi's ApproahOur work an be seen as an extension of a proposal in (Apt and Pedreshi 1994).Hene we devote this setion to a omparison with their approah.On one hand, sine our approah applies to general programs, it learly overs



22 A. Bossi, N. Coo, S. Etalle, and S. Rossiases whih annot be treated with the method proposed in (Apt and Pedreshi1994), whih was developed for de�nite programs. On the other hand, for de�niteprograms the lasses of queries and programs whih an be treated by Apt andPedreshi's approah are properly inluded in those whih an be treated by ourmethod as we show in this setion.We �rst reall the notions of semi-aeptability and bounded query used in (Aptand Pedreshi 1994).De�nition 38 (Semi-aeptable Program)Let P be a de�nite program, j j be a level mapping for P and M be a model ofP . P is alled semi-aeptable wrt. j j and M if for every lause A  A; B;B inground(P ) suh that M j= A� jAj > jBj; if rel(A) ' rel(B),� jAj � jBj; if rel(A) = rel(B).De�nition 39 (Bounded Query)Let P be a de�nite program, j j be a level mapping for P , and M be a model of P .� With eah query Q := L1; : : : ; Ln we assoiate n sets of natural numbersde�ned as follows: For i 2 f1; : : : ; ng,jQjMi = fjL0ij j L01; : : : ; L0n is a ground instane of Q and M j= L01; : : : ; L0i�1g:� A query Q is alled bounded wrt. j j and M if jQjMi is �nite (i.e., if jQjMi hasa maximum in N) for all i 2 f1; : : : ; ng.Lemma 40Let P be a de�nite program whih is semi-aeptable wrt. j j andM . If Q is a querybounded wrt. j j and M then all LD-desendants of P [ fQg are bounded wrt. j jand M .ProofIt is a onsequene of Lemma 3.6 in (Apt and Pedreshi 1994) and (the proof of)Lemma 5.4 in (Apt and Pedreshi 1994).We an always deompose a de�nite program P into a hierarhy of n � 1 pro-grams P := R1 [ : : : [ Rn, where Rn = : : : = R1 in suh a way that for everyi 2 f1; : : : ; ng if the prediate symbols pi and qi are both de�ned in Ri then neitherpi = qi nor qi = pi (either they are mutually reursive or independent). We allsuh a hierarhy a �nest deomposition of P .The following property has two main appliations. First it allows us to ompareour approah with (Apt and Pedreshi 1994), then it provides an extension ofTheorem 13 to hierarhies of semi-aeptable programs.Proposition 41Let P be a semi-aeptable program wrt. a level mapping j j and a model M andQ be a query strongly bounded wrt. P and j j. Let P := R1 [ : : : [ Rn be a �nestdeomposition of P into a hierarhy of modules. Let j ji, with i 2 f1; : : : ; ng, bede�ned in the following way: if A is de�ned in Ri then jAji = jAj else jAji = 0.Then



Theory and Pratie of Logi Programming 23� every Ri is aeptable wrt. j ji and M (with i 2 f1; : : : ; ng),� Q is strongly bounded wrt. R1 [ : : : [Rn and j j1; : : : ; j jn.ProofImmediate by the de�nitions of semi-aeptability and strongly boundedness, sinewe are onsidering a �nest deomposition.In order to ompare our approah to the one presented in (Apt and Pedreshi1994) we onsider only Theorem 5.8 in (Apt and Pedreshi 1994), sine this istheir most general result whih implies the other ones, namely Theorem 5.6 andTheorem 5.7.Theorem 42 (Theorem 5.8 in (Apt and Pedreshi 1994))Let P and R be two de�nite programs suh that P extends R, and let M be amodel of P [ R. Suppose that� R is semi-aeptable wrt. j jR and M \ BR,� P is semi-aeptable wrt. j jP and M ,� there exists a level mapping jj jjP suh that for every ground instane of alause from P , A A; B;B, suh that M j= A| jjAjjP � jjBjjP , if rel(B) is de�ned in P ,| jjAjjP � jBjR, if rel(B) is de�ned in R.Then P [R is semi-aeptable wrt. j j and M , where j j is de�ned as follows:jAj = jAjP + jjAjjP , if rel(A) is de�ned in P ,jAj = jAjR, if rel(A) is de�ned in R.The following remark follows from Lemma 5.4 in (Apt and Pedreshi 1994) andCorollary 3.7 in (Apt and Pedreshi 1994). Together with Theorem 42, it impliestermination of bounded queries in (Apt and Pedreshi 1994).Remark 43If P [ R is semi-aeptable wrt. j j and M and Q is bounded wrt. j j and M thenall LD-derivations of (P [ R) [ fQg are �nite.We now show that whenever Theorem 42 an be applied to prove termination ofall the queries bounded wrt. j j and M , then also our method an be used to provetermination of the same lass of queries with no need of jj jjP for relating the proofsof the two modules.In the following theorem for the sake of simpliity we assume that P = R is a�nest deomposition of P [ R. We disuss later how to extend the result to thegeneral ase.Theorem 44Let P and R be two programs suh that P extends R, and let M be a model ofP [ R. Suppose that� R is semi-aeptable wrt. j jR and M \ BR,� P is semi-aeptable wrt. j jP and M ,



24 A. Bossi, N. Coo, S. Etalle, and S. Rossi� there exists a level mapping jj jjP de�ned as in Theorem 42.Let j j be the level mapping de�ned by Theorem 42. Moreover, suppose P = R is a�nest deomposition of P [R. If Q is bounded wrt. j j, then Q is strongly boundedwrt. P [ R and j jP and j jR.ProofSine we are onsidering a �nest deomposition of P [ R, by Proposition 41, R isaeptable wrt. j jR, while P is aeptable wrt. j j0P suh that if A is de�ned in Pthen jAj0P = jAjP else jAj0P = 0.By Lemma 40 all LD-desendants of (P [R)[ fQg are bounded wrt. j j and M .By de�nition of boundedness, for all LD-desendants Q0 of (P [R)[fQg, �rst(Q0)is bounded wrt. j j. By de�nition of j j, for all atoms A bounded wrt. j j we havethat: if A is de�ned in R then A is bounded wrt. j jR, while if A is de�ned in Pthen A is bounded wrt. j jP and hene wrt. j j0P (sine jAj0P = jAjP ). Hene thethesis follows.If the hierarhy P = R is not a �nest one and j jP and j jR are the level mappingsorresponding to P and R respetively, then we an deompose P into a �nestdeomposition, P := Pn = : : : = P1 , and onsider instead of j jP the derived levelmappings j jPi de�ned in the following way: if A is de�ned in Pi then jAjPi = jAjPelse jAjPi = 0. Similarly we an deompose R := Rn = : : : = R1 and de�ne theorresponding level mappings. The derived level mappings satisfy all the propertieswe need for proving that if Q is bounded wrt. j j, then Q is strongly bounded wrt.P [ R and j jP1 ; : : : ; j jPn ; j jR1 ; : : : ; j jRn .To omplete the omparison with (Apt and Pedreshi 1994), we an observethat our method is appliable also for proving termination of queries in modularprograms whih are not (semi-)aeptable. Suh programs learly annot be dealtwith Apt and Pedreshi's method. The program of Example 37 is a non-aeptableprogram for whih we proved termination of all well-typed queries by applyingCorollary 35. The following is a simple example of a non-aeptable program towhih we an apply the general Theorem 13.Example 45Let R be the following trivial program:r1: q(0).r2: q(s(Y))  q(Y).The program R is aeptable wrt. the following natural level mapping j jR andany model M :jq(t)jR = jt jsize.Let P be a program, whih extends R, de�ned as follows:p1: r(0,0).p2: r(s(X),Y).p3: p(X)  r(X,Y), q(Y).



Theory and Pratie of Logi Programming 25The program P is aeptable wrt. the following trivial level mapping j jP andany model M :jq(y)jP = 0,jr(x ; y)jP = 0,jp(x )jP = 1.Note that, even if eah module is aeptable, P [ R annot be aeptable wrt.any level mapping and model. In fat P [ R is not left-terminating: for exampleit does not terminate for the ground query p(s(0)). As a onsequene Apt andPedreshi's method does not apply to P [R. On the other hand, there are groundqueries, suh as p(0), whih terminate in P [ R. We an prove it as follows.� By Theorem 13, for all strongly bounded queries Q wrt. P [R and j jR, j jP ,all LD-derivations of (P [ R) [ fQg are �nite.� p(0) is strongly bounded wrt. P [R and j jR, j jP . In fat, Call (P[R)(p(0)) =fp(0); r(0,Y); q(0)g and all these atoms are bounded wrt. their orrespond-ing level mapping. 7 ConlusionsIn this paper we propose a modular approah to termination proofs of general pro-grams by following the proof style introdued by Apt and Pedreshi. Our tehniqueallows one to give simple proofs in hierarhially strutured programs, namely pro-grams whih an be partitioned into n modules, R1 [ : : : [ Rn, suh that for alli 2 f1; : : : ; n� 1g, Ri+1 extends R1 [ : : : [ Ri.We supply the general Theorem 9 whih an be iteratively applied to a hierarhyof two programs and a lass of queries enjoying persistene properties throughLDNF-resolution. We then use suh a result to deal with a general hierarhy ofaeptable programs, by introduing an extension of the onept of boundednessfor hierarhial programs, namely strong boundedness. Strong boundedness is aproperty on queries whih an be easily ensured for hierarhies of programs behavingwell, suh as well-moded or well-typed programs. We show how spei� and simplehierarhial termination proofs an be derived for suh lasses of programs andqueries. We believe this is a valuable proof tehnique sine realisti programs aretypially well-moded and well-typed.The simpli�ations in the termination proof derive from the fat that for provingthe termination of a modular program, we simply prove aeptability of eah moduleby hoosing a level mapping whih fouses only on the prediates de�ned in it, withno onern of the module ontext. Generally this an be done by using very simpleand natural level mappings whih are ompletely independent from one moduleto another. A ompliated level mapping is generally required when we prove thetermination of a program as a whole and we have to onsider a level mapping whihappropriately relates all the prediates de�ned in the program. Hene the �ner themodularization of the program the simpler the level mappings. Obviously we annotompletely ignore how prediates de�ned in di�erent modules relate to eah other.



26 A. Bossi, N. Coo, S. Etalle, and S. RossiOn one hand, when we prove aeptability for eah module, we onsider a model forthe whole program. This guarantees the ompatibility among the de�nitions in thehierarhy. On the other hand, for queries we use the notion of strong boundedness.The intuition is that we onsider only what may inuene the evaluation of queriesin the onsidered lass.The proof method of Theorem 9 an be applied also to programs whih are notaeptable. In fat, the ondition on the lower module is just that it terminates onall the queries in the onsidered lass and not on all ground queries as required foraeptable programs. From Theorem 9 we ould also derive a method to deal withpre-ompiled modules (or even modules written in a di�erent language) providedthat we already know termination properties and we have a omplete spei�ation.For sake of simpliity, in the �rst part of the paper we onsider the notion ofaeptability instead of the less requiring notion of semi-aeptability. This hoiemakes proofs of our results muh simpler. On the other hand, as we show in Setion6, our results an be applied also to hierarhies of semi-aeptable programs.We have ompared our proposal with the one in (Apt and Pedreshi 1994). Theypropose a modular approah to left-termination proofs in a hierarhy of two de�niteprograms P = R. They require both the (semi)-aeptability of the two modules Rand P wrt. their respetive level mappings and a ondition relating the two levelmappings whih is meant to onnet the two termination proofs.Our method is more powerful both beause we onsider also general programsand beause we apture de�nite programs and queries whih annot be treated bythe method developed in (Apt and Pedreshi 1994). In fat there are non-aeptableprograms for whih we an single out a lass of terminating queries.For the previous reasons our method improves also with respet to (Pedreshiand Ruggieri 1996, Pedreshi and Ruggieri 1999) where hierarhies of modules areonsidered. In (Pedreshi and Ruggieri 1996, Pedreshi and Ruggieri 1999) a unify-ing framework for the veri�ation of total orretness of logi programs is provided.The authors onsider modular termination by following the approah in (Apt andPedreshi 1994).In (Marhiori 1996) a methodology for proving termination of general logi pro-grams is proposed whih is based on modularization. In this approah, the aylimodules, namely modules that terminate independently from the seletion rule, playa distintive role. For suh modules, the termination proof does not require a model.In ombination with appropriate notions of up-aeptability and low-aeptability forthe modules whih are not ayli, this provides a pratial tehnique for provingtermination of the whole program. Analogously to (Apt and Pedreshi 1994), also in(Marhiori 1996) a relation between the level mappings of all modules is required. Itis interesting to note that the idea of exploiting ayliity is ompletely orthogonalto our approah: we ould integrate it into our framework.Another related work is (Deorte et al. 1999), even if it does not aim expliitly atmodularity. In fat they propose a tehnique for automati termination analysis ofde�nite programs whih is highly eÆient also beause they use a rather operationalnotion of aeptability with respet to a set of queries, where dereasing levels arerequired only on (mutually) reursive alls as in (De Shreye et al. 1992). E�etively,



Theory and Pratie of Logi Programming 27this orresponds to onsidering a �nest deomposition of the program and havingindependent level mappings for eah module. However, their notion of aeptabilityis de�ned and veri�ed on all-patterns instead of program lauses. In a sense, suhan aeptability with respet to a set of queries ombines the onepts of stronglyboundedness and (standard) aeptability. They start from a lass of queries andtry to derive automatially a termination proof for suh a lass, while we start fromthe program and derive a lass of queries for whih it terminates.In (Verbaeten et al. 1999) termination in the ontext of tabled exeution is on-sidered. Also in this ase modular results are inspired by (De Shreye et al. 1992)by adapting the notion of aeptability wrt. all-patterns to tabled exeutions. Thiswork is further developed in (Verbaeten et al. 2001) where their modular termina-tion onditions are re�ned following the approah by (Apt and Pedreshi 1994).In (Etalle et al. 1999) a method for modular termination proofs for well-modedde�nite programs is proposed. Our present work generalizes suh result to generalprograms.Our method may help in designing more powerful automati systems for veri-fying termination (De Shreye et al. 1992, Speirs, Somogyi and S�ndergaard. 1997,Deorte et al. 1999, Codish and Taboh 1999). We see two diretions whih ouldbe pursued for a fruitful integration with existing automati tools. The �rst one ex-ploits the fat that in eah single module it is suÆient to synthesize a level mappingwhih does not need to measure atoms de�ned in other modules. The seond oneonerns tools based on all-patterns analysis (De Shreye et al. 1992, Gabbrielliand Giaobazzi 1994, Codish and Demoen 1995). They an take advantage of theonept of strong boundedness whih, as we show, an be implied by well-behaviorof programs (Debray and Warren 1988, Debray 1989).Aknowledgements. This work has been partially supported by MURST with theNational Researh Projet \Certi�azione automatia di programmi mediante in-terpretazione astratta". ReferenesApt, K. R. (1990). Introdution to Logi Programming, in J. van Leeuwen (ed.), Hand-book of Theoretial Computer Siene, Vol. B: Formal Models and Semantis, Elsevier,Amsterdam and The MIT Press, Cambridge, pp. 495{574.Apt, K. R. (1997). From Logi Programming to Prolog, Prentie Hall.Apt, K. R. and Etalle, S. (1993). On the uni�ation free Prolog programs, inA. Borzyszkowski and S. Sokolowski (eds), Proeedings of the Conferene on Mathe-matial Foundations of Computer Siene (MFCS 93), Vol. 711 of Leture Notes inComputer Siene, Springer-Verlag, pp. 1{19.Apt, K. R. and Luitjes, I. (1995). Veri�ation of logi programs with delay delarations,in A. Borzyszkowski and S. Sokolowski (eds), Proeedings of the Fourth InternationalConferene on Algebrai Methodology and Software Tehnology, (AMAST'95), Vol. 936of Leture Notes in Computer Siene, Springer-Verlag, pp. 1{19.Apt, K. R. and Pedreshi, D. (1993). Reasoning about termination of pure Prolog programs,Information and Computation 106(1): 109{157.
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