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tWe propose a modular method for proving termination of general logi
 programs (i.e.,logi
 programs with negation). It is based on the notion of a

eptable programs, but itallows us to prove termination in a truly modular way. We 
onsider programs 
onsisting ofa hierar
hy of modules and supply a general result for proving termination by dealing withea
h module separately. For programs whi
h are in a 
ertain sense well-behaved, namelywell-moded or well-typed programs, we derive both a simple veri�
ation te
hnique and aniterative proof method. Some examples show how our system allows for greatly simpli�edproofs. 1 Introdu
tionIt is standard pra
ti
e to ta
kle a large proof by de
omposing it into more managea-ble pie
es (lemmata or modules) and proving them separately. By 
omposing appro-priately these simpler results, one 
an then obtain the �nal proof. This methodologyhas been re
ognized an important one also when proving termination of logi
 pro-grams. Moreover most pra
ti
al logi
 programs are engineered by assembling dif-ferent modules and libraries, some of whi
h might be pre-
ompiled or written in adi�erent programming language. In su
h a situation, a 
ompositional methodologyfor proving termination is of 
ru
ial importan
e.The �rst approa
h to modular termination proofs of logi
 programs has beenproposed by Apt and Pedres
hi in (Apt and Pedres
hi 1994). It extends the seminalwork on a

eptable programs (Apt and Pedres
hi 1993) whi
h provides an algebrai

hara
terization of programs terminating under Prolog left-to-right sele
tion rule.The 
lass of a

eptable programs 
ontains programs whi
h terminate on groundqueries. To prove a

eptability one needs to determine a measure on literals (levelmapping) su
h that, in any 
lause, the measure of the head is greater than themeasure of ea
h body literal. This implies the de
reasing of the measure of the
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o, S. Etalle, and S. Rossiliterals resolved during any 
omputation starting from a ground or bounded queryand hen
e termination.The signi�
an
e of a modular approa
h to termination of logi
 programs has beenre
ognized also by other authors; more re
ent proposals 
an be found in (Pedres
hiand Ruggieri 1996, Mar
hiori 1996, Verbaeten, Sagonas and De S
hreye 1999, Etalle,Bossi and Co

o 1999, Verbaeten, Sagonas and De S
hreye 2001).All previous proposals (with the ex
eption of (Verbaeten et al. 1999, Etalle et al.1999)) require the existen
e of a relation between the level mappings used to provea

eptability of distin
t modules. This is not 
ompletely satisfa
tory: it would beni
e to be able to put together modules whi
h were independently proved termi-nating, and be sure that the resulting program is still terminating.We propose a modular approa
h to termination whi
h allows one to reason inde-pendently on ea
h single module and get a termination result on the whole program.We 
onsider general logi
 programs, i.e., logi
 programs with negation, employingSLDNF-resolution together with the leftmost sele
tion rule (also 
alled LDNF-resolution) as 
omputational me
hanism. We 
onsider programs whi
h 
an be di-vided into modules in a hierar
hi
al way, so that ea
h module is an extension of theprevious ones. We show that in this 
ontext the termination proof of the entire pro-gram 
an be given in terms of separate proofs for ea
h module, whi
h are naturallymu
h simpler than a proof for the whole program. While assuming a hierar
hy stillallows one to ta
kle most real-life programs, it leads to termination proofs whi
h,in most 
ases, are extremely simple.We 
hara
terize the 
lass of queries terminating for the whole program by intro-du
ing a new notion of boundedness, namely strong boundedness. Intuitively, strongboundedness 
aptures the queries whi
h preserve (standard) boundedness throughthe 
omputation. By proving a

eptability of ea
h module wrt. a level mappingwhi
h measures only the predi
ates de�ned in that module, we get a terminationresult for the whole program whi
h is valid for any strongly bounded query. When-ever the original program is de
omposed into a hierar
hy of small modules, thetermination proof 
an be drasti
ally simpli�ed with respe
t to previous modularapproa
hes. Moreover strong boundedness 
an be naturally guaranteed by 
ommonpersistent properties of programs and queries, namely properties preserved throughLDNF-resolution su
h as well-modedness (Dembi�nski and Maluszy�nski 1985) orwell-typedness (Bronsard, Lakshman and Reddy 1992).The paper is organized as follows. Se
tion 2 
ontains some preliminaries. In par-ti
ular we brie
y re
all the key 
on
epts of LDNF-resolution, a

eptability, bound-edness and program extension. Se
tion 3 
ontains our main results whi
h show howtermination proofs of separate programs 
an be 
ombined to obtain proofs of largerprograms. In parti
ular we de�ne the 
on
ept of strongly bounded query and weprove that for general programs 
omposed by a hierar
hy of n modules, ea
h oneindependently a

eptable wrt. its own level mapping, any strongly bounded queryterminates. In Se
tion 4 we show how strong boundedness is naturally ensuredby some program properties whi
h are preserved through LDNF-resolution su
h aswell-modedness and well-typedness. In Se
tion 5 we show how these properties allowus to apply our general results also for proving termination of modular programs
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 Programming 3in an iterative way. In Se
tion 6 we 
ompare our work with Apt and Pedres
hi'sapproa
h. Other related works and 
on
luding remarks are dis
ussed in Se
tion 7.2 PreliminariesWe use standard notation and terminology of logi
 programming (Lloyd 1987, Apt1990, Apt 1997). Just note that general logi
 programs are 
alled in (Lloyd 1987)normal logi
 programs.2.1 General Programs and LDNF-ResolutionA general 
lause is a 
onstru
t of the formH  L1; : : : ; Lnwith (n � 0), where H is an atom and L1; : : : ; Ln are literals (i.e., either atoms orthe negation of atoms). In turn, a general query is a possibly empty �nite sequen
eof literals L1; : : : ; Ln, with (n � 0). A general program is a �nite set of general
lauses1. Given a query Q := L1; : : : ; Ln, a non-empty pre�x of Q is any queryL1; : : : ; Li with i 2 f1; : : : ; ng. For a literal L, we denote by rel(L) the predi
atesymbol of L.Following the 
onvention adopted in (Apt 1997), we use bold 
hara
ters to denotesequen
es of obje
ts (so that L indi
ates a sequen
e of literals L1; : : : ; Ln, while tindi
ates a sequen
e of terms t1; : : : ; tn).For a given program P , we use the following notations: BP for the Herbrand baseof P , ground(P ) for the set of all ground instan
es of 
lauses from P , 
omp(P ) forthe Clark's 
ompletion of P (Clark 1978).Sin
e in this paper we deal with general queries, 
lauses and programs, we omitfrom now on the quali�
ation \general", unless some 
onfusion might arise.We 
onsider LDNF-resolution, and following Apt and Pedres
hi's approa
h instudying the termination of general programs (Apt and Pedres
hi 1993), we viewLDNF-resolution as a top-down interpreter whi
h, given a general program P anda general query Q, attempts to build a sear
h tree for P [ fQg by 
onstru
tingits bran
hes in parallel. The bran
hes in this tree are 
alled LDNF-derivations ofP [ fQg and the tree itself is 
alled LDNF-tree of P [ fQg. Negative literals areresolved using the negation-as-failure rule whi
h 
alls for the 
onstru
tion of a sub-sidiary LDNF-tree. If during this subsidiary 
onstru
tion the interpreter diverges,the (main) LDNF-derivation is 
onsidered to be in�nite. An LDNF-derivation is�nite also if during its 
onstru
tion the interpreter en
ounters a query with the�rst literal being negative and non-ground. In su
h a 
ase we say that the LDNF-derivation 
ounders.1 In the examples through the paper, we will adopt the synta
ti
 
onventions of Prolog so thatea
h query and 
lause ends with the period \." and \ " is omitted in the unit 
lauses.
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o, S. Etalle, and S. RossiBy termination of a general program we a
tually mean termination of the under-lying interpreter. Hen
e in order to ensure termination of a query Q in a programP , we require that all LDNF-derivations of P [ fQg are �nite.By an LDNF-des
endant of P [ fQg we mean any query o

urring during theLDNF-resolution of P [ fQg, in
luding Q and all the queries o

urring during the
onstru
tion of the subsidiary LDNF-trees for P [ fQg.For a non-empty query Q, we denote by �rst(Q) the �rst literal of Q. Moreoverwe de�ne CallP (Q) = f�rst(Q0) j Q0 is an LDNF-des
endant of P [ fQgg. It isworth noting that if :A 2 CallP (Q) and A is a ground atom, then A 2 CallP (Q)too. Noti
e that, for de�nite programs, the set CallP (Q) 
oin
ides with the 
allset Call (P; fQg) in (De S
hreye, Vers
haetse and Bruynooghe 1992, De
orte, DeS
hreye and Vande
asteele 1999).The following trivial proposition holds.Proposition 1Let P be a program and Q be a query. All LDNF-derivations of P [ fQg are �nitei� for all positive literals A 2 CallP (Q), all LDNF-derivations of P [fAg are �nite.2.2 A

eptability and BoundednessThe method we are going to use for proving termination of modular programs isbased on the 
on
ept of a

eptable program (Apt and Pedres
hi 1993). In order tointrodu
e it, we start by the following de�nition, originally due to (Bezem 1993)and (Cavedon 1989).De�nition 2 (Level Mapping)A level mapping for a program P is a fun
tion j j : BP ! N of ground atoms tonatural numbers. By 
onvention, this de�nition is extended in a natural way toground literals by putting j:Aj = jAj. For a ground literal L, jLj is 
alled the levelof L.We will use the following notations. Let P be a program and p and q be relations.We say that p refers to q if there is a 
lause in P that uses p in its head and q inits body; p depends on q if (p; q) is in the re
exive, transitive 
losure of the relationrefers to. We say that p and q are mutually re
ursive and write p ' q, if p dependson q and q depends on p. We also write p = q, when p depends on q but q does notdepend on p.We denote by NegP the set of relations in P whi
h o

ur in a negative literal ina 
lause of P and by Neg�P the set of relations in P on whi
h the relations in NegPdepend. P� denotes the set of 
lauses in P de�ning a relation of Neg�P .In the sequel we refer to the standard de�nition of model of a program and modelof the 
ompletion of a program, see (Apt 1990, Apt 1997) for details. In parti
ularwe need the following notion of 
omplete model for a program.De�nition 3 (Complete Model)A model M of a program P is 
alled 
omplete if its restri
tion to the relations fromNeg�P is a model of 
omp(P�).
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e that if I is a model of 
omp(P ) then its restri
tion to the relations in Neg�Pis a model of 
omp(P�); hen
e I is a 
omplete model of P .The following notion of a

eptable program was introdu
ed in (Apt and Pe-dres
hi 1993). Apt and Pedres
hi proved that su
h a notion fully 
hara
terizes left-termination, namely termination wrt. any ground query, both for de�nite programsand for general programs whi
h have no LDNF-derivations whi
h 
ounder.De�nition 4 (A

eptable Program)Let P be a program, j j be a level mapping for P and M be a 
omplete model of P .P is 
alled a

eptable wrt. j j and M if for every 
lause A A; B;B in ground(P )the following impli
ation holds:if M j= A then jAj > jBj:Note that if P is a de�nite program, then both P� and Neg�P are empty and M
an be any model of P .We also need the notion of bounded atom.De�nition 5 (Bounded Atom)Let P be a program and j j be a level mapping for P . An atom A is 
alled boundedwrt. j j if the set of all jA0j, where A0 is a ground instan
e of A, is �nite. In this
ase we denote by max jAj the maximum value in this set.Noti
e that if an atom A is bounded then, by de�nition of level mapping, alsothe 
orresponding negative literal, :A, is bounded.Note also that, for atomi
 queries, this de�nition 
oin
ides with the de�nitionof bounded query introdu
ed in (Apt and Pedres
hi 1993) in order to 
hara
terizeterminating queries for a

eptable programs. In fa
t, in 
ase of atomi
 queries thenotion of boundedness does not depend on a model.2.3 Extension of a ProgramIn this paper we 
onsider a hierar
hi
al situation where a program uses another oneas a subprogram. The following de�nition formalizes this situation.De�nition 6 (Extension)Let P and R be two programs. A relation p is de�ned in P if p o

urs in a headof a 
lause of P ; a literal L is de�ned in P if rel(L) is de�ned in P ; P extends R,denoted P = R, if no relation de�ned in P o

urs in R.Informally, P extends R if P de�nes new relations with respe
t to R. Note thatP and R are independent if no relation de�ned in P o

urs in R and no relationde�ned in R o

urs in P , i.e. P = R and R = P .In the sequel we will study termination in a hierar
hy of programs.De�nition 7 (Hierar
hy of Programs)Let P1; : : : ; Pn be programs su
h that for all i 2 f1; : : : ; n�1g, Pi+1 = (P1[� � �[Pi).Then we 
all Pn = � � � = P1 a hierar
hy of programs.
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hi
al TerminationThis se
tion 
ontains our main results whi
h show how termination proofs of sepa-rate programs 
an be 
ombined to obtain proofs of larger programs. We start witha te
hni
al result, dealing with the 
ase in whi
h a program 
onsists of a hierar-
hi
al 
ombination of two modules. This is the base both of a generalization to ahierar
hy of n programs and of an iterative proof method for termination presentedin Se
tion 5. Let us �rst introdu
e the following notion of P -
losed 
lass of queries.De�nition 8 (P-
losed Class)Let C be a 
lass of queries and P be a program. We say that C is P -
losed if itis 
losed under non-empty pre�x (i.e., it 
ontains all the non-empty pre�xes ofits elements) and for ea
h query Q 2 C, every LDNF-des
endant of P [ fQg is
ontained in C.Note that if C is P -
losed, then for ea
h query Q 2 C, CallP (Q) � C.We 
an now state our �rst general theorem. Noti
e that if P extends R and Pis a

eptable wrt. some level mapping j j and model M , then P is a

eptable alsowrt. the level mapping j j0 and M , where j j0 is de�ned on the Herbrand base of theunion of the two programs BP[R and it takes the value 0 on the literals whi
h arenot de�ned in P (and hen
e, in parti
ular, on the literals whi
h o

ur in P but arede�ned in R). This shows that in ea
h module it is suÆ
ient to 
ompare only thelevel of the literals de�ned inside it, while we 
an ignore literals de�ned outside themodule. In the following we make use of this observation in order to asso
iate toea
h module in a hierar
hy a level mapping whi
h is independent from the 
ontext.Theorem 9Let P and R be two programs su
h that P extends R, M be a 
omplete model ofP [ R and C be a (P [ R)-
losed 
lass of queries. Suppose that� P is a

eptable wrt. a level mapping j j and M ,� for all queries Q 2 C, all LDNF-derivations of R [ fQg are �nite,� for all atoms A 2 C, if A is de�ned in P then A is bounded wrt. j j.Then for all queries Q 2 C, all LDNF-derivations of (P [ R) [ fQg are �nite.ProofBy the fa
t that C is (P [R)-
losed and Proposition 1, it is suÆ
ient to prove thatfor all positive literals A 2 C, all LDNF-derivations of (P [R)[ fAg are �nite. Letus 
onsider an atom A 2 C.If A is de�ned in R, then the thesis trivially holds by hypothesis.If A is de�ned in P , A is bounded wrt. j j by hypothesis and thus max jAj isde�ned. The proof pro
eeds by indu
tion on max jAj.Base. Let max jAj = 0. In this 
ase, by a

eptability of P , there are no 
lausesin P whose head uni�es with A and whose body is non-empty. Hen
e, the thesisholds.Indu
tion step. Let max jAj > 0. It is suÆ
ient to prove that for all dire
t des
en-dants (L1; : : : ; Ln) in the LDNF-tree of (P [ R) [ fAg, if �i is a 
omputed answerfor P [ fL1; : : : ; Li�1g then all LDNF-derivations of (P [R) [ fLi�ig are �nite.
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 : H 0  L01; : : : ; L0n be a 
lause of P su
h that � = mgu(H 0; A). LetH = H 0�and for all i 2 f1; : : : ; ng, let Li = L0i� and �i be a substitution su
h that �i is a
omputed answer of L1; : : : ; Li�1 in P [ R.We distinguish two 
ases. If Li is de�ned in R then the thesis follows by hypoth-esis.Suppose that Li is de�ned in P . We prove that Li�i is bounded and max jAj >max jLi�ij. The thesis will follow by the indu
tion hypothesis.Let 
 be a substitution su
h that Li�i
 is ground. By soundness of LDNF-resolution (Clark 1978), there exists 
0 su
h that M j= (L1; : : : ; Li�1)
0 and 
�
0is a ground instan
e of 
 and Li
0 = Li�i
. ThereforejLi�i
j = jLi
0j= jL0i�
0j (sin
e Li = L0i�)< jH 0�
0j (sin
e P is a

eptable)= jA�
0j (sin
e � = mgu(H 0; A)):Sin
e A is bounded, we 
an 
on
lude that Li�i is bounded and also that max jAj >max jLi�ij.We are going to extend the above theorem in order to handle the presen
e ofmore than two modules. We need to introdu
e more notation. Let us 
onsider the
ase of a program P 
onsisting of a hierar
hy Rn = : : : = R1 of distin
t modules,and satisfying the property that ea
h module, Ri, is a

eptable wrt. a distin
tlevel mapping, j ji, and a 
omplete model, M , of the whole program. Under theseassumptions we identify a spe
i�
 
lass of queries whi
h terminate in the wholeprogram. We 
hara
terize the 
lass of terminating queries in terms of the followingnotion of strong boundedness. This 
lass enjoys the property of being P -
losed.De�nition 10 (Strongly Bounded Query)Let the program P := R1 [ : : :[Rn be a hierar
hy Rn = : : : = R1 and j j1; : : : ; j jnbe level mappings for R1; : : : ; Rn, respe
tively. A query Q is 
alled strongly boundedwrt. P and j j1; : : : ; j jn if� for all atoms A 2 CallP (Q), if A is de�ned in Ri (with i 2 f1; : : : ; ng) thenA is bounded wrt. j ji.Noti
e that the notion of boundedness for an atom (see De�nition 5) does notdepend on the 
hoi
e of a parti
ular model of P . As a 
onsequen
e, also the de�-nition of strong boundedness does not refer to any model of P ; however, it refersto the LDNF-derivations of P . For this reason, a ground atom is always boundedbut not ne
essarily strongly bounded. On the other hand, if A is strongly boundedthen it is bounded too.The following remark follows immediately.Remark 11Let the query Q be strongly bounded wrt. P and j j1; : : : ; j jn, where P is a hierar
hyRn = � � � = R1 . Let i 2 f1; : : : ; ng. If Q is de�ned in R1[ : : :[Ri then Q is stronglybounded wrt. R1 [ : : : [ Ri and j j1; : : : ; j ji.
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o, S. Etalle, and S. RossiIn order to verify whether a query Q is strongly bounded wrt. a given program Pone 
an perform a 
all-pattern analysis (Janssen and Bruynooghe 1992, Gabbrielliand Gia
obazzi 1994, Codish and Demoen 1995) whi
h allows us to infer informationabout the form of the 
all-patterns, i.e., the atoms that will be possibly 
alledduring the exe
ution of P [fQg. However this is not the only way for guaranteeingstrong boundedness. There are 
lasses of programs and queries for whi
h strongboundedness 
an be proved in a straightforward way. This is shown in the followingse
tion.Let us illustrate the notion of strong boundedness through an example.Example 12Let LIST01 be the following program whi
h de�nes the proper lists of 0's and 1's,i.e. lists 
ontaining only 0's and 1's and at least two distin
t elements, as follows:r1: list01([ ℄,0,0).r2: list01([0|Xs℄,s(N0),N1)  list01(Xs,N0,N1).r3: list01([1|Xs℄,N0,s(N1))  list01(Xs,N0,N1).r4: length([ ℄,0).r5: length([X|Xs℄,s(N))  length(Xs,N).r6: plist01(Ls)  list01(Ls,N0,N1),:length(Ls,N0), :length(Ls,N1).Let us distinguish two modules in LIST01: R1 = fr1; r2; r3; r4; r5g and R2 = fr6g(R2 extends R1). Let j j1 be the natural level mapping for R1 de�ned by:jlist01(ls;n0 ;n1 )j1 = jls jlengthjlength(ls;n)j1 = jnjsizewhere for a term t , if t is a list then jt jlength is equal to the length of the list,otherwise it is 0, while jt jsize is the number of fun
tion symbols o

urring in theterm t . Let also j j2 be the trivial level mapping for R2 de�ned by:jplist01(ls)j2 = 1and assume that jLj2 = 0, if L is not de�ned in R2.Let us 
onsider the following sets of atomi
 queries for LIST01 := R1 [ R2:Q1 = flist01(ls;n0 ;n1 )j ls is a list, possibly non-ground, of a �xed lengthg;Q2 = flength(ls;n)j n is a ground term of the form either 0 or s(s(...(0)))g;Q3 = fplist01(ls)j ls is a list, possibly non-ground, of a �xed lengthg.By de�nition of j j1, all the atoms inQ1 andQ2 are bounded wrt. j j1. Analogously,all the atoms in Q3 are bounded wrt. j j2. Noti
e that for all atoms A 2 CallP (Qj),with j 2 f1; 2; 3g, there exists k 2 f1; 2; 3g su
h that A 2 Qk. Hen
e, if A is de�nedin Ri then A is bounded wrt. j ji. This proves that the set of queries Q1, Q2 andQ3 are strongly bounded wrt. LIST01 and j j1, j j2.Here we introdu
e our main result.
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 Programming 9Theorem 13Let P := R1 [ : : : [ Rn be a program su
h that Rn = : : : = R1 is a hierar
hy,j j1; : : : ; j jn be level mappings for R1; : : : ; Rn, respe
tively, and M be a 
ompletemodel of P . Suppose that� Ri is a

eptable wrt. j ji and M , for all i 2 f1; : : : ; ng.� Q is a query strongly bounded wrt. P and j j1; : : : ; j jn.Then all LDNF-derivations of P [ fQg are �nite.ProofLet Q be a query strongly bounded wrt. P and j j1; : : : ; j jn. We prove the theoremby indu
tion on n.Base. Let n = 1. This 
ase follows immediately by Theorem 9, where P = R1, Ris empty and C is the 
lass of strongly bounded queries wrt. R1 and j j1, and thefa
t that a strongly bounded atom is also bounded.Indu
tion step. Let n > 1. Also this 
ase follows by Theorem 9, where P = Rn,R = R1[ : : :[Rn�1 and C is the 
lass of strongly bounded queries wrt. R1[ : : :[Rnand j j1; : : : ; j jn. In fa
t,� Rn is a

eptable wrt. j jn and M ;� for all queries Q 2 C, all LDNF-derivations of (R1 [ : : : [ Rn�1) [ fQg are�nite, by Remark 11 and the indu
tive hypothesis;� for all atoms A 2 C, if A is de�ned in Rn then A is bounded wrt. j jn, byde�nition of strong boundedness.Here are a few examples applying Theorem 13.Example 14Let us re
onsider the program of Example 12. In the program LIST01, R1 andR2 are a

eptable wrt. any 
omplete model and the level mappings j j1 and j j2,respe
tively. We already showed that Q1;Q2 and Q3 are strongly bounded wrt.LIST01 and j j1, j j2. Hen
e, by Theorem 13, all LDNF-derivations of LIST01[fQg,where Q is a query in Q1;Q2 or Q3, are �nite.Noti
e that in the previous example the top module in the hierar
hy, R2, 
ontainsno re
ursion. Hen
e it is intuitively 
lear that any problem for termination 
annotdepend on it. This is re
e
ted by the fa
t that the level mapping for R2 is 
ompletelytrivial. This shows how the hierar
hi
al de
omposition of the program 
an simplifythe termination proof.Example 15Consider the sorting program MERGESORT (Apt 1997):
1: mergesort([ ℄,[ ℄).
2: mergesort([X℄,[X℄).
3: mergesort([X,Y|Xs℄,Ys)  split([X,Y|Xs℄,X1s,X2s),
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o, S. Etalle, and S. Rossimergesort(X1s,Y1s),mergesort(X2s,Y2s),merge(Y1s,Y2s,Ys).
4: split([ ℄,[ ℄,[ ℄).
5: split([X|Xs℄,[X|Ys℄,Zs)  split(Xs,Zs,Ys).
6: merge([ ℄,Xs,Xs).
7: merge(Xs,[ ℄,Xs).
8: merge([X|Xs℄,[Y|Ys℄,[X|Zs℄)  X<=Y, merge(Xs,[Y|Ys℄,Zs).
9: merge([X|Xs℄,[Y|Ys℄,[Y|Zs℄)  X>Y, merge([X|Xs℄,Ys,Zs).Let us divide the program MERGESORT into three modules, R1; R2; R3, su
h thatR3 = R2 = R1 as follows:� R3 := f
1; 
2; 
3g, it de�nes the relation mergesort,� R2 := f
4; 
5g, it de�nes the relation split,� R1 := f
6; 
7; 
8; 
9g, it de�nes the relation merge.Let us 
onsider the natural level mappingsjmerge(xs; ys ; zs)j1 = jxsjlength + jys jlengthjsplit(xs; ys ; zs)j2 = jxsjlengthjmergesort(xs; ys)j3 = jxs jlengthand assume that for all i 2 f1; 2; 3g, jLji = 0 if L is not de�ned in Ri.All ground queries are strongly bounded wrt. the program MERGESORT and thelevel mappings j j1; j j2; j j3. Moreover, sin
e the program is a de�nite one, R1 andR2 are a

eptable wrt. any model and the level mappings j j1 and j j2, respe
tively,while R3 is a

eptable wrt. the level mapping j j3 and the model M below:M =[mergesort(Xs; Ys)℄[ [merge(Xs; Ys; Zs)℄[fsplit([ ℄; [ ℄; [ ℄)g[fsplit([x ℄; [ ℄; [x ℄)j x is any ground termg[fsplit([x ℄; [x ℄; [ ℄)j x is any ground termg[fsplit(xs; ys ; zs)j xs; ys ; zs are ground terms andjxsjlength � 2; jxsjlength > jys jlength; jxsjlength > jzs jlengthgwhere we denote by [A℄ the set of all ground instan
es of an atom A.Hen
e, by Theorem 13, all LDNF-derivations of MERGESORT[ fQg, where Q is aground query, are �nite.Note that by ex
hanging the roles of R1 and R2 we would obtain the same result.In fa
t the de�nition of merge and split are independent from ea
h other.4 Well-Behaving ProgramsIn this se
tion we 
onsider the problem of how to prove that a query is stronglybounded. In fa
t one 
ould argue that 
he
king strong boundedness is more diÆ
ultand less abstra
t than 
he
king boundedness itself in the sense of (Apt and Pedres
hi
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 Programming 111993): we have to refer to all LDNF-derivations instead of referring to a model,whi
h might well look like a step ba
kwards in the proof of termination of a program.This is only partly true: in order to 
he
k strong boundedness we 
an either employtools based on abstra
t interpretation or 
on
entrate our attention only on programswhi
h exhibit useful persisten
e properties wrt. LDNF-resolution.We now show how the well-established notions of well-moded and well-typedprograms 
an be employed in order to verify strong boundedness and how they 
anlead to simple termination proofs.4.1 Well-Moded ProgramsThe 
on
ept of a well-moded program is due to (Dembi�nski and Maluszy�nski 1985).The formulation we use here is from (Rosenblueth 1991), and it is equivalent to thatin (Drabent 1987). The original de�nition was given for de�nite programs (i.e.,programs without negation), however it applies to general programs as well, justby 
onsidering literals instead of atoms. It relies on the 
on
ept of mode, whi
h isa fun
tion that labels the positions of ea
h predi
ate in order to indi
ate how thearguments of a predi
ate should be used.De�nition 16 (Mode)Consider an n-ary predi
ate symbol p. By a mode for p we mean a fun
tion mpfrom f1; : : : ; ng to the set f+;�g. If mp(i) = + then we 
all i an input positionof p; if mp(i) = � then we 
all i an output position of p. By a moding we mean a
olle
tion of modes, one for ea
h predi
ate symbol.In a moded program, we assume that ea
h predi
ate symbol has a unique modeasso
iated to it. Multiple moding may be obtained by simply renaming the predi-
ates. We use the notation p(mp(1); : : : ;mp(n)) to denote the moding asso
iatedwith a predi
ate p (e.g., append(+;+;�)). Without loss of generality, we assume,when writing a literal as p(s; t), that we are indi
ating with s the sequen
e of terms�lling in the input positions of p and with t the sequen
e of terms �lling in theoutput positions of p. Moreover, we adopt the 
onvention that p(s; t) 
ould denoteboth negative and positive literals.De�nition 17 (Well-Moded)� A query p1(s1; t1); : : : ; pn(sn; tn) is 
alled well-moded if for all i 2 f1; : : : ; ngVar(si) � i�1[j=1Var(tj):� A 
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is 
alled well-moded if for alli 2 f1; : : : ; n+ 1g Var(si) � i�1[j=0Var(tj):� A program is 
alled well-moded if all of its 
lauses are well-moded.
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o, S. Etalle, and S. RossiNote that well-modedness 
an be synta
ti
ally 
he
ked in a time whi
h is linearwrt. the size of the program (query).Remark 18If Q is a well-moded query then all its pre�xes are well-moded.The following lemma states that well-moded queries are 
losed under LDNF-resolution. This result has been proved in (Apt and Pellegrini 1994) for LD-derivationsand de�nite programs.Lemma 19Let P and Q be a well-moded program and query, respe
tively. Then all LDNF-des
endants of P [ fQg are well-moded.ProofIt is suÆ
ient to extend the proof in (Apt and Pellegrini 1994) by showing that ifa query :A;L1; : : : ; Ln is well-moded and A is ground then both A and L1; : : : ; Lnare well-moded. This follows immediately by de�nition of well-modedness. If A isnon-ground then the query above has no des
endant.When 
onsidering well-moded programs, it is natural to measure atoms only intheir input positions (Etalle et al. 1999).De�nition 20 (Moded Level Mapping)Let P be a moded program. A fun
tion j j is a moded level mapping for P if it is alevel mapping for P su
h that� for any s, t and u, jp(s; t)j = jp(s;u)j.Hen
e in a moded level mapping the level of an atom is independent from theterms in its output positions.The following Remark and Proposition allow us to exploit well-modedness forapplying Theorem 13.Remark 21Let P be a well-moded program. If Q is well-moded, then �rst(Q) is ground inits input position and hen
e it is bounded wrt. any moded level mapping for P .Moreover, by Lemma 19, every well-moded query is strongly bounded wrt. P andany moded level mapping for P .Proposition 22Let P := R1 [ : : : [ Rn be a well-moded program and Rn = : : : = R1 a hierar
hy,and j j1; : : : ; j jn be moded level mappings for R1; : : : ; Rn, respe
tively.Then every well-moded query is strongly bounded wrt. P and j j1; : : : ; j jn.Example 23Let MOVE be the following program whi
h de�nes a permutation between two listssu
h that only one element is moved. We introdu
e modes and we distinguish thetwo uses of append by renaming it as append1 and append2.
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 Programming 13mode delete(+;�;�).mode append1(�;�;+).mode append2(+;+;�).mode move(+;�).r1: delete([X|Xs℄,X,Xs).r2: delete([X|Xs℄,Y,[X|Ys℄)  delete(Xs,Y,Ys).r3: append1([ ℄,Ys,Ys).r4: append1([X|Xs℄,Ys,[X|Zs℄)  append1(Xs,Ys,Zs).r5: append2([ ℄,Ys,Ys).r6: append2([X|Xs℄,Ys,[X|Zs℄)  append2(Xs,Ys,Zs).r7: move(Xs,Ys)  append1(X1s,X2s,Xs),delete(X1s,X,Y1s), append2(Y1s,[X|X2s℄,Ys).Let us partition MOVE into the modules R1 = fr1; r2; r3; r4; r5; r6g and R2 = fr7g(R2 extends R1). Let j j1 be the natural level mapping for R1 de�ned by:jappend1(xs; ys ; zs)j1 = jzsjlengthjappend2(xs; ys ; zs)j1 = jxsjlength.jdelete(xs; x ; ys)j1 = jxsjlength.R2 does not 
ontain any re
ursive de�nition hen
e let j j2 be the trivial level mappingde�ned by:jmove(xs; ys)j2 = 1and assume that jLj2 = 0, if L is not de�ned in R2.The program MOVE := R1 [ R2 is well-moded and hen
e by Proposition 22 everywell-moded query is strongly bounded wrt. MOVE and j j1, j j2.Example 24Let R1 be the program whi
h de�nes the relations member and is, R2 be theprogram de�ning the relation 
ount and R3 be the program de�ning the relationdiff with the moding and the de�nitions below.mode member(+;+).mode is(�;+).mode diff(+;+;+;�).mode 
ount(+;+;�).r1: member(X,[X|Xs℄).r2: member(X,[Y|Xs℄)  member(X,Xs).r3: diff(Ls,I1,I2,N)  
ount(Ls,I1,N1), 
ount(Ls,I2,N2),N is N1-N2.r4: 
ount([ ℄,I,0).r5: 
ount([H|Ts℄,I,M)  member(H,I), 
ount(Ts,I,M1),M is M1+1.r6: 
ount([H|Ts℄,I,M)  : member(H,I), 
ount(Ts,I,M).
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o, S. Etalle, and S. RossiThe relation diff(ls; i1 ; i2 ;n), given a list ls and two 
he
k-lists i1 and i2 , de�nesthe di�eren
e n between the number of elements of ls o

urring in i1 and thenumber of elements of ls o

urring in i2 . Clearly R3 = R2 = R1. It is easy to seethat R1 is a

eptable wrt. any 
omplete model and the moded level mappingjmember(e; ls)j1 = jls jlengthR2 is a

eptable wrt. any 
omplete model and the moded level mapping:j
ount(ls; i ;n)j2 = jls jlengthand R3 is a

eptable wrt. any 
omplete model and the trivial moded level mapping:jdiff(ls; i1 ; i2 ;n)j3 = 1where jLji = 0, if L is not de�ned in Ri.The program DIFF := R1 [ R2 [ R3 is well-moded. Hen
e, by Proposition 22,every well-moded query is strongly bounded wrt. DIFF and j j1, j j2, j j3.Note that the 
lass of strongly bounded queries is generally larger than the 
lassof well-moded queries. Consider for instan
e the program MOVE and the query Q :=move([X1; X2℄; Ys); delete(Ys; Y; Zs) whi
h is not well-moded sin
e it is not groundin the input position of the �rst atom. However Q 
an be easily re
ognized to bestrongly bounded wrt. MOVE and j j1, j j2 de�ned in Example 23. We will 
ome ba
kto this query later. 4.2 Well-Typed ProgramsA more re�ned well-behavior property of programs, namely well-typedness, 
an alsobe useful in order to ensure the strong boundedness property.The notion of well-typedness relies both on the 
on
epts of mode and type. Thefollowing very general de�nition of a type is suÆ
ient for our purposes.De�nition 25 (Type)A type is a set of terms 
losed under substitution.Assume as given a spe
i�
 set of types, denoted by Types, whi
h in
ludes Any,the set of all terms, and Ground the set of all ground terms.De�nition 26 (Type Asso
iated with a Position)A type for an n-ary predi
ate symbol p is a fun
tion tp from f1; : : : ; ng to the setTypes. If tp(i) = T , we 
all T the type asso
iated with the position i of p. Assuminga type tp for the predi
ate p, we say that a literal p(s1; : : : ; sn) is 
orre
tly typed inposition i if si 2 tp(i).In a typed program we assume that every predi
ate p has a �xed mode mp anda �xed type tp asso
iated with it and we denote it byp(mp(1) : tp(1); : : : ;mp(n) : tp(n)):So, for instan
e, we write
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ti
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 Programming 15append(+ : List ;+ : List ;� : List)to denote the moded atom append(+;+;�) where the type asso
iated with ea
hargument position is List , i.e., the set of all lists.We 
an then talk about types of input and of output positions of an atom.The notion of well-typed queries and programs relies on the following 
on
ept oftype judgement.De�nition 27 (Type Judgement)By a type judgement we mean a statement of the form s : S) t : T: We say thata type judgement s : S) t : T is true, and write j= s : S) t : T; if for all substi-tutions �, s� 2 S implies t� 2 T.For example, the type judgements (x : Nat ; l : ListNat) ) ([xjl℄ : ListNat) and([xjl℄ : ListNat)) (l : ListNat) are both true.A notion of well-typed program has been �rst introdu
ed in (Bronsard et al.1992) and also studied in (Apt and Etalle 1993) and in (Apt and Luitjes 1995).Similarly to well-moding, the notion was developed for de�nite programs. Here weextend it to general programs.In the following de�nition, we assume that is : Is is the sequen
e of typed terms�lling in the input positions of Ls and os : Os is the sequen
e of typed terms �llingin the output positions of Ls.De�nition 28 (Well-Typed)� A query L1; : : : ; Ln is 
alled well-typed if for all j 2 f1; : : : ; ngj= oj1 : Oj1 ; : : : ;ojk : Ojk ) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1.� A 
lause L0  L1; : : : ; Ln is 
alled well-typed if for all j 2 f1; : : : ; ngj= i0 : I0;oj1 : Oj1 ; : : : ;ojk : Ojk ) ij : Ijwhere Lj1 ; : : : ; Ljk are all the positive literals in L1; : : : ; Lj�1, andj= i0 : I0;oj1 : Oj1 ; : : : ;ojh : Ojh ) o0 : O0where Lj1 ; : : : ; Ljh are all the positive literals in L1; : : : ; Ln.� A program is 
alled well-typed if all of its 
lauses are well-typed.Note that an atomi
 query is well-typed i� it is 
orre
tly typed in its input positionsand a unit 
lause p(s : S; t : T) is well-typed if j= s : S) t : T.The di�eren
e between De�nition 28 and the one usually given for de�nite pro-grams is that the 
orre
tness of the terms �lling in the output positions of negativeliterals 
annot be used to dedu
e the 
orre
tness of the terms �lling in the inputpositions of a literal to the right (or the output positions of the head in a 
lause).The two de�nitions 
oin
ide either for de�nite programs or for general programswhose negative literals have only input positions.As an example, let us 
onsider the trivial program
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o, S. Etalle, and S. Rossip(� : List).q(+ : List).p([℄).q([℄).By adopting a straightforward extension of well-typedness to normal programswhi
h 
onsiders also the outputs of negative literals, we would have that the query:p(a); q(a) is well-typed even if a is not a list. Moreover well-typedness would notbe persistent wrt. LDNF-resolution sin
e q(a), whi
h is the �rst LDNF-resolvent ofthe previous query, is no more well-typed. Our extended de�nition and the 
lassi
alone 
oin
ide either for de�nite programs or for general programs whose negativeliterals have only input positions.For de�nite programs, well-modedness 
an be viewed as a spe
ial 
ase of well-typedness if we 
onsider only one type: Ground. With our extended de�nitions ofwell-moded and well-typed general programs this is no more true. We 
ould havegiven a more 
ompli
ated de�nition for well-typedness in order to 
apture also well-modedness as a spe
ial 
ase. For the sake of simpli
ity, we prefer to give two distin
tand simpler de�nitions.Remark 29If Q is a well-typed query, then all its non-empty pre�xes are well-typed. In parti
-ular, �rst(Q) is well-typed.The following Lemma shows that well-typed queries are 
losed under LDNF-resolution. It has been proved in (Bronsard et al. 1992) for de�nite programs.Lemma 30Let P and Q be a well-typed program and query, respe
tively. Then all LDNF-des
endants of P [ fQg are well-typed.ProofSimilarly to the 
ase of well-moded programs, to extend the result to general pro-grams it is suÆ
ient to show that if a query Q := :A;L1; : : : ; Ln is well-typed thenboth A and L1; : : : ; Ln are well-typed. In fa
t, by Remark 29, :A = �rst(Q) iswell-typed and by De�nition 28, if the �rst literal in a well-typed query is negative,then it is not used to dedu
e well-typedness of the rest of the query.It is now natural to exploit well-typedness in order to 
he
k strong boundedness.Analogously to well-moded programs, there are level mappings that are more nat-ural in presen
e of type information. They are the level mappings for whi
h everywell-typed atom is bounded. By Lemma 30 we have that a well-typed query Q isstrongly bounded wrt. a well-typed program P and any su
h level mapping. Thisis stated by the next proposition.Proposition 31Let P := R1 [ : : :[Rn be a well-typed program and Rn = : : : = R1 be a hierar
hy,and j j1; : : : ; j jn be level mappings for R1; : : : ; Rn, respe
tively. Suppose that forevery well-typed atom A, if A is de�ned in Ri then A is bounded wrt. j ji, for i 2f1; : : : ; ng. Then every well-typed query is strongly bounded wrt. P and j j1; : : : ; j jn.
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 Programming 17Example 32Let us 
onsider again the modular proof of termination for MOVE := R1 [R2, whereR1 de�nes the relations append1, append2 and delete, while R2, whi
h extendsR1, de�nes the relation move. We 
onsider the moding of Example 23 with thefollowing types:delete(+ : List ;� : Any;� : List)append1(� : List ;� : List ;+ : List)append2(+ : List ;+ : List ;� : List)move(+ : List ;� : List).Program MOVE is well-typed in the assumed modes and types.Let us 
onsider the same level mappings as used in Example 23. We have alreadyseen that R2 is a

eptable wrt. j j2 and any model, and R1 is a

eptable wrt. j j1and any model. By de�nition of j j2 and j j1, one 
an easily see that� every well-typed atom A de�ned in Ri is bounded wrt. j ji.Hen
e, by Proposition 31,� every well-typed query is strongly bounded wrt. MOVE and j j1, j j2.Let us 
onsider again the query Q := move([X1; X2℄; Ys); delete(Ys; Y;Zs) whi
his not well-moded but it is well-typed. We have that Q is strongly bounded wrt.MOVE and j j1, j j2, and 
onsequently, by Theorem 13, that all LDNF-derivations ofMOVE[ fQg are �nite.Example 33Consider the program COLOR MAP from (Sterling and Shapiro 1986) whi
h generatesa 
oloring of a map in su
h a way that no two neighbors have the same 
olor. Themap is represented as a list of regions and 
olors as a list of available 
olors. Inturn, ea
h region is determined by its name, 
olor and the 
olors of its neighbors,so it is represented as a term region(name,
olor,neighbors), where neighborsis a list of 
olors of the neighboring regions.
1: 
olor map([ ℄,Colors).
2: 
olor map([Region|Regions℄,Colors)  
olor region(Region,Colors),
olor map(Regions,Colors).
3: 
olor region(region(Name,Color,Neighbors),Colors)  sele
t(Color,Colors,Colors1)subset(Neighbors,Colors1).
4: sele
t(X,[X|Xs℄,Xs).
5: sele
t(X,[Y|Xs℄,[Y|Zs℄)  sele
t(X,Xs,Zs).
6: subset([ ℄,Ys).
7: subset([X|Xs℄,Ys)  member(X,Ys), subset(Xs,Ys).
8: member(X,[X|Xs℄).
9: member(X,[Y|Xs℄)  member(X,Xs).
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o, S. Etalle, and S. RossiConsider the following modes and types for the program COLOR MAP:
olor map(+ : ListRegion ;+ : List)
olor region(+ : Region ;+ : List)sele
t(+ : Any ;+ : List ;� : List)subset(+ : List ;+ : List)member(+ : Any ;+ : List)where� Region is the set of all terms of the form region(name,
olor,neighbors)with name; 
olor 2 Any and neighbors 2 List ,� ListRegion is the set of all lists of regions.We 
an 
he
k that COLOR MAP is well-typed in the assumed modes and types.We 
an divide the program COLOR MAP into four distin
t modules, R1; R2; R3; R4,in the hierar
hy R4 = R3 = R2 = R1 as follows:� R4 := f
1; 
2g de�nes the relation 
olor map,� R3 := f
3g de�nes the relation 
olor region,� R2 := f
4; 
5; 
6; 
7g de�nes the relations sele
t and subset,� R1 := f
8; 
9g de�nes the relation member.Ea
h Ri is trivially a

eptable wrt. any model M and the simple level mappingj ji de�ned below:j
olor map(xs; ys)j4 = jxs jlengthj
olor region(x ; xs)j3 = 1jsele
t(x ; xs; ys)j2 = jxsjlengthjsubset(xs; ys)j2 = jxsjlengthjmember(x ; xs)j1 = jxsjlengthwhere for all i 2 f1; 2; 3; 4g, jLji = 0, if L is not de�ned in Ri.Moreover, for every well-typed atom A and i 2 f1; 2; 3; 4g, if A is de�ned in Rithen A is bounded wrt. j ji. Hen
e, by Proposition 31,� every well-typed query is strongly bounded wrt. the program COLOR MAP andj j1; : : : ; j j4.This proves that all LDNF-derivations of the program COLOR MAP starting in a well-typed query are �nite. In parti
ular, all the LDNF-derivations starting in a queryof the form 
olor map(xs; ys), where xs is a list of regions and ys is a list, are �nite.Note that in proving termination of su
h queries the 
hoi
e of a model is irrelevant.Moreover, sin
e su
h queries are well-typed, their input arguments are required tohave a spe
i�ed stru
ture, but they are not required to be ground terms as in the
ase of well-moded queries. Hen
e, well-typedness allows us to reason about a larger
lass of queries with respe
t to well-modedness.This example is also dis
ussed in (Apt and Pedres
hi 1994). In order to proveits termination they de�ne a parti
ular level mapping j j, obtained by 
ombining
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 Programming 19the level mappings of ea
h module, and a spe
ial model M wrt. whi
h the wholeprogram COLOR MAP is a

eptable. Both the level mapping j j and the model M arenon-trivial. 5 Iterative Proof MethodIn the previous se
tion we have seen how we 
an exploit properties whi
h arepreserved by LDNF-resolution, su
h as well-modedness and well-typedness, for de-veloping a modular proof of termination in a hierar
hy of programs. In this se
tionwe show how these properties allow us to apply our general result, i.e., Theorem 9,also in an iterative way.Corollary 34Let P and R be two programs su
h that P [ R is well-moded and P extends R,and M be a 
omplete model of P [R. Suppose that� P is a

eptable wrt. a moded level mapping j j and M ,� for all well-moded queries Q, all LDNF-derivations R [ fQg are �nite.Then for all well-moded queries Q, all LDNF-derivations of (P [R)[fQg are �nite.ProofLet C be the 
lass of well-moded queries of P [ R. By Remark 18 and Lemma 19,C is (P [ R)-
losed. Moreover� P is a

eptable wrt. a moded level mapping j j and M , by hypothesis;� for all well-moded queries Q, all LDNF-derivations of R [ fQg are �nite, byhypothesis;� for all well-moded atoms A, if A is de�ned in P then A is bounded wrt. j j,by Remark 21, sin
e j j is a moded level mapping.Hen
e by Theorem 9 we get the thesis.Note that this result allows one to in
rementally prove well-termination for gen-eral programs thus extending the result given in (Etalle et al. 1999) for de�niteprograms.A similar result 
an be stated also for well-typed programs and queries, providedthat there exists a level mapping for P implying boundedness of atomi
 well-typedqueries.Corollary 35Let P and R be two programs su
h that P [R is well-typed and P extends R, andM be a 
omplete model of P [ R. Suppose that� P is a

eptable wrt. a level mapping j j and M ,� every well-typed atom de�ned in P is bounded wrt. j j,� for all well-typed queries Q, all LDNF-derivations of R [ fQg are �nite.Then for all well-typed queries Q, all LDNF-derivations of (P [R)[fQg are �nite.
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o, S. Etalle, and S. RossiProofLet C be the 
lass of well-typed queries of P [R. By Remark 29 and Lemma 30, Cis (P [R)-
losed. Moreover� P is a

eptable wrt. a level mapping j j and M , by hypothesis;� for all well-typed queries Q, all LDNF-derivations of R [ fQg are �nite, byhypothesis;� for all well-typed atoms A, if A is de�ned in P then A is bounded wrt. j j, byhypothesis.Hen
e by Theorem 9 we have the thesis.Example 36Let us 
onsider again the program COLOR MAP with the same modes and types asin Example 33. We apply the iterative termination proof given by Corollary 35 toCOLOR MAP.First step. We 
an 
onsider at �rst two trivial modules, R1 := f
8; 
9g whi
hde�nes the relation member, and R0 := ;. We already know that� R1 is a

eptable wrt. any modelM and the level mapping j j1 already de�ned;� all well-typed atoms A, de�ned in R1, are bounded wrt. j j1;� for all well-typed queries Q, all LDNF-derivations of R0 [ fQg are trivially�nite.Hen
e, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of (R1 [R0) [ fQg are �nite.Se
ond step. We 
an now iterate the pro
ess one level up. Let us 
onsider thetwo modules, R2 := f
4; 
5; 
6; 
7g whi
h de�nes the relations sele
t and subset,and R1 := f
8; 
9g whi
h de�nes the relation member and it is equal to (R1 [ R0)of the previous step. We already showed in Example 33 that� R2 is a

eptable wrt. any modelM and the level mapping j j2 already de�ned;� all well-typed atoms A, de�ned in R2, are bounded wrt. j j2;� for all well-typed queries Q, all LDNF-derivations of R1 [ fQg are �nite.Hen
e, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of (R2 [R1) [ fQg are �nite.By iterating the same reasoning for two steps more, we 
an prove that all LDNF-derivations of the program COLOR MAP starting in a well-typed query are �nite.Our iterative method applies to a hierar
hy of programs where on the lowest module,R, we require termination wrt. a parti
ular 
lass of queries. This 
an be a weakerrequirement on R than a

eptability as shown in the following 
ontrived example.Example 37Let R de�ne the predi
ate l
ount whi
h 
ounts the number of natural numbers ina list.
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ount(+ : List ;� : Nat)nat(+ : Any).r1: l
ount([ ℄,0).r2: l
ount([X|Xs℄,s(N))  nat(X), l
ount(Xs,N).r3: l
ount([X|Xs℄,N)  : nat(X), l
ount(Xs,N).r4: l
ount(0,N)  l
ount(0,s(N)).r5: nat(0).r6: nat(s(N))  nat(N).R is well-typed wrt. the spe
i�ed modes and types. Note that R 
annot be a

ept-able due to the presen
e of 
lause r4. On the other hand, the program terminatesfor all well-typed queries.Consider now the following program P whi
h extends R. The predi
ate split,given a list of lists, separates the list elements 
ontaining more than max naturalnumbers from the other lists:split(+ : ListList ;� : ListList ;� : ListList)>(+ : Nat ;+ : Nat)<=(+ : Nat ;+ : Nat)p1: split([ ℄,[ ℄,[ ℄).p2: split([L|Ls℄,[L|L1℄,L2)  l
ount(L,N), N > max,split(Ls,L1,L2).p3: split([L|Ls℄,L1,[L|L2℄)  l
ount(L,N), N <= max,split(Ls,L1,L2).where ListList denotes the set of all lists of lists, and max is a natural number.The program P [ R is well-typed. Let us 
onsider the simple level mapping j j forP de�ned by:jsplit(ls; l1 ; l2 )j = jls jlengthwhi
h assigns level 0 to any literal not de�ned in P . Note that� P is a

eptable wrt. the level mapping j j and any 
omplete model M ,� all well-typed atoms de�ned in P are bounded wrt. j j,� for all well-typed queries Q, all LDNF-derivations of R [ fQg are �nite.Hen
e, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of (P [R) [ fQg are �nite.This example shows that well-typedness 
ould be useful to ex
lude what mightbe 
alled \dead 
ode".6 Comparing with Apt and Pedres
hi's Approa
hOur work 
an be seen as an extension of a proposal in (Apt and Pedres
hi 1994).Hen
e we devote this se
tion to a 
omparison with their approa
h.On one hand, sin
e our approa
h applies to general programs, it 
learly 
overs



22 A. Bossi, N. Co

o, S. Etalle, and S. Rossi
ases whi
h 
annot be treated with the method proposed in (Apt and Pedres
hi1994), whi
h was developed for de�nite programs. On the other hand, for de�niteprograms the 
lasses of queries and programs whi
h 
an be treated by Apt andPedres
hi's approa
h are properly in
luded in those whi
h 
an be treated by ourmethod as we show in this se
tion.We �rst re
all the notions of semi-a

eptability and bounded query used in (Aptand Pedres
hi 1994).De�nition 38 (Semi-a

eptable Program)Let P be a de�nite program, j j be a level mapping for P and M be a model ofP . P is 
alled semi-a

eptable wrt. j j and M if for every 
lause A  A; B;B inground(P ) su
h that M j= A� jAj > jBj; if rel(A) ' rel(B),� jAj � jBj; if rel(A) = rel(B).De�nition 39 (Bounded Query)Let P be a de�nite program, j j be a level mapping for P , and M be a model of P .� With ea
h query Q := L1; : : : ; Ln we asso
iate n sets of natural numbersde�ned as follows: For i 2 f1; : : : ; ng,jQjMi = fjL0ij j L01; : : : ; L0n is a ground instan
e of Q and M j= L01; : : : ; L0i�1g:� A query Q is 
alled bounded wrt. j j and M if jQjMi is �nite (i.e., if jQjMi hasa maximum in N) for all i 2 f1; : : : ; ng.Lemma 40Let P be a de�nite program whi
h is semi-a

eptable wrt. j j andM . If Q is a querybounded wrt. j j and M then all LD-des
endants of P [ fQg are bounded wrt. j jand M .ProofIt is a 
onsequen
e of Lemma 3.6 in (Apt and Pedres
hi 1994) and (the proof of)Lemma 5.4 in (Apt and Pedres
hi 1994).We 
an always de
ompose a de�nite program P into a hierar
hy of n � 1 pro-grams P := R1 [ : : : [ Rn, where Rn = : : : = R1 in su
h a way that for everyi 2 f1; : : : ; ng if the predi
ate symbols pi and qi are both de�ned in Ri then neitherpi = qi nor qi = pi (either they are mutually re
ursive or independent). We 
allsu
h a hierar
hy a �nest de
omposition of P .The following property has two main appli
ations. First it allows us to 
ompareour approa
h with (Apt and Pedres
hi 1994), then it provides an extension ofTheorem 13 to hierar
hies of semi-a

eptable programs.Proposition 41Let P be a semi-a

eptable program wrt. a level mapping j j and a model M andQ be a query strongly bounded wrt. P and j j. Let P := R1 [ : : : [ Rn be a �nestde
omposition of P into a hierar
hy of modules. Let j ji, with i 2 f1; : : : ; ng, bede�ned in the following way: if A is de�ned in Ri then jAji = jAj else jAji = 0.Then
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eptable wrt. j ji and M (with i 2 f1; : : : ; ng),� Q is strongly bounded wrt. R1 [ : : : [Rn and j j1; : : : ; j jn.ProofImmediate by the de�nitions of semi-a

eptability and strongly boundedness, sin
ewe are 
onsidering a �nest de
omposition.In order to 
ompare our approa
h to the one presented in (Apt and Pedres
hi1994) we 
onsider only Theorem 5.8 in (Apt and Pedres
hi 1994), sin
e this istheir most general result whi
h implies the other ones, namely Theorem 5.6 andTheorem 5.7.Theorem 42 (Theorem 5.8 in (Apt and Pedres
hi 1994))Let P and R be two de�nite programs su
h that P extends R, and let M be amodel of P [ R. Suppose that� R is semi-a

eptable wrt. j jR and M \ BR,� P is semi-a

eptable wrt. j jP and M ,� there exists a level mapping jj jjP su
h that for every ground instan
e of a
lause from P , A A; B;B, su
h that M j= A| jjAjjP � jjBjjP , if rel(B) is de�ned in P ,| jjAjjP � jBjR, if rel(B) is de�ned in R.Then P [R is semi-a

eptable wrt. j j and M , where j j is de�ned as follows:jAj = jAjP + jjAjjP , if rel(A) is de�ned in P ,jAj = jAjR, if rel(A) is de�ned in R.The following remark follows from Lemma 5.4 in (Apt and Pedres
hi 1994) andCorollary 3.7 in (Apt and Pedres
hi 1994). Together with Theorem 42, it impliestermination of bounded queries in (Apt and Pedres
hi 1994).Remark 43If P [ R is semi-a

eptable wrt. j j and M and Q is bounded wrt. j j and M thenall LD-derivations of (P [ R) [ fQg are �nite.We now show that whenever Theorem 42 
an be applied to prove termination ofall the queries bounded wrt. j j and M , then also our method 
an be used to provetermination of the same 
lass of queries with no need of jj jjP for relating the proofsof the two modules.In the following theorem for the sake of simpli
ity we assume that P = R is a�nest de
omposition of P [ R. We dis
uss later how to extend the result to thegeneral 
ase.Theorem 44Let P and R be two programs su
h that P extends R, and let M be a model ofP [ R. Suppose that� R is semi-a

eptable wrt. j jR and M \ BR,� P is semi-a

eptable wrt. j jP and M ,
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omposition of P [R. If Q is bounded wrt. j j, then Q is strongly boundedwrt. P [ R and j jP and j jR.ProofSin
e we are 
onsidering a �nest de
omposition of P [ R, by Proposition 41, R isa

eptable wrt. j jR, while P is a

eptable wrt. j j0P su
h that if A is de�ned in Pthen jAj0P = jAjP else jAj0P = 0.By Lemma 40 all LD-des
endants of (P [R)[ fQg are bounded wrt. j j and M .By de�nition of boundedness, for all LD-des
endants Q0 of (P [R)[fQg, �rst(Q0)is bounded wrt. j j. By de�nition of j j, for all atoms A bounded wrt. j j we havethat: if A is de�ned in R then A is bounded wrt. j jR, while if A is de�ned in Pthen A is bounded wrt. j jP and hen
e wrt. j j0P (sin
e jAj0P = jAjP ). Hen
e thethesis follows.If the hierar
hy P = R is not a �nest one and j jP and j jR are the level mappings
orresponding to P and R respe
tively, then we 
an de
ompose P into a �nestde
omposition, P := Pn = : : : = P1 , and 
onsider instead of j jP the derived levelmappings j jPi de�ned in the following way: if A is de�ned in Pi then jAjPi = jAjPelse jAjPi = 0. Similarly we 
an de
ompose R := Rn = : : : = R1 and de�ne the
orresponding level mappings. The derived level mappings satisfy all the propertieswe need for proving that if Q is bounded wrt. j j, then Q is strongly bounded wrt.P [ R and j jP1 ; : : : ; j jPn ; j jR1 ; : : : ; j jRn .To 
omplete the 
omparison with (Apt and Pedres
hi 1994), we 
an observethat our method is appli
able also for proving termination of queries in modularprograms whi
h are not (semi-)a

eptable. Su
h programs 
learly 
annot be dealtwith Apt and Pedres
hi's method. The program of Example 37 is a non-a

eptableprogram for whi
h we proved termination of all well-typed queries by applyingCorollary 35. The following is a simple example of a non-a

eptable program towhi
h we 
an apply the general Theorem 13.Example 45Let R be the following trivial program:r1: q(0).r2: q(s(Y))  q(Y).The program R is a

eptable wrt. the following natural level mapping j jR andany model M :jq(t)jR = jt jsize.Let P be a program, whi
h extends R, de�ned as follows:p1: r(0,0).p2: r(s(X),Y).p3: p(X)  r(X,Y), q(Y).
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eptable wrt. the following trivial level mapping j jP andany model M :jq(y)jP = 0,jr(x ; y)jP = 0,jp(x )jP = 1.Note that, even if ea
h module is a

eptable, P [ R 
annot be a

eptable wrt.any level mapping and model. In fa
t P [ R is not left-terminating: for exampleit does not terminate for the ground query p(s(0)). As a 
onsequen
e Apt andPedres
hi's method does not apply to P [R. On the other hand, there are groundqueries, su
h as p(0), whi
h terminate in P [ R. We 
an prove it as follows.� By Theorem 13, for all strongly bounded queries Q wrt. P [R and j jR, j jP ,all LD-derivations of (P [ R) [ fQg are �nite.� p(0) is strongly bounded wrt. P [R and j jR, j jP . In fa
t, Call (P[R)(p(0)) =fp(0); r(0,Y); q(0)g and all these atoms are bounded wrt. their 
orrespond-ing level mapping. 7 Con
lusionsIn this paper we propose a modular approa
h to termination proofs of general pro-grams by following the proof style introdu
ed by Apt and Pedres
hi. Our te
hniqueallows one to give simple proofs in hierar
hi
ally stru
tured programs, namely pro-grams whi
h 
an be partitioned into n modules, R1 [ : : : [ Rn, su
h that for alli 2 f1; : : : ; n� 1g, Ri+1 extends R1 [ : : : [ Ri.We supply the general Theorem 9 whi
h 
an be iteratively applied to a hierar
hyof two programs and a 
lass of queries enjoying persisten
e properties throughLDNF-resolution. We then use su
h a result to deal with a general hierar
hy ofa

eptable programs, by introdu
ing an extension of the 
on
ept of boundednessfor hierar
hi
al programs, namely strong boundedness. Strong boundedness is aproperty on queries whi
h 
an be easily ensured for hierar
hies of programs behavingwell, su
h as well-moded or well-typed programs. We show how spe
i�
 and simplehierar
hi
al termination proofs 
an be derived for su
h 
lasses of programs andqueries. We believe this is a valuable proof te
hnique sin
e realisti
 programs aretypi
ally well-moded and well-typed.The simpli�
ations in the termination proof derive from the fa
t that for provingthe termination of a modular program, we simply prove a

eptability of ea
h moduleby 
hoosing a level mapping whi
h fo
uses only on the predi
ates de�ned in it, withno 
on
ern of the module 
ontext. Generally this 
an be done by using very simpleand natural level mappings whi
h are 
ompletely independent from one moduleto another. A 
ompli
ated level mapping is generally required when we prove thetermination of a program as a whole and we have to 
onsider a level mapping whi
happropriately relates all the predi
ates de�ned in the program. Hen
e the �ner themodularization of the program the simpler the level mappings. Obviously we 
annot
ompletely ignore how predi
ates de�ned in di�erent modules relate to ea
h other.
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o, S. Etalle, and S. RossiOn one hand, when we prove a

eptability for ea
h module, we 
onsider a model forthe whole program. This guarantees the 
ompatibility among the de�nitions in thehierar
hy. On the other hand, for queries we use the notion of strong boundedness.The intuition is that we 
onsider only what may in
uen
e the evaluation of queriesin the 
onsidered 
lass.The proof method of Theorem 9 
an be applied also to programs whi
h are nota

eptable. In fa
t, the 
ondition on the lower module is just that it terminates onall the queries in the 
onsidered 
lass and not on all ground queries as required fora

eptable programs. From Theorem 9 we 
ould also derive a method to deal withpre-
ompiled modules (or even modules written in a di�erent language) providedthat we already know termination properties and we have a 
omplete spe
i�
ation.For sake of simpli
ity, in the �rst part of the paper we 
onsider the notion ofa

eptability instead of the less requiring notion of semi-a

eptability. This 
hoi
emakes proofs of our results mu
h simpler. On the other hand, as we show in Se
tion6, our results 
an be applied also to hierar
hies of semi-a

eptable programs.We have 
ompared our proposal with the one in (Apt and Pedres
hi 1994). Theypropose a modular approa
h to left-termination proofs in a hierar
hy of two de�niteprograms P = R. They require both the (semi)-a

eptability of the two modules Rand P wrt. their respe
tive level mappings and a 
ondition relating the two levelmappings whi
h is meant to 
onne
t the two termination proofs.Our method is more powerful both be
ause we 
onsider also general programsand be
ause we 
apture de�nite programs and queries whi
h 
annot be treated bythe method developed in (Apt and Pedres
hi 1994). In fa
t there are non-a

eptableprograms for whi
h we 
an single out a 
lass of terminating queries.For the previous reasons our method improves also with respe
t to (Pedres
hiand Ruggieri 1996, Pedres
hi and Ruggieri 1999) where hierar
hies of modules are
onsidered. In (Pedres
hi and Ruggieri 1996, Pedres
hi and Ruggieri 1999) a unify-ing framework for the veri�
ation of total 
orre
tness of logi
 programs is provided.The authors 
onsider modular termination by following the approa
h in (Apt andPedres
hi 1994).In (Mar
hiori 1996) a methodology for proving termination of general logi
 pro-grams is proposed whi
h is based on modularization. In this approa
h, the a
y
li
modules, namely modules that terminate independently from the sele
tion rule, playa distin
tive role. For su
h modules, the termination proof does not require a model.In 
ombination with appropriate notions of up-a

eptability and low-a

eptability forthe modules whi
h are not a
y
li
, this provides a pra
ti
al te
hnique for provingtermination of the whole program. Analogously to (Apt and Pedres
hi 1994), also in(Mar
hiori 1996) a relation between the level mappings of all modules is required. Itis interesting to note that the idea of exploiting a
y
li
ity is 
ompletely orthogonalto our approa
h: we 
ould integrate it into our framework.Another related work is (De
orte et al. 1999), even if it does not aim expli
itly atmodularity. In fa
t they propose a te
hnique for automati
 termination analysis ofde�nite programs whi
h is highly eÆ
ient also be
ause they use a rather operationalnotion of a

eptability with respe
t to a set of queries, where de
reasing levels arerequired only on (mutually) re
ursive 
alls as in (De S
hreye et al. 1992). E�e
tively,
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orresponds to 
onsidering a �nest de
omposition of the program and havingindependent level mappings for ea
h module. However, their notion of a

eptabilityis de�ned and veri�ed on 
all-patterns instead of program 
lauses. In a sense, su
han a

eptability with respe
t to a set of queries 
ombines the 
on
epts of stronglyboundedness and (standard) a

eptability. They start from a 
lass of queries andtry to derive automati
ally a termination proof for su
h a 
lass, while we start fromthe program and derive a 
lass of queries for whi
h it terminates.In (Verbaeten et al. 1999) termination in the 
ontext of tabled exe
ution is 
on-sidered. Also in this 
ase modular results are inspired by (De S
hreye et al. 1992)by adapting the notion of a

eptability wrt. 
all-patterns to tabled exe
utions. Thiswork is further developed in (Verbaeten et al. 2001) where their modular termina-tion 
onditions are re�ned following the approa
h by (Apt and Pedres
hi 1994).In (Etalle et al. 1999) a method for modular termination proofs for well-modedde�nite programs is proposed. Our present work generalizes su
h result to generalprograms.Our method may help in designing more powerful automati
 systems for veri-fying termination (De S
hreye et al. 1992, Speirs, Somogyi and S�ndergaard. 1997,De
orte et al. 1999, Codish and Tabo
h 1999). We see two dire
tions whi
h 
ouldbe pursued for a fruitful integration with existing automati
 tools. The �rst one ex-ploits the fa
t that in ea
h single module it is suÆ
ient to synthesize a level mappingwhi
h does not need to measure atoms de�ned in other modules. The se
ond one
on
erns tools based on 
all-patterns analysis (De S
hreye et al. 1992, Gabbrielliand Gia
obazzi 1994, Codish and Demoen 1995). They 
an take advantage of the
on
ept of strong boundedness whi
h, as we show, 
an be implied by well-behaviorof programs (Debray and Warren 1988, Debray 1989).A
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