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Abstract—Probabilistic I/O automata (PIOAs) provide a mo-
delling framework that is well suited for describing and analyzing
distributed and concurrent systems. They incorporate a notion
of probabilistic choice as well as a notion of composition that
allows one to construct a PIOA for a composite system from
a collection of simpler PIOAs representing the components.
Differently from other probabilistic models, the local actions of a
PIOA are associated with time delays governed by independent
random variables with continuous-time exponential distributions.
The contribution of this paper consists in studying the product-
form property for PIOAs. Our main result is the formulation
of a theorem giving sufficient conditions for a composition of
PIOAs to be in product-form and hence to efficiently compute
its stationary probabilities.

I. INTRODUCTION

Probabilistic Input/Output automata (PIOAs) have been
introduced in [21], [22] as a formalism aimed at modelling
distributed and concurrent systems in a compositional way.
However, the interest for their application goes beyond the
purely engineering applications [3]. PIOAs incorporate a
notion of probabilistic choice and time delays for locally
controlled actions. The definition of formalisms for modelling
probabilistic systems has been extensively investigated in the
literature both in the field of process algebras and automata
theory. One of the key-factors that characterises the proposed
methodologies is clearly the semantics of the composition.
Giving a reasonable way of composing probabilistic systems is
challenging because the probabilities that are specified within
each single component have a “local” meaning. In general,
they are not sufficient to describe the probabilistic behaviour
of the joint model without further assumptions such as the
time scale. In the PIOA model this problem is solved by
associating an exponentially distributed delay parameter with
each state. Intuitively, a PIOA first draws a random delay
time from an independent exponentially distributed random
variable and then performs the probabilistic choice. There-
fore, in the composition of a collection of PIOAs, the usual
race condition policy used in [13], [20] is applied. PIOAs
communicate via input and output actions and can perform
internal non-communicating transitions. The communication
is seen as a message transmitted on a labelled channel (that
we call synchronisation label) by the output automaton. The
synchronising automaton can read the message and perform a
probabilistic transition accordingly. For each PIOA the sum of
the probabilities associated with output and internal transitions,

called locally controlled transitions, must be 1. On the other
hand, upon the reception of a message, the PIOA immediately
reacts, i.e., the sum of the probabilities associated with the
message-receiving transitions outgoing from each state of a
PIOA must be 1 for each of them separately.

PIOAs share with many other formalisms for the quan-
titative analysis of computer systems the property of hav-
ing an underlying Markov process that describes the model
evolution, and the problem of the exponential growth of the
cardinality of the state spaces which makes the derivation of
the quantitative indices unfeasible even for relatively small
systems. The problem of defining compositional approaches
to the quantitative analysis of PIOAs has been addressed in
[21] for what concerns the transient behaviour. To the best of
our knowledge, the problem of defining a compositional ap-
proach for studying the stationary behaviour of PIOAs remains
open. In the literature of queueing networks this problem
is often associated with the so called product-form analysis
which is described in [16] and then extended in numerous
subsequent works (see, e.g., [9], [15], [2]). In the last decade
the product-form approach has been successfully extended to
include Markovian process algebras [10], [11]. Informally, a
product-form model can be studied without constructing the
stochastic process underlying the composition of the simpler
components forming the systems, but these can be studied in
isolation. Hence, the computational effort required to compute
the stationary quantitative indices is highly reduced.

The contribution of this paper consists in studying the
product-form property for PIOAs. Our main result is the
formulation of a theorem giving sufficient conditions for a
composition of PIOAs to be in product-form and hence to
efficiently compute the stationary probabilities.

Related work. The literature about the characterisation of
product-forms for various formalisms is very rich. Since the
pioneering work of Kelly [16], several other works have
addressed the problem of characterising the product-form of
queueing networks in terms of different properties. These
works have been extended with the introduction of Gelenbe’s
G-networks [9] whose characterisation of the product-form
is surveyed in [5], [17]. Similar efforts have been devoted
to stochastic Petri nets product-forms [1] and Markovian
process algebra [10]. The common denominator among all
these contributions is that the considered models are based on
continuous-time transition rates. Fewer results are available



for probabilistic models expressed in terms of probabilistic
process algebras or probabilistic automata. In the latter context
we mention the results by Fourneau in [6], [7] but the syn-
chronisation semantics which is considered is different from
that of PIOAs and hence the results are not directly applicable.

Structure of the paper. The paper is organized as follows:
Section II is devoted to the basic notions on continuous and
discrete time Markov chains. Sections III and IV introduce,
respectively, the class of stochastic automata (SAs) and the
class of probabilistic I/O automata (PIOAs). In Section V
we study the relations between SAs and PIOAs. Section VI
presents our main result that is a product-form property for
PIOAs. Finally, Section VII concludes the paper.

II. BASIC NOTIONS

Let X(t) be a stochastic process taking values into a
countable state space S for t 2 T. For a continuous time (CT)
stochastic process, T is the real line R, while for a discrete
time (DT) stochastic process, T is the set of integers Z.

For a time homogeneous, continuous (CTMC) and discrete
(DTMC) time Markov chain the transition rate and the tran-
sition probability, respectively, from state s to state s0 are:

CTMC : lim
⌧!0

P (X(t+ ⌧) = s0 | X(t) = s)

⌧
= qs,s0 , s 6= s0

DTMC : P (X(t+ 1) = s0 | X(t) = s) = ps,s0

We denote by qs the parameter of the exponentially distributed
residence time in the state s of the CTMC.

The infinitesimal generator matrix Q of a CTMC is the
|S| ⇥ |S| matrix whose off-diagonal elements are the qs,s0 ’s
for s 6= s0 and whose diagonal elements are the negative sum
of the extra diagonal elements of each row.

In the discrete time case, the value ps,s0 denotes the one-step
transition probability. The square matrix P = (ps,s0)s,s02S is
called one-step transition matrix and is stochastic. A discrete
time Markov process is periodic if there exists an integer � > 1
such that P (X(t+n) = s |X(t) = s) = 0 unless n is divisible
by �; otherwise the process is aperiodic. An ergodic Markov
chain possesses a limiting distribution, that is the unique vector
⇡ of positive numbers ⇡s with s 2 S such that

lim
t!1P (X(t) = s | X(0) = s0) = ⇡s (1)

and
P

s2S ⇡s = 1 . The system of global balance equations
(GBEs) of a Markov chain is defined as:

CTMC : ⇡Q = 0 (2)

DTMC : ⇡ = ⇡P. (3)

We say that any non-trivial solution of systesms (2) and (3)
are invariant measures of the chains, while the only one that
is a probability distributions (if it exists) is the stationary
distribution. Notice that for irreducible, positive recurrent and
periodic DTMCs, although the limiting distribution does not
exist, system (3) still admits a unique solution summing to
unity that is still called stationary distribution but does not
clearly correspond to the limiting distribution.

III. STOCHASTIC AUTOMATA

Many high-level specification languages for stochastic
discrete-event systems are based on labelled automata [12],
[13], [20], [8], [14], [4] equipped with a composition
operator and timed actions whose delays are governed
by independent random variables with continuous-time
exponential distributions. In this paper we refer to the model
of stochastic automata presented in [18], [19] which draws
a distinction between active and passive action types, and
forming the composition of automata, only active/passive
synchronisations are permitted. An analogue semantics is
proposed for Stochastic Automata Networks (SAN) in [20].

Definition 1: (Stochastic Automaton (SA)) A stochastic au-
tomaton P is a tuple (SP , TP , P , qP ) where

• SP is a denumerable set of states called state space of P
• TP is a finite set of action types, partitioned into disjoint

sets AP of active types, PP of passive types and the set
{⌧} of the unknown or internal type, with the types in
LP = AP [ {⌧} called locally controlled

•  P ✓ SP ⇥ SP ⇥ TP is a transition relation
• qP is a function from P to R+ such that for all s1 2 SP

and for all a 2 PP ,
P

s2:(s1,s2,a)2 P
qP (s1, s2, a) = 1.

In the following we denote by !P the relation containing
all the tuples of the form (s1, s2, a, q) where (s1, s2, a) 2 P

and q = qP (s1, s2, a). We say that qP (s1, s2, a) 2 R+

is the rate of the transition from state s1 to s2 with type
a if a 2 LP . If a is passive then qP (s1, s2, a) 2 (0, 1]
denotes the probability that the automaton synchronises
on type a with a transition from s1 to s2. Hereafter,
we assume that qP (s1, s2, a) = 0 whenever there are no
transitions with type a from s1 to s2. If s 2 SP , then
for all a 2 TP we write qP (s, a) =

P
s02SP

qP (s, s0, a).
Moreover we define qP (s, s0) =

P
a2LP

qP (s, s0, a) and
qP (s) =

P
a2LP

qP (s, a). We say that P is closed if
PP = ;. We use the notation s1

a P s2 to denote
the tuple (s1, s2, a) 2 P ; we denote by s1

(a,r)���!P s2

(resp., s1
(a,p)���!P s2) the tuple (s1, s2, a, r) 2!P (resp.,

(s1, s2, a, p) 2!P ).

Definition 2: (CTMC underlying a closed SA) The CTMC
underlying a closed stochastic automaton P , denoted XP (t),
is defined as the CTMC with state space SP and infinitesimal
generator matrix Q defined as: for all s1, s2 2 SP :
qs1,s2 =

P
a,r:(s1,s2,a,r)2!P

r with s1 6= s2 .

We say that a closed automaton P is ergodic (irreducible)
if its underlying CTMC is ergodic (irreducible). We denote
the stationary distribution of the CTMC underlying P by ⇡P .

The synchronisation operator between two stochastic
automata P and Q is defined in the style of the master/slave
synchronisation of SANs and the active/passive cooperation
used in Markovian process algebra such as PEPA.

Definition 3: (SA synchronisation) Given two stochastic au-
tomata P and Q such that AP = PQ and AQ = PP we define
the automaton P ⌦Q as follows:



sp1
(a,r)���!P sp2 sq1

(a,p)���!Q sq2

(sp1 , sq1 )
(a,pr)����!P⌦Q (sp2 , sq2 )

(a 2 AP = PQ)
sp1

(a,p)���!P sp2 sq1
(a,r)���!Q sq2

(sp1 , sq1 )
(a,pr)����!P⌦Q (sp2 , sq2 )

(a 2 PP = AQ)

sp1
(⌧,r)���!P sp2

(sp1 , sq1 )
(⌧,r)���!P⌦Q (sp2 , sq1 )

sq1
(⌧,r)���!Q sq2

(sp1 , sq1 )
(⌧,r)���!P⌦Q (sp1 , sq2 )

TABLE I
OPERATIONAL RULES FOR SA SYNCHRONISATION

• SP⌦Q = SP ⇥ SQ

• TP⌦Q = AP⌦Q [ {⌧} where AP⌦Q = AP [ AQ =
PP [ PQ and PP⌦Q = ;

•  P⌦Q and qP⌦Q are defined according to the
rules for �!P⌦Q depicted in Table I: indeed, the
�!P⌦Q contains the tuples ((sp1 , sq1),(sp2 , sq2), a, q)
with ((sp1 , sq1),(sp2 , sq2), a) 2 P⌦Q and q =
qP⌦Q((sp1 , sq1), (sp2 , sq2), a).

This semantics can be easily extended in order to include an
arbitrary finite number of cooperating automata (see [19]). The
assumption that an automaton obtained by a cooperation does
not have passive types, ensures that the resulting automaton
has an underlying CTMC and then we can study its stationary
distribution.

IV. PROBABILISTIC INPUT/OUTPUT AUTOMATA

In [21], [22], the authors define the class of probabilistic
I/O automata (PIOA) which provide a model for distributed or
concurrent systems that incorporates a notion of probabilistic
choice together with a composition operator. This model is
based on a combination of reactive and generative transitions.
In a reactive system, probabilities are distributed over the
outgoing transitions labelled with the same action, i.e., actions
are treated as being provided by the environment and there
are no probabilistic assumptions about the behavior of the
environment. On the other hand, in a generative system,
probabilities are distributed over all outgoing transitions, i.e.,
actions are treated as locally generated by the system.

In a probabilistic I/O automaton for every input action there
is a reactive transition. Moreover, it is assumed that each input
action is enabled in each state of a PIOA. The output and
internal actions (called locally controlled actions) are treated
generatively. At most one generative probabilistic transition
gives the local behavior of each state. A delay rate parameter
� is also added to each state.

Definition 4: (Probabilistic I/O Automaton (PIOA)) A prob-
abilistic I/O automaton P is a tuple (SP , TP , , µP , �P )
where

• SP is a denumerable set of states called state space of P
• TP is a finite set of actions, partitioned into disjoint sets

OP of output actions, IP of input actions and the set
{⌧} of the unknown or internal action, with the actions
in LP = OP [ {⌧} called locally controlled

•  P ✓ SP ⇥ SP ⇥ TP is a transition relation

• µP is the transition probability function from  P to
(0, 1] such that

– for all s1 2 SP and for all a 2 IP ,P
s2:(s1,s2,a)2 P

µP (s1, s2, a)=1
– for all s1 2 SP , if there exists a 2 LP

and s2 2 SP such that (s1, s2, a) 2 P , thenP
a2OP[{⌧}

P
s2:(s1,s2,a)2 P

µP (s1, s2, a)=1

• �P is the state delay function from SP to [0,1) which
is required to satisfy the following condition:

– for all s 2 SP , �P (s) > 0 if and only if there exists
a 2 LP and s0 2 SP such that (s, s0, a) 2 P .

We assume that µP (s1, s2, a) = 0 whenever
(s1, s2, a) 62 P . Notice that any PIOA satisfies the
following input-enabledness condition: for all s 2 SP and
for all a 2 IP , there exists a state s0 2 SP such that
(s, s0, a) 2 P .

If s 2 SP , then for all a 2 TP we write µP (s, a) =P
s02SP

µP (s, s0, a). Moreover we define µP (s, s0) =P
a2TP

µP (s, s0, a) and µP (s) =
P

a2TP
µP (s, a).

The state delay function �P is explained as follows: upon
arrival in a state s, the PIOA P chooses randomly the length of
time it will spend in that state before executing its next locally
controlled (internal or output) transition. The random choice
is made, independently of the other PIOAs in the system,
according to an exponential holding time distribution whose
mean is the reciprocal 1/�P (s) of the delay parameter �P (s)
associated with that state. If no locally controlled actions are
enabled in this state then �P (s) = 0.

In the following we denote by !P the relation containing
all the tuples of the form (s1, s2, a, µ) where (s1, s2, a) 2 P

and µ = µP (s1, s2, a). We say that µP (s, s0, a) 2 [0, 1] is the
transition probability from state s to s0 with type a. We say
that P is closed if IP = ;. We use the notation s1

a P s2 to
denote the tuple (s1, s2, a) 2 P ; we denote by s1

(a,µ)���!P s2
the tuple (s1, s2, a, µ) 2!P .

Definition 5: (DTMC underlying a closed PIOA) The
DTMC underlying a closed PIOA P , denoted YP (t), is defined
as the DTMC with state space SP and transition probability
matrix P defined as: for all (s1, s2) 2 SP ,

ps1,s2 =
X

a,µ:(s1,s2,a,µ)2!P

µ .

We say that a closed automaton P is ergodic (irreducible) if



sp1
(a,µ1)����!P sp2 sq1

(a,µ2)����!Q sq2

(sp1 , sq1 )
(a,µ1µ2)������!P⌦Q (sp2 , sq2 )

(a 2 IP⌦Q)

sp1
(a,µ1)����!P sp2 sq1

(a,µ2)����!Q sq2

(sp1 , sq1 )
(a,�1µ1µ2)��������!P⌦Q (sp2 , sq2 )

(a 2 OP )
sp1

(⌧,µ)���!P sp2

(sp1 , sq1 )
(⌧,�1µ)������!P⌦Q (sp2 , sq1 )

with �1 =
�P (sp1 )

�P (sp1 ) + �Q(sq1 )

sp1
(a,µ1)����!P sp2 sq1

(a,µ2)����!Q sq2

(sp1 , sq1 )
(a,�2µ1µ2)��������!P⌦Q (sp2 , sq2 )

(a 2 OQ)
sq1

(⌧,µ)���!Q sq2

(sp1 , sq1 )
(⌧,�2µ)������!P⌦Q (sp1 , sq2 )

with �2 =
�Q(sq1 )

�P (sp1 ) + �Q(sq1 )

TABLE II
OPERATIONAL RULES FOR PIOA SYNCHRONISATION

its underlying CTMC is ergodic (irreducible). We denote the
stationary distribution of the CTMC underlying P by ⇡P .

Two probabilistic I/O automata P and Q are called
compatible if the corresponding sets of output actions are
disjoint, i.e., OP \ OQ = ;. In [21], [22] the authors define
the composition of a finite collection of compatible PIOAs.
The pairwise composition of compatible PIOAs is as follows.

Definition 6: (PIOA Synchronisation) Given two compati-
ble probabilistic I/O automata P and Q we define the au-
tomaton P ⌦Q as follows:

• SP⌦Q = SP ⇥ SQ

• TP⌦Q is partitioned into the disjoint sets OP⌦Q = OP [
OQ, IP⌦Q = (IP [ IQ) \ OP⌦Q and {⌧}

•  P⌦Q and qP⌦Q are defined according to the rules
for �!P⌦Q depicted in Table II: indeed, the relation
�!P⌦Q contains the tuples ((sp1 , sq1),(sp2 , sq2), a, µ)
with ((sp1 , sq1),(sp2 , sq2), a) 2 P⌦Q and µ =
µP⌦Q((sp1 , sq1), (sp2 , sq2), a)

• �P⌦Q = �P + �Q, i.e, for all (sp, sq) 2 SP⌦Q,
�P⌦Q(sp, sq) = �P (sp) + �Q(sq).

If s is a state of P , then �P (s) is a positive real number
corresponding to the delay rate in state s. It is the parameter of
an exponentially distributed random varible, determining the
time that the automaton waits in state s until it generates one of
its locally controlled actions. When computing the distribution
on locally controlled actions for P ⌦ Q, the component
distributions are joined in one such that any probability of P

is multiplied with the normalization factor
�P

�P + �Q
and any

probability of Q is multiplied with the normalization factor
�Q

�P + �Q
. The normalization factor models a racing policy

between the states of P and Q for generating their own locally

controlled actions. For instance, the value
�P (sp)

�P (sp) + �Q(sq)
is

the probability that the state sp has less waiting time left then
the state sq and therefore wins the race and generates one of
its own local actions.

V. DISCRETIZATION OF A SA INTO A PIOA

In this section we present a method to transform a
stochastic automaton P into a probabilistic one PD. Each
state of PD is equipped with a delay rate representing the
waiting time between each change of the system. We show
that this discretization is indeed a bijection from the class of
SAs to the class of PIOAs. Then, we prove that, under the
assumption that all the input actions synchnonises with the
output ones in the PIOA model, the discretization respects
the synchronisation in the sense that, given two sochastic
automata, the composition of the corresponding discretized
automata coincides with the discretization of the composition
of the two stochastic automata.

Definition 7: (Discretization of a SA into a PIOA) Given
a stochastic automaton P = (SP , TP , P , qP ), the dis-
cretization of P is the probabilistic I/O automaton PD =
(SPD , TPD , PD , µPD , �PD ) defined as follows:

• SPD = SP

• TPD is partitioned into the disjoint sets OPD = AP ,
IPD = PP and {⌧}

•  PD = P

• �PD (s) =
P

a2AP
qP (s, a) with s 2 SP

• µPD is the transition probability function from  PD to
(0, 1] such that

– for all s1, s2 2 SP and for all a 2 PP = IPD ,
µPD (s1, s2, a) = qP (s1, s2, a) (since qP (s1, s2, a)
is indeed a probability)

– for all s1, s2 2 SP and for all a 2 LP = LPD ,
µPD (s1, s2, a) = qP (s1, s2, a)/�PD (s1).

Notice that �PD (s) is the sum of the transition rates of the
active actions of P outgoing from s. If s has only passive
actions outgoing from it then �PD (s) = 0.

The discretization is a bijective function from the set of all
SAs to the set of all PIOAs. The invese of the discretization
function allows one to transform a probabilistic I/O automaton
PD into the unique stochastic automaton P having PD as
the corresponding discretization.

Proposition 1: The discretization transformation of Defini-



tion 7 is a bijection from the set of all SAs to the set of all
PIOAs.

Corollary 1: Let P be a closed SA and PD be the corre-
sponding discretized PIOA (according to Definition 7). Then

• for all s 2 SP , �PD (s) = qP (s)
• for all s 2 SP and for all a 2 TP , qP (s, s0, a) =

µP (s, s0, a) �PD (s).
The stationary distribution of a closed SA P can be derived

from that of the corresponding discretized atomaton PD and
vice versa.

Theorem 1: Let P be a closed irreducible SA and PD

be the corresponding discretized PIOA (defined according to
Definition 7). Let S = SP = SPD .

• If ⇡PD is an invariant measure of the DTMC underlying
PD then ⇡P defined by

⇡P (s) =
⇡PD (s)��1

PD (s)P
s2S ⇡PD (s)��1

PD (s)
(4)

for all s 2 S , is the stationary distribution of the CTMC
underlying P , assuming its ergodicity.

• If ⇡P is an invariant measure of the CTMC underlying
P then ⇡PD defined by

⇡PD (s) =
⇡P (s)�PD (s)P
s2S ⇡P (s)�PD (s)

(5)

for all s 2 S , is the stationary distribution of the DTMC
underlying PD, assuming its ergodicity.

The discretization function respects the synchronisation
operator when we assume that all the input actions
synchnonise with the output ones in the PIOA model.

Proposition 2 (Discretization respects the synchronisation):
Let P and Q be two SAs and PD and QD be the
corresponding discretized PIOAs. Assume that IP = OQ and
IQ = OP . Then

(P ⌦Q)D = PD ⌦QD.

Example 1: Consider the stochastic automata P and Q
depicted in Table III with AP = PQ = {a} and PP =
AQ = ;. Let P ⌦Q be the composition of P and Q defined
according to Definition 3 and (P ⌦ Q)D be the probabilistic
I/O automaton corresponding to the discretization of P ⌦ Q.
The discretizations of P and Q are depicted in Table IV
together with their probabilistic composition. One can verify
that (P ⌦Q)D = PD ⌦QD.

VI. PRODUCT-FORMS FOR PIOAS

In this section we present our product-form result for proba-
bilistic I/O automata. In particular we prove that the stationary
distribution of the composition of two PIOAs, P and Q,
can be computed without constructing the stochastic process
underlying the whole system P ⌦ Q, but it can be derived
from the the stationary distribution of the two components in
isolation.

0P 1 2

⌧, 5 ⌧, 5 ⌧, 5

a, 3 a, 3 a, 3

0Q 1 2

a, 1 a, 1 a, 1

⌧, 6 ⌧, 6 ⌧, 6

00P ⌦ Q 10

01 11

⌧, 5 ⌧, 5

⌧, 5 ⌧, 5

⌧, 6 ⌧, 6

⌧, 6 ⌧, 6

a, 3
a, 3

a, 3

00(P ⌦ Q)D 10

01 11

⌧, 1 ⌧, 5/8

⌧, 5/11 ⌧, 5/14

⌧, 6/11

⌧, 6/14

⌧, 6/11 ⌧, 6/14

a, 3/8

a, 3/8

a, 3/14

with �(00) = 5, �(10) = 8, �(01) = 11, �(11) = 14

TABLE III
EXAMPLE OF (P ⌦Q)D

0PD 1 2

⌧, 1 ⌧, 5/8 ⌧, 5/8

a, 3/8 a, 3/8 a, 3/8

with �(0) = 5, �(1) = 8, �(2) = 8

0QD 1 2

a, 1 a, 1 a, 1

⌧, 1 ⌧, 1 ⌧, 1

with �(0) = 0, �(1) = 6, �(2) = 6

00PD ⌦ QD 10

01 11

⌧, 1 ⌧, 5/8

⌧, 5/11 ⌧, 5/14

⌧, 6/11
⌧, 6/14

⌧, 6/11 ⌧, 6/14

a, 3/8

a, 3/8

a, 3/14

with �(00) = 5, �(10) = 8, �(01) = 11, �(11) = 14.

TABLE IV
EXAMPLE OF PD ⌦QD



We first introduce a closure operation over probabilistic
I/O automata that allows us to assign to all the transitions
with the same input action a the same transition probability �.

Definition 8: (PIOA closure) The closure of a probabilistic
I/O automaton P with respect to an input action a 2 IP and
� 2 R+, written PC = P{a �}, is the PIOA defined as:

• SPC = SP

• TP is partitioned into the disjoint sets OPC = OP [{a},
IPC = IP \ {a} and {⌧}

•  PC= P

• µPC is the transition probability function from  PC to
(0, 1] such that

– for all s1, s2 2 SP such that (s1, s2, a) 2 P ,
µPC (s1, s2, a) = µP (s1, s2, a)

�
�P (s1)+�

– for all s1, s2 2 SP and for all b 2 IP \ {a},
µPC (s1, s2, b) = µP (s1, s2, b)

– for all s1, s2 2 SP and for all b 2 LP ,
µPC (s1, s2, b) = µP (s1, s2, b)

�P (s1)
�P (s1)+�

• �PC is such that for all s 2 SP , �PC (s) = �P (s) + �.
Several closures can be specified by susequently applying

Definition 8. It is easy to prove that the order in which the clo-
sures are applied is irrelevant and then, if IP = {a1, . . . , an}
and {�1, . . . ,�n} is a set of positive real numbers then we
write P{ai  �i}ai2IP for ((P{a1  �1}) · · · ){an  �n}.

We are now ready to prove the product-form theorem.

Theorem 2: (Product-forms for PIOA) Let P and Q be two
probabilistic I/O automata such that OP = IQ and OQ = IP .
Let {a1, . . . , an} = OP [OQ. If there exists a set of positive
real numbers {�1, . . . ,�n} such that PC = P{ai  �i}ai2IP

and QC = Q{ai  �i}ai2IQ satisfy the following equations:
• for all sp 2 SP and for all ai 2 OP ,

�PC (sp)
X

s0p2SPC

µPC (s0p, sp, ai)
⇡PC (s0p)
⇡PC (sp)

�P (s0p)
�PC (s0p)

= �i (6)

• for all sq 2 SP and for all ai 2 OP ,

�QC (sq)
X

s02SQC

µQC (s0q, sq, ai)
⇡QC (s0q)
⇡QC (sq)

�Q(s0q)
�QC (s0q)

= �i (7)

then for all the states (sp, sq) 2 SP⌦Q belonging to an
irreducible class:

⇡P⌦Q(sp, sq) / ⇡PC (sp)⇡QC (sq)
�P (sp) + �Q(sq)

�PC (sp)�QC (sq)
. (8)

VII. CONCLUSION

This paper has addressed the problem of the compositional
stationary analysis of PIOAs in a similar fashion of what has
been done for the transient in [21]. We have derived a product-
form theorem for PIOA. Since we have enlighed the strong
relations between the stochastic automata in the style of SANs
and the PIOAs, it is interestign to address the problem of
relating Theorem 2 with the results known for the stochastic
counterpart. It is important to notice that the product-form that
appears in our theorem is the solution of a DTMC and is not

equal to that of the corresponding SAN. In fact the discreti-
sation procedure described in Section V does not preserve the
steady-state distribution of automata. Moreover, given a PIOA,
its steady-state distribution is independent of the �s associated
with the states (in the same way the stationary distribution
of the embedded chain of a CTMC is independent of its
residence times). As a consequence if a PIOA is in product-
form, we can easily compute the stationary distributions of all
the corresponding stochastic automata which are defined for
arbitrary definitions of the � functions.
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