
Static Analysis of Prolog with CutGilberto Fil�e, Sabina RossiDipartimento di Matematica Pura ed ApplicataUniversit�a di PadovaVia Belzoni, 7 I-35131 Padova (Italy)E-mail: fgilberto,sabinag@zenone.unipd.itAbstract. This paper presents a general approach to the Abstract In-terpretation of Prolog programs with cut. In most of previous approachesthe cut primitive is merely ignored.Our method consists in trasforming an interpreter for Prolog into an in-terpreter that computes on abstract values and that performs loop-checksby storing all encountered call patterns into a table. In order to guaran-tee correctness, this tabled interpreter needs information about the suresuccess of the corresponding concrete computations. Such information,called control information, is used to control the execution of the cuts bythe tabled interpreter: a cut is executed only if the control informationguarantees that it is also executed at the concrete level, otherwise, thecut is ignored. Control information can be easily added to any abstractdomain.IntroductionAbstract Interpretation has been successfully developed in recent years for thestatic analysis of programs. It has been applied to many types of languages.Recently Abstract Interpretation techniques have been applied to logic program-ming and Prolog. However, little attention has been devoted to the AbstractInterpretation of \full" Prolog with cut and built-ins, except for [2, 11]. It iseasy to see that ignoring the cut has a negative consequence on the quality ofthe information produced (not executing a cut means to consider computationsthat are pruned at the concrete level).The cut is a non-logical operator whose meaning is speci�ed only by means ofan operational semantics [9].The intuition at the basis of the Abstract Interpretation method is that thedata-ow analysis of a program consists of executing it on a special domaincalled abstract because it abstracts some interesting properties of the normalconcrete domain. According to this idea, the operational approach to AbstractInterpretation that we have adopted, is as follows. Let L be a programminglanguage.1. Using the usual approximation relation that exists between an abstract do-main D and the concrete domain C of the prgrams of L, it is easy to de�nefor each concrete program P of L a corresponding abstract program P 0.

2. Let I be an intepreter of L and use I to interpret P 0: such execution is adata-ow analysis of the execution of P by I.3. Even ifD is a �nite set, the execution of P 0 by I can be not �nite. In order toguarantee termination on �nite domains, a loop-check mechanism is addedto I.This operational approach has been adopted in [3] for logic and constraint pro-grams and in [10] for logic programs. In these works the interpreter used wassimply a program (ND-I) that nondeterministically traverses the LD-trees. ND-I was su�cient because no control built-in like cut was considered, and thus, itwas not necessary to model the depth-�rst left-to-right traversal of a standardProlog interpreter (called standard traversal in what follows). At the contrary,this becomes necessary in this paper where we want to treat also the cut opera-tor. To this end we consider the standard Prolog interpreter St-I that plays therole of I in point 2 above. The program for the data-ow analysis is obtainedadding a loop-check in the form of a tabulation mechanism to St-I, cf. point 3above. This program is called St-TI. Intuitively, a tabulation mechanism con-sists of collecting in a table all the atoms A, called during an execution, togetherwith the solutions found for them. In this way, when an equivalent call A0 is en-countered later on, the solutions of A are used to expand A0. In what followsA iscalled a solution call, since it produces solutions, whereas A0 is called a look-upcall because it just looks up the solutions of A. The addition of a tabulationmechanism to St-I gives rise to several problems that are new wrt [3, 10]. Themain one is as follows. Assume that, according with the operational approachdescribed above, the data-ow analysis of a Prolog program P , is obtained byexecuting the corresponding program P 0 with the tabled interpreter St-TI. If Phas cuts, so will P 0 and they will be executed by St-TI just as by St-I. This canlead to incompleteness, in fact, the execution of P 0, being on the abstract domainD (i.e., simpler than the concrete one), can lead to more derivations than theexecution of P. Hence, a cut of P 0 may be executed whereas the correspondingderivation of P fails before such point. If this happens the execution of the cutmay prune computations that, at the contrary, are not pruned for P and thusthese concrete computations are not analyzed: incompleteness! The solution tothis problem is to enhance the abstract domainD with some extra information,called control information, in such a way that St-TI, when executing P 0 on thisnew abstract domain, knows whether the corresponding concrete computationsare all successful. Only in this case a cut is executed. Control information canbe added to every abstract domain.The rest of the paper is as follows. Section 1 contains some preliminaryde�nitions. In Section 2 the tabulation mechanism in [3] is described by meansof an example. The necessity of modeling the standard traversal when treatingthe cut and the inappropriateness of the original mechanism in this case areall explained by means of examples. In Section 3 the extensions of the originaltabulation mechanism needed for modelling the standard traversal and handlingthe cut are described. Finally, in Section 4 some more examples show the needof control information for ensuring completeness and explain its use.

1 PreliminariesThe reader is assumed to be familiar with the basic concepts of Logic Program-ming, see [1, 12].V is an in�nite set of variables. A substitution is a mapping from V to T (�;V)which acts as the identity almost everywhere. A renaming is a bijection on vari-ables. With Subst we denote the set of all idempotent substitutions and with�jV the restriction of � to the set of variables V .The list operation tail is as follows: tail(nil) = nil and tail([s j L]) = L.If o is a sintactical object, then V ar(o) is the set of all variables occurring in o.A computation system D is a 5-tuple, (D;�;�;�;�); where:1. D is a complete lattice, called computation domain. Its bottom element is?D, and for all d2D and for all renamings �, d�2D; with CPD we denotethe set of all call patterns on D, i.e., the set of all pairs [A; d] such that A isan atom and d2D;2. � is a function on D of the type: (D2 � Subst) ! D;3. � is a projection of the type: (D � }(V)) ! D, such that, if d 2 D andV 2}(V), then �(d; V) projects d onto the variables of V ;4. � is a partial order on D;5. � is an equivalence relation on CPD such that for all [A; d]2CPD and forall renaming substitution �, [A; d] � [A; d]�.D is called �nite if its computation domain D is �nite modulo renaming.The function � represents the uni�cation function on D.A normalized atom is an atom of the form p(�X) containing distinct variables.A normalized program P over D is a �nite sequence of de�nite clauses of theform:H:�d;A1; : : : ; Ak; where H;A1; : : : ; Ak are either normalized atoms or thecontrol primitive cut, and d2D.A normalized goal is a normalized clause whose head is empty.In the following only normalized programs and goals are considered.Observe that considering normalized programs brings no loss of generality: anyProlog program can be put into this form where d is a substitution.The usual concrete computation system of Prolog isCs = (Subst; �s;�s;�;�s)where �s is the uni�cation function on Subst; �s is de�ned by: �s(�; V) = �jV ;�s is the equivalence relation on CPSubst de�ned by: [A1; �1] �s [A2; �2] i� thereexists a renaming � such that (A1�1)� = A2�2.As an example, append over Cs is:append(X;Y; Z):�fX=[S j T]; Z=[S j U]g, append(T; Y; U).append(X;Y; Z):�fX=[]; Y=Zg.Let P be a program with goal G0. The LD-tree of P [fG0g is the SLD-tree [12]corresponding to the Prolog selection rule.Consider any LD-tree and a node Gi in it containing a cut. The parent node of

this cut is the ancestor of G whose expansion has produced this cut.The Standard Interpreter, St-I, is a program that explores the LD-trees by em-ploying the standard traversal rule and by executing cuts according to theiroperational semantics, i.e., pruning all the branches to the right of a path fromthe parent goal to the goal that has executed the cut.We recall below the notion of abstraction between computation systems.Let D = (D;�D;�D;�D;�D) and C = (C;�C;�C;�C;�C) be two computa-tion systems. D abstracts C i� the following properties hold:1. there exists a function , called concretization function, from D to 2C suchthat is monotone;2. 8� 2 Subst, 8c1; c2 2 C and 8d1; d2 2D, c1 �C (d1); c2 �C (d2) implies�C(c1; c2; �) �C (�D(d1; d2; �));3. 8V 2}(V), 8c2C and 8d2D, c �C (d) implies�C(c; V) �C (�D(d; V)).Given a program P over C, a corresponding program P 0 over D is as follows: foreach clause H:�c; A1; : : : ; Ak of P P 0 has a clause H:�d;A1; : : : ; Ak such thatc �C (d).2 Tabled Computations for Pure Prolog ProgramsIn this section we describe, by means of examples, the tabled interpreter ND-TIpresented in [3]. Later it will be shown that ND-TI is unsuitable if one wantsto treat the cut operator.Let D be an arbitrary computation system. In this section pure Prolog programs(i.e. without cuts) over D are considered.Given a goal G = :�d;A1; : : : ; Ak, the leftmost call pattern of G, noted lf(G), isthe call pattern [A1;�(d; V ar(A1))] over D.For example, consider the goal over Cs:G = :�fX = [ajU]; T = [ajW]gappend(X;Y; Z);append(T; Z;V).Its leftmost call pattern is: lf(G) = [append(X;Y; Z); fX = [ajU]g].The idea of ND-TI is as follows: collect in a table all the leftmost call patternsof the goals found so far in the computation with their computed solutions, andwhenever a new goal G is produced, check whether the table already contains acall pattern lf(G0) equivalent to lf(G). In this case use the solutions of lf(G0),collected in the table, for expanding G.ND-TI constructs a tree-table pair (t; T), as follows. T is a table where eachentry consists of a key, which is a call pattern, and a solution list associatedto that key, which is a list of distinct elements of the computation domain D.t is similar to an LD-tree. It contains two types of nodes: nodes that generatean entry in the table, called solution nodes and nodes that use these solutions,called look-up nodes.The keys of the table are call patterns [A; d], where V ar(d) � V ar(A). Also inthe tree it is convenient to keep values d projected. Every goal in the tree willbe :�d;A1; : : : ; Ak where V ar(d) is included in the variables of the clause that

has A1 in its body. In order to manage correctly the switches of sets of variablesduring the computation, it is necessary to introduce special values called call-exitmarkers. A call-exit marker contains the information e = [cs1; cs2; A = H; d].Suppose to have a goal G = :�d;A;R, where A is an atom of the body ofcs1 such that A is uni�able with the head of cs2. Then the new goal will be:�d00; B1; : : : ; Bm; [cs1; cs2; A = H; d]; R, where d00 = �(�(d; d0; �); V ar(cs2)),� = mgu(A = H) and cs2 = H:�d0; B1; : : : ; Bm. The call-exit marker e is saidto correspond to lf(G) = [A; �d], where �d = �(d; V ar(A)).When e becomes the leftmost element of a goal, it means that a refutation forA under d has been computed and a solution for it has been reached.Call-exit markers are useful in order to know when new solutions for a left-mostcall pattern must be added to the table.Example 1. Let P be the program:q(X):�d; p(X); r(X):�d; p(X);p(X):�d0; p(X):�d00.and G0 be the goal :�d0; q(X); r(Y), where d = d0 = ", d0 = fX=ag and d00 =fX=bg.By executing P with G0 by ND-TI, one obtains the tree-table pair representedin Fig. 1. At the beginning the table is empty.Since it does not contain a key equivalent to lf(G0), a new entry with keylf(G0) = [q(X); d0] and empty solution list is added to it. G0 is a solutionnode. Selecting the left most atom of G0 and using the renamed �rst clause, cs1,q(X1):�d; p(X1), in P , the resolvent G1 = :�d1; p(X1);21; r(Y) is computed,where d1 = �(�(d0; d; �); V ar(cs1)) = fX1=Xg, � = fX=X1; X1=Xg and 21 isthe call-exit marker [cs0; cs1; q(X) = q(X1); d0]. Solving in the same way G1,a new entry with key lf(G1) = [p(X1); d1] and empty solution list is added tothe table. G1 is a solution node and it is resolved by using a renaming of thethird clause, cs2. The resolvent G2 = :�d2;22;21; r(Y) with d2 = fX2=ag and22 = [cs1; cs2; p(X1) = p(X2); d1] is computed.Consider now G2. In general, when a node G in the tree starting with a call-exitmarker, has the form :�d; [cs1; cs2; A = H; d0]; A2; : : : ; Ak, then it is resolvedby computing G0 = :�d00; A2; : : : ; Ak, where d00 = �(�(d0; d; �); V ar(cs1)) and� = mgu(A = H). Moreover, the solution �(d00; V ar(A)) is added to the end ofthe solution list corresponding to the key [A;�(d0; V ar(A))] in the table.Solving in this way the two call-exit markers, 22 and 21, and using the renamedsecond clause cs3, r(Y1):�d; p(Y1), to solve r(Y), one obtains the resolvents G3,G4 and G5 represented in Fig. 1, where d3 = fX1=ag, d4 = fX=ag, d5 = fY1=Y g,and 23 = [cs0; cs3; r(Y) = r(Y1); d4].Consider now G5. Observe that there exists in the table an entry with keylf(G1) = [p(X1); d1] equivalent to lf(G5) = [p(Y1); d5]. In this case the solutionsof lf(G1) are used to expand lf(G5). Thus, G5 becomes a look-up node anda pointer to the solution list L = [fX1=agjnil] of lf(G1) is added to G5. Thesolution fX1=ag is used to expand G5 by computing G6 = :�d6;23 where d6 =�(�(d5; fX1=ag; �000); V ar(cs3)) = fY1=ag and �000 = mgu(p(X1) = p(Y1)). Thenthe pointer of lf(G5) is moved to tail(L).

Since this pointer is now to an empty list in the table, when the computationbacktracks to G5, the expansion of G5 is suspended. It can be continued only ifa new solution for lf(G1) is added in the table. 2[p(X1); d1][q(X); d0]G0 = :�d0; q(X); r(Y) solutionG1 = :�d1; p(X1);21; r(Y) solutionG2 = :�d2;22;21; r(Y) [fX=agj nil][fX1=agj nil][r(Y); d5] [fY=agj nil]
G4 = :�d4; r(Y) solutionG3 = :�d3;21; r(Y)
G7 = :�d7G6 = :�d6;23G5 = :�d5; p(Y1);23 look-up Fig. 1.It is easy to see that using ND-TI, it is not possible to follow the standardtraversal rule to expand the tree of derivations. However in order to treat thecontrol operator cut the standard traversal must be followed.Example 2. Let P be the program:q(X):�d; p(X); r(X):�d; p(X);p(X):�d0; p(X):�d00;s(X):�d00.and G0 be the goal :�d0; q(X); r(Y); s(Y); !, where d = d0 = ", d0 = fX=ag andd00 = fX=bg. By executing withND-TI, G1 = :�fX1=Xgp(X1);21; r(Y); s(Y); !,G2 = :�fX2=ag;22;21; r(Y); s(Y); !, G3 = :�fX1=ag;21; r(Y); s(Y); !, G4 =:�fX=ag; r(Y); s(Y); ! and G5 = :�fY1=Y g; p(Y1);23; s(Y); ! are computed. G5is a look-up node to the solutions of lf(G1) in the table. The solution fX1=agof lf(G1) is used to expand lf(G5) and G6 = :�fY1=ag;23; s(Y); ! and G7 =:�fY=ag; s(Y); ! are computed. Then a failure is reached and the computationbacktracks to G5. Since there are no more solutions of lf(G1) in the table, the

computation cannot continue the expansion of G5 and thus it backtracks to ex-pand another node. However, branches of the tree that are in fact not expandedby the e�ect of the cut obtained using the fourth clause of P to expand G5 arein this way computed.3 Tabled Computations for Prolog Programs with CutIn this section we describe the tabled interpreter St-TI obtained by addingtabulation to a standard Prolog interpreter. From now on, clauses can containcuts in their bodies. The presence of cuts complicates the "use" of the table.When a new generalized goal G is produced and there exists, in the table, anentry with key lf(G0) equivalent to lf(G), then three di�erent kinds of relationsbetween G and G0 can occur: (1) lf(G0) has been completely solved, i.e., it is tothe left of lf(G) in the tree; (2) G and G0 are in the same derivation and lf(G)is not part of the proof of lf(G0), i.e., G does not contain a call-exit markercorresponding to lf(G0); (3) lf(G) is part of the proof of lf(G0), i.e., G containsa call- exit marker corresponding to lf(G0) (this is the case of a recursive call).In order to treat cuts correctly, the tabulation mechanism of St-TI is de�ned insuch a way that, if there is no recursion, a solution list in the table is used toexpand a node in the tree only when it is sure that this list has not been (or willnot be) shortened because of a cut. In the case of a recursive call, as in point(3), the solutions of lf(G0) are used to expand G, independently of whether G0contains cuts or not. This is based on the following argument: the part of thesearch space of lf(G0) explored so far led to the recursive call lf(G). Hence,lf(G) either needs less search than lf(G0) (if a cut prunes part of it), or it needsthe same search in which case the computation falls into a loop. According tothese ideas, the three cases distinguished above are dealt with in the followingways:(1) If G0 does not contain cuts, then the solutions of lf(G0) that have beencollected in the table are used to expand G. Thus, G becomes a look-up node.Otherwise, if G0 contains cuts, then the computation of lf(G) is executedindependently of that of lf(G0).(2) In this case, according to the standard traversal rule, lf(G) will be com-pletely solved before lf(G0). Therefore, if G does not contain cuts, then thesolutions of lf(G) can be used to expand G0. G becomes a solution node andG0 is turned into a look-up node (notice that it was a solution node). More-over, the key lf(G0) in Ti is replaced by lf(G), the corresponding solutionlist is accordingly renamed and a pointer to the end of that list is added toG0. Otherwise, if G contains cuts, then the computation of lf(G) is executedindependently of that of lf(G0).(3) G becomes a look-up node independently of whether G or G0 contain cuts ornot. A pointer to the solution list in the table associated to the key lf(G0) isadded to G. In this situation, when there are no more solutions of lf(G0) toconsider for expanding G, a loop is discovered and the whole computationis stopped.

The following examples illustrate the points described above.
G9 = :�fY2=Y g; r(Y2);25 look-upG10 = :�fY2=ag;25G11 = :�fX=a; Y=ag

look-up
[fY=agj nil][r(Y); "] [fY1=agj nil][fX=agj nil][q(X); "][p(Y1); fY1=Y g]

G8 = :�fX=a; Y=agG7 = :�fY1=ag;23G6 = :�fY2=ag;24;23G5 = :�fY1=Y g; p(Y1);23 solutionG4 = :�fX=ag; r(Y) solutionG3 = :�fX1=ag;21; r(Y)G2 = :�fX2=ag;22;21; r(Y)G1 = :�fX1=Xg; p(X1);21; r(Y) solutionG0 = :�"; q(X); r(Y) solution

Fig. 2.Example 3. Let P be the program:q(X):�"; p(X); r(X):�"; p(X);r(X):�"; r(X); p(X):�fX=ag.and G0 be the goal :�"; q(X); r(Y). Starting from G0, the tree-table pair repre-sented in Fig. 2 is reached.Observe that, when G5 is considered, the case (2) described above occurs. Infact, there exists in the table a key, lf(G1) = [p(X1); fX1=Xg], equivalent tolf(G5) = [p(Y1); fY1=Y g]. G1 and G5 are in the same derivation and lf(G5) isnot part of the proof of lf(G1). Since G5 does not contain cuts, G5 becomes asolution node and G1 is turned into a look-up node. The entry in the table withkey lf(G1) is modi�ed as described in point (2) above.When G9 is generated, the case (3) is applied. G4 and G9 are in the samederivation and lf(G9) is part of the proof of lf(G4) (because G9 contains 25that corresponds to lf(G4)). In this case G9 becomes a look-up node and apointer to the solution list associated to the key lf(G4) in the table is addedto G9. The solution fY=ag is used to expand G9 and when the computationbacktracks to G9 a loop is discovered. 2

Given a tree-table pair (t; T), the table T could contain several entries withequivalent keys. This is because, when a new goal G is produced and there existsin the table an entry with key lf(G0) equivalent to lf(G) such that G0 containscuts, then a new entry with key lf(G) could be added to the table. However,this happens only when there is no recursion between G and G0 (see point (3)above). This guarantees that, if a �nite computation system D is taadopted,then only a �nite number of di�erent entries will be added to the table duringthe computation. When a new goal G is considered, there may exist in the tableseveral entries with key equivalent to lf(G). However, it is possible to show thatat most one of them is usable by G, according to the above description of St-TI.4 Tabled Computations for Prolog Programs with Cutand Their Static AnalysisUsing St-TI as an interpreter for the Abstract Interpretation of Prolog programs,one may obtain incomplete analysis because of the way St-TI handles cuts andloops.Example 4. In this example P is a program which contains a cut and P 0 is acorresponding abstract program abstracting its groundness and freeness infor-mation. The cut in P is not executed by St-TI, whereas that in P 0 is executed.Because of this, the static analysis results incorrect.A computation system for representing this information isGF = (GF; �GF ;�GF ;�GF ;�GF)where GF = (}(V)� }(V)) [f?g.The partial order, �GF , is de�ned by: 8(G;F); (G1; F1); (G2; F2)2}(V)�}(V),? �GF (G;F) and (G1; F1) �GF (G2; F2) i� G1 � G2 & F1 � F2.Computation systems for computing groundness and/or freeness analysis areproposed in cf. [5, 6, 8].Let P be the concrete Prolog program:q(X):�fY=f(Z)g; p(Y); !; q(X):�fX=ag; p(X):�fX=g(a)g.and G0 be the goal :�"; q(X). The computation of P with G0 by St-TI is �niteand produces one answer substitution, fX=ag.Consider the abstract program P 0 over GF corresponding to P :q(X):�(;; fXg); p(Y); !; q(X):�(fXg; ;); p(X):�(fXg; ;).with goal G00 = :�(;; fXg); q(X). Using a renaming of the �rst clause in P 0 toresolve lf(G00), one obtains the resolvent G01 = :�(;; fX1g); p(Y1); !;21. Thenlf(G1) is uni�ed with the head of the third clause. The uni�cation succeds andG02 = :�(fY2g; ;);22; !;21 is computed. The computation proceeds by executing22, the primitive ! and 21. G03 = :�(fY1g; fX1g); !;21, G04 = :�(fY1g; fX1g);21and G05 = :�(;; fXg) are successively computed.Because of the execution of the cut, the second clause of P 0 is not considered and

thus an abstraction of the concrete answer substitution fX=ag is not produced.Therefore the analysis concludes incorrectly that variable X of the initial goalis always free at the end of the computation. 2A similar phenomenon can occur when St-TI detects a loop during an abstractcomputation: it is possible that the concrete computation does not fall into thesame loop (for instance, because of a previous failure).In order to treat cuts and check loops correctly when executing an abstractprogram, information about the sure success of the goals in the concrete com-putations must be available. We call this knowledge control information fromnow on. Control information can be represented by a complete lattice, CI, con-sisting in two elements, fs; ug, where s is for sure and u for unsure with theordering s � u. Adding control information to a domainD (that is another com-plete lattice) consists in performing the product D�CI, cf. [4]. This amouts tohaving two copies of each value d 2 D: one (d; s) and one (d; u). The obtainedextended domain will be denoted by Dci. Dci is the corresponding augmentedcomputation system. The original abstract uni�cation � on D is transformed toobtain a function �ci on Dci that produces also control information.�ci, must becorrect, i.e., if it produces s, as control information, then all the correspondingconcrete computations are successful. This is always possible (in the worst caseu is always produced). However, the quality of the control information computeddepends on D.One may wonder whether it is realistic to assume that control information canbe inferred during a static analysis. In [7] it is shown that, with the abstractdomain EXP it is possible to infer control information. In particular, the treat-ment of some Prolog built-ins, can help considerably the inference process.The computation of St-TI on Dci is illustrated by the following example.
[q(X); (;; fXg); s)][p(Y1); ((;; ;); s)] [((;; fXg); u); ((fXg; ;); s)j nil][((fY1g; ;); u)j nil]G07 = :�((fXg; ;); s)G06 = :�((fX2g; ;); s);23

G05 = :�((;; fXg); s)G04 = :�((fY1g; fX1g); s);21G03 = :�((fY1g; fX1g); s); !;21G02 = :�((fY2g; ;); u);22; !;21G01 = :�((;; fX1g); s); p(Y1); !;21 solutionG00 = :�((;; fXg); s); q(X) solution
Fig. 3.Example 5. Let P 0 and G00 be as in the previuos example except that each(G;F) 2 GF is replaced with ((G;F); s) 2 GFci and let GFci be the abstract

computation system obtained from GF by adding to it control information. Ex-ecuting P 0 with G00 by using the control information to control the execution ofthe cut, the tree-table pair in Fig. 3 is reached.G01 is :�((;; fX1g); s); p(Y1); !;21 and it contains sure information since X andX1 are both free and thus it is sure that the uni�cation succeeds. However, G02contains unsure information because in G01 no information about Y1 is repre-sented. Then 22 is computed and G03 is reached. The leftmost element of G03 is acut. In this case we consider all the path from the parent node of this cut (G00) toG03, looking at the corresponding control information. If the control informationin all the goals in this path is sure then we are sure that the cut is executed inall the corresponding concrete computations and thus it can be executed; other-wise the cut is ignored. In this case, the second alternative occurs and thus thecut operator is not executed. An abstraction of the concrete answer substitutionfX=ag is computed. 2In the following example a cut is reached at the abstract level with sure infor-mation. It is executed producing a more e�cent and precise analysis.Example 6. Consider the program obtained by replacing the �rst clause of P 0in the previous example with q(X):�(;; fXg); p(X); !. The tree-table pair repre-sented in Fig. 4 is obtained. Observe that, considering the path from G00 to G03a sure information is reached at each step. We are sure that the cut is executedin all the corresponding concrete computations and thus we can safely executeit also at the abstract level.
[q(X); ((;; fXg); s)][p(X1); ((;; fX1g); s)] [((fXg; ;); s) j nil][((fX1g; ;); s) j nil]G05 = :�((fXg; ;); s)G04 = :�((fX1g; ;); s);21G03 = :�((fX1g; ;); s); !;21G02 = :�((fX2g; ;); s);22; !;21G01 = :�((;; fX1g); s); p(X1); !;21 solutionG00 = :�((;; fXg); s); q(X) solution

Fig. 4. 2

AcknowledgementWe thank Luca Righi for his help in designing the �gures. We thank Giuseppe Nardiellofor a careful reading of the paper.References1. K. Apt: Introduction to Logic Programming. Handbook of Theoretical ComputerScience, J.van Leeuwen, editor, North Holland, 1990.2. R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi: Modelling Prolog Control. In:Proc. Nineteenth Annual ACM Symposium on Principles of Programming Lan-guages, pp 95{104. ACM Press, 1992.3. P. Codognet and G. Fil�e: Computations, abstractions and constraints in logicprograms. In: Proc. Fourth International Conference on Programming Languages(ICCL'92), Oakland, U.S.A., April 1992.4. P. Cousot and R. Cousot: Abstract Interpretation and Application to Logic Pro-grams. Journal of Logic Programming, 13(2&3):103{179, July, 1992.5. M. Bruynooghe, M. Codish, D. Dams and G. Fil�e: Freeness analysis for logic pro-grams, 1992. To appear in ICLP'93.6. A. Cortesi and G. Fil�e: Abstract Interpretation of Logic Programs: an abstractdomain for groundness, equivalence, sharing and freeness analysis. In: N.D. Jonesand P. Hudak (eds): ACM Symposium on partial evaluation and semantics basedprogram manipulation. SIGPLAN NOTICES, 26(9), pp. 52{61. 1991.7. A. Cortesi, G. Fil�e, and S. Rossi: Abstract Interpretation of Prolog: the treatmentof the buit-ins. In: Costantini (ed): Proc. GULP'92, 1992.8. A. Cortesi, G. Fil�e, and W. Winsborough: Prop revisited: Propositional Formulasas Abstract Domain for Groundness Analysis. In: G. Kahn (ed): Proceedings ofthe IEEE sixth annual symposium on Logic In Computer Science (LICS'91), pp.322{327, Amsterdam, 1991. IEEE Press.9. S.K. Debray and P. Mishra: Denotational and Operational Semantics for Prolog.In: M. Wirsing (ed): Formal Description of Programming Concepts III, pp. 245{269. North-Holland, Amsterdam, 1987. 1987.10. T. Kanamori and T. Kawamura: Abstract Interpretation based on OLDT-resolution. ICOT Research Report, Tokyo, July, 1990.11. B. Le Charlier and S. Rossi: An Accurate Abstract Interpretation Framework forProlog with cut. Submitted to ILPS'93.12. J.W. Lloyd: Foundations of Logic Programming. Springer, 1987.
This article was processed using the LaTEX macro package with LLNCS style

