
Delarative Semantis ofInput Consuming Logi ProgramsAnnalisa Bossi1, Nioletta Coo1, Sandro Etalle2;3, and Sabina Rossi11 Universit�a di Venezia, fbossi,oo,srossig�dsi.unive.it2 University of Twente s.etalle�utwente.nl3 CWI, Amsterdam,Abstrat. Most logi programming languages atually provide somekind of dynami sheduling to inrease the expressive power and to on-trol exeution. Input onsuming derivations have been introdued to de-sribe dynami sheduling while abstrating from the tehnial details.In this paper we review and ompare the di�erent proposals given fordenotational semantis of programs with input onsuming derivations.We also show how they an be applied to termination analysis.1 Introdution1.1 Dynami Sheduling in Logi ProgrammingIn logi programming the seletion rule determines whih atom in a query is se-leted at eah derivation step. The standard seletion rule is the left-to-right ruleof Prolog, simple to implement, but whih an ause problems both with termina-tion and with negation when seleted atoms are not fully instantiated. Moreoverthere are situations, e.g., in the ontext of parallel exeutions or the test-and-generate paradigm, that require a more exible ontrol mehanism, where theseletable atoms are determined at runtime.Most logi programming languages atually provide some kind of dynamisheduling in order to inrease the expressive power and to ontrol exeution.In pratial systems, dynami seletion rules are implemented by means of on-struts suh as delay delarations and blok delarations. Delay delarations,advoated by van Emden and de Luena [46℄, were introdued expliitly in logiprogramming by Naish [37, 34℄. Delay delarations assoiate onditions to atoms,indiating when their evaluation an proeed. Suh onditions are based on in-stantiation. Typial delay delarations are ground(X) or nonvar(X) whih spe-ify that the assoiated atom an be seleted for evaluation when its argument Xis respetively a ground term or a non-variable term. Delay delarations an bealso onjoined or disjoined to allow more omplex ontrol.G�odel [26℄ and ECLiPSe [27℄ use delay delarations, while SICStus Prolog[28℄ employs blok delarations (whih are a speial kind of delay delarations).Also in onurrent logi languages, suh as GHC [43℄, programs are aug-mented with guards in order to ontrol the seletion of atoms dynamially. For



example Moded Flat GHC [45℄ use onditions based on modes and instantiationonstraints imposed on individual lauses.To see how dynami sheduling an be ontrolled by delay delarations, on-sider the following programs APPEND and IN ORDER:% append(Xs,Ys,Zs)  Zs is the result of onatenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List)  List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs)  in order(Left,Ls),in order(Right,Rs),append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ : read tree(Tree), in order(Tree,List), write list(List):where read tree and write list are de�ned elsewhere. If read tree annotread the whole tree at one { say, it reeives the input from a stream { it wouldbe nie to be able to run the \proesses" in order and write list on theavailable input. This an be done properly if one uses a dynami seletion rule.Prolog's rule would all in order only after read tree has �nished, while other�xed rules would immediately diverge and/or have an unwanted behavior. Forinstane, the �xed rule that selets always the seond atom in a lause body,and that selets the �rst one only when the body ontains only one atom anlead to nontermination, as the query in order(Tree,List) an easily diverge.In the above program, in order to avoid nontermination one an delare thatprediates in order, append and write list an be seleted only if their �rstargument is not just a variable. Formally,delay in order(T, ) until nonvar(T).delay append(Ls, , ) until nonvar(Ls).delay write list(Ls, ) until nonvar(Ls).These delarations prevent in order, append and write list from being se-leted \too early", i.e., when their arguments are not \suÆiently instantiated".Note that instead of having interleaving \proesses", one an also selet severalatoms in parallel, as long as the delay delarations are respeted. This approahto parallelism has been �rst proposed by Naish [36℄ and { as observed by Aptand Luitjes [5℄ { \has an important advantage over the ones proposed in theliterature in that it allows us to parallelize programs written in a large subset ofProlog by merely adding to them delay delarations, so without modifying theoriginal program".Compared to other mehanisms for user-de�ned ontrol, e.g., using the utoperator in onnetion with built-in prediates that test for the instantiation of a2



variable (var or ground), delay delarations are more ompatible with the delar-ative harater of logi programming. Nevertheless, many important delarativeproperties that have been proven for logi programs do not apply to programswith delay delarations. The problem is mainly related to the fat that delaydelarations might ause deadlok situations, in whih no atom in the queryrespets its delay delaration. For suh programs the well-known equivalenebetween model-theoreti and operational semantis does not hold. As an exam-ple, onsider the query append(X,Y,Z)with the exeution mehanism desribedabove: it does not sueed (it deadloks) and this is in ontrast with the fatthat (in�nitely many) instanes of append(X,Y,Z) are ontained in the leastHerbrand model of APPEND.1.2 Semantis of Logi Programs with Dynami ShedulingBy introduing dynami sheduling we obtain more powerful and exible pro-grams but we are faed with the problem of �nding new tehniques for ensuringorretness and termination of suh programs and more generally for analyzingthem. The standard semantis and properties are no longer valid when an atoman be delayed under some ondition, moreover it is not easy to extend suhsemantis also beause of the possibility of oundering when no atom in thegoal an be seleted. Hene it is not surprizing that not so many proposals havebeen given for a semantis for logi programs with dynami sheduling despiteof their pratial importane.The �rst proposal of an operational semantis for dynami sheduling in theform of oroutining was given by Naish [35℄. He de�ned SLDF resolution, whihis a straightforward generalization of SLD resolution, where exeution of atomsmay be suspended inde�nitely. He also onsidered termination of suh programsand observed that, if the set of allable atoms is losed under instantiation, ter-mination properties are simpli�ed. Moreover Naish stressed the importane ofmode information for reasoning about termination of suh programs. An oper-ational semantis for onstraint logi programs (CLP) with dynami shedulinghave been given also by Debray et al. [19℄.Falashi et al. [24, 33, 23℄ have de�ned a denotational semantis for CLP pro-grams with dynami sheduling where the semantis of a query is given by a setof losure operators (eah operator orresponds to a sequene of rule hoies).They start from an operational semantis for onstraint logi programs with dy-nami sheduling given in terms of derivations from the goals, whih is similarto the one in [19℄ and in [32℄. Then they give a semantis in terms of and-trees,whih apture the struture of a derivation in a ompositional way. An and-treean be seen as a funtion mapping an initial onstraint to its answer. The deno-tation of a sequene of atoms is then a set of losure operators, orresponding tothe and-trees whih have this sequene as root. Their denotational semantis isthe analogue of the bottom-up S-semantis [13℄ for usual logi programs, whereatoms are mapped to their set of answers.Suh a denotational semantis an be used as a basis for the analysis of logiprograms with dynami sheduling, sine losure operators an be abstrated by3



desriptions whih apture their behaviour. This idea was followed by Marriottet al. in [32℄ where a framework for global dataow analysis for logi program-ming languages with dynami sheduling is developed. Its main use is to giveinformation on alling patterns. In [17℄ the analysis is further improved both inpreision and in eÆieny. From suh proposals also optimization tehniques forlogi programs with dynami sheduling have been derived, suh as in [38℄.A very elegant de�nition of an algebrai and logial semantis for onstraintlogi languages with dynami sheduling have been given by Marriott in [31℄.It orresponds to an operational semantis based on the one given by Naishin [35℄ generalized to arbitrary onstraints. Delayed atoms are onsidered asonstraints, then the soundness and ompleteness results for suess and �nitefailure for CLP are extended to CLP with dynami sheduling. The ompletenessresult for �nite failure is neessarily weaker.In spite of these proposals some problems remain. Dynami sheduling isoften introdued to ensure the termination of the program, preventing possi-ble diverging derivations. Nevertheless, while for pure Prolog programs (i.e.,logi programs employing the �xed leftmost seletion rule) there exist resultsharaterizing when a program is terminating suh as in [7, 18, 14℄ no suh aharaterization was derived for programs with dynami sheduling from thesesemantis.1.3 Semantis of Input Consuming DerivationsIn order to provide a haraterization of dynami sheduling that is reasonablyabstrat and amenable to termination analysis, Smaus [40℄ introdued inputonsuming derivations. The de�nition of input onsuming program relies on theonept of mode. A moded program is a program in whih eah atom's argumentsare partitioned into input and output ones. Output arguments are those whihan be produed by the omputation proess, while input arguments should beonly onsumed. Roughly speaking, in an input onsuming program only atomswhose input arguments are not instantiated through the uni�ation step areallowed to be seleted.We believe that { in many ases { the adoption of \natural" delay delarationsis equivalent to onsidering only input onsuming derivations [11℄. This is thease, for instane, of the programs mentioned in the example above togetherwith their natural mode where the �rst position of in order is onsidered ininput, while the seond one is in output. In fat under normal irumstanes,the adoption of the stated delay delarations enfores nothing but a restritionto input onsuming derivations. Moreover also other ontrol mehanisms, suhas the one in Moded Flat GHC, are similar to requiring an input onsumingderivation step: the resolution of an atom with a de�nition must not instantiatethe input arguments of the resolved atom.Input onsuming programs allow for simpler de�nitions of denotational se-mantis and have nie properties regarding termination. Heneforth they seemto be a resonable and safe approximation to programs with general dynamisheduling. In this paper we review and ompare the di�erent proposals given4



for denotational semantis of programs with input onsuming derivations. Wealso show how they an be applied to termination analysis.1.4 Struture of the PaperThe paper is organized as follows. Setion 2 ontains some preliminary notationsand de�nitions inluding input onsuming programs. Setion 3 introdues a �rstdenotational semantis apturing omputed answer substitutions of suessfulderivations. This semantis applies to well and niely moded input onsumingprograms. In Setion 4 a seond denotational semantis for simply moded inputonsuming programs is presented whih is able to model also intermediate re-sults of partial derivations. Setion 5 shows how these semantis have been usedto haraterize termination properties of input onsuming programs. Setion 6onludes the paper.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi resultsof logi programs and their semantis [1, 2, 29℄. In this Setion we introdue fewnotions that will be used in the sequel.2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data onstrutors C and adenumerable set of variable symbols V . For any syntati objet o, we denote byVar(o) the set of variables ourring in o. A syntati objet is linear if everyvariable ours in it at most one. A substitution � is a mapping from V toT . Given a substitution � = fx1=t1; : : : ; xn=tng, we say that fx1; : : : ; xng is itsdomain (denoted by Dom(�)), and Var(ft1; : : : ; tng) is its range (denoted byRan(�)). Note that Var(�) = Dom(�) [ Ran(�). We denote by � the emptysubstitution: Dom(�) = Ran(�) = ;. Given a substitution � and a syntatiobjet E, we denote by �jE the restrition of � to the variables in Var(E), i.e.,�jE(x) = �(x) if x 2 Var(E), otherwise �jE(x) = x. If t1; : : : ; tn is a permutationof x1; : : : ; xn then we say that � is a renaming. The omposition of substitutionsis denoted by juxtaposition, i.e., ��(x) = �(�(x)). The result of the appliationof a substitution � to a term t is said an instane of t and it is denoted by t�.We say that t is a variant of t0, written t � t0, if t and t0 are instanes of eahother. In this ase there exists a renaming � suh that t0 = t�. A substitution �is a uni�er of terms t and t0 if t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0.2.2 Programs and DerivationsLet P be a �nite set of prediate symbols. An atom is an objet of the formp(t1; : : : ; tn) where p 2 P is an n-ary prediate symbol and t1; : : : ; tn 2 T . Given5



an atom A, we denote by Rel(A) the prediate symbol of A. A query is a �nite,possibly empty, sequene of atoms A1; : : : ; Am. The empty query is denoted by2. Following the onvention adopted in [2℄, we use bold haraters to denotesequenes of objets: so, for instane, t denotes a sequene of terms, while B is aquery (i.e., a possibly empty sequene of atoms). A (de�nite) lause is a formulaH  B where H is an atom (the head) and B is a query (the body). WhenB is empty, H  B is written H  and is alled a unit lause. A (de�nite)program is a �nite set of lauses. We denote atoms by A;B;H; : : : ; queries byQ;A;B;C; : : : ; lauses by ; d; : : : ; and programs by P .Computations are onstruted as sequenes of \basi" steps. Consider a non-empty query A; B;C and a lause . Let H  B be a variant of  variabledisjoint from A; B;C. Let B and H unify with mgu �. The query (A;B;C)� isalled a resolvent of A; B;C and  with seleted atom B and mgu �. A derivationstep is denoted by A; B;C �=)P; (A;B;C)�. The lause H  B is alled itsinput lause. The atom B is alled the seleted atom of A; B;C.If P is lear from the ontext or  is irrelevant then we drop the referene tothem. A derivation is obtained by iterating derivation steps. A maximal sequeneÆ : Q0 �1=)P;1 Q1 �2=)P;2 � � �Qn �n+1=)P;n+1 Qn+1 � � �is alled a derivation of P [ fQ0g provided that for every step the standardiza-tion apart ondition holds, i.e., the input lause employed is variable disjointfrom the initial query Q0 and from the substitutions and the input lauses usedat earlier steps.Derivations an be �nite or in�nite. If Æ : Q0 �1=)P;1 � � � �n=)P;n Qn is a�nite pre�x of a derivation, also denoted by Æ : Q0 ��! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation and � is a partial omputed answer substitutionof P [ fQ0g. If Æ is maximal and ends with the empty query, then � is alledomputed answer substitution (.a.s., for short). In this ase we say that thederivation is suessful. The length of a (partial) derivation Æ, denoted by len(Æ),is the number of derivation steps in Æ.2.3 Modes & Input Consuming ProgramsModes are a ommon tool for veri�ation. A mode is a funtion that labels asinput or output the positions of eah prediate in order to indiate how thearguments of suh a prediate should be used.De�nition 1 (Mode). A mode for a prediate symbol p of arity n, is a funtionmp from f1; : : : ; ng to fI ;Og.If mp(i) = I (resp. O), we say that i is an input (resp. output) position ofp (with respet to mp). In the examples, we often indiate the mode by writingthe atom p(mp(1); : : : ;mp(n)), e.g., append(I ; I ;O).We assume that eah prediate symbol has a unique mode assoiated to it;multiple modes may be obtained by simply renaming the prediates. We denote6



by In(Q) (resp. Out(Q)) the sequene of terms �lling in the input (resp. output)positions of prediates in Q. Moreover, when writing an atom as p(s; t), we areindiating that s is the sequene of terms �lling in its input positions and t isthe sequene of terms �lling in its output positions.The notion of input onsuming derivation was introdued in [40℄ as a formal-ism for desribing dynami sheduling in an abstrat way.De�nition 2 (Input Consuming Derivation).{ A derivation step A; B;C �=) (A;B;C)� is input onsuming if In(B)� =In(B).{ A derivation is input onsuming if all its derivation steps are input onsum-ing.In the following sometimes we use i-derivation for input onsuming deriva-tion and we all input onsuming program (i-program) a program when onsid-ered with respet to input onsuming derivations only.Example 3. Consider the program REVERSE with aumulator and the followingmodes: reverse(I ;O) and reverse a(I ;O ; I ).reverse(Xs,Ys)  reverse a(Xs,Ys,[℄).reverse a([℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs)  reverse a(Xs,Ys,[X|Zs℄).The following derivation Æ of REVERSE[freverse([X1,X2℄,Zs)g is input on-suming.Æ: reverse([X1,X2℄,Zs) ) reverse a([X1,X2℄,Zs,[ ℄) )reverse a([X2℄,Zs,[X1℄) ) reverse a([ ℄,Zs,[X2,X1℄) ) 2.Allowing only input onsuming derivations is a form of dynami sheduling,sine whether or not an atom an be seleted depends on its degree of instantia-tion at runtime. Given a non-empty query, if no atom is resolvable via an inputonsuming derivation step and no failure arises, then we say that the querydeadloks. Therefore, an i-derivation an either be suessful or �nitely failingor in�nite or deadlok. Eah i-derivation whih is not a deadlok is also a SLDderivation.2.4 Classes of Moded ProgramsIn the sequel we are going to refer to lasses of programs that in some waybehave well with respet to the given mode. In partiular, we are going to usethe onepts of well moded program (Dembinski and Maluszynski [20℄), of nielymoded program (Chadha and Plaisted [15℄) and of simply moded program (Aptand Etalle [4℄).De�nition 4 (Well, Niely and Simply Moded Program).7



{ Well Moded. A lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 [1; n+ 1℄Var(si) � i�1[j=0Var(tj):If we all produing positions the input positions of the head and the outputpositions of the body and onsuming positions the other ones, then we anintuitively say that a lause is well moded if every variable in a onsum-ing position ours also in an earlier produing position (notie that theonsuming positions in the head are the \last" ones in this partiular order).{ Niely Moded. A lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is nielymoded if� t1; : : : ; tn is a linear sequene of terms� Var(t0) \ Var(t1; : : : ; tn) = ;.� and for all i 2 [1; n℄ Var(si) \ n[j=iVar(tj) = ;:Intuitively a lause is niely moded if there are no onits among produingpositions, (a variable may appear in at most one produing position with oneexeption: a variable may appear twie in a produing position of the head),and a variable may not be onsumed before it is produed.{ Simply Moded. A lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is simplymoded if it is niely moded and t1; : : : ; tn is a linear sequene of variables.{ A query Q is well (resp. niely, simply) moded, if the lause q  Q is well(resp. niely, simply) moded, where q is a variable-free atom.Note that an atomi query p(s; t) is well moded if s is a sequene of groundterms and it is niely moded if t is linear and Var(s) \ Var(t) = ;.{ A program is well (resp. niely, simply) moded, if all of its lauses are well(resp. niely, simply) moded.Hene the lass of simply moded programs is a sublass of niely moded onesand it inludes both some well moded and some non-well moded programs.In [42℄ permutation well (niely) moded programs and queries are also de-�ned, i.e., programs and queries whih would be well (niely) moded after apermutation of the atoms respetively in the bodies and in the queries.Example 5.{ The program APPEND of the introdution in the mode append(I ; I ;O) is wellniely and simply moded.{ REVERSE with aumulator of Example 3 is well niely and simply moded.{ Furthermore, onsider the following program PALINDROME in the mode palindrome(I )palindrome(Xs)  reverse(Xs,Xs).8



together with the program REVERSE with the modes reverse(I,O). Thisprogram is well moded but not niely moded (sine Xs ours both in aninput and in an output position of the same body atom). However, sinethe program REVERSE is used here for heking whether a list is a palin-drome, its natural modes are reverse(I,I) and reverse a(I,I,I). Withthese modes, the program PALINDROME is both well moded, niely and simplymoded.Most programs are simply moded (see the mini-survey at the end of [4℄)and often non simply moded programs an naturally be transformed into simplymoded ones (see [10℄).The above notions of well, niely and simply moded are \persistent" with re-spet to input onsuming derivations. The following Lemma is a straightforwardextension of [5, Lemma 30℄.Lemma 6. In a input onsuming derivation, every resolvent of a well (resp.niely, simply) moded query and a well (resp. niely, simply) moded lause iswell (resp. niely, simply) moded.Notie that in the ase of niely and simply moded programs the aboveLemma depends on the fat that only input onsuming derivations are onsid-ered. Indeed, when \normal" SLD derivations are onsidered, it is easy to �ndan example in whih the SLD resolvent of a niely moded query and a nielymoded lause is not niely moded. On the other hand, for well moded programs,any SLD resolvent of a well moded query with a well moded lause is well moded([2℄).Finally, it is worth reminding that, when onsidering niely (respetivelysimply) moded, input onsuming programs, half of the famous swithing Lemmastill applies. The following Left-Swithing Lemma that has been proven in [10℄.Lemma 7. (Left-Swithing) Let the program P and the query Q0 be nielymoded. Let Æ be a (partial) input onsuming derivation of P [ fQ0g of the formÆ : Q0 �1=)1 Q1 � � �Qn �n+1=)n+1 Qn+1 �n+2=)n+2 Qn+2where{ Qn is a query of the form A; A;B; B;C,{ Qn+1 is a resolvent of Qn and n+1 wrt. B,{ Qn+2 is a resolvent of Qn+1 and n+2 wrt. A�n+1.Then, there exist Q0n+1, �0n+1, �0n+2 and a derivation Æ0 suh that�n+1�n+2 = �0n+1�0n+2andÆ0 : Q0 �1=)1 Q1 � � �Qn �0n+1=)n+2 Q0n+1 �0n+2=)n+1 Qn+2where Æ0 is input onsuming and 9



{ Æ and Æ0 oinide up to the resolvent Qn,{ Q0n+1 is a resolvent of Qn and n+2 wrt. A,{ Qn+2 is a resolvent of Q0n+1 and n+1 wrt. B�0n+1,{ Æ and Æ0 oinide after the resolvent Qn+2.2.5 The S-semantisThe aim of the S-semantis approah (see [13℄) is modeling the observable beha-viors for a variety of logi languages. The observable we onsider here is theomputed answer substitutions. The semantis is de�ned as follows:S(P ) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distint variables andp(x1; : : : ; xn) ��!P 2 is a SLD derivationg:This semantis enjoys all the valuable properties of the least Herbrand model.To present the main results on the S-semantis we need to introdue two furtheronepts: Let P be a program, and I be a set of atoms losed under variane.{ The immediate onsequene operator for the S-semantis is de�ned as:TSP (I) = f H� j 9 H  B variant of a lause of P9 C 2 I; renamed apart4 wrt. H;B� = mgu(B;C)g:{ I is alled an S-model of P if TSP (I) � I .Falashi et al. [25℄ showed that TSP is ontinuous on the lattie of term inter-pretations, that is sets of possibly non-ground atoms, with the subset-ordering.They proved the following:{ S(P ) = least S-model of P = TSP " !.Therefore, the S-semantis enjoys a delarative interpretation and a bottom-up onstrution, just like the Herbrand one. In addition, we have that the S-semantis reets the observable behavior in terms of omputed answer substi-tutions, as shown by the following well-known result.Theorem 8 ([25℄). Let P be a program, A be a query. The following statementsare equivalent.{ There exists an SLD derivation A #�!P2,{ There exists A0 2 S(P ) (renamed apart wrt. A), suh that � = mgu(A;A0),4 Here and in the sequel, when we write \C 2 I, renamed apart wrt. some expressione", we naturally mean that I ontains a set of atoms C01; : : : ; C0n, and that C is arenaming of C01; : : : ; C0n suh that C shares no variable with e and that two distintatoms of C share no variables with eah other.10



where A� � A#.Example 9. Let us see this semantis applied to the programs APPEND and REVERSEso far enountered.{ S(APPEND) = f append([℄,X,X),append([X1℄,X,[X1|X℄),append([X1,X2℄,X,[X1,X2|X℄), : : : g.{ S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a([℄,X,X),reverse a([X1℄,X,[X1|X℄),reverse a([X1,X2℄,X,[X2,X1|X℄), : : : g.2.6 Semantis of Input Consuming ProgramsIn the following two Setions we present two semantis for input onsumingprograms whih are related to S-semantis. To de�ne suh semantis, the ob-servables we fous on are the omputed answer substitutions. First, we onsider asemantis given by the omputed answer substitutions of suessful derivations.This orresponds to the S-semantis of logi programming [13℄ when restritedto a partiular set of queries. Given a program P and a set of queries C, thissemantis an be de�ned formally asOis (P;C) = fA�j A 2 C and there exists an i-derivation A ��!P 2g:While this semantis appears very natural, it an be unsuitable for modellingthe reative nature of input onsuming programs. In fat, as we mentioned inthe introdution, input onsuming derivations an be used to model dynamisheduling and parallelism, and in this ontext it is very important to model theresults of partial omputations. Indeed, standard semantis for onurrent logilanguages suh as p [39, 22℄ and GHC [44℄ often apture suh intermediateresults, or in any ase, also the results of non-suessful omputations [16℄. Infat, the (partial) result of a omputation may trigger another omputation byinstantiating suÆiently the input positions of another atom so that it beomesresolvable. Beause of this, when one wants to haraterize for instane termi-nation, the adoption of a semantis whih is able to model intermediate resultsbeomes essential, as shown in Setion 5. Thus we also onsider a semantisapturing the results of partial input onsuming derivations. Given a programP and a set of queries C, this semantis an be de�ned formally asOip (P;C) = fA�j A 2 C and there exists an i-derivation A ��!P Bg:where B is any query. 11



3 Semantis of Well Moded Input Consuming ProgramsTo haraterize our semantis for i-programs, we start from the simplest ase:when one is interested only in the suessful derivations. Then the observables(given by suessful derivations) an be reonduted to the S-semantis of las-sial logi programs.We show that the standard S-semantis is ompositional and orret also forinput onsuming programs, provided that the programs are well and niely modedand that only niely moded queries are onsidered. The results reported in thisSetion are proved in [9℄.Proposition 10. Let P be a well and niely moded program, A be a niely modedatomi query. The following statements are equivalent.(i) There exists an input onsuming derivation A #�!P2,(ii) There exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0) suhthat In(A)� � In(A),where A� � A#.To extend Proposition 10 to arbitrary (non-atomi) queries we need the fol-lowing de�nition.De�nition 11. Let Q = p1(s1; t1); : : : ; pn(sn; tn). We de�neVIn�(Q) := n[i=1fxj x 2 Var(si) and x 62 i�1[j=1Var(tj)g:VIn�(Q) denotes the set of variables ourring in an input position of an atomof Q but not ourring in an output position of an earlier atom. Note that if Qis well moded then VIn�(Q) = ;.Theorem 12. Let P be a well and niely moded program, A be a niely modedquery and NM be the lass of niely moded queries. The following statementsare equivalent.(i) There exists A# 2 Ois (P;NM ),(ii) There exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0) suhthat A�jVIn�(A) � A,where A� � A#.Condition A�jVIn�(A) � A above says that the substitution � just renames thevariables ourring in an input position of A but not ourring in an outputposition of an earlier atom. In ase of an atomi query A := A, we mightsubstitute this ondition with the somewhat more attrative ondition In(A)� �In(A) of Proposition 10.Hene S(P ) is ompositional and orret for input onsuming programs, pro-vided that programs are well and niely moded and that queries are niely12



moded. In other words, given the restritions on programs and queries, theS-semantis is orret with respet to the observables given by the omputedanswer substitutions of suessful i-derivations.Example 13. Consider the program APPEND of the Introdution with the modingappend(I,I,O). S(APPEND), given in Example 9, allows us to draw a number ofonlusions:{ append([X,b℄,Y,Z) has an input onsuming suessful derivation.In partiular, it has an input onsuming derivation with .a.s. fZ=[X; bjY℄g.This an be derived by just looking at S(APPEND), from the fat that A =append([X1,X2℄,X3,[X1,X2|X3℄)2 S(P ) and that append([X,b℄,Y,Z) is- in its input positions - an instane of A.{ append(Y,[X,b℄,Z) has no input onsuming suessful derivations.This is beause there is no A 2 S(P ) suh that append(Y; [X; b℄; Z) is aninstane of A in the input positions.{ Observe that the query append(Y,[X,b℄,Z) has in�nite suessful SLDderivations and no failures. Therefore it does not fail also when we on-sider i-derivations. Sine, as noted above, the query has no input onsum-ing suessful derivations, this implies that { in presene of input onsumingderivations { append(Y,[X,b℄,Z)will eventually either deadlok or run intoan in�nite derivation.The previous results hold also in ase the programs are permutation well andniely moded and queries are permutation niely moded (see [42℄).While in the ontext of SLD (not input onsuming) derivations the S-semantisis also fully abstrat, when onsidering input onsuming program this is not so.Consider the following two trivial programs:P1 = f 1: p(X).2: p(a). gP2 = f p(X). gIn both programs the mode is p(I). These two programs, despite being di�erent,yield exatly the same omputed answer substitutions for all queries when i-derivations are onsidered. In fat the extra lause 2 in P1 an resolve an atomA only if A ontains the term a in its input position, but in this ase 2 behavesexatly as 1 does5. Nevertheless, the S(P1) = fp(X); p(a)g 6= fp(X)g = S(P2),demonstrating that the S-semantis is not fully abstrat when onsidering i-derivations. In the next Setion we present a more omplex semantis, whih isalso fully abstrat for i-derivations.5 The only observable di�erene between P1 and P2 lies in the multipliity of theanswers: the query q(a) sueeds twie in P1 and only one in P2, but answer mul-tipliity is not an observable we onsider here.13



4 Semantis of Simply Moded Input ConsumingProgramsThe semantis presented in the previous Setion applies only when we are in-terested in the omputed answer substitutions of suessful derivations. As wedisussed before, there are many situations in whih we also want to modelthe (intermediate) results of partial derivations. For instane, this will be thease when { in the next Setion { we study the termination of input onsumingprograms.In this Setion we de�ne a somewhat more omplex denotational semantiswhih has the advantage to model the observables given by both suessful andpartial derivations in a rather symmetri way. In addition, in exhange for amoderate syntati restrition (instead of niely moded programs and querieswe have to onsider simply moded ones) it allows us to drop the requirementthat programs have to be well moded. The two semantis we are going to in-trodue are ompositional, orret and fully abstrat with respet to the opera-tional semantis of input onsuming simply moded programs and queries, i.e.,Ois (P;SM ) and Oip (P;SM ), where SM is the lass of simply moded queries. Asin the standard S-semantis, we build a denotational semantis by means of abottom-up onstrution.4.1 Simply Loal Substitutions and Simply Loal ModelsWhen input onsuming derivations are applied to simply moded programs andqueries, important properties follow from the way lauses beome instantiatedalong the derivations. The notion of simply loal substitution is introdued in[12℄ to reet this instantiation mehanism. A lause  = H  B1; : : : ; Bn be-omes instantiated by its \aller" (the atom that is resolved using ) and its\allees" (the lauses used to resolve the body atoms of ). Thus, a simply loalsubstitution is de�ned as the omposition of several substitutions, �0; �1 : : : ; �n,one for eah atom in the given lause, suh that �0 binds the input variables ofthe head of the lause, and eah �i (i > 0) reates a binding from the outputvariables to input terms of Bi�0; : : : ; �i�1.De�nition 14 (Simply Loal Substitution). Let � be a substitution. We saythat � is simply loal with respet to the lause H  B1; : : : ; Bn if there existsubstitutions �0; �1 : : : ; �n and disjoint sets of fresh (with respet to ) variablesv0; v1; : : : ; vn suh that � = �0�1 � � ��n where{ Dom(�0) � Var(In(H)) and Ran(�0) � v0,{ for i 2 [1::n℄,Dom(�i) � Var(Out(Bi)) and Ran(�i) � Var(In(Bi)�0�1 � � ��i�1) [ vi.The substitution � is simply loal with respet to a query B if � is simply loalwith respet to the lause q  B where q is any variable-free atom.14



Example 15. Consider the program APPEND together with the mode append(I,I,O)and its reursive lause : append([HjXs℄; Ys; [HjZs℄)  append(Xs; Ys; Zs):The substitution � = fXs=[℄; Ys=W; Zs=Wg is simply loal with respet to . Infat � = �0�1 where �0 = fXs=[℄; Ys=Wg and �1 = fZs=Wg. Consider now thequeryQ : append([a; X; ℄; Ys; Zs); append(Zs; [b℄; Ls):The substitution � = fZs=[a,X,|Ys℄g is simply loal with respet to Q. In fat� = �1�2 where �1 = fZs=[a,X,|Ys℄g and �2 is the empty substitution.The denotational semantis de�ned in [12℄ is based on a restrited notion ofmodel. Here and in the sequel we onsider sets of moded atoms losed undervariane.De�nition 16 (Simply Loal Model). Let M be a set of moded atoms. Wesay that M is a simply loal model of a lause  : H  B1; : : : ; Bn if for everysubstitution � simply loal with respet to ,if B1�; : : : ; Bn� 2M then H� 2M . (1)M is a simply loal model of a program P if it is a simply loal model of eahlause of it.Clearly a simply loal model is not neessarily a model in the lassial sense,sine the substitution � in (1) is required to be simply loal. For example, giventhe program fq(1):; p(X) q(X):g with modes q(I ); p(O), a model must ontainthe atom p(1), whereas a simply loal model does not neessarily ontain p(1),sine fX=1g is not simply loal with respet to p(X)  q(X):A minimal simply loal model exists and it is bottom-up omputable byapplying the following operator [12℄.De�nition 17. Given a program P and a set of moded atoms I, we de�neTSLP (I) = I [ fH� j 9  : H  B variant of a lause of P;� is simply loal with respet to ;B� 2 IgTSLP is monotoni and ontinuous on the lattie where set of moded atomsare ordered by set inlusion. Powers of an operator T are de�ned in the standardway as follows: T " 0(I) = I , T " (i + 1)(I) = T (T " i(I)), and T " !(I) =S1i=0 T " i(I).In the following we denote by SM P the set of all simply moded atoms of theextended Herbrand universe of P . In [12℄ it is proven that if P is simply modedand I � SM P thenTSLP " !(I) is the least simply loal model of P ontaining I (2)This allows us to de�ne our models.15



De�nition 18. Let P be a program, we de�ne{ M SLP is the least simply loal model of P ,{ PM SLP is the least simply loal model of P ontaining SM P .The existene of these models is guaranteed by (2), in fat (2) also shows howto onstrut them, as it implies thatM SLP = TSLP " !(;), and PM SLP = TSLP " !(SMP ) (3)4.2 Relation among Denotational and Operational SemantisTo relate the M SLP and PM SLP to Ois (P;SM ) and Oip (P;SM ) we need to re-late TSLP to the results of input onsuming derivations; this is ahieved in thefollowing Lemma, proved in [12℄.Lemma 19. Let the program P and the query A be simply moded and I � SM Pbe a set of moded atoms. The following statements are equivalent.(i) There exists an input onsuming derivation A #�!P C with C � I,(ii) There exists a substitution � simply loal with respet to A, suh that A� �TSLP " !(I),where A# � A�.We an now prove that M SLP and PM SLP fully haraterize the semantis of i-derivations for simply moded programs and queries, namely they are equal toOis (P;SM ) and Oip (P;SM ), respetively.Theorem 20. Let P be simply moded. Then(i) M SLP = Ois (P;SM ).(ii) PM SLP = Oip (P;SM ).Proof. Immediate by (3), Lemma 19 and the de�nitions of Ois (P;SM ) andOip (P;SM ).An example follows.Example 21. Let us onsider again the program APPEND.1. First let us onsider its suessful i-derivations. Hene we have to buildM SLAPPENDM SLAPPEND = fappend([t1; : : : ; tn℄; s; [t1; : : : ; tnjs℄) j n 2 [0::1℄;and t1; : : : ; tn; s are any termsg:Notie that this model is di�erent from S(APPEND), reported in Example 9.We are going to relate S(P ) and MSLP later in this Setion.16



2. Now let us onsider the results of partial derivations. Reall that PM SLAPPENDis obtained by repeatedly applying TSLP to eah simply moded atom. Simplymoded atoms are append(s; t; x) where s and t are arbitrary terms but x isa variable not ourring in s or in t. We obtainPM SLAPPEND = M SLAPPEND[ fappend(s; t; x) j x is a fresh variable g[ fappend([t1; : : : ; tmjs℄; t; [t1; : : : ; tmjx℄) j x is a fresh variablegwhere s; t; t1; : : : ; tm are arbitrary terms.Consider now the query append([a; b; jX℄; Y; Z). It is straightforward tohek that the substitution � = fZ=[a; bjZ0℄g is simply loal with respetto it, and that append([a; b; jX℄; Y; Z)� 2 PM SLAPPEND. Therefore, by usingTheorem 20, we an onlude that there exists a partial derivation startingin append([a; b; jX℄; Y; Z), with omputed answer �. Following the same rea-soning, one an also onlude that the query has a partial derivation withomputed answer �0 = fZ=[ajZ0℄g.4.3 Relation among S-semantis and Denotational Semantis forIC-programsIn this setion we ompare the denotational semantisMSLP with the S-semantisS(P ) of simply moded programs.First, we need a new de�nition: let I be a set of moded atoms, the inputlosure of I is de�ned as:InCl(I) = fA� j A 2 I and Var(A) \ Var(�) � Var(In(A))gSo the input losure of an atom is obtained by instantiating its input positionsin all possible ways, provided that no new links are reated between the inputand the output positions.Theorem 22. Let P be a well and simply moded program, thenMSLP = InCl(S(P ))Proof. First observe that the lass of simply moded programs is ontained in thelass of niely moded programs, hene Theorem 12 holds also when we onsiderwell and simply moded programs and simply moded queries.- MSLP � InCl(S(P )). Let A be simply moded and A# 2 MSLP then, byTheorem 20, A# 2 Ois (P;SM ). By Theorem 12 there exists A0 2 S(P ) (renamedapart wrt. A), and � = mgu(A;A0) suh that In(A)� � In(A) and A� � A#.Sine A is simply moded, we an hoose � suh that Dom(�) \ Var(A0) �Var(In(A0)). Therefore A# � A� = A0� 2 InCl(S(P )).- MSLP � InCl(S(P )). Let A0� 2 InCl(S(P )) and A0 = p(s; t) 2 S(P ).There exist a simply moded atom A = p(s0; z), renamed apart wrt. A0, and asubstitution � suh that � = mgu(A;A0), In(A)� = In(A) and A� = A0� � A0�.By Theorem 12 there exists # suh that A# 2 Ois (P;SM ) and A# � A� � A0�.Hene, by Theorem 20, A0� 2MSLP . 17



5 Semanti-Based Veri�ation of TerminationThere have been only few proposals whih takled the spei� problem of ver-ifying the termination of logi programs with dynami sheduling. Namely byApt and Luitjes [5℄, Marhiori and Teusink [30℄ and Smaus. Input onsumingderivations were indeed introdued by Smaus in [40℄ to simplify the study ofprogram properties whih depend on seletion rules and in [41℄ he started tostudy in partiular the problem of termination of input onsuming derivations.In [10℄ and [12℄ we study two lasses of programs terminating with respetto input onsuming derivations and well-formed queries. The two lasses di�erin various aspets. First of all, two di�erent lasses of well-formed queries areonsidered: niely moded queries in [10℄, simply moded queries in [12℄. To givean uniform presentation, in [12℄ we onsider a parametri lass of programs inwhih all input onsuming derivations terminate. The parameter is a given lassC of queries.De�nition 23 (Input Termination wrt. a lass C of queries). Let C be alass of queries. A program is alled input terminating with respet to C if allits input onsuming derivations started in a query in C are �nite.The seond di�erene among the two lasses of terminating programs in [10℄and [12℄ is in the termination proof style. The �rst lass follows the style of [3,8℄ and it uses a simple (syntati) termination ondition, but it is also a ratherrestritive lass. The seond lass follows the style of [6, 7℄, that is based on amore omplex model theoreti approah, and it uses the semantis introduedin Setion 4; this is a signi�antly larger lass of programs.Let us onsider �rst the more restritive and simple lass introdued in [10℄:The lass of niely moded quasi reurrent programs. Its de�nition is based onthe notion of well moded level mapping, �rst introdued in [21℄. Here we useits extension ([10℄) to all the terms on BEP , the extended Herbrand base of P ,that is the set of equivalene lasses of all (possibly non-ground) atoms, modulorenaming, whose prediate symbols appear in P .De�nition 24 (Moded Level Mapping). Let P be a program and BEP be theextended Herbrand base for the language assoiated with P . A funtion j j is amoded level mapping for P if:{ it is a funtion j j : BEP ! N from atoms to natural numbers;{ for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.De�nition 25 (Quasi Reurreny). Let P be a program.{ A lause of P is alled quasi reurrent with respet to a moded level mappingj j if for every instane of it, H  A; B;Cif Rel(H) ' 6Rel(B) then jH j > jBj:6 Given two prediate symbols de�ned in a program P we denote by p ' q the fatthat the de�nitions of the two prediates are mutually reursive.18



{ P is alled quasi reurrent with respet to j j if all its lauses are. P isalled quasi reurrent if it is quasi reurrent with respet to some modedlevel mapping j j : BEP ! N.Theorem 26. Let P be a niely moded program. If P is quasi reurrent then Pis input terminating with respet to the lass of niely moded queries.The proof of this Theorem an be found in [10℄.Thus, the quasi reurrent ondition is a suÆient ondition for input ter-mination of niely moded programs and niely moded queries. But it is not aneessary ondition: there are niely moded programs input terminating on allniely moded queries whih are not quasi reurrent as shown by the followingsimple example taken from [10℄.Example 27. Consider the following program with moding p(I; O).p(X,a)  p(X,b).p(X,b).This program is learly input terminating, however it is not quasi reurrent.If it was, we would have that jp(X; a)j > jp(X; b)j, for some moded level mappingj j (otherwise the �rst lause would not be quasi reurrent). On the other hand,sine p(X; a) and p(X; b) di�er only for the terms �lling in their output positions,by de�nition of moded level mapping, jp(X; a)j = jp(X; b)j. Hene, we have aontradition.A full haraterization an be obtained only by further restriting the lassof programs, passing from niely moded to simply moded and input-reursiveprograms.De�nition 28 (Input-Reursive Program). Let P be a program.{ A lause H  A; B;C of P is alled input-reursive ifif Rel(H) ' Rel(B) then Var(In(B)) � Var(In(H)):{ A program P is alled input-reursive if all its lauses are.Input-reursive is a syntati ondition on a lause requiring that the setof variables ourring in the arguments �lling in the input positions of eahreursive all in the lause body is a subset of the set of variables ourringin the arguments �lling in the input positions of the lause head. The lassof input-reursive programs has strong similarities with the lass of primitivereursive funtions. It does not inlude programs suh that quiksort, permute,transpose and we an ompare it with the lass of reurrent logi programs, thatis programs whose termination does not depend on the so-alled inter-argumentrelations.Quasi reurreny fully haraterizes input termination of simply moded andinput-reursive programs with respet to niely moded queries.19



Theorem 29. Let P be a simply moded and input-reursive program. P is quasireurrent if and only if P is input terminating with respet to the lass of nielymoded queries.The proof of this Theorem an be found in [10℄.To onsider a larger lass of input terminating programs we an follow thesame approah pursued by Apt and Pedreshi in de�ning aeptable programsand use a model to apture the inter-argument relations between the atoms ina query. Intuitively, the model represents all the possible ontexts in whih aspei� atom in a query an be alled. Standard models suÆe when standardleft-to-right derivations are onsidered, that is when the ontexts depends onlyon the omputed answers of the atoms ourring on the left of the onsideredone. When input onsuming derivations are onsidered, the desription of all thepossible ontexts is muh more omplex sine there may be atoms in the querywhih are only partially omputed when the onsidered atom is seleted. Henea omputed answer semantis does not provide enough information, that is whywe need to apture partial omputed answers of input onsuming derivations.The semantis de�ned in [12℄ and the onept of simply loal model give usthe right tools and allow us to identify a large lass of input terminating programswhih inludes also programs employing a non-trivial reursion sheme suh asquiksort, permute, transpose. In fat, based on the notion of simply loalmodels, in [12℄ we introdued the notion of simply aeptable programs whihorresponds to the notion of aeptable programs introdued in [6℄.De�nition 30 (Simply Aeptable Program). Let P be a program and Ma simply loal model of P ontaining SM P .{ A lause  of P is simply aeptable with respet to a moded level mappingj j and M if for every variant H  A; B;C of  and every substitution �simply loal with respet to ,if A� 2M and Rel(H) ' Rel(B) then jH�j > jB�j:{ P is simply aeptable with respet to M if there exists a moded level map-ping j j suh that eah lause of P is simply aeptable with respet to j j andM . We also say that P is simply aeptable if it is simply aeptable withrespet to some M and moded level mapping j j.Simple aeptability fully haraterizes input termination of simply modedprograms with respet to simply moded queries.Theorem 31. Let P be a simply moded program. P is simply aeptable if andonly if it is input terminating with respet to simply moded queries.The following example shows how we an use the above Theorem to reasonabout termination of a program.Example 32. Consider the following PERMUTE program20



permute([X|Xs℄,Ys)  insert(Zs,X,Ys), permute(Xs,Zs).permute([℄,[℄).insert([℄,X,[X℄).insert([U|Xs℄,X,[U|Zs℄)  insert(Xs,X,Zs).We onsider it with two di�erent modes.1. First, onsider the mode permute(O ; I ); insert(O ;O ; I ).Notie that the program is not input terminating in this mode: by repeat-edly seleting the rightmost atom, the query permute(Xs,Ys) generates anin�nite input onsuming derivation. By Theorem 31, we an prove it by show-ing that PERMUTE in this mode annot be simply aeptable with respet toPM SLPERMUTE and a moded level mapping whih is invariant under renaming.First note that PM SLPERMUTE ontains every atom of the form insert(Us; U; t)where Us and U are disjoint from t, i.e., every simply moded atom whose pred-iate is insert. Therefore, in partiular, insert(Us; U; Vs) 2 PM SLPERMUTE. Thesubstitution � = fYs=Vs; Zs=Us; X=Ug is simply loal with respet to the �rstlause. Therefore, for this lause to be simply aeptable, by Theorem 31,there would have to be a moded level mapping, invariant under renaming,suh that jpermute([UjXs℄; Vs)j > jpermute(Xs; Us)j. This is a ontraditionsine a moded level mapping depends only on the input arguments (the se-ond argument of permute) and we are onsidering a level mapping invariantunder renaming.Thus Theorem 31 an be used to diagnose a program, in that we an pinpointwhy it does not input terminate.2. Now onsider the program PERMUTE together with the mode permute(I ;O);insert(I ; I ;O).In this ase, in order to make the program simply moded we have to permutethe two body atoms of the �rst permute lause7. I.e., permute is rede�nedas permute([X|Xs℄,Ys)  permute(Xs,Zs), insert(Zs,X,Ys).permute([℄,[℄).Notie that the program is now input terminating with respet to simplymoded queries. This is in fat the natural mode of the PERMUTE program.To demonstrate the termination one an apply Theorem 31 using any sim-ply loal model ontaining SM P together with the following moded levelmapping:jpermute(l; )j = len(l);jinsert(l; ; )j = len(l):7 Atually, everything we state applies to the lass of permutation simply modedprograms, i.e., those programs and queries that are simply moded possibly after apermutation of body atoms. For the sake of notation simpliity, we avoid to refer tothis in a strutural way. 21



6 ConlusionIn this paper, we have illustrated two denotational semantis proposed in [9℄and in [12℄ for input onsuming derivation in logi programs and we have shownhow these semantis have been used for studying termination properties of suhprograms.The two semantis are quite orthogonal to eah other: while the �rst one(introdued in [9℄) models exlusively the results of suessful derivations andrequires programs to be well moded and niely moded, the seond one (introduedin [12℄) models also the results of inomplete derivations and requires programsand queries to be simply moded.As mentioned in the Introdution, in the ontext of parallel and onur-rent programs, one an have derivations that never sueed, and yet omputesubstitutions [36℄. Thus we have provided a denotational semantis also for suhprograms, whih goes beyond the usual suess-based SLD resolution mehanismof logi programming.Input onsuming derivations bear a ertain resemblane with derivations inthe language ofModed (Flat) GHC [45℄. Atually, input onsuming programs anbe seen as a simpli�ed version of moded (F)GHC. We want to note however thatModed (F)GHC is a full-edged programming paradigm, while input onsumingprograms are meant for abstration purposes.As a onluding remark, we want to stress the relation between i-programsand programs that use delay delarations. A signi�ant lass of programs withdelay delarations whose derivations are input onsuming derivations has beenidenti�ed in [11℄.Referenes1. K. R. Apt. Logi Programming. In J. van Leeuwen, editor, Handbook of Theoret-ial Computer Siene, volume B: Formal Models and Semantis, pages 495{574.Elsevier and The MIT Press, Amsterdam and Cambridge, MA, 1990.2. K. R. Apt. From Logi Programming to Prolog. Prentie Hall, London, 1997.3. K. R. Apt and M. Bezem. Ayli programs. New Generation Computing,9(3&4):335{363, 1991.4. K. R. Apt and S. Etalle. On the uni�ation free Prolog programs. InA. Borzyszkowski and S. Sokolowski, editors, Proeedings of the Conferene onMathematial Foundations of Computer Siene (MFCS'93), volume 711 of LetureNotes in Computer Siene, pages 1{19, Berlin, Germany, 1993. Springer-Verlag.5. K. R. Apt and I. Luitjes. Veri�ation of logi programs with delay dela-rations. In A. Borzyszkowski and S. Sokolowski, editors, Proeedings of theFourth International Conferene on Algebrai Methodology and Software Tehnol-ogy, (AMAST'95), volume 936 of Leture Notes in Computer Siene, pages 1{19,Berlin, Germany, 1995. Springer-Verlag.6. K. R. Apt and D. Pedreshi. Proving termination of general Prolog programs.In T. Ito and A. Meyer, editors, Proeedings of the International Conferene onTheoretial Aspets of Computer Software, Leture Notes in Computer Siene 526,pages 265{289, Berlin, Germany, 1991. Springer-Verlag.22
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