
Specialising Logic Programs with respect toCall/Post Speci�cationsAnnalisa Bossi and Sabina RossiDipartimento di Matematica e Informatica, via Torino 155, 30173 Venezia, Italyfbossi,srossig@dsi.unive.itAbstract. In this paper we present a program specialisation methodwhich, given a call/post speci�cation, transforms a logic program into aweakly call-correct one satisfying the post-condition.The specialisation is applied to specialised partially correct programs.This notion is based on the de�nition of specialised derivation which isintended to describe program behaviour whenever some properties onprocedure calls are assumed. Top-down and bottom-up semantics of spe-cialised derivations are recalled.1 IntroductionSpecialisation methods allow to restrict a program to a narrower context ofapplication. The aim is that of obtaining a more e�cient program which behavesas the original one on the considered subdomain.In the �eld of logic programming, the narrowed context is usually describedby means of a set of queries of interest. Specialisation methods are based onthe idea of partially evaluating program clauses [5, 16, 20, 21] with respect tothis set of queries. The goal is to detect clauses which are redundant in therestricted context, or to specialise them preventing costly failing derivations. Ifthe original program is correct with respect to a pre/post speci�cation [4, 9, 10,2], and the considered queries satisfy the precondition, then the correctness ofthe specialised program is ensured. Nothing is guaranteed on the queries whichare not in the set of interest. They may succeed with \wrong" answers, producea �nite failure or an in�nite computation. We simply do not care about them.The specialisation that we propose in this paper restricts the search space ofa program to the set of derivations satisfying the property that, at each step, theselected atom \respects" a given call-condition. The main feature of our special-isation is that if the original program is \correct" (we say, specialised partiallycorrect) with respect to a call/post speci�cation then the specialised programis (partially) correct for all queries. The execution of a query which does notsatisfy the speci�cation ends with a �nite failure.As an application, our approach allows us to support types without the need ofaugmenting programs with any kind of type declaration.To give an intuition, consider the program SUM de�ned by:



sum (X; 0; X) :sum (X; s(Y ); s(Z)) sum (X;Y; Z):The intention is that of de�ning the sum between natural numbers which are re-presented by the constants 0, s(0), s(s(0)) and so on. However, there are querieslike sum (a; s(0); s(a)) which succeed even if some arguments are not numerals.In order to avoid such \wrong" solutions, one can make use of type checkingpredicates de�ned by additional Prolog procedures [17{19].Our specialisation can be used to solve this problem by restricting the programto a suitable context of application that is expressed in the form of a call/postspeci�cation. Similarly to classical pre/post speci�cations, a call/post speci�-cation consists of two parts, a call-condition and a post-condition. While thenotion of post-condition is the standard one, the notion of call-condition used inthis paper is not standard. It represents an invariant property that is requiredto be satis�ed by atomic queries after the uni�cation with the input clause.Going back to the example above, consider the call-condition characterizing allatoms of sum where the last argument is� either the constant 0,� or a term of the form s( ).Consider also the post-condition denoting all atoms of sum whose arguments arenatural numbers with the third one being the sum of the �rst two. Hence,Call = fsum (u; v; z) j u; v are terms and z is either 0 or a term of the form s( )gPost = fsum (u; v; z) j u; v; z are natural numbers and z = u+ vgBy applying our specialisation transformation we obtain the specialised program:sum (0; 0; 0) :sum (s(X); 0; s(X))  :sum (X; s(Y ); s(Z)) sum (X;Y; Z):We do not enter into the details of the specialisation here. We just observethat it is applied to the head of clauses. The specialised program called with thequery sum (a; s(0); s(a)) fails. Moreover, it produces correct answers for any nonfailing input query.Summarizing, in this paper we present a program specialisation which, givena call/post speci�cation, transforms a logic program into a weakly call-correctone satisfying the post-condition. More precisely, the specialised program meetsthe following requirements: for any execution,� each selected atom uni�ed with the head of the input clause satis�es thecall-condition;� and each computed instance of a query satis�es the post-condition.The specialisation is applied to so-called specialised partially correct programs.This notion is a generalization of the well-known concept of partially correct



program [11, 4, 9, 10, 2, 3]. It is based on the de�nition of specialised derivationwhich is a derivation where all the selected atoms are instantiated in order tosatisfy a given call-condition. Thus, a specialised partially correct program sati-s�es the property that all its successful specialised derivations produce answerssatisfying the post-condition. Specialised derivations has been introduced in [7]where we show that they can be computed both by a top-down and a bottom-upconstruction, in the style of the s-semantics [12, 13, 6]. We recall here such seman-tics. The equivalence of these two semantics can be proven by using the standardsemantics of specialised programs as a link between them. The specialised se-mantics is useful to reason on the notion of specialised partial correctness. Inparticular it allows us to provide a su�cient condition to prove that a programis specialised partially correct with respect to a given call/post speci�cation. Itconsists in one application of the specialised immediate consequence operator tothe post-condition.The paper is organized as follows. Section 2 recalls some basic notationsand concepts. In Section 3 specialised derivations and their semantics are pre-sented. In Section 4 our program specialisation is introduced. Section 5 discussesthe equivalence between the top-down and the �xpoint semantics of specialisedderivations. In Section 6 we provide a method for verifying specialised partialcorrectness of programs. Finally, in Section 7 we discuss a meaningful example.2 PreliminariesThe reader is assumed to be familiar with the terminology of and the basicresults in the semantics of logic programs [1,3, 15].Let T be the set of terms built on a �nite set of data constructors C and adenumerable set of variable symbols V. Variable-free terms are called ground.A substitution is a mapping � : V ! T such that the set D(�) = fXj �(X) 6= Xg(domain of �) is �nite. For any expression E, we denote by �jE the restriction of� to the variables in Var(E). � denotes the empty substitution.The composition �� of the substitutions � and � is de�ned as the functionalcomposition, i.e., ��(X) = �(�(X)). The pre-ordering � (more general than) onsubstitutions is such that � � � i� there exists �0 such that ��0 = �. We say that� and � are not comparable if neither � � � nor � � �.The result of the application of a substitution � to a term t is an instance of tdenoted by t�. We de�ne t � t0 i� there exists � such that t� = t0. We say thatt and t0 are not comparable if neither t � t0 nor t0 � t. The relation � on termsis a preorder. We denote by � the associated equivalence relation (variance). Asubstitution � is a uni�er of t and t0 if t� = t0�. We denote by mgu(t1; t2) anyidempotent most general uni�er (mgu, in short) of t1 and t2. The de�nitionsabove are extended to other syntactic objects in the obvious way.2.1 Programs and DerivationsAtoms, queries, clauses and programs are de�ned as follows. Let P be a �niteset of predicate symbols. An atom is an object of the form p(t1; : : : ; tn) where



p 2 P is an n-ary predicate symbol and t1; : : : ; tn 2 T . A query is a possiblyempty �nite sequence of atoms A1; : : : ; Am. The empty query is denoted by 2.We use the convention adopted by Apt in [3] and use bold characters to denotesequences of atoms. A clause is a formula H  B where H is an atom, calledhead, and B is a query, called body. When B is empty, H  B is written H  and is called a unit clause. A program is a �nite set of clauses.Computations are constructed as sequences of \basic" steps. Consider a nonempty query A; B;C and a clause c. Let H  B be a variant of c variabledisjoint with A; B;C. Let B and H unify with mgu �. The query (A;B;C)� iscalled an SLD-resolvent of A; B;C and c w.r.t. B, with an mgu �. The atoms Band B� are called the selected atom and the selected atom instance, respectively,of A; B;C. We write then A; B;C �=)P;c (A;B;C)�and call it SLD-derivation step. H  B is called its input clause. If P is clearfrom the context or c is irrelevant then we drop a reference to them. An SLD-derivation is obtained by iterating SLD-derivation steps. A maximal sequence� := Q0 �1=)P;c1 Q1 �2=)P;c2 � � �Qn �n+1=)P;cn+1 Qn+1 � � �of SLD-derivation steps is called an SLD-derivation of P [ fQ0g provided thatfor every step the standardization apart condition holds, i.e., the input clauseemployed is variable disjoint from the initial query Q0 and from the substitutionsand the input clauses used at earlier steps.The length of an SLD-derivation �, denoted by len(�), is the number ofSLD-derivation steps in �. We denote by Sel(�) the set of all the selected atominstances, one for each derivation step, of �. If P is clear from the context,we speak of an SLD-derivation of Q0. SLD-derivations can be �nite or in�nite.Consider a �nite SLD-derivation � := Q0 �1=)P;c1 Q1 � � � �n=)P;cn Qn of a queryQ := Q0, also denoted by � := Q0 �7�!P;c1;:::;cn Qn (or simply � := Q0 �7�! Qn)with � = �1 � � ��n. If Qn = 2 then � is called successful. The restriction of �to the variables of Q, denoted by �jQ, is called a computed answer substitution(c.a.s., in short) of Q and Q� is called a computed instance of Q. If Qn is non-empty and there is no input clause whose head uni�es with its selected atom,then the SLD-derivation � is called failed.2.2 InterpretationsBy the extended Herbrand base BE we mean the quotient set of all the atomswith respect to �. The ordering induced by � on BE will still be denoted by �.For the sake of simplicity, we will represent the equivalence class of an atom Aby A itself. An interpretation I is any subset of BE .We recall from [14] some de�nitions of useful operators on interpretations.



De�nition 1. (Operators on Interpretations) Let I be an interpretation.The upward closure of I is the setdIe = fA 2 BE j 9A0 2 I; A0 � Ag:The set of ground atoms of I is the setbIc = fA 2 I j A is groundg:The set of minimal elements of I is the setMin(I) = fA 2 I j 8A0 2 I if A0 � A then A = A0g:Example 1. Let I be the set fappend(u; v; z) j u; v are terms and z is a list of atmost n elementsg. ThenMin(I) = fappend (Xs; Ys; [ ]);append (Xs; Ys; [Z1]);append (Xs; Ys; [Z1; Z2]);: : :append (Xs; Ys; [Z1; Z2; : : : ; Zn])gwhere Xs; Ys; Z1; Z2; : : : ; Zn are distinct variables.Let us introduce the notation [I] as a shorthand for bdIec. Note that [I] is theset of all ground instances of atoms in I. Moreover (see [14]), dIe = dMin(I)eand Min(dIe) = Min(I).The notion of truth extends the classical one to account for non-ground formulasin the interpretations.De�nition 2. (j=) Let I be an interpretation and A be an atom . ThenI j= A i� A 2 dIe.Moreover, if Q := A1; : : : ; An is a query thenI j= Q i� Ai 2 dIe for all i 2 f1; : : : ; ng.The following properties hold [14]: I j= A i� there exists A0 2 I such that A0 � A;moreover, if I j= A then for all A0 such that A � A0, I j= A0.De�nition 3. (Minimal Instances of an Atom Satisfying I) Let I be an inter-pretation and A be an atom. The set of minimal instances of A satisfying I isMinI(A) = Min(fA0 2 dAe j I j= A0g):Example 2. Consider the interpretation I of the Example 1. ThenMinI(append ([ ]; Ys; Zs)) = fappend ([ ]; Ys; [ ]);append ([ ]; Ys; [Z1]);append ([ ]; Ys; [Z1; Z2]);: : :append ([ ]; Ys; [Z1; Z2; : : : ; Zn])gwhere Ys; Z1; Z2; : : : ; Zn are distinct variables. Note that although I is in�nite,in this case both Min(I) and MinI(append ([ ]; Ys; Zs)) are �nite sets of atoms.



The notion of specialised uni�er is introduced. It is the basic concept upon whichspecialised derivations are de�ned.De�nition 4. (Specialised Uni�ers) Let I be an interpretation and A1 and A2be atoms. A I-uni�er of A1 and A2 is a substitution � such that A1� = A2� andI j= A1�. A most general I-uni�er of A1 and A2, denoted bymguI(A1; A2);is any idempotent I-uni�er � such that for any other I-uni�er �0, either � � �0or � and �0 are not comparable.For the sake of simplicity, we will write � = mguI(A1; A2) even if mguI(A1; A2)is not uniquely determined and can even denote an in�nite set of substitutions.Example 3. Consider again the interpretation I of the Example 1. ThenmguI(append (U; V;W ); append ([ ]; Xs; Xs))denotes the following substitutions�0 = fU=[ ]; V=Xs;W=Xs; Xs=[ ]g�1 = fU=[ ]; V=Xs;W=Xs; Xs=[Z1]g�2 = fU=[ ]; V=Xs;W=Xs; Xs=[Z1; Z2]g: : :�n = fU=[ ]; V=Xs;W=Xs; Xs=[Z1; Z2; : : : ; Zn]g:Note that the substitutions �0; �1; : : : ; �n are pairwise not comparable. Moreover,they are idempotent but not relevant with respect to the variables occurringin the two unifying atoms. In fact, they contain new variables, fZ1; : : : ; Zng,which are introduced in order to satisfy I. We call these variables place holders.Note that the de�nition of specialised most general uni�er imposes that they arepairwise disjoint and distinct from the variables occurring in the unifying atoms.It is well known that set inclusion does not adequately reect the propertyof non-ground atoms of being representatives of all their ground instances. So,in this paper, we refer to the partial ordering v on interpretations de�ned byFalaschi et al. in [14] as below.De�nition 5. Let I1 and I2 be interpretation.� I1 � I2 i� 8A1 2 I1; 9A2 2 I2 such that A2 � A1.� I1 v I2 i� (I1 � I2) and (I2 � I1 implies I1 � I2).Intuitively, I1 � I2 means that every atom veri�ed by I1 is also veri�ed by I2(I2 contains more positive information). Note that � has di�erent meanings foratoms and interpretations. I1 v I2 means either that I2 strictly contains morepositive information than I1 or that the amount of positive information is thesame and I1 expresses it by fewer elements than I2. The relation � is a preorder,whereas the relation v is an ordering. Moreover, if I1 � I2, then I1 v I2.



Example 4. Consider the interpretation I of the Example 1. Then I � Min(I),but also Min(I) v I. Moreover, MinI(append ([ ]; Ys; Zs)) vMin(I).The set of all the interpretations I under the relation v is a complete lattice.Proposition 1. [14] The set of interpretations I with the ordering v is a com-plete lattice, noted by hI;vi. BE is the top element and ; is the bottom element.3 Specialised Derivations and their SemanticsIn this section we recall from [7] the notion of specialised derivation and showsome properties. Top-down and a �xpoint semantics are presented.3.1 Specialised DerivationsGiven an interpretation I, a specialised derivation is an SLD-derivation whereall the selected atoms are instantiated in order to satisfy the call-condition I.Specialised derivations are de�ned as SLD-derivations except that at each deriva-tion step specialised most general uni�ers are computed instead of usual mgus.In the following we assume given a program P .De�nition 6. Let I be an interpretation. Let A; B;C be a non empty query,c be a clause, H  B be a variant of c variable disjoint with A; B;C. Let Band H unify and � = mguI(B;H) where the place holders of � are disjoint fromA;B;C. The query (A;B;C)� is called an I-resolvent of A; B;C and c w.r.t.B, with specialised mgu �. The atoms B and B� are called the I-selected atomand I-selected atom instance, respectively, of A; B;C. We write thenA; B;C �=)P;c;I (A;B;C)�and call it I-derivation step. H  B is its I-input clause. A maximal sequence� := Q0 �1=)P;c1;I Q1 �2=)P;c2;I � � �Qn �n+1=)P;cn+1;I Qn+1 � � �of I-derivation steps is called an I-derivation of P [ fQ0g where for every stepthe I-standardization apart condition holds, i.e., the I-input clause ci employedand the place holders of uni�er �i are variable disjoint from the initial query Q0and from the substitutions and the input clauses used at earlier steps.We denote by Sel(�) the set of all the I-selected atom instances of �.Consider a �nite I-derivation � := Q0 �1=)P;c1;I Q1 � � � �n=)P;cn;I Qn of a queryQ := Q0, also denoted by � := Q0 �7�!P;c1;:::;cn;I Qn (or simply � := Q0 �7�!I Qn)with � = �1 � � � �n. If Qn = 2 then � is called successful. The restriction of � tothe variables of Q is called a I-computed answer substitution (I-c.a.s., in short)of Q and Q� is called a I-computed instance of Q. If Qn is non-empty and thereis no I-input clause H  B such that H uni�es with the I-selected atom B ofQn with � = mguI(B;H), then � is called failed.



Whenever I is omitted, we assume that I = BE . It is easy to see that if I isthe extended Herbrand base BE , then I-derivations (resp. I-derivation steps)are indeed SLD-derivations (resp. SLD-derivation steps).Example 5. Consider the interpretation I of Example 1 and the program APPEND:append ([ ]; Xs; Xs) :append ([XjXs]; Ys; [XjZs]) append (Xs; Ys; Zs):Let �0; �1; : : : ; �n be the substitutions de�ned in the Example 3. Thenappend (U; V;W ) �07�!I 2append (U; V;W ) �17�!I 2: : :append (U; V;W ) �n7�!I 2are successful I-derivations of the query append (U; V;W ). Note that any I-derivation of the query append ([ ]; foo; foo) fails.Observe that, for any I-derivation �, Sel(�) � I, i.e., for all A 2 Sel (�), I j= A.Moreover, any SLD-derivation � satisfying Sel (�) � I is an I-derivation.The following relation between successful I and SLD-derivations holds.Lemma 1. [7] Let I be an interpretation and � := Q �7�!c1;:::;cn;I 2 be a suc-cessful I-derivation of a query Q. Then, there exists a successful SLD-derivation�0 := Q� 7�!c1;:::;cn 2 of Q� with Q� = Q� and Sel(�0) � Sel (�).The next result is useful to reason on I-derivations.Lemma 2. Let I be an interpretation and � := Q �7�!I 2 be a successful I-derivation of a query Q := A1; : : : ; An. Then, for all j 2 f1; : : : ; ng, there existsa successful I-derivation �j := Aj� j7�!I 2 where Aj�j = Aj�.Proof. Let � := Q �7�!I 2. By Lemma 1, there exists a successful SLD-derivation�0 := Q� 7�! 2 with Q� = Q� and Sel(�0) � Sel(�). By properties of SLD-derivations (see [1, 8, 15]), for all j 2 f1; : : : ; ng, there exists a successful SLD-derivation �j := Aj� j7�! 2 such that Aj�j = Aj� and Sel(�j) � Sel(�0). Then,for all j 2 f1; : : : ; ng, Sel(�j) � Sel(�). Moreover, since � is an I-derivation,Sel(�) � I. Hence, for all j 2 f1; : : : ; ng, Sel (�j) � I and then, by De�nition 6,�j is a successful I-derivation Aj� j7�!I 2.We show that any I-computed instance is true in I.Lemma 3. Let I be an interpretation and � := Q �7�!I 2 be a successful I-derivation of a query Q. Then I j= Q�.



Proof. Let Q := A1; : : : ; An. We prove that for all j 2 f1; : : : ; ng, I j= Aj�.By Lemma 2, for all j 2 f1; : : : ; ng, there exists �j := Aj� j7�!I 2 where Aj�j =Aj�. Let Hj be the head of the I-input clause used in the �rst I-derivation step of�j. Let also 1j = mguI(Aj�;Hj). By De�nition 4, I j= Aj�1j and by De�nition 6,Aj�1j � Aj�j . Hence, by De�nition 2, I j= Aj�j .The Lifting Lemma for SLD-derivations [15, 1] can be generalized to specialisedderivations as follows.Lemma 4. (Specialised Lifting Lemma) Let I be an interpretation and � :=Q� �7�!I 2 be a successful I-derivation of a query Q�. Then, there exists asuccessful I-derivation �0 := Q �07�!I 2 where �0 � ��.Proof. By induction on len(�).Basis. Let len(�) = 1. In this case Q consists of only one atom B and� := B� �=)I 2where H  is the I-input clause and � = mguI(B�;H). Because of standardi-zation apart, we can assume that �jH = �. Then, �� is a I-uni�er of B and H.Hence, there exists �0 = mguI(B;H) such that �0 � �� and�0 := B �0=)I 2is a successful I-derivation.Induction step. Let len(�) > 1. Then Q := A; B;C and� := (A; B;C)� �1=)I (A;B;C)��1 �27�!I 2where B is the I-selected atom of Q, c := H  B is the �rst I-input clause,�1 = mguI(B�;H) and � = �1�2. Because of standardization apart, we canassume that �jc = �. Then, ��1 is a I-uni�er of B and H. Hence, there exists�01 = mguI(B;H) such that �01 � ��1 and(A; B;C) �01=)I (A;B;C)�01is an I-derivation step. Let  be a substitution such that �01 = ��1. By theinductive hypothesis, there exists a successful I-derivation(A;B;C)�01 �027�!I 2where �02 � �2. Therefore,�0 := (A; B;C) �01=)I (A;B;C)�01 �027�!I 2is a successful I-derivation. Let �0 = �01�02. Then,�0 = �01�02 (by de�nition of �0)� �01�2 (since �02 � �2)= ��1�2 (since �01 = ��1)= �� (by de�nition of �):



3.2 Specialised Top-down SemanticsWe present below a top-down construction which computes the specialised se-mantics of logic programs. It models the computed answer substitutions of thespecialised derivations.De�nition 7. (Specialised Computed Answer Substitution Semantics) Let Pbe a program and I be an interpretation. The I-computed answer substitutionsemantics of P isOI(P ) = fA 2 BE j 9p 2 P; 9X1; : : : ; Xn distinct variables in V; 9�;p(X1; : : : ; Xn) �7�!P;I 2;A = p(X1; : : : ; Xn)�g:Observe that if I is the extended Herbrand base BE , then OBE (P ) is the originals-semantics de�ned by Falaschi et al. in [13].Example 6. Consider the interpretation I of Example 1. ThenOI(APPEND) = fappend ([ ]; [ ]; [ ]);append ([ ]; [X1]; [X1]);append ([ ]; [X1; X2]; [X1; X2]);: : :append ([ ]; [X1; X2; : : : ; Xn]; [X1; X2; : : : ; Xn]);append ([X1]; [ ]; [X1]);append ([X1]; [X2]; [X1; X2]);: : :append ([X1]; [X2; : : : ; Xn]; [X1; X2; : : : ; Xn]);append ([X1; X2]; [ ]; [X1; X2]);: : :g:Let us consider now the success set and the non-ground success set semanticsformallyde�ned in [13]. The corresponding specialised versions are de�ned below.De�nition 8. (Specialised Success Set Semantics) Let P be a program and I bean interpretation. The I-success set semantics of P is de�ned byOI;1(P ) = fA 2 BE j A is ground and A 7�!I 2 where A = Ag:Note that if I is the extended Herbrand base BE , then OBE;1(P ) is the standardsemantics, which is equivalent to the least Herbrand model [22].De�nition 9. (Specialised Non-ground Success Set Semantics) Let P be a pro-gram and I be an interpretation. The I-non-ground success set semantics of P isde�ned by OI;2(P ) = fA 2 BE j A 7�!I 2 where A = Ag:If I is equal to BE , then OBE;2(P ) is the set of atomic logical consequences [8] of P .It is easy to prove that the following relations hold: OI;1(P ) = [OI(P )] andOI;2(P ) = dOI (P )e.



3.3 Specialised Fixpoint SemanticsWe de�ne an immediate consequence operator TP;I on the set of interpretationsI. Its least �xpoint has been shown to be equivalent to the specialised computedanswer substitutions semantics OI(P ).De�nition 10. (TP;I Transformation) Let P be a program and I and J be twointerpretations.TP;I(J) = fA 2 BE j 9H  B1; : : : ; Bn 2 P;9B01; : : : ; B0n variant of atoms in J and renamed apart,9� = mguI((B1; : : : ; Bn); (B01; : : : ; B0n));A 2 MinI(H�)g:Note that if I is the extended Herbrand base BE , then TP;BE coincides with theS-transformation TS de�ned in [13].Proposition 2. (Monotonicity and Continuity of TP;I) For any interpretationI, transformation TP;I is monotonic and continuous in the complete lattice hI;� i.De�nition 11. (Powers of TP;I) As usual, we de�ne powers of transformationTP;I as follows: TP;I " 0 = ;;TP;I " n+ 1 = TP;I(TP;I " n);TP;I " ! = Sn�0(TP;I " n):Proposition 3. For any interpretation I, TP;I " ! is the least �xpoint of TP;Iin the complete lattice hI;vi.Proof. By Proposition 2, TP;I " ! is the least �xpoint of TP;I with respect toset inclusion. Moreover, for any �xpoint J of TP;I , TP;I " ! � J . Hence, byDe�nition 5, TP;I " ! v J .The specialised �xpoint semantics is formally de�ned as follows.De�nition 12. (Specialised Fixpoint Semantics) Let P be a program and I bean interpretation. The I-�xpoint semantics of P is de�ned asFI(P ) = TP;I " !:4 Specialising Programs wrt Call/Post Speci�cationIn this section we de�ne a simple program transformation which given a call/postspeci�cation transforms a program into a weakly call-correct one satisfying thepost-condition. The notion of weak call-correctness is formally de�ned as follows.De�nition 13. (Weak Call-correctness) Let P be a program and I be an inter-pretation. We say that P is weakly call-correct with respect to the call-conditionI i� for any query Q and SLD-derivation � of P [ fQg, Sel(�) � I.Our specialisation is applied to so-called specialised partially correct programswhich are introduced below.



4.1 Specialised Partially Correct ProgramsIn this section we introduce the concept of specialised partially correct programwith respect to a given call/post speci�cation. It provides a weaker notion ofpartial correctness where specialised derivations only are observed. In Section 6,a simple method for verifying specialised partial correctness will be presented.De�nition 14. Let P be a program and Call and Post be interpretations. Wesay that P is specialised partially correct (s.p.c., in short) with respect to thecall-condition Call and the post-condition Post, notedfCallgPfPostgspec;if and only if for any query Q,Q �7�!P;Call 2 implies Post j= Q�.Observe that, if Call = BE then P is correct with respect to the post-conditionPost according to the standard correctness de�nition. In this case, P is s.p.c.with respect to any call-condition Call and the post-condition Post.Example 7. Consider the program APPEND and the interpretationsCall = fappend (u; v; z) j u; v are terms and z is a list of at most n elementsgPost = fappend (u; v; z) j u; v; z are lists, z has at most n elements and z = u � vgwhere � is the list concatenation operator. The program APPEND is s.p.c. withrespect to the speci�cation Call and Post, i.e., the following assertion holds:fCallg APPEND fPostgspec:We de�ne the strongest post-condition of a program P with respect to a givencall-condition as follows.De�nition 15. (Strongest Post-condition) Let P be a program. The strongestpost-condition of P with respect to a call-condition I, noted sp(P; I), is thesmallest interpretation J with respect to v such that fIgPfJgspec.The next Proposition characterizes the strongest post-condition of a program Pwrt a call-condition I in terms of the I-c.a.s. semantics of P .Proposition 4. Let P be a program and I be an interpretation.Then, Min(OI(P )) = sp(P; I).Proof. We prove that fIgPfMin(OI(P ))gspec holds, i.e., if � := Q �7�!I 2 is asuccessful I-derivation of a query Q then Min(OI (P )) j= Q�.Let Q := A1; : : : ; An. By Lemma 2, for all j 2 f1; : : : ; ng there exists a successfulI-derivation �j := Aj� j7�!I 2 where Aj�j = Aj�. For all j 2 f1; : : : ; ng, letpj 2 P and X1; : : : ; Xn be distinct variables in V such that pj(X1; : : : ; Xn) �



Aj�. By Lemma 4, there exists a successful I-derivation pj(X1; : : : ; Xn) �j7�!I 2where pj(X1; : : : ; Xn)�j � Aj�. By De�nition 7, pj(X1; : : : ; Xn)�j 2 OI(P ).This proves that for all j, Min(OI(P )) j= Aj� and then Min(OI(P )) j= Q�.Further, for any interpretation J such that fIgPfJgspec, Min(OI (P )) v J .We �rst prove that Min(OI (P )) � J , i.e., for all A 2 Min(OI(P )) there exi-sts A0 2 J such that A0 � A. Let A 2 Min(OI(P )). By De�nition 7, thereexist p 2 P, X1; : : : ; Xn distinct variables in V and a substitution � such thatp(X1; : : : ; Xn) �7�!I 2 is a successful I-derivation and A = p(X1; : : : ; Xn)�. Bythe hypothesis fIgPfJgspec, J j= A. So, there exists A0 2 J such that A0 � A.Suppose now that J � Min(OI(P )). Then Min(OI(P )) � J . Indeed, from thefact that both Min(OI(P )) � J and J � Min(OI(P )), for all A 2 Min(OI (P ))there exists A0 2 J and A00 2 Min(OI(P )) such that A00 � A0 � A. By De�ni-tion 1 of operator Min, A00 = A and then A 2 J .4.2 Specialised ProgramsAny s.p.c. program P with respect to a given call/post speci�cation I and J , i.e.,such that fIgPfJgspec holds, can be transformed into a specialised program PIwhich is weakly call-correct with respect to the call-condition I and satis�es theproperty fBEgPIfJgspec. This means that for any query Q and SLD-derivation� of PI [ fQg with computed answer substitution �, Sel (�) � I and J j= Q�.Specialised programs are obtained from the following program transformation.De�nition 16. (Specialised Program) Let P be a program and I be an inter-pretation. The I-program corresponding to P , denoted by PI, is de�ned as:PI = f(H  B) j H  B 2 P and H 2MinI(H)where  is idempotent andVar() \Var(H  B) � Dom() = Var(H)g:The condition Var() \ Var(H  B) � Dom() = Var(H) allows us to avoidundesired bindings on the variables in the bodies.Note that PI may be an in�nite program but it will be �nite whenever Min(I)is �nite.Example 8. Consider the program APPEND and the interpretations Call and Postgiven in the Example 7. The specialised program APPENDCall is de�ned by:append ([ ]; [ ]; [ ]):append ([ ]; [X1]; [X1]):append ([ ]; [X1; X2]; [X1; X2]):: : :append ([ ]; [X1; X2; : : : ; Xn]; [X1; X2; : : : ; Xn]):append ([X1jXs]; Ys; [X1]) append (Xs; Ys; [ ]):append ([X1jXs]; Ys; [X1; X2]) append (Xs; Ys; [X2]):: : :append ([X1jXs]; Ys; [X1; X2; : : : ; Xn]) append (Xs; Ys; [X2; : : : ; Xn]):



It is easy to see that the assertion fBEg APPENDCall fPostgspec holds, meaningthat for any query Q and successful SLD-derivation � of APPENDCall [ fQg withcomputed answer substitution �, Post j= Q�. Moreover, for any selected atominstance A 2 Sel(�), Call j= A. Hence, Sel(�) � Call .Proposition 5. Let P be a program and I be an interpretation with fIgPfJgspec.Then, PI is weakly call-correct with respect to I.Proof. Let � be an SLD-derivation of PI . We prove that for all A 2 Sel (�),I j= A. Indeed, for all A 2 Sel(�) there exists and SLD-derivation stepA; B;C �=)PI ;BE (A;B;C)�of � where B is the selected atom, (H  B) is the input clause, � = mgu(B;H)and A = B�. By De�nition 16, H  B is a variant of a clause of P such thatH 2MinI(H). Hence, I j= H� = B� = A.Proposition 6. Let P be a program and I be an interpretation.Then, fIgPfJgspec implies fBEgPIfJgspec.Proof. We need the following result.Claim. [7] Let P be a program, Q := A; B;C and I be an interpretation. IfA; B;C �=)PI ;BE (A;B;C)�is an SLD-derivation step then there exists a substitution  such thatA; B;C �=)P;I (A;B0;C)�is an I-derivation step where B = B0, (A;B;C)� = (A;B0;C)� and jQ = �.Suppose that fIgPfJgspec holds. We prove that for any query Q and success-ful SLD-derivation � := Q �7�!PI ;BE 2, J j= Q�. In order to obtain this result, weprove that for any such �, there exists a successful I-derivation �0 := Q� �7�!P;I 2where Q�� = Q�. The fact that J j= Q� follows by the hypothesis fIgPfJgspec.This is done by induction on len(�).Basis. Let len(�) = 1. In this case, Q consists of only one atom B and� := B �=)PI ;BE 2:By Claim 4.2, there exists a substitution  such thatB �=)P;I 2is an I-derivation step and jB = �. By Lemma 1, it follows that�0 := B� = B� �=)P;I 2



is a successful I-derivation of B� where B�� = B�.Induction step. Let len(�) > 1. In this case Q := A; B;C and� := A; B;C �1=)PI ;BE (A;B;C)�1 �27�!PI ;BE 2with � = �1�2. By Claim 4.2 there exists a substitution  such thatA; B;C �1=)P;I (A;B0;C)�1is an I-derivation step whereB = B0, (A;B;C)�1 = (A;B0;C)�1 and jQ = �.Let H  B0 be the input clause and �1 = mgu(B;H). Then, by properties ofsubstitutions [1] there exists a substitution �1 such that �1jQ� = �, �1jH B0 = �and �1 = mguI(B�;H). So,(A; B;C)� �1=)P;I (A;B0;C)��1is an I-derivation step. Since jQ = � and (A;B;C)�1 = (A;B0;C)�1, also(A; B;C)� �1=)P;I (A;B;C)��1is an I-derivation step. By the inductive hypothesis,(A;B;C)� �27�!P;I 2is a successful I-derivation where (A;B;C)��2 = (A;B;C)�. Moreover,(A;B;C)� = (A;B0;C)� (since (A;B;C)�1 = (A;B0;C)�1)= A�;B0�;C� (since jQ = �)= A�;B0��1;C� (since �jH B0 = �1 and �1 is idempotent)= A�;B��1;C� (since B = B0)= (A;B;C)��1 (since �1jQ� = �):Then, �0 := (A; B;C)� �1=)P;I (A;B;C)��1 �27�!P;I 2is a successful I-derivation. Let � = �1�2. ThenQ�� = (A; B;C)��1�2 (by de�nition of Q and of �)= A��2; B��2;C��2 (since �1jQ� = �)= A�; B��2;C� (by inductive hypothesis)= A�; B�;C� (because of standardization apart)= Q� (by de�nition of Q):5 Equivalence of the Top-down and Fixpoint SemanticsIn this section we discuss the equivalence between the specialised top-down se-mantics OI(P ) and the �xpoint semantics FI(P ). The reader is referred to [7]



for more details. The proof follows from the fact that for any program P andinterpretation I, both OI(P ) = O(PI) and FI(P ) = F(PI) hold.The equivalence between OI(P ) and O(PI) follows from the following result.Proposition 7. [7] Let P be a program and I be an interpretation. Then, thereexists a successful SLD-derivation � := Q �7�!PI ;BE 2 of a query Q i� thereexists a successful I-derivation �0 := Q �07�!P;I 2 where Q� = Q�0.Theorem 1. For any program P and interpretation I, O(PI) = OI(P ).Proof. Recall that O(PI) = OBE (PI). The result follows from Proposition 7.The next Proposition relates powers of transformations TPI ;BE and TP;I . It allowsus to prove the equivalence between FI(P ) and F(PI).Proposition 8. Let P be a program, I be an interpretation and A be an atom.Then for all n > 0, A 2 TPI ;BE " n i� A 2 TP;I " n.Theorem 2. For any program P and interpretation I, F(PI) = FI(P ).Proof. Recall that F(PI) = FBE (PI). The result follows from Proposition 8.We are now in position to prove the equivalence between the specialised top-down and �xpoint semantics.Theorem 3. (Equivalence of Specialised Top-Down and Fixpoint Semantics)For any program P and interpretation I, OI(P ) = FI(P ).Proof. By [13], O(PI) = F(PI). The result follows from Theorems 1 and 2.6 Verifying Specialised Partial CorrectnessIn this section, we show that the specialised partial correctness of a program withrespect to a given call/post speci�cation can be veri�ed just by one application ofthe specialised immediate consequence operator TP;I to the given post-condition.Let us �rst prove the following su�cient condition.Lemma 5. Let P be a program and I and J be two interpretations such thatsp(P; I) v J . Then, fIgPfJgspec holds.Proof. Weprove that for any query Q and successful I-derivation � := Q �7�!I 2,J j= Q�. Let Q := A1; : : : ; An. We show that for all j 2 f1; : : : ; ng, J j= Aj�.By Lemma 2, for all j 2 f1; : : : ; ng, there exists a successful I-derivation �j :=Aj� j7�!I 2 where Aj�j = Aj�. Let pj 2 P and X1; : : : ; Xn be distinct vari-ables in V such that pj(X1; : : : ; Xn) � Aj�. By Lemma 4, for all j, there existsa successful I-derivation pj(X1; : : : ; Xn) �j7�!I 2 where pj(X1; : : : ; Xn)�j � Aj�.By De�nition 7, pj(X1; : : : ; Xn)�j 2 OI(P ). Hence, by Proposition 4, sp(P; I) j=Aj�. The fact that J j= Aj� follows from the hypothesis that sp(P; I) v J .



The next Proposition provides a method for verifying specialised partial correct-ness with respect to a given call/post speci�cation.Proposition 9. Let P be a program and I and J be interpretations. Then,TP;I(J) v J implies fIgPfJgspec.Proof. We �rst establish the following Claims. The proofs are given in [7].Claim. Let P be a program and I and J be two interpretations.Then Min(TP;I (J)) = Min(TP;I(Min(J))).Claim. For any interpretation I, the transformationMin � TP;I is monotonic inthe complete lattice hI;vi.By Lemma 5, it is su�cient to prove that TP;I(J) v J implies sp(P; I) v J .We �rst prove that for all n � 0, Min(TP;I " n) v J .By induction on nBasis. Let n = 0. Straightforward, since by De�nition 11, Min(TP;I " 0) = ;.Induction step. Let n > 0. In this case,Min(TP;I " n) = Min(TP;I(TP;I " n� 1)) (by De�nition 11)= Min(TP;I(Min(TP;I " n� 1))) (by Claim 6)v Min(TP;I(J)) (by induction hypothesis andClaim 6)v TP;I(J) (by De�niton 1)v J (by hypothesis):It follows that Min(Sn�0(TP;I " n)) v J .In fact, Min(Sn�0(TP;I " n)) � J , i.e., for all A 2 Min(Sn�0(TP;I " n)) thereexists A0 2 J such that A0 � A. This property follows from the fact that for allA 2 Min(Sn�0(TP;I " n)) there exists n > 0 such that A 2 Min(TP;I " n). Asproved above, Min(TP;I " n) v J . Hence, by De�nition 5, Min(TP;I " n) � J ,i.e., there exists A0 2 J such that A0 � A.Moreover, if J � Min(Sn�0(TP;I " n)) then Min(Sn�0(TP;I " n)) � J . In fact,since both Min(Sn�0(TP;I " n)) � J and J � Min(Sn�0(TP;I " n)), for allA 2 Min(Sn�0(TP;I " n)) there exists A0 2 J and A00 2 Min(Sn�0(TP;I " n))such that A00 � A0 � A. By De�nition 1 of operator Min, A00 = A and thenA 2 J . Therefore,sp(P; I) = Min(OI(P )) (by Proposition 4)= Min(FI(P )) (by Theorem 3)= Min(TP;I " !) (by De�nition 12)= Min(Sn�0(TP;I " n)) (by De�nition 11)v J (as proved above):



7 An ExampleIn this section we illustrate by means of an example the specialisation methodde�ned in Section 4.2. Consider the program FRONT [3] de�ned below,front (void; [ ]):front (tree (X; void; void); [X]):front (tree (X;L;R); Xs) nel tree (tree (X;L;R));front (L;Ls);front (R;Rs);append (Ls; Rs; Xs):nel tree (tree ( ; tree ( ; ; ); )):nel tree (tree ( ; ; tree ( ; ; ))):augmented by the program APPEND. It computes the frontier of a binary tree,i.e., it is correct with respect to the post-conditionPost = ffront (t; l) j l is the frontier of the binary tree tg [ fnel list (t)j t is atermg [ fappend (u; v; z) j u; v; z are lists and z = u � vgwhere � is the list concatenation operator.The auxiliary relation nel tree is used to enforce that a tree is a non-empty,non-leaf tree, i.e., that it is a term of the form tree (x; left; right) where eitherleft or right does not equal void.Observe that the simpler program that is obtained by removing the �rst atomnel tree (tree(X;L;R)) in the body of the third clause and by discardingthe relation nel tree is indeed incorrect. In fact, as shown in [3], the queryfront(tree(X; void; void); Xs) would yield two di�erent answers: fXs=[X]g bymeans of the second clause and fXs=[ ]g by means of the third clause.Suppose that our application domain consists of the set of binary trees whoseleft subtrees are all leaves. This information can be expressed by means of thefollowing call-condition:Call = ffront (t; l) j t is either the empty tree or a leaf or a term of the formtree(u; r; s) where r is a leaf and u; s and l are termsg[fnel list (t)j t is a termg [ fappend (u; v; z) j u; v; z are termsgNote that, since the program is correct with respect to Post, then it is also s.p.c.with respect to the call/post speci�cation Call and Post, i.e.,fCallgFRONTfPostgspec:That can be also proven by computing TFRONT;Call(Post). We obtainTFRONT;Call(Post) = ffront (void; [ ]); front (tree (X; void; void); [X])g[ffront (t; l) j t is a binary tree whose left subtree is aleaf and l is the frontier of tg[fnel list (t) j t is a non-empty, non-leaf tree g[fappend (u; v; z) j u; v; z are lists and z = u � vg:
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