
Speci�cation-based Automatic Veri�cation of Prolog Programs1Bauduin Le Charlier Sabina Rossi Agostino CortesiInstitut d'Informatique Dip. di Matematica Dip. Mat. Appl. e Informatica21 rue Grandgagnage via Belzoni 7 via Torino 155B-5000 Namur (Belgium) 35131 Padova (Italy) 30170 Mestre-Venezia (Italy)ble@info.fundp.ac.be sabina@hilbert.math.unipd.it cortesi@dsi.unive.itAbstractThe paper presents an analyzer for verifying the correctness of a Prolog program relative to a speci�cation whichprovides a list of input/output annotations for the arguments and parameters that can be used to establish pro-gram termination. The work stems from Deville's methodology to derive Prolog programs that correctly implementtheir declarative meaning. In this context, we propose an algorithm that combines, adapts, and sometimes improvesvarious existing static analyses in order to verify total correctness of Prolog programs with respect to formal speci-�cations. Using the information computed during the veri�cation process, an automatic complexity analysis can bealso performed.IntroductionLogic programming is an appealing programming paradigm since it allows one to solve complex problems ina concise and understandable way, i.e., in declarative style. For e�ciency reasons, however, practical imple-mentations of logic programs (e.g., Prolog programs) are not always faithful to their declarative meaning.In his book [10], Deville proposes a methodology for logic program construction that aims at reconcilingthe declarative semantics with an e�cient Prolog implementation. The methodology is based on four maindevelopment steps:� elaboration of a speci�cation, consisting of a description of the relation, type declarations, and a setof behavioural assumptions,� construction of a correct logic description, dealing with the declarative meaning only,� derivation of a Prolog program,� correctness veri�cation of the Prolog code with respect to the speci�cation.The FOLON environment [7, 11] was designed with the main goal of supporting the automatable aspectsof this methodology. In this context, we propose a new analyzer for verifying total correctness of Prologprograms with respect to speci�cations.The new analyzer is an extension of the analyzers described in [6, 7, 11] which themselves automate partof the methodology described in [10]. The novelty is that we deal with total correctness, while [6, 7, 11]only deal with particular correctness aspects such as mode and type veri�cation. At this aim, we extend thegeneric abstract domain Pat(<) [4, 5] to deal with multiplicity and size relations.We adapt the framework for termination analysis proposed by De Schreye, Verschaetse and Bruynooghein [9]: instead of proving termination based on the program code only, we use termination information givenin the formal speci�cation; this requires more information from the programmer but allows for more generaltermination proofs.The analyzer computes information about the number of solutions using the notion of abstract sequenceintroduced in [14]. This is related to the cardinality analysis described in [2]. However, we do not perform an1Partly supported by European Community \HCM-Network {Logic Program Synthesis and Transformation{ Contract Nr.CHRX-CT93-00414", and by \MURST NRP {Modelli della Computazione e dei Linguaggi di Programmazione"1

abstract interpretation in the usual sense since we use the formal speci�cation of the subproblems instead oftheir code; moreover, we allow the number of solutions to be expressed as a function of the input argumentsizes. This enhances the expressiveness of cardinality analysis with respect to [2].Based on the new analyzer, we get almost for free an automatic complexity analysis, in the spirit of theframework proposed by Debray and Lin in [8]. In our context, this analysis is useful to choose the moste�cient version of a procedure.The paper is organized as follows. In Section 1, we recall Deville's methodology. In Section 2, weintroduce the abstract domains used by the analyzer. In Section 3, we describe the analyzer and give anexample to illustrate the main operations. In Section 4, we discuss the complexity analysis and describe anexample of cost analysis which uses information computed by the analyzer. Section 5 concludes the paper.1 Program Synthesis Methodology OverviewOur work is based on and extends Deville's methodology for logic program development presented in [10].Let us illustrate it with the construction of the procedure select=3 which removes an occurrence of X fromthe list L containing it and returns the list Ls.Speci�cationThe �rst step consists in specifying the procedure according to a standard speci�cation format. Indeed,we extend the general speci�cation form proposed by Deville in [10] with extra information which willbe useful for proving termination of the derived procedures. Argument size relations are speci�ed in theform of a set of inequations (see [8]). They are used to prove termination of the recursive proceduresin the spirit of [9]. Moreover, the number of solutions is allowed to be expressed in terms of the inputargument sizes.A speci�cation for select=3 is depicted in Figure 1. First, the name and the formal parameters ofthe procedure are speci�ed. The relation and the size relation express properties on the formal para-meters which are intended to be satis�ed after any successful execution. The size measure (see [9])jj � jj� associates to each term t a natural number jjtjj� by: jj[t1jt2]jj� = 1+ jjt2jj� and jjtjj� = 0 if t isnot of the form [t1jt2]. The size relation is a set of (in)equations on the formal parameters expressinga relation between the corresponding sizes. In the example, after any successful execution, the size ofL is required to be equal to the size of Ls plus 1.Procedure: select(X; L; Ls)Relation: X is an element of L and Ls is the list L without an occurrence of XSize measure: jj � jj�Size relation: fL = Ls + 1gApplication conditions: in(any; gr; any) :: out(gr; grlist; grlist) f0 � sol � Lg Lin(gr; any; gr) :: out(gr; grlist; grlist) f0 � sol � Ls + 1g LsFigure 1: Speci�cation for select=3The application conditions consist of three components namely, directionality, multiplicity and sizeexpression. Each directionality speci�es the allowed modes2 of the parameters before the execution (inpart) and the corresponding modes after a successful execution (out part). In order to describe themultiplicity and the size expression components, let us introduce some de�nitions.For any set of program variables V, we denote ExpV the set of all expressions on variables in V. A2In this example we restrict our attention to the domain Mode-Type [13] (gr denotes a ground term, any denotes any term,var denotes a variable, grlist denotes a ground list, anylist denotes either a variable or any list). This can be generalized toany information on procedure parameters. 2

multiplicity is a set E of inequations over Expfsol;X1;:::;Xng [f1g where X1; : : : ; Xn are the formalparameters of the procedure and sol is a new variable denoting the cardinality of the answer substitu-tion set. For any call to the procedure satisfying the in part of the corresponding directionality andproducing the sequence S of answer substitutions, the following property is expected to hold: sol=jSjsatis�es the restriction to sol of the set of inequations obtained from E by replacing the formal param-eters X1; : : : ; Xn with the size of the corresponding input values. The size expression is an expressionfrom ExpfX1;:::;Xng3 associating to each possible call, respecting the corresponding in part, a weightobtained by replacing the formal parameters with the size of the corresponding actual values. Such aweight is assumed to be not a�ected by any further instantiation of the parameters. In order to provetermination of a recursive call we need to prove that its weight is smaller than the weight for the initialone4. In the example, the weight for the calls of select=3 respecting the �rst (resp. the last) in partis given by the size of the actual value corresponding to L (resp. Ls). Since this value is required to beground, according to the speci�ed directionality, such a weight is guaranteed to be invariant for anyfurther instantion of the parameters.Logical DescriptionA correct logic description for select=3, noted LD(select=3), isselect(X; L; Ls) () L = [HjT] ^ ((H = X ^ Ls = T ^ list(T)) _ (Ls = [HsjTs] ^ select(X; T; Ts))):The correctness of a logic description LD(p=n) can be expressed as follows: for every ground n-tupleterm t, (1) p(t) is a logical consequence of LD(p=n) i� t belongs to the relation and respects the types;(2) :p(t) is a logical consequence of LD(p=n) i� either t does not belong to the relation or it does notrespect the types.Prolog Code DerivationThe next step consists in deriving a Prolog program from the logic description. The logic descriptionLD(p=n) is syntactically translated into a Prolog program LP(p=n) whose completion [16] is the logicdescription again. In the example, the following Prolog program LP(select=3) is obtained.select(X; L; Ls) : � L = [HjT]; H = X; Ls = T; list(T):select(X; L; Ls) : � L = [HjT]; Ls = [HjTs]; select(X; T; Ts):Correctness Veri�cationThe last step is the veri�cation of total correctness of the program with respect to the speci�cation.To be correct that procedure has to respect the following criteria: during any execution (based onthe SLDNF-resolution) called with arguments respecting at least one in part of the correspondingspeci�cation and producing the sequence S of answer substitutions,1: the computation rule is safe, i.e., when selected, the negative literals are ground;2: any subcall is called with arguments respecting at least one in part of its speci�cation;3: the arguments of the procedure after the execution respect the types, the size relation and theout part of each directionality whose in part is satis�ed by the initial call;4: S respects the multiplicity of each directionality whose in part is satis�ed by the initial call;5: completeness: every computed answer substitution in the SLDNF-tree belongs to S (i.e., it musteventually be reached according to Prolog search rule);6: termination: if S is �nite then the execution terminates.3It corresponds, in a sense, to the natural level mapping used by De Schreye et al. in [9].4For more details about these concepts the reader is referred to [1, 9].3

When S is �nite, points 5 and 6 are satis�ed if the execution of each clause terminates. Terminationof a clause is achieved when each literal in its body which is not a recursive call terminates and theweights for the recursive calls are smaller than the weight for the initial call. When S can be in�nitethen only completeness has to be veri�ed. A su�cient criterion for completeness is the following: atmost one literal in a clause of the procedure produces an in�nite sequence of answer substitutions andeither this literal is in the last clause or the following clauses are �nitely failed (i.e., they terminatewithout producing any result); moreover, if a clause contains a literal that produces an in�nite sequenceof answer substitutions, then none of the preceeding literals in this clause produces more than onesolution.The main advantage provided by the analyzer that we present in this paper is the fully automatization ofthe last step of Deville's methodology described so far, i.e. the veri�cation of total correctness of synthetizedprograms with respect to the formal speci�cation. In section 3 we will illustrate the behaviour of the analyzerby proving that the procedure LP(select=3) is correct wrt the speci�cation depicted in Figure 1.2 Basic NotionsIn this section we briey describe the abstract domains used by the analyzer. Based on the notion of abstractsubstitution, the concept of abstract sequence is introduced to represent solution set cardinality. Finally, weformalize the program speci�cation through the notion of behaviour.In the following we call Ip set of indices f1; : : : ; pg, denoting terms t1; : : : ; tp. Next notions are parameterizedon p, and can be extended to the set of all Ip in the same way as in [15].De�nition 2.1 [abstract substitution]An abstract substitution � is an element of the generic abstract domain Pat(<) described in [4, 5], i.e. atuple hfrm; sv; �i where the pattern component frm associates with some of the indices in Ip a patternf(i1; : : : ; iq), where f a q-ary function symbol and fi1; : : : ; iqg � Ip; the same-value component sv assigns asubterm to each variable in the substitution; and � is an element of a domain < that gives information onterm tuples ht1; : : : ; tpi about mode, sharing, types, or whatever else.Example 2.1 Let < be the abstract domain Mode-Type described in [13], and consider the (concrete)substitution fX1 7! Y � a; X2 7! a; X3 7! []g:This substitution is represented, for instance, by the following abstract substitution:sv: X1 7! 1 frm: 1 7! 4 � 2 � 1=ngvX2 7! 2 2 7! a 2=grX3 7! 3 3 7! [] 3=grlist4 7! ? 4=varAt each execution point, the analyzer computes (so-called) abstract sequences (see [2, 14]) giving infor-mation about variables in the form of an abstract substitution, and also information about the number ofsolutions in terms of the input argument sizes. Thus, an abstract sequence can be seen as an extensionof the abstract substitution notion, where an additional same-value component maintains the parameterassignements at clause entry, and a set of linear (in)equations represents size relations among terms andsolution set cardinality.De�nition 2.2 [abstract sequence]An abstract sequence B is a tuple hfrm; svin; sv; �; Ei where1: hfrm; svin; �i and hfrm; sv; �i are abstract substitutions.2: the domain of the same-value function svin is contained in the domain of sv;4

3: the size component E is a (possibly empty) set of (in)equations over Expfsol;sz(1);:::;sz(p)g.Given a size measure jj � jj, an abstract sequence B= hfrm; svin; sv; �; Ei represents the pairs (�in; S)of concrete substitutions such that �in 2 (hfrm; svin; �i) and for all �2S, � is an instance of �in, � 2(hfrm; sv; �i), and S respects the multiplicity relations expressed by E, i.e. for every ht1; : : : ; tpi 2 (�) :(sz(1)=jjt1jj; : : : ; sz(p)=jjtpjj; sol=jSj) satis�es the set of inequations E.A behaviour for a procedure is a formalization of its speci�cation (excluding the relation part).De�nition 2.3 [behaviour]A behaviour for a procedure p=n is a 4-tuple of the form (p; [X1; : : : ; Xn]; S; Prepost) where1: X1; : : : ; Xn are distinct variables representing the formal parameters of the procedure p=n;2: S is a set of (in)equations only using variables in X1; : : : ; Xn, representing size relations;3: Prepost is a set of pairs hB; Sei where B = hfrm; svin; svout; �; Ei is an abstract sequence and Se is asize expression from ExpfX1;:::;Xng.Example 2.2 A behaviour for select=3 formalizing the speci�cation depicted in Figure 1 has the form(select; [X1; X2; X3]; S = fX2 = X3 + 1g; Prepost= fhB�; X2i; hB+; X3ig)where B+ (corresponding to the second application condition) is equal tosvin: X1 7! 1 svout: X1 7! 4 frm: 1 7!? � : 1=gr E: 0�sol�sz(3) + 1X2 7! 2 X2 7! 5 2 7!? 2=any sz(5) = sz(6) + 1X3 7! 3 X3 7! 6 3 7!? 3=gr4 7!? 4=gr5 7!? 5=grlist6 7!? 6=grlistand the abstract sequence B� (corresponding to the �rst application condition) can be de�ned in a similarway.3 The AnalyzerIn this section we �rst present a clause analyzer for verifying correctness of a clause. This is a re�nementand an extension of the analyzer proposed in [6]. Then, we describe a procedure analyzer, based on theclause analyzer, for verifying correctness of a whole procedure.3.1 The Clause AnalyzerThe clause analyzer receives as inputs a Prolog clause CL of the form p(X1; : : : ; Xn) L1; : : : ; Lf where n; f � 0and X1; : : : ; Xn are distinct variables, a behaviour for each subprocedure in CL (except = =2 but includingp=n), an element hhfrm; svin; svout; �; Ei; Sei from the Prepost component of the behaviour for p=n, and anabstract substitution � on X1; : : : ; Xn smaller than or equal to the precondition hfrm; svin; �i, according tothe partial order de�ned on Pat(<). It checks the following:1: for any subcall to a procedure q=m in the body of CL, let (q; [X1; : : : ; Xm]; Sq; Prepostq) be the behaviourfor q=m. The procedure q=m is called with arguments respecting at least one precondition hfrm0; sv0in; �0iin the Prepostq set;2: the arguments of p after the execution of the clause CL respect the size relation and hfrm; svout; �i;5

3: if sol=1 satis�es the restriction of E to sol, then at most one subcall in the body of CL can producein�nite solutions and none of the preceeding literals in this clause produces more than one solution.Otherwise, the execution of CL terminates.If one of these properties can not be inferred then the clause analyzer fails. Otherwise, it returns an(in)equation set ECL expressing information about the length of the sequence of answer substitutions and thetermination of the execution of the clause CL.In order to compute its results, the clause analyzer computes a set, B0;B1; : : : ;Bf, of abstract sequenceson the variables in CL and an abstract sequence Bout expressing the same properties as Bf but restricted tothe variables X1; : : : ; Xn in the head of CL. The following main operations are required to analyze a clause.� Initial operation: it extends � to an abstract sequence B0 on all variables in CL.� Derivation operation: it computes Bi from Bi�1 and Li (1 � i � f). In fact, there are two kinds ofderivation operations: the deriv-unif (for the = =2 literals) and the deriv-normal (for the other literals).� Reduction operation: it computes Bout from Bf by restricting it to the variables X1; : : : ; Xn.� Exit operation: it veri�es whether Bout respects the size relation in E and hfrm; svout; �i.Let us illustrate them with an example. Consider the second clause of the procedure select=3 and thebehaviour for select/3 described above. Let � = hfrm�; sv�; ��; E�i be an abstract substitution withfrm� = f1 7!?; 2 7!?; 3 7!?g, sv� = fX1 7! 1; X2 7! 2; X3 7! 3g, �� = f1=gr; 2=any; 3=grg, E� = fsol = 0g.The clause analyzer camputes B0;B1; : : : ;B4 as follows:�select(X1,X2,X3) B0 X2=[X4|X5],B1 X3=[X4|X6],B2 select(X1,X5,X6) B3.B4.Initial Operation First, � is extended to an abstract substitution B0 on all the variables in the clausestating that the new variables are not instantiated and used nowhere else. In the example,sv0in: X1 7! 1 sv0: X1 7! 1 frm0: 1 7!? �0 : 1=gr E0 : sol = 0X2 7! 2 X2 7! 2 2 7!? 2=anyX3 7! 3 X3 7! 3 3 7!? 3=grX4 7! 4 4 7!? 4=varX5 7! 5 5 7!? 5=varX6 7! 6 6 7!? 6=varDerivation operation: We compute B1 from B0 and the literal X2 = [X4jX5]. In this case, the deriv-unifoperation is used. A new term (represented by the index 7) is introduced, representing the result of theuni�cation of X2 with [X4|X5]. The svin component maintain the link with the term denoted by 2 whilethe actual binding of X2 after uni�cation is kept by sv. Since it is not sure that the uni�cation succeeds, theinformation that a failure could occur is expressed in the multiplicity component. Information on the sizerelations holding after the uni�cation is expressed by the equation sz(7)=sz(5)+1. Thus, B1 issv1in: X1 7! 1 sv1: X1 7! 1 frm1: 1 7!? �1 : 1=gr E1 : 0 � sol � 1X2 7! 2 X2 7! 7 2 7!? 2=any sz(7)=sz(5) + 1X3 7! 3 X3 7! 3 3 7!? 3=grX4 7! 4 4 7!? 4=anyX5 7! 5 5 7!? 5=anyX6 7! 6 6 7!? 6=var7 7! [4j5] 7=ngv6

Another derivation operation applies to derive B2 from B1 and the literal X3 = [X4jX6]. Also in this case,the deriv-unif operation is used. Observe that in this case, the groundness of term indexed by 3 propagatesto the terms that correspond (through sv) to X4,X6. Observe that no new term is created, because the termindexed by 3 was ground already. The abstract sequence B2 issv2in: X1 7! 1 sv2: X1 7! 1 frm2: 1 7!? �2 : 1=gr E2 : 0 � sol � 1X2 7! 2 X2 7! 7 2 7!? 2=any sz(7)=sz(5) + 1X3 7! 3 X3 7! 3 3 7! [4j6] 3=gr sz(3)=sz(6) + 1X4 7! 4 4 7!? 4=grX5 7! 5 5 7!? 5=anyX6 7! 6 6 7!? 6=gr7 7! [4j5] 7=ngvThe abstract sequence B3 is obtained through deriv-normal by combining B2 with the behaviour of select/3.In particular, we need to �nd a pair hB; Sei in the Prepost component of the behaviour that matches withB2 regarding directionality and termination. In our example, this is true when considering the prepost com-ponent hB+; X3i de�ned at the end of Section 2.Let B+ = hfrm; svin; svout�; Ei and let � = fX1 7! X1; X2 7! X5; X3 7! X6g be the renaming function that isused to restrict B2 to the clause select(X1,X5,X6).First, we need to verify directionality: that the abstract substitution obtained by applying � to hfrm2; sv2; �2iis at least as precise (i.e. smaller or equal in the ordering on Pat(<)) as hfrm; svin; �i. In particular, if welook at modes, it is easy to verify thatin(�2(sv2(�(X1))); �2(sv2(�(X2))); �2(sv2(�(X3)))) =in(�2(sv2(X1)); �2(sv2(X5)); �2(sv2(X6))) =in(�2(1); �2(5); �2(6)) =in(gr; any; gr) =in(�(sv(X1); �(sv(X2); �(sv(X3))Second, since sol=1 is not a solution in E2, we have to prove termination: according to the size expressionSe = X3 in the Prepost component selected, we need to verify that the size of the third term of the newactivation call is strictly smaller than the size of the third parameter before the execution. Formally, weneed to verify that sz(sv2(�(X3))) < sz(sv2in(X3))Indeed, sz(sv2in(X3)) = sz(3) by de�nition of sv2in= sz(6) + 1 by multiplicity in B2> sz(6)= sz(sv2(�(X3))):Thus, both directionality and termination of the application condition are satis�ed. Therefore, we canapply the out-conditions of B. In particular, we derive that the terms indexed by 5 and 6 are bound toground lists, and we get the multiplicity equations 0 � sol � sz(6) + 1 and sz(5) = sz(6) + 1. We obtainthe following abstract sequence B3:sv3in: X1 7! 1 sv3: X1 7! 1 frm3: 1 7!? �3 : 1=gr E3 : 0 � sol � sz(6) + 1X2 7! 2 X2 7! 7 2 7!? 2=any sz(7)=sz(5) + 1X3 7! 3 X3 7! 3 3 7! [4j6] 3=grlist sz(3)=sz(6)+1X4 7! 4 4 7!? 4=gr sz(5)=sz(6) + 1X5 7! 5 5 7!? 5=grlistX6 7! 6 6 7!? 6=grlist7 7! [4j5] 7=grlist7

Reduction operation. The abstract sequence B4 is computed by rectricting B3 to the variables X1,X2,X3.It results insv3in: X1 7! 1 sv3: X1 7! 1 frm3: 1 7!? �3 : 1=gr E3 : 0 � sol � sz(6) + 1X2 7! 2 X2 7! 7 2 7!? 2=any sz(7)=sz(5) + 1X3 7! 3 X3 7! 3 3 7! [4j6] 3=grlist sz(3)=sz(6) + 14 7!? 4=gr sz(5)=sz(6) + 15 7!? 5=grlist6 7!? 6=grlist7 7! [4j5] 7=grlistExit operation The last step in the clause analysis consists in verifying whether B4 satis�es the sizerelation in E and the output abstract substitution hfrm; svout; �i of the Prepost component hB+; X3i of thebehaviour applied so far. In our example, this is trivially true.3.2 The Procedure AnalyzerUsing the clause analyzer, we de�ne a procedure analyzer which given a Prolog program P de�ning a predicatep=n and a behaviour for each subprocedure in P, checks the following: for each abstract substitution respectingat least one precondition in the behaviour for p=n with multiplicity (in)equation set E,1: for each clause CL of P the clause analyzer does not fail;2: the sequence of answer substitutions for the whole procedure respects the multiplicity (in)equation set;3: if sol=1 is a solution for the restriction of E to sol, then at most one clause of P can produce an in�nitenumber of solutions and none of the preceeding literals in the clause produces more than one solution.If this is not the last clause, then the executions of all the following clauses in P are �nitely failed.If one of these properties can not be inferred then the procedure analyzer fails meaning that the correctnessof P has not been proved.4 Complexity AnalysisThe analyzer provides a suitable basis for the complexity analysis of Prolog programs in the spirit of [8].The complexity analysis is useful to choose the most e�cient version of a procedure.Indeed, using the information relative to the size relations and the number of solutions computed by theanalyzer at each program point, the time complexity of a procedure can be easily estimated. Clearly, itdepends on the complexity of each literal called in the body of its clauses. Because of nondeterminism, thecost of such a literal depends on the number of solutions generated by the execution of previous literals in thebody. Moreover, the cost of a recursive call depends on the depth of the recursion during the computation,which in turn depends on the size of its input arguments.Callee predicates are analyzed before the corresponding callers. If two predicates call each other, thenthey are analyzed together.The time complexity function for recursive procedures is given in the form of di�erence equations whichare transformed into closed form functions (when possible) using di�erence equation solving techniques5.Let CL be a clause of the form H L1; : : : ; Lf (f � 0), �A represent the input size for CL and �Ai representthe input size for Li. The time complexity of CL can be expressed astCL(�A) = � +Pfi=1 Maxi(�Ai) ti(�Ai)5For the automatic resolution of general di�erence equations the reader is referred to [3, 12].8

where � is the time needed to unify with the head H of CL, Maxi(�Ai) is an upper bound to the numberof solutions generated by the literals preceeding Li and ti(�Ai) is the time complexity of Li.There are a number of di�erent metrics that can be used as the unit of time complexity, e.g., the numberof resolutions, the number of uni�cations, or the number of instructions executed. For simplicity, in whatfollows, we assume that the time complexity metric used is the number of resolutions giving an upper boundon the number of vertices in the search tree. In this case, both � and the time needed to solve a built-in is 1.Example 4.1 Consider once more the program select=3 and the second directionality in the speci�cationdepicted in Figure 1. The time complexity for select=3 in terms of the size of the input ground argumentLs, noted tselect, can be estimated as follows. First, we compute the time complexity tiselect(0) for eachclause called with Ls being the empty list.t1select(0) = 5 (in the �rst clause, both head uni�cation and the body literals succeed)t2select(0) = 2 (in the second clause, only head uni�cation and the �rst body literal succeed).Then, the time complexity tiselect(Ls) for each clause called with a non empty list Ls is estimated. Inthis case both the size relation and the multiplicity information computed by the analyzer are used.t1select(Ls) = 5 (in the �rst clause, both head uni�cation and the body literals succeed)t2select(Ls) = 3+ tselect(Ts)= 3+ tselect(Ls � 1) (since Ts = Ls � 1).The time complexities tselect(0) and tselect(Ls) for the calls of select=3 with Ls being the empty listand a non empty list, respectively, are obtained by summing the time complexity for the �rst two clauses.tselect(0) = 7tselect(Ls) = 8+ tselect(Ls � 1).This system can be solved to obtain the time complexitytselect � �x: 8x+ 7 (x standing for the size of Ls).5 Conclusion and Future WorkIn this paper, an analyzer for Prolog procedures has been presented that veri�es total correctness with respectto Devilles's formal speci�cation. An automatic complexity analysis based on the information deduced by theanalyzer was also proposed. We are conscious that the e�ective impact of these ideas can be evaluated onlyafter the full implementation of the analyzer, which is in progress, now. The main goal of the implementation,based on the generic abstract interpretation algorithm GAIA [15], is to investigate the practicality of theautomatic complexity analysis in the context of a logic procedure synthesizer that derives the most e�cientprocedure among the set of all correct ones.References[1] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting Term Properties. In S. Abramskyand T.S.E. Maibaum, editors, Proc. TAPSOFT'91, volume 494 of Lecture Notes in Computer Science, pages 153{180.Springer-Verlag, Berlin, 1991.[2] C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality Analysis of Prolog. In Proc. Int'l LogicProgramming Symposium, (ILPS'94), Ithaca, NY. The MIT Press, Cambridge, Mass., 1994.[3] J. Cohen and J. Katco�. Symbolic solution of �nite-di�erence equations. ACM Transactions on Mathematical Software,3(3):261{271, 1977. 9

[4] A. Cortesi, B. Le Charlier and P. van Hentenryck, Conceptual and Software Support for Abstract Domain Design: GenericStructural Domain and Open Product. Technical Report CS-93-13, Brown University, 1993.[5] A. Cortesi, B. Le Charlier and P. van Hentenryck, Combinations of Abstract Domains for Logic Programming, Proc. 21thAnnual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'94), ACM-Press, NewYork, pp.227-239, 1994.[6] P. De Boeck and B. Le Charlier. Static Type Analysis of Prolog Procedures for Ensuring Correctness. In P. Deransart andJ. Maluszy�nski, editors, Proc. Second Int'l Symposium on Programming Language Implementation and Logic Programming,(PLILP'90), volume 456 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1990.[7] P. De Boeck and B. Le Charlier. Mechanical Transformation of Logic De�nitions Augmented with Type Informationinto Prolog Procedures: Some Experiments. In Proc. Int'l Workshop on Logic Program Synthesis and Transformation,(LOPSTR'93). Springer Verlag, July 1993.[8] S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM Transactions on Programming Languages and Systems,15(5):826{875, 1993.[9] D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Framework for analysing the termination of de�nite logic programswith respect to call patterns. In H. Tanaka, editor, FGCS'92, 1992.[10] Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.[11] J. Henrard and B. Le Charlier. FOLON: An Environment for Declarative Construction of Logic Programs (extendedabstract). In M. Bruynooghe and M. Wirsing, editors, Proc. Fourth Int'l Workshop on Programming Language Imple-mentation and Logic Programming (PLILP'92), Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992.[12] J. Ivie. Some MACSYMA programs for solving recurrence relations. ACM Transactions on Mathematical Software,4(1):24{33, 1978.[13] B. Le Charlier, and S. Rossi. Automatic Derivation of Totally Correct Prolog Procedures from Logic Descriptions. ResearchReport RP-95-009, University of Namur.[14] B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpretation Framework which Accurately HandlesProlog Search-Rule and the Cut. In Proc. Int'l Logic Programming Symposium, (ILPS'94), Ithaca, NY. The MIT Press,Cambridge, Mass., 1994.[15] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic abstract interpretation algorithm for prolog.ACM Transactions on Programming Languages and Systems, 1993.[16] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.

10

