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In our previous works (see [4℄ for an overview) we studied many informationow seurity properties for the Seurity Proess Algebra (SPA) [6℄ and har-aterized them in terms of unwinding onditions. In partiular, we introdueda generalized unwinding ondition whih an be instantiated to de�ne seurityproperties and we identi�ed lasses of seure proesses whih an be onstrutedin a ompositional way.In this paper we show how our framework an be used also to de�ne non-interferene seurity properties for a simple imperative language, admitting par-allel exeutions on a shared memory. We extend the language IMP de�ned in[19℄ by partitioning the loations (variables) into two levels: a publi level and aon�dential one and by adding a parallel omposition operator.We present a generalized unwinding ondition for our language and studythree di�erent lasses of programs obtained by instantiating the unwindingframework. These three instanes are based on a notion of low level bisimu-lation and allow us to express timing-sensitive seurity properties for imperativelanguages. In partiular, we show that all the programs in these lasses satisfythe non-interferene priniple. Moreover, we introdue a sublass of seure pro-grams whih is ompositional with respet to the language onstrutors. Thislass is useful to de�ne proof systems whih allow one both to verify and to buildprograms whih are seure by onstrution.The paper is organized as follows. In Setion 2 we introdue the language to-gether with its syntax and semantis. In Setion 3 we de�ne a general unwindingshema for our imperative language and study three di�erent instantiations of it.We also prove a soundness theorem with respet to the standard non-interfereneproperty. In Setion 4 we de�ne a ompositional lass of seure programs anddisuss its veri�ation. Finally, in Setion 5 we draw some onlusions.2 The Language: Syntax and SemantisThe language we onsider is an extension of the IMP language de�ned in [19℄where parallel exeutions are admitted and the loations (variables) are par-titioned into two levels: a publi level and a on�dential one. Intuitively, thevalues ontained in the on�dential loations are aessible only to authorizedusers (high level users), while the values in the publi loations are available toall the users. We present an operational semantis and a notion of behavioralequivalene for our language whih will be at the basis of our seurity properties.The aim of our properties is to detet any ow of information from high level tolow level loations, i.e., at any point of the exeution the values in the low levelloations have not to depend on high level inputs. In our operational semantisprograms are assoiated to labelled transition systems, i.e., graphs with labels onthe edges and on the nodes. The labels on the nodes orrespond to the statesof the loations and are used in the de�nition of the behavioral equivalene.The labels on the edges denote the level (high or low) of transitions, i.e., theyindividuate the transitions whih depend on the values of high level loations.2



Let R be the set of real numbers, T = ftrue; falseg be the set of booleanvalues, L be a set of low level loations and H be a set of high level loations,with L \ H = ;. The set Aexp of arithmeti expressions is de�ned by thegrammar: a ::= r jX j a0 + a1 j a0 � a1 j a0 � a1where r 2 R and X 2 L[H . The set Bexp of boolean expressions is de�ned by:b ::= true j false j (a0 = a1) j (a0 � a1) j :b j b0 ^ b1 j b0 _ b1where a0; a1 2 Aexp.We say that an arithmeti expression a is on�dential, denoted by a 2 high, ifthere is a high level loation whih ours in it. Otherwise we say that a is publi,denoted by a 2 low. Similarly, we say that a boolean expression b is on�dential,denoted by b 2 high, if there is a on�dential arithmeti expression whih oursin it. Otherwise we say that b is publi, denoted by b 2 low. This notion ofon�dentiality, both for arithmeti and boolean expressions, is purely syntati.Notie that a high level expression an ontain low level loations, i.e., its valuean depend on the values of low level loations. This reets the idea that a highlevel user an read both high and low level data.The set Prog of programs of our language is de�ned as follows:P ::= skip jX := a j P0;P1 j if b then P0 else P1 j while b do P j P0jjP1where a 2 Aexp, X 2 L [ H , and b 2 Bexp.A high program is a program whih only uses high level loations (i.e., itsyntatially ontains only high level variables). We denote by ProgH the set ofall high programs.Example 1. Consider the program P � L := H , where H is a high level loationand L is a low level loation. P onsists of a unique assignment instrution. Itse�et is to assign to the low level loation L the value ontained in the high levelloation H . Hene, after the exeution of P the low level user an read the highlevel data ontained in H by reading L. utThe operational semantis of our language is based on the notion of state. Astate � is a funtion whih assigns to eah loation a real, i.e., � : L [ H �! R.Given a state �, we denote by �[X=r℄ the state �0 suh that �0(X) = r and�0(Y ) = �(Y ) for all Y 6= X . Moreover, we denote by �L the restrition of � tothe low level loations and we write � =L � for �L = �L.Given an arithmeti expression a 2 Aexp and a state �, the evaluation of ain �, denoted by ha; �i ! r with r 2 R, is de�ned as in [19℄. Similarly, hb; �i ! vwith b 2 Bexp and v 2 ftrue; falseg, denotes the evaluation of a booleanexpression b in a state � and is de�ned as in [19℄.The operational semantis of our programs is expressed in terms of statetransitions. A transition from a program P and a state � has the form hP; �i �!hP 0; �0i where P 0 is either a program or end (termination) and � 2 fhigh; lowgstating that the transition is either on�dential or publi. Let P = Prog[fendg3



hskip; �i low! hend; �i ha; �i ! rhX := a; �i �! hend; �[X=r℄i a 2 �hP0; �i �! hP 00; �0ihP0;P1; �i �! hP 00;P1; �0i P 00 6� end hP0; �i �! hend; �0ihP0;P1; �i �! hP1; �0ihb; �i! truehif b then P0 else P1; �i �! hP0; �i b 2 �hb; �i! falsehif b then P0 else P1; �i �! hP1; �i b 2 �hb; �i! falsehwhile b do P; �i �! hend; �i b 2 �hb; �i! truehwhile b do P; �i �! hP ; while b do P; �i b 2 �hP0; �i �! hP 00; �0ihP0jjP1; �i �! hP 00jjP1; �0i P 00 6� end hP0; �i �! hend; �0ihP0jjP1; �i �! hP1; �0ihP1; �i �! hP 01; �0ihP0jjP1; �i �! hP0jjP 01; �0i P 01 6� end hP1; �i �! hend; �0ihP0jjP1; �i �! hP0; �0iFig. 1. The operational semantis.and � be the set of all the possible states. In Fig. 1 we de�ne the operationalsemantis of hP; �i 2 P�� by strutural indution on P .For eah pair hP; �i, where P is a program and � is a state, the semanti rulesde�ne a labelled transition system (LTS) whose nodes are elements of P�� andwhose edges are labelled with high or low. The notion of reahability does notdepend on the labels of the edges. We use hP; �i ! hP 0; �0i to denote hP; �i �!hP 0; �0i with � 2 flow; highg. We write hP0; �0i !n hPn; �ni for hP0; �0i !hP1; �1i ! � � � ! hPn�1; �n�1i ! hPn; �ni. Given hP; �i 2 Prog��, we denoteby Reah(hP; �i) the set of pairs hP 0; �0i suh that there exists n � 0 and4



hP; �i !n hP 0; �0i. Moreover we denote by Reah(P ) the set of programs P 0suh that hP 0; �0i 2 Reah(hP; �i) for some states � and �0.Example 2. Assume L is a low level loation and � is a state suh that �(L) = 1.Consider the program P1 � while (L � 1) do L := L + 1; we obtain thefollowing LTS hP1; �ilow#hL := L+ 1; while (L � 1) do L := L+ 1; �ilow#hwhile (L � 1) do L := L+ 1; �[L=2℄ilow#hend; �[L=2℄iConsider now the program P2 � if (H � 3) then L := L+1 else L := L+2where H is a high level loation. Let �1, �2 be states suh that �1(H) � 3 and�2(H) > 3. The LTS's assoiated to the pairs hP2; �1i and hP2; �2i arehP2; �1ihigh#hL := L+ 1; �1ilow#hend; �1[L=�1(L) + 1℄i hP2; �2ihigh#hL := L+ 2; �2ilow#hend; �2[L=�2(L) + 2℄iIn this ase the �nal value of the low level loation depends on the initial valueof the high level one. Hene a low level user an infer whether H is less or equalthan 3 or not just by observing the initial and �nal values of L. utWe are interested in a notion of behavioural equivalene whih equates twoprograms if they are indistinguishable for a low level observer.Example 3. Consider the programs H := 1;L := 1 and H := 2;L := 1, where His a high level loation while L is a low level loation. Given a state � the LTS'sassoiated to the two programs are respetivelyhH := 1;L := 1; �i hH := 2;L := 1; �ilow # low #hL := 1; �[H=1℄i hL := 1; �[H=2℄ilow # low #hend; �[H=1; L=1℄i hend; �[H=2; L=1℄iWe would like to onsider this two programs equivalent for a low level observerwhih an only read the values in the low level loations. utWe onsider two programs equivalent from the low level point of view if theyare low level bisimilar as de�ned below.5



De�nition 1 (Low Level Bisimulation). A binary symmetri relation B overP�� is a low level bisimulation if for eah (hP; �i; hQ; �i) 2 B it holds that:{ � =L �, i.e., the states oinide on low level loations;{ if hP; �i ! hP 0; �0i then there exists hQ0; �0i suh that hQ; �i ! hQ0; �0i and(hP 0; �0i; hQ0; �0i) 2 B.Two pairs hP; �i and hQ; �i 2 P�� are low level bisimilar, denoted by hP; �i �lhQ; �i if there exists a low level bisimulation B suh that (hP; �i; hQ; �i) 2 B.Two programs P and Q are said to be low level bisimilar, denoted by P 'l Q, iffor eah �; � 2 � it holds that if � =L � then hP; �i �l hQ; �i.A partial equivalene relation (per, for short) [16℄ is a symmetri and transi-tive relation.Lemma 1. The relation �l� (P��)2 is the largest low level bisimulation and itis an equivalene relation. The relation 'l� P2 is a partial equivalene relation.Proof. If hP; �i �l hQ; �i, then there exists a low level bisimulation B suh thatit holds (hP; �i; hQ; �i) 2 B. Hene if hP; �i ! hP 0; �0i we have that hQ; �i !hQ0; �0i with (hP 0; �0i; hQ0; �0i) 2 B, i.e., hP 0; �0i �l hQ0; �0i. So we have that �lis a low level bisimulation. It is the largest sine by de�nition all the other lowlevel bisimulations are inluded in it.It is easy to prove that �l is reexive and symmetri. The fat that �l istransitive follows from the fat that if B1;B2 are low level bisimulations thenthe relation B1 Æ B2, where Æ is the omposition of relations, is still a low levelbisimulation.The relation 'l� P2 is symmetri and transitive sine �l is symmetri andtransitive. utThe relation 'l is not reexive. For example, the program L := H is notlow level bisimilar to itself, as the low equality of states an be broken by aomputation step.Example 4. Consider the programs P � H := H + 1;L := L+ 1 and Q � H :=H +2;L := L+1, where H is a high level loation and L is a low level loation.It is easy to prove that P 'l Q. In fat, a low level user whih an only observethe low level loation L annot distinguish the two programs. utThe notion of bisimulation as observation equivalene assumes that duringeah omputation step a user an read the values in the loations. If we areworking with a pure imperative language this assumption ould seem too strong,sine usually the values are read only at the end of the omputation. However, ifwe onsider parallel exeutions, during eah step of the omputation one of theparallel omponents ould store the partial results of the other omponents.Example 5. Let P � L := H ;L := 1 and Q � H := H ;L := 1, where H is ahigh level loation and L is a low level loation. The programs P and Q ould beonsidered equivalent if one assumes that the low level user an observe the low6



level loations only at the end of the omputation. However, they are not lowlevel bisimilar. Indeed, if R � L1 := L with L1 being a low level loation, thenthe programs P jjR and QjjR are not equivalent from the low level point view. Infat, there is one exeution of P jjR in whih the low level user an disover thehigh level value of H by reading L1. This is never possible in QjjR. utThe relation �l equates programs whih exhibit the same timing behavior.This is stated by the following lemma.Lemma 2. Let P and Q be two programs and � and � be two states suh thathP; �i �l hQ; �i. If hP; �i !n hP 0; �0i then there exists Q0 and �0 suh thathQ; �i !n hQ0; �0i and hP 0; �0i �l hQ0; �0i, and vieversa.Proof. By indution on n.{ Base: n = 1. We immediately have the thesis by de�nition of �l.{ Step: n = m + 1 and we proved the thesis for m. We have that hP; �i !mhP 00; �00i ! hP 0; �0i. By indutive hypothesis we get hQ; �i !m hQ00; �00i withhP 00; �00i �l hQ00; �00i. By de�nition of bisimulation we get the thesis. utExample 6. Consider the programs P � if (L = 0) then L := L+1 else L := 2and Q � if (L = 0) then fL := L + 1; skipg else L := 2. Although, for all� and � suh that � =L �, P and Q exeute exatly the same assignmentommands, P 6'l Q. In fat the two programs exhibit di�erent timing behavioursdue to the presene of the skip ommand in the �rst branh of Q. ut3 Unwinding Conditions for Seurity of IMPIn [4℄ we introdued a general framework to de�ne lasses of seure proesseswritten in the SPA language, an extension of Milner's CCS [12℄. The frame-work is based on a generalized unwinding ondition whih is a loal persistentproperty parametri with respet to a low behavioral equivalene, a transitionrelation independent from the high level behavior and a reahability relation.We proved that many non-interferene properties an be seen as instanes ofthis framework. In all the onsidered ases, the three relations are de�ned onthe proesses LTS's and thus the orresponding unwinding lasses depend onlyon the operational semantis of proesses. Following a similar approah, we in-trodue a generalized unwinding ondition to de�ne lasses of programs whihis parametri with respet to{ an observation equivalene relation + whih equates two pairs hP; �i andhQ; �i if they are indistinguishable for a low level observer,{ a binary relation ,! whih, from the low level point of view, is independentfrom the values of high loations, and{ a reahability funtion R assoiating to eah pair hP; �i the set of pairshF;  i whih, in some sense, are reahable from hP; �i.7



De�nition 2 (Generalized Unwinding). Let + be a binary equivalene rela-tion over Prog��, ,! be a binary relation over Prog�� and R be a funtionfrom Prog � � to }(Prog � �). We de�ne the unwinding lass W(+; ,!;R)as follows:W(+; ,!;R) def= fhP; �i 2 Prog �� j 8 hF;  i 2 R(hP; �i)if hF;  i high! hG;'i then 9hM;�i suh that hF;  i ,! hM;�i andhG;'i + hM;�ig:The intuition behind the unwinding ondition is that any high level transitionshould be simulated by a high independent transition guaranteeing that the highlevel transitions have no inuene on the low level observation.We say that the funtion R is transitive if hF 00;  00i 2 R(hF 0;  0i) andhF 0;  0i 2 R(hF;  i) imply hF 00;  00i 2 R(hF;  i), i.e., it is a transitive rela-tion. If R is transitive, the generalized unwinding ondition de�ned above allowsus to speify properties whih are losed under R. In this sense we say that ourproperties are persistent. The next lemma follows immediately by De�nition 2.Lemma 3. Let R be a transitive reahability funtion and hP; �i 2 Prog ��.If hP; �i 2 W(+; ,!;R) then hF;  i 2 W(+; ,!;R) for all hF;  i 2 R(hP; �i).Proof. Let R be transitive, hP; �i 2 W(+; ,!;R), and hF;  i 2 R(hP; �i). IfhF 0;  0i 2 R(hF;  i), then by transitivity we have that hF 0;  0i 2 R(hP; �i).Hene we get that if hF 0;  0i high! hG0; '0i then hF 0;  0i ,! hM 0; �0i with hG0; '0i +hM 0; �0i, i.e., the thesis. utBelow we instantiate our generalized unwinding ondition by exploiting thenotion of low level bisimulation �l as behavioral equivalene and by introduinga suitable high independent transition relation 9 9 K.De�nition 3 (9 9 K). The relation 9 9 Kon Prog�� is de�ned as follows:hF;  i 9 9 KhM;�i if for eah � suh that � =L  there exist R and � suh thathF; �i ! hR; �i and hR; �i �l hM;�i.Example 7. Let F � if (H > 1) then M else R where M � H := 1;L :=L+ 1 and R � H := 2;L := L+ 1, and  be suh that  (H) > 1. In this asehF;  i 9 9 KhM; i. Indeed, for eah � suh that � =L  either hF; �i ! hM;�ior hF; �i ! hR; �i and both hM;�i �l hM; i and hR; �i �l hM; i.Consider now the program F � L := 2;R and R � if (H > 1) then fH :=1;L := 2g else fH := 2;L := 1g. In this ase does not exist any hM;�i suhthat hF;  i 9 9 K hM;�i. Indeed, if  and � are two states suh that  =L �, (H) > 1 and �(H) � 1, then hF;  i ! hR; [L=2℄i and hF; �i ! hR; �[L=2℄ibut hR; [L=2℄i 6�l hR; �[L=2℄i. utBy De�nition 3 and by transitivity of �l we get the following haraterizationof our unwinding ondition. 8



Proposition 1. Let R be a reahability funtion, P be a program, and � be astate. hP; �i 2 W(�l; 9 9 K;R) if and only if for eah hF;  i 2 R(hP; �i) it holdsthat if hF;  i high! hG;'i then for eah � suh that � =L  there exist R and �suh that hF; �i ! hR; �i and hR; �i �l hG;'i.As far as the funtion R is onerned, we onsider three di�erent instan-tiations: Rlts whih oinides with the rehability relation Reah in the LTS,Rhpar whih intuitively represents reahability under the parallel ompositionwith any high level program, and Rpar whih denotes reahability under theparallel omposition with any program.The lass of seure imperative programs SIMPlts de�ned below is based onthe funtion Rlts.De�nition 4 (SIMPlts). Let Rlts be the funtion Reah. A program P is inSIMPlts if for eah state �, hP; �i 2 W(�l; 9 9 K;Rlts).Example 8. Consider the program Q � H := L, where H is a high level loationand L is a low level loation. The program Q is in SIMPlts. In fat, the lowlevel exeution is not inuened by the values in the high level loation.Consider again the program P � L := H ;L := 1 of Example 5, where H is ahigh level loation and L is a low level loation. It is easy to prove that for any� 2 �, hP; �i 62 W(�l; 9 9 K;Rlts). In fat, let for instane �(H) = 1, �(L) = 0,�(H) = 2, �(L) = 0. It holds that � =L �, but after the exeution of the �rsthigh level transition we reah the states �0 and �0, where �0(L) = 1 6= �0(L) = 2.Consider now R � H := 4;L := 1; if (L = 1) then skip else L := H .The program R belongs to SIMPlts. In fat, the �rst branh of the onditionalis always exeuted independently of the value in the high level loation. utSine Rlts is transitive, by Lemma 3 we get that W(�l; 9 9 K;Rlts) is per-sistent, i.e., if a program P starting in a state � is seure then also eah pairhP 0; �0i reahable from hP; �i does. However, in general it does not hold that ifa program P is in SIMPlts then also eah program P 0 reahable from P is inSIMPlts. This is illustrated in the following example.Example 9. Let P � L := 0; if L := 1 then L := H else skip: It holdsthat P 2 SIMPlts sine, for eah state �, hP; �i will never perform any hightransition. Moreover, the program P 0 � if L := 1 then L := H else skipis reahable from P but it does not belong to SIMPlts. utWe now introdue a more restritive lass of seure imperative programs,namely SIMPhpar, whih is based on the reahability funtion Rhpar de�nedbelow.De�nition 5. The funtion Rhpar from Prog�� to }(Prog��) is de�ned by:Rhpar(hP0; �0i) = fhPn; �ni j n � 0; 9P1; : : : ; Pn�1; 9�1; : : : ; �n; 9 �0; : : : ; �n�1suh that �i =L �i and hPi; �ii ! hPi+1; �i+1i for i 2 [0 : : n�1℄ and �n =L �ng.Intuitively, hF;  i 2 Rhpar(hP; �i) if hF;  i is reahable from hP jjPH ; �i wherePH is a high level program. 9



Lemma 4. Let P be a program and � be a state. hF;  i 2 Rhpar(hP; �i) if andonly if F is a subprogram of P and hF;  i 2 Reah(hP jjPH ; �i) for some highprogram PH .Proof. (sketh)() The parallel omposition of two programs performs the inter-leaving of the ations of the two omponents. Hene, when exeuting hP jjPH ; �i,sine PH an only modify high level variables, eah time an ation hP iH ; �ii !hP i+1H ; �ii of PH is performed, we have that �i =L �i. On the other hand, whenan ation hPi; �ii ! hPi+1; �i+1i of P is performed then we an de�ne �i = �i.Hene, 9�1; : : : ; �n; �0; : : : ; �n�1 suh that �i =L �i and hPi; �ii ! hPi+1; �i+1ifor i 2 [0 : : n� 1℄ where hP0; �0i � hP; �i and hPn; �ni � hF;  i.)) In eah step of the omputation PH an only hange the value of highlevel variables, hene we immediately get the thesis. utDe�nition 6 (SIMPhpar). A program P is in SIMPhpar if for eah state �,hP; �i 2 W(�l; 9 9 K;Rhpar).It is lear that the lass SIMPhpar is more restritive than SIMPlts.Lemma 5. SIMPhpar � SIMPltsExample 10. Consider the program P � H := 1; if (H = 1) then fskip;L :=1g else fH := 1;L := Hg, where H is a high level loation and L is a low levelloation. The program P belongs to the lass SIMPlts but it does not belong tothe lass SIMPhpar. In fat, given an initial state � there exists a state  suhthat the pair hL := H; i belongs to Rhpar(hP; �i). Moreover hL := H; i high!hend; 'i but learly it does not hold that for eah � suh that � =L  there existR and � suh that hL := H; �i ! hR; �i and hR; �i �l hend; 'i.Notie that if we onsider the program Q � H := 3 then P jjQ is not inSIMPlts although both P and Q are in SIMPlts. utIt is easy to prove that the reahability funtion Rhpar is transitive. Heneby Lemma 3 the lass W(�l; 9 9 K;Rhpar) is persistent. Indeed, we have that ifa program P starting in a state � is in W(�l; 9 9 K;Rhpar) then also eah pairhP 0; �0i 2 Rhpar(hP; �i) is in W(�l; 9 9 K;Rhpar). However, as for SIMPlts, ingeneral it does not hold that if a program P is in SIMPhpar then also eahprogram P 0 reahable from P is in SIMPhpar. In order to see this, it is suÆientto onsider again the program of Example 9.Finally, we introdue the lass of seure imperative programs SIMPpar byusing the reahability funtion Rpar de�ned below.De�nition 7. The funtion Rpar from Prog�� to }(Prog��) is de�ned asfollows: Rpar(hP0; �0i) = fhPn; �ni j n � 0; �n 2 �; 9P1; : : : ; Pn�1; 9�1; : : : ; �n;9�0; : : : ; �n�1 suh that hPi; �ii ! hPi+1; �i+1i for i 2 [0 : : n� 1℄g.Intuitively, a pair hF;  i is inRpar(hP; �i) if hF;  i is reahable from hP jjQ; �ifor some program Q. The following lemma is similar to Lemma 4.10



Lemma 6. Let P be a program and � be a state. hF;  i 2 Rpar(hP; �i) if andonly if F is a subprogram of P and hF;  i 2 Reah(hP jjQ; �i) for a program Q.De�nition 8 (SIMPpar). A program P is in SIMPpar if for eah state �,hP; �i 2 W(�l; 9 9 K;Rpar).The lass SIMPpar is more restritive than SIMPhpar.Lemma 7. SIMPpar � SIMPhpar � SIMPlts.Example 11. Consider the program P � H := 4;L := 1; if (L = 1) then skipelse L := H . It belongs to SIMPlts and SIMPhpar but it does not belong toSIMPpar. In fat given an initial state � there exists a state  suh that thepair hL := H; i belongs to Rpar(hP; �i). Moreover hL := H; i high! hend; 'i butlearly it does not hold that for eah � suh that � =L  there exist R and �suh that hL := H; �i ! hR; �i and hR; �i �l hend; 'i. utThe reahability funtion Rpar is transitive and then, by Lemma 3, the lassW(�l; 9 9 K;Rpar) is persistent in the sense that if hP; �i is in W(�l; 9 9 K;Rpar)then also eah pair hP 0; �0i 2 Rpar(hP; �i) is in W(�l; 9 9 K;Rpar). Moreover,di�erently from SIMPlts and SIMPhpar, if a program P is in SIMPpar thenalso eah program P 0 reahable from P is in SIMPpar.Lemma 8. Let P be a program. If P 2 SIMPpar then for all P 0 2 Reah(P ),P 0 2 SIMPpar.Proof. Let P 0 2 Reah(P ), i.e., hP 0; �0i 2 Reah(hP; �i) for some � and �0. Byde�nition of Rpar, hP 0; �i 2 Rpar(hP; �i) for all state �. Hene, by persistene ofW(�l; 9 9 K;Rpar), hP 0; �i 2 W(�l; 9 9 K;Rpar), i.e., P 0 2 SIMPpar. utThe three instanes of our generalized unwinding ondition introdued aboveallow us to express timing-sensitive notions of seuirity for imperative programs.This is a onsequene of the fat that �l equates programs whih exhibit thesame timing behavior (see Lemma 2).Example 12. Let P � if (H = 0) then fH := H + 1; skipg else H := 2. Theprogram P does not belong to any lass SIMP� with � 2 flts; hpar; parg. Thisis due to the fat that if hP; �i high! hfH := H+1; skipg; �i for some state � thenit does not hold that for eah � suh that � =L � there exist R and �0 suh thathP; �i ! hR; �0i and hfH := H + 1; skipg; �i �l hR; �0i. In fat, if �(H) 6= 0,hP; �i ! hH := 2; �i but hfH := H +1; skipg; �i 6�l hH := 2; �i beause of theirdi�erent timing behaviour. utIn the previous setion we observed that the relation 'l is not reexive.However, 'l is reexive over the set of programs belonging to SIMPlts (andthen, by Lemma 7, to SIMPhpar and SIMPpar).Lemma 9. Let P be a program. If P 2 SIMPlts then P 'l P .11



Proof. First, the following laim follows by strutural indution on programs.Claim. For eah  and � suh that  L = �L, if hF;  i low! hF 0;  0i then hF; �i low!hF 0; �0i with �0L =  0L.Now assume that P 2 SIMPlts. Then for all states � and �, hP; �i; hP; �i 2W(�l; 9 9 K;Rlts). Hene, in order to prove that P 'l P , it is suÆient to showthat for all � and � suh that hP; �i; hP; �i 2 W(�l; 9 9 K;Rlts) and �L = �L, itholds hP; �i �l hP; �i. Consider the binary relationS = f(hP; �i; hP; �i) j hP; �i; hP; �i 2 W(�l; 9 9 K;Rlts); �L = �Lg[ f(hP; �i; hQ; �i)j hP; �i �l hQ; �ig:We show that S is a low level bisimulation.If hP; �i high! hP 0; �0i, then sine hP; �i 2 W(�l; 9 9 K;Rlts), by Proposition 1,we have that hP; �i ! hP 00; �0i with hP 0; �0i �l hP 00; �0i. Hene, by de�nition ofS, (hP 0; �0i; hP 00; �0i) 2 S.If hP; �i low! hP 0; �0i, then by Claim 3 we have that hP; �i low! hP 0; �0i with�0L = �0L. By Lemma 3, sine Rlts is transitive, we have that W(�l; 9 9 K;Rlts) ispersistent, i.e., both hP 0; �0i 2 W(�l; 9 9 K;Rlts) and hP 0; �0i 2 W(�l; 9 9 K;Rlts).Hene we have that (hP 0; �0i; hP 0; �0i) 2 S, i.e., the thesis. utThe onverse of Lemma 9 does not hold as illustrated below.Example 13. Consider the program P � if (H = 1) then P0 else P1 whereP0 � while (H > 1) do skip and P1 � skip. In this ase P 'l P , i.e., for allstates � and � suh that � =L �, hP; �i �l hP; �i. Indeed, if � and � are suhthat both �(H) = 1 and �(H) = 1, the LTS's of hP; �i and hP; �i have the formhP; �i#hP0; �i#hend; �i hP; �i#hP0; �i#hend; �iand thus hP; �i �l hP; �i. The ase in whih both �(H) 6= 1 and �(H) 6= 1 isanalogous. On the other hand, if �(H) = 1 and �(H) 6= 1 the LTS's of hP; �iand hP; �i have the form hP; �i#hP0; �i#hend; �i hP; �i#hP1; �i#hend; �iand again hP; �i �l hP; �i.However, the program P 62 SIMPlts. In fat hP0; �i 2 Reah(hP; �i) andhP0; �i high! hend; �i but it does not hold that for all � suh that � =L � there12



exist R and �0 suh that hP0; �i ! hR; �0i and hend; �i �l hR; �0i. Indeed, if�(H) > 1, hP0; �i ! hskip;P0; �i and hend; �i 6�l hskip;P0; �i. This is due tothe fat that the subprogram P0 of P is not in SIMPlts. utFinally, we show that our seurity properties expressed in terms of unwindingonditions imply the standard non-interferene priniple whih requires that highlevel values do not a�et the low level observation.Theorem 1 (Soundness). Let P be a program suh that P 2 SIMP� with� 2 flts; hpar; parg. For eah state � and � suh that � =L �,{ hP; �i !n hend; �0i if and only if hP; �i !n hend; �0i with �0L = �0L.Proof. By Lemma 9, sine � =L �, we have that hP; �i �l hP; �i. Then, byLemma 2, we get that hP; �i reahes a pair hP 0; �0i with hP 0; �0i �l hend; �0i.Hene we immediately have �0 =L �0. Moreover, sine end is not bisimilar to anyprogram, it must be P 0 � end. ut4 CompositionalityThe lasses SIMPlts, SIMPhpar and SIMPpar introdued above are, in general,not ompositional with respet to the language onstrutors. In partiular, theyare not ompositional with respet to the parallel omposition onstrutor asillustrated by the following example.Example 14. Consider the program P � if (H = 1^L = 1) then P0 else P1where P0 � if (L = 1) then skip else L := 2 while P1 � if (L 6= 1) thenL := 3 else skip. The program P belongs to the lass SIMPpar (and thenalso to the lasses SIMPlts and SIMPhpar). In fat, given an initial state �,hP; �i high! hPi; �i for some i 2 f0; 1g and for eah � suh that � =L � therealways exist R and � suh that hP; �i ! hR; �i and hR; �i �l hPi; �i. Nowonsider the program Q � L := 4 whih learly belongs to SIMPpar. Weshow that the program P jjQ does not belong to SIMPlts (and thus neither toSIMPhpar and SIMPpar). Indeed, let � be a state suh that �(H) = �(L) = 1.Then hP jjQ; �i high! hP0jjQ; �i. Now let � be a state suh that � =L � and inpartiular �(L) = 1 but �(H) 6= 1. Hene hP jjQ; �i high! hP1jjQ; �i. However,hP0jjQ; �i 6�L hP1jjQ; �i: in fat if the assigment L := 4 of Q is performed at the�rst step, then hP0jjQ; �i ends in a state �0 suh that �0(L) = 2 while hP1jjQ; �iends in a state �0 suh that �0(L) = 3. utCompositionality is useful both for veri�ation and synthesis: if a propertyis preserved when programs are omposed, then the analysis may be performedon subprograms and, in ase of suess, the program as a whole will satisfy thedesired property by onstrution.In the next de�nition we introdue a lass C of programs whih is losedunder omposition and it is a sublass of SIMPpar (and then also of SIMPltsand SIMPhpar). 13



De�nition 9. Let H be a high level loation, L be a low level loation, ah andbh be high level expressions, and al and bl be low level expressions. The lass ofprograms C is reursively de�ned as follows.1. skip is in C;2. L := al is in C;3. H := ah is in C;4. H := al is in C;5. P0;P1 is in C if P0; P1 are in C;6. if bl then P0 else P1 is in C, if P0; P1 are in C;7. if bh then P0 else P1 is in C if P0; P1 are in C and P0 'l P1;8. while bl do P0 is in C, if P0 is in C;9. P0jjP1 is in C, if P0; P1 are in C.Theorem 2. The lass of programs C of De�nition 9 is inluded in SIMPpar.Proof. We �rst prove the following laim.Claim. Let G;F;R 2 C. If ' =L � then hF; 'i �l hF; �i. Moreover, if hG;'i �lhR; �i, then hG;F; 'i �l hR;F; �i and hGjjF; 'i �l hRjjF; �i.Proof. It is suÆient to show thatS = f(hG;F; 'i; hR;F; �i); (hGjjF; 'i; hRjjF; �i); jG;F;R 2 C; hG;'i �l hR; �ig[f(hF; 'i; hF; �i) j F 2 C; ' =L �g[fhF0; 'i; hF1; �i j F0; F1 2 C; ' =L �; F0 �l F1g[f(hF0; 'i; hF1; �i) j hF0; 'i �l hF1; �igis a low level bisimulation.In order to prove Theorem 2 we show that if P 2 C, then for eah F 2 Reah(P )and for eah  it holds that if hF;  i h! hG;'i, then for eah � suh that � =L  we have hF; �i ! hR; �i with hR; �i �l hG;'i. Indeed, from the fat that P 2 Cand F 2 Reah(P ) we get that F 2 C. We prove the thesis for a generi F 2 Cand a generi state  . We proeed by strutural indution on F .The only interesting ases are F � F0;F1 and F � F0jjF1. We onsiderthe ase F � F0;F1 sine the other one is similar. If hF;  i h! hF 00;F1; 'i,then we have hF0;  i h! hF 00; 'i. Hene by indutive hypothesis on F0 we havehF0; �i h! hF 000 ; �i with hF 00; 'i �l hF 000 ; �i. Then we get that hF; �i h! hF 000 ;F1; �iand by Claim 4 hF 000 ;F1; �i �l hF 00;F1; 'i. If hF;  i h! hF1; 'i, then hF1;  i h!hend; 'i. Hene by Claim 4 we get that hF1; �i h! hend; �i with � =L '. So,hF; �i h! hF1; �i, and again by Claim 4 we have hF1; �i �l hF1; 'i. utWe onlude this setion by observing that membership to the lass C isnot deidable due to the presene of the low level observation equivalene 'l inpoint 7 of De�nition 9. However, a sound but inomplete method ould be �ndto ompute 'l by applying a suitable abstration whih guarantees equivaleneup to high level loations as disussed, e.g., in [1℄.14



5 Conlusion and Related WorkIn this paper we introdued a generalized unwinding shema for the de�nition ofnon-interferene properties of programs of a simple imperative language, admit-ting parallel exeutions on a shared memory. We studied three di�erent instanesof our unwinding ondition and de�ned a sublass of programs whih is ompo-sitional with respet to the language onstrutors.There is a widespread literature on seure information ow in imperativelanguages (see [15℄ for a reent survey). A ommon approah is based on typesin suh a way that well-typed programs do not leak serets (see, e.g., [16, 17℄).Other approahes onsider logial formulations of non-interferene, e.g., [2, 3,10℄, and abstrat interpretation-based formalizations, e.g., [5, 7℄.As far as we know, this is the �rst attempt of de�ning seurity properties ofimperative languages through unwinding onditions. As observed by many au-thors (see, e.g., [11, 13℄) suh onditions are easier to handle and more amenableto automated proof with respet to global onditions. Similarly to what we al-ready did in [4℄ for systems written in a proess algebra language, we plan toexploit unwinding onditions for de�ning proof systems both to verify whethera program is seure and to build programs whih are seure by onstrution inan inremental way.Finally, we observe that the properties we have de�ned in terms of unwind-ing onditions haraterize the seurity of programs againts so-alled passiveattaks, i.e., a low level users whih try to infer the values of the high levelvariables just by observing the values of the low level ones. On the ontrary, inde�ning non-interferene one usually expliitly haraterize the lass of ativeattaks, i.e., maliious users or programs whih try to diretly transmit on�den-tial information to the low level observer. Some authors have proved that thereis a onnetion between properties haraterizing passive attaks and propertiesinvolving ative attaks [20℄. In our approah an ative attaker an be seen as ahigh level program whih intentionally manipulates high level variables. We anprove that if P is a seure program belonging to the lass SIMPhpar (and henealso to SIMPpar) then a low level user annot distiguish P running in parallelwith di�erent (maliious) high programs PH and PK exhibiting the same timingbehaviour (i.e., PH 'l PK).Theorem 3. If P 2 SIMPhpar then P jjPH 'l P jjPK for all PH ; PK 2 ProgHsuh that PH 'l PK .Proof. It follows from the fat thatS = f(hP jjPH ; �i; hQjjPK ; �i)j hP; �i �l hQ; �i; PH �l PK ; PH ; PK 2 ProgHhP; �i; hQ; �i 2 W(�l; 9 9 K;Rhpar)g [ f(hP; �i; hQ; �i)j hP; �i �l hQ; �igis a low level bisimulation �l. utIntuitively, this theorem states that if a program P belongs to SIMPhpar theneven if the values of the high level variables are hanged during the omputation,a low level user will never observe any di�erene on the values of low levelvariables. 15
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