
A Proof System for Information Flow Seurity?Annalisa Bossi, Riardo Foardi, Carla Piazza, and Sabina RossiDipartimento di Informatia, Universit�a Ca' Fosari di Veneziafbossi,foardi,piazza,srossig�dsi.unive.itAbstrat. Persistent BNDC (P BNDC, for short) is an information-ow seurity property for proesses in dynami ontexts, i.e., ontextsthat an be reon�gured at runtime. Intuitively, P BNDC requires thathigh level interations never interfere with the low level behavior of thesystem, in every possible state. P BNDC is veri�ed by heking whetherthe system interating with a high level omponent is bisimilar or notto the system in isolation. In this work we ontribute to the veri�ationof information-ow seurity in two respets: (i) we give an unwindingondition that allows us to express P BNDC in terms of a loal propertyon high level ations and (ii) we exploit this loal property in order tode�ne a proof system whih provides a very eÆient tehnique for thedevelopment and the veri�ation of P BNDC proesses.1 IntrodutionSystems are beoming more and more omplex, and the seurity ommunityhas to fae this by taking into aount new threats and potentially dangeroussituations. A signi�ant example is the introdution of proess mobility amongdi�erent arhitetures and systems, where an appliation running in a \seureway" inside one environment ould enter an \inseure state" while moving to adi�erent environment. In this setting, seurity properties should orretly dealwith suh a dynami nature of exeutions.A number of formal de�nitions of seurity properties (see, for instane, [1, 8,10, 15, 18, 19, 23, 26{28℄) has been proposed in the literature. Persistent BNDC(P BNDC, for short), proposed in [11℄, is a seurity property whih is suitable toanalyze proesses in ompletely dynami hostile environments, i.e., environmentswhih an be dynamially reon�gured at run-time, hanging in unpreditableways. The notion of P BNDC is based on the idea of Non-Interferene [12, 25,28℄ (formalized as BNDC [10℄) and requires that every state whih is reahableby the system still satis�es a basi Non-Interferene property. If this holds, oneis assured that even if the environment hanges during the exeution no mali-ious attaker will be able to ompromise the system, as every possible reahablestate is guaranteed to be seure. In [11℄ it has been proved that P BNDC may? This work has been partially supported by the MURST projet \Modelli formali perla siurezza" and the EU Contrat IST-2001-32617 \Models and Types for Seurityin Mobile Distributed Systems" (MyThS).



be veri�ed by heking whether the system interating with a high level ompo-nent is behaviorally equivalent or not to the system in isolation, where behavioralequivalene is de�ned in terms of a suitable notion of weak bisimulation 1. More-over, in [3℄ it has been shown that P BNDC may also be veri�ed by hekingwhether the system is weakly bisimilar to a reti�ation of the system itself,whih makes it P BNDC. Both of these tehniques an be fully automatized ifthe labelled transition system, i.e., the automata representing the operationalbehavior of the onsidered system, is omposed of a �nite number of states.In partiular, there exist eÆient algorithms for heking bisimulation equiva-lenes (see, e.g., [4, 14, 22, 7℄) whih are polynomial with respet to the numberof states and transitions of the underlying transition system. However this kindof behavioral veri�ation often su�ers of the so-alled state-explosion problem,i.e., the number of states inreases exponentially with respet to the degree ofparallelism inside the onsidered system. The reason is that every interleavingamong parallel proesses needs to be represented.In this work we ontribute to the veri�ation of information-ow seurityin two respets: (i) we give an unwinding ondition that allows us to expressP BNDC in terms of a loal property of high level ations and (ii) we exploitthis loal property in order to de�ne a proof system whih provides a veryeÆient tehnique for the development and veri�ation of P BNDC proesses.The unwinding ondition, similar to other already proposed in di�erent set-tings (see, e.g., [16, 18, 20, 24℄), requires that every high level event is \simulable"by a sequene of internal moves, i.e, that every time a high level event is per-formed moving the system to a state E0, a state E00 is also reahable (throughinternal omputation) whih is equivalent to E0 from a low level point of view,written E0 nH � E00 nH . Intuitively, if this holds no high level event h shouldbe observable by a low level user, as there always exists a low-level equivalentstate that the system may reah without performing h. We prove that this loalproperty is a neessary and suÆient ondition for P BNDC.As notied in [16℄, unwinding onditions are useful for giving eÆient prooftehniques. Indeed, we use our loal haraterization to de�ne a proof systemwhih allows us to statially prove that a proess is P BNDC, i.e., by just in-speting its syntax. State-explosion is avoided by exploiting the ompositionalityof P BNDC with respet to the parallel operator whih is the soure of the ex-ponential growing of the number of states in a system. Moreover, the systemo�ers a mean to build proesses whih are P BNDC by onstrution in an inre-mental way. Our proof system extends the one given in [17℄ for �nite proesses,i.e., proesses that may only perform �nite sequenes of ations. In partiular,we are able to deal also with reursive proesses whih may perform unboundedsequenes of ations. To illustrate the e�etiveness of the new tehnique, we ap-ply the proof system to the small, but non-trivial, example of an aess monitoralso onsidered in [10℄.1 In [10℄, it is shown that bisimulation-based properties are able to detet potentialows due to deadloks aused by high level ativity. Suh ows are not revealed bysimply observing traes, i.e., exeution sequenes.2



The paper is organized as follows. In Setion 2 we present some basi notionson the SPA language. In Setion 3 we reall the P BNDC property and we givethe new unwinding ondition. In Setions 4 and 5 we introdue our new proofsystem and in 6 we illustrate the usefulness of it on a simple example. Finally,in Setion 7 we draw some onlusions. All proofs are olleted in the Appendix.2 Basi Notions: the SPA LanguageIn this setion we report from [10℄ the syntax and semantis of the SeurityProess Algebra. The Seurity Proess Algebra (SPA, for short) [10℄ is a variationof Milner's CCS [21℄, where the set of visible ations is partitioned into high levelations and low level ones in order to speify multilevel systems. SPA syntax isbased on the same elements as CCS that is: a set L of visible ations suh thatL = I [ O where I = fa; b; : : :g is a set of input ations and O = f�a;�b; : : :g isa set of output ations; a speial ation � whih models internal omputations,i.e., not visible outside the system; a omplementation funtion �� : L ! L, suhthat ��a = a, for all a 2 L, and �� = � ; At = L [ f�g is the set of all ations.The set of visible ations is partitioned into two sets, H and L, of high and lowations suh that H = H and L = L. The syntax of SPA proesses is de�ned byE ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Zwhere a 2 At , v � L, f : At ! At is suh that f(L) � L [ f�g, f(H) � H [f�g, f(��) = f(�) and f(�) = � , and Z is a onstant whih must be assoiatedto a de�nition Z def= E. Constants are useful to de�ne reursive systems.Intuitively, 0 is the empty proess that does nothing; a:E is a proess thatan perform an ation a and then behaves as E; E1 +E2 represents the nonde-terministi hoie between the two proesses E1 and E2; E1jE2 is the parallelomposition of E1 and E2, where exeutions are interleaved, possibly synhro-nized on omplementary input/output ations, produing an internal ation � ;E n v is a proess E prevented from performing ations in v; E[f ℄ is the proessE whose ations are renamed via the relabelling funtion f .Given a �xed language L we denote by E the set of all SPA proesses, by EHthe set of all high level proesses, i.e., those onstruted over H [ f�g, and byEL the set of all low level proesses, i.e., those onstruted over L [ f�g,The operational semantis of SPA proesses is given in terms of LabelledTransition Systems (LTS). A LTS is a triple (S;A;!) where S is a set of states,A is a set of labels (ations), !� S �A� S is a set of labelled transitions. Thenotation (S1; a; S2) 2! (or equivalently S1 a! S2) means that the system anmove from the state S1 to the state S2 through the ation a. The operationalsemantis of SPA is the LTS (E ;At ;!), where the states are the terms of thealgebra and the transition relation !� E � At � E is de�ned by struturalindution as the least relation generated by the inferene rules reported in Fig-ure 1. The operational semantis for a proess E is the subpart of the SPA LTSreahable from the initial state and we refer to it as LTS (E) = (SE ;At ;!).3



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 a! E01 E2 �a! E02Parallel a 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restrition if a 62 vE n v a! E0 n vE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0De�nition if Z def= EZ a! E0Fig. 1. The operational rules for SPAIn the paper we use the following notations. If t = a1 � � � an 2 At� andE a1! � � � an! E0, then we say that E0 is reahable from E and write E t! E0, orsimply E  E0. We also write E t=) E0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E0where ( �!)� denotes a (possibly empty) sequene of � labelled transitions. Ift 2 At�, then t̂ 2 L� is the sequene gained by deleting all ourrenes of �from t. As a onsequene, E â=) E0 stands for E a=) E0 if a 2 L, and forE( �!)�E0 if a = � (note that �=) requires at least one � labelled transition while�̂=) means zero or more � labelled transitions). Moreover, we say that a proessE is losed if it does not ontain onstants. Given two proesses E;F we writeE � F when E and F are syntatially equal.The onept of observation equivalene between two proesses is based onthe idea that two systems have the same semantis if and only if they annot bedistinguished by an external observer. This is obtained by de�ning an equivalenerelation over E . We report here the de�nition of two observational equivalenes:strong bisimulation and weak bisimulation [21℄. Intuitively, strong bisimulationequates two proesses if they mutually simulate their behavior step by step.De�nition 1 (Strong Bisimulation). A binary relation R � E �E over pro-esses is a strong bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F a! F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E a! E0 and (E0; F 0) 2 R.4



Two proesses E;F 2 E are strong bisimilar, denoted by E � F , if there existsa strong bisimulation R ontaining the pair (E;F ).Relation � is the largest strong bisimulation and is an equivalene relation [21℄.Weak bisimulation is similar to strong bisimulation but it does not are aboutinternal � ations. So, when P simulates an ation of Q, it an also exeute some� ations before or after that ation.De�nition 2 (Weak Bisimulation). A binary relation R � E � E over pro-esses is a weak bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F â=) F 0 and (P 0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E â=) E0 and (E0; F 0) 2 R.Two proesses E;F 2 E are weakly bisimilar, denoted by E � F , if there existsa weak bisimulation R ontaining the pair (E;F ).Relation � is the largest weak bisimulation and is an equivalene relation.Moreover, ��� [21℄.We use the notation E[Y := X ℄ to denote the proess obtained by replaing inthe proess E the onstant Y with the onstantX . The following lemma providesus a syntati way to determine when two onstants are strong bisimilar.Lemma 1. Let X;Y be two onstants de�ned by X def= E and Y def= F . IfE[Y := X ℄ � F [Y := X ℄ then E � F .3 The P BNDC Seurity PropertyWe �rst reall from [11℄ the Persistent Bisimulation-based Non Deduibility onCompositions (P BNDC, for short) seurity property and its haraterization interms of weak bisimulation up to high level ations. We start by realling thede�nition of Bisimulation-based Non Deduibility on Compositions (BNDC, forshort) [10℄. The BNDC seurity property aims at guaranteeing that no infor-mation ow from the high to the low level is possible, even in the presene ofmaliious proesses. The main motivation is to protet a system also from inter-nal attaks, whih ould be performed by the so alled Trojan Horse programs,i.e., programs that are apparently honest but hide inside some maliious ode.Property BNDC is based on the idea of heking a system against all highlevel potential interations, representing all possible high maliious programs. Asystem E is BNDC if for every high proess � a low user annot distinguish Efrom (Ej�), i.e., if � annot interfere [12℄ with the low level exeution of E.De�nition 3 (BNDC). Let E 2 E be a proess.E 2 BNDC i� 8 � 2 EH ; E nH � (Ej�) nH:In [11℄ it is shown that BNDC is not strong enough for systems in dynamiexeution environments. To deal with these situations, the property P BNDC isintrodued. Intuitively, a system E is P BNDC if it never reahes inseure states.5



De�nition 4 (Persistent BNDC). Let E 2 E be a proess.E 2 P BNDC i� E  E0 implies E0 2 BNDC :Example 1. Consider the proess E1 � l:h:j:0 + l:(�:j:0 + �:0) where l; j 2 Land h 2 H . E1 an be proved to be BNDC . Indeed, the ausality betweenh and j in the �rst branh of the proess is \hidden" by the seond branhl:(�:j:0 + �:0), whih may simulate all the possible interations with a highlevel proess. Suppose now that E1 is moved in the middle of a omputation.This might happen when it �nd itself in the state h:j:0 (after the �rst l isexeuted). Now it is lear that this proess is not seure, as a diret ausalitybetween h and j is present. In partiular h:j:0 is not BNDC and this givesevidene that E1 is not P BNDC. The proess may be \repaired" as follows:E2 � l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E2 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.In [11℄ it has been proven that the property P BNDC is equivalent to theseurity property SBSNNI [9, 10℄ whih is automatially hekable over �nite-state proesses. However, this property still requires a universal quanti�ationover all the possible reahable states from the initial proess E. In [11℄ it hasbeen shown that this an be avoided, by inluding the idea of \being seure inevery state" inside the bisimulation equivalene notion. This is done by de�ningan equivalene notion whih just fous on observable ations not belonging to H .In the following we propose another haraterization of P BNDC proesseswhih allows us to express P BNDC in terms of a loal property of high levelations. This haraterization realls the unwinding onditions proposed in othersettings (e.g., [16, 18, 20, 24℄). In [16℄ it is shown how unwinding onditions an beused for the veri�ation of seurity properties. Here we use our haraterizationto prove the orretness of the proof system de�ned in the next setions.Theorem 1. Let E 2 E be a proess.E 2 P BNDCi�if E  Ei h! Ej , then Ei �̂=) Ek and Ej nH � Ek nH.The lass of P BNDC proesses enjoys the ompositional properties below.Lemma 2 (Compositionality). The following properties hold:1. if E is a losed proess in EL, then E 2 P BNDC;2. if E is a losed proess in EH , then E 2 P BNDC;3. if E 2 P BNDC, then E n v 2 P BNDC ;4. if E 2 P BNDC, then E[f ℄ 2 P BNDC ;5. if E;F 2 P BNDC, then EjF 2 P BNDC ;6. if Ei; Fj 2 P BNDC , i 2 I and j 2 J , then Pi2I ai:Ei +Pj2J(hj :Fj +�:Fj) 2 P BNDC, where ai 2 L and hj 2 H;7. if E 2 P BNDC and X def= E, then X 2 P BNDC.6



4 Hypothetial P BNDC ProessesIn this setion we develop a proof system whih allows us to build P BNDCproesses in an inremental way. It is omposed by a set of rules whose onlusionis in the form E 2 HP[A℄, where A is a set of onstants. The intended meaningof the judgment is that E is a P BNDC proess provided that all the onstantsin A are P BNDC . The set A plays the role of a set of assumptions: if it isempty then E is P BNDC otherwise we are still working on our onstrutionunder open hypothesis.De�nition 5 (HP [A℄). Let A be a set of onstants and E be a SPA proesswhere some of the onstants in A may our. We say that E is P BNDC underthe hypothesis in A, denoted by E 2 HP[A℄, if E 2 P BNDC provided that allthe onstants in A are P BNDC.Example 2. Let a; b 2 L and let E � a:X + b:Y . It holds that E 2 HP[fX;Y g℄,sine if X and Y are P BNDC , then so is a:X + b:Y .The rules in our proof system are suggested by the ompositional propertiesof P BNDC (see Lemma 2).De�nition 6 (Core). Core is the proof system ontaining the following rules.P 2 HP[;℄ P 2 EL; P is losed (Low)P 2 HP[;℄ P 2 EH ; P is losed (High)X 2 HP[fXg℄ X is a onstant (Const)E 2 HP[A℄E n v 2 HP[A℄ (Rest)E 2 HP[A℄E[f ℄ 2 HP[A℄ (Label)E 2 HP[A℄ F 2 HP[B℄EjF 2 HP [A [B℄ (Par)Ei 2 HP[Ai℄ Fj 2 HP[Bj ℄Pi2I ai:Ei +Pj2J (hj :Fj + �:Fj) 2 HP[[i2IAi [ [j2JBj ℄ ai 2 L [ f�g; hj 2 H(Choie)E 2 HP[A℄X 2 HP[A℄ X def= E (Def) 7



Theorem 2 (Corretness). The system Core is orret, i.e., if there exists aproof in Core whih ends with E 2 HP [A℄, then E is P BNDC provided that allthe onstants in A are P BNDC.Corollary 1. If there exists a proof of E 2 HP [;℄ in Core, then E is P BNDC.Notie that the system Core is not omplete. One reason is that the rule(Choie) treats only some spei� situations suggested by our haraterizationof Theorem 1 whih an be detrmined by simple syntati tests: for instane,the ase that E �! Fj holds whenever E h! Fj holds. We ould strengthen therule by adding more omplex tests based on bisimulation, but our purpose isto have a proof system whose rules are ompletely syntati. Note that this isnot so restritive in the synthesis of P BNDC proesses, while in the ase ofveri�ation it is not diÆult to perform ad ho modi�ations of rule (Choie).A seond soure of inompleteness omes from the lak of rules for systems ofde�nitions whih are neessary to de�ne reursive proesses. We will treat thisase in the next setion.In order to derive that a proess is P BNDC by using Core we have to useproesses for whih we are able to prove that they are inHP [A℄ and then provideP BNDC de�nitions for the onstants in A.Example 3. Let a; b 2 L and h 2 H . The following derivation in Coreb:0 2 HP[;℄ (Low)h:b:0+ �:b:0 2 HP [;℄ (Choie)a:(h:b:0+ �:b:0) 2 HP[;℄ (Choie) a:0 2 HP [;℄ (Low)a:(h:b:0+ �:b:0)ja:0 2 HP [;℄ (Par)proves that a:(h:b:0+ �:b:0)ja:0 is P BNDC . While the derivation belowX 2 HP[fXg℄ (V ar)a:X 2 HP [fXg℄ (Choie) b:0 2 HP [;℄ (Low)a:X jb:0 2 HP[fXg℄ (Par)proves that E � a:X jb:0 is in HP [fXg℄, whih means that whenever we providea proof of the fat that X is P BNDC we obtain that E is P BNDC .In Core there is no way to eliminate the hypothesis in the reursive de�ni-tions. If X is a onstant whih has a de�nition X def= E, and X ours in E,then we are only able to prove that X 2 HP[X ℄, i.e., X is P BNDC if X isP BNDC . We will provide a more powerful system in the next setion.8



5 Systems of De�nitionsIt is possible to assoiate to a onstant X a de�nition X def= E where E maypossibly ontain X as well as other onstants. When we have a set of de�nitionsfZk def= Ek j k 2 Kgwhih mutually depend on eah other we all this set system of de�nitions. Weonsider only systems of de�nitions in whih there is at most one de�nition foreah onstant ourring in the system. A system of de�nitions is weakly guardedif all the onstants Zk, k 2 K, our only within some subexpression of the forma:F . As an example, Z = Z is not weakly guarded. In this paper we restrit tothis lass of systems of de�nitions sine a weakly guarded system of de�nitionsuniquely de�nes, up to strong bisimulation, a proess (see [21℄). Given a systemof de�nitions S = fZk def= Ekgk2K we denote by Const(S) the set fZk j k 2 Kg.We have to pay attention to the transformations we apply to a system ofde�nitions, in order to avoid indesiderable e�ets. For instane, if we substitutea subexpression of Ek with a weakly bisimilar one we may not obtain a weaklybisimilar onstant. Consider the system fX def= a:X + �:Y ;Y def= b:Y + :Y g andreplae �:Y with Y obtaining the transformed system fX def= a:X + Y ;Y def=b:Y + :Y g. In the �rst system X an reah, by a � move, a state whih does notallows amoves. This annot be simulated (even weakly) by the onstantX in theseond system. Hene the onstants de�ned by the two systems are not bisimilar.Nevertheless, there are transformations whih preserve weak bisimulation.Lemma 3. Let X def= Pi2I ai:Ei be a de�nition and F � Ej , for some j 2 I.Let Y def= Pi2I ai:E0i be a new de�nition where E0i � Ei for all i 2 I; i 6= j andE0i � F for i = j. Then X � Y .Next we introdue a transformation on proesses whih is at the basis of thesyntati onditions in the rule we are going to de�ne on systems of de�nitions.In pratie given a proess E our transformation maps E into Env , whih is asort of anonial form of E n v, i.e., a proess strong bisimilar to E n v.De�nition 7 (Env). Let v � L and E 2 E. We de�ne the proess Env byindution on the struture of E.{ E � X: Env � X n v;{ E � a:E0: If a 2 v then Env � 0 else Env � a:E0nv;{ E � E0 + E00: If E0nv � 0 then Env � E00nv else if E00nv � 0 then Env � E0nvelse Env � E0nv +E00nv;{ E � E0jE00: Env � (E0jE00) n v;{ E � E0 n w: Env � (E0nv) n w;{ E � E0[f ℄: Env � (E0[f ℄) n v.Lemma 4. Let v � L and E 2 E. It holds that Env � E n v.9



Example 4. Consider the expression E � a:X + h:b:Y + �:Y . Let v be suh thata; b 62 v and h 2 v. We obtain Env � a:(X n v) + �:(Y n v).Example 5. Consider the system(X def= h:(h:X + �:X) + a:YY def= h:Y + �:Ywhere H = fhg. The onstant X reahes with a high ation E � h:X + �:X .Moreover EnH � �:(X nH), whih implies E nH � �:X � X . Sine X reahes Xwith zero � moves, the high transition whih leads to X annot ause problems,hene we would like to prove that this system de�nes P BNDC proesses.The following lemma allows us to syntatially determine when two onstantsare suh that X nH � Y nH . In this ase, if X reahes Y with a high transition,we do not have seurity problems sine X reahes with zero � transition X .Lemma 5. Let X;Y be two onstants de�ned by X def= E and Y def= F . If(Env)[Y := X ℄ � (Fnv)[Y := X ℄ then Xnv � Y nv.The novel haraterization of P BNDC stated in Theorem 1 together withLemma 5 indiate to us some ases in whih a high level transition out-omingfrom a variable X does not ompromise the seurity of the system. This asesare aptured by the notion of safe(X;S) introdued in the de�nition below. Theintuitive meaning of the set safe(X;S) is that if F 2 safe(X;S), then F an besafely reahed by X with a high transition.De�nition 8 (safe(Zk; S)). Let S = fZk def= Ekgk2K be a system of de�nitions.For eah k 2 K we de�ne the set safe(Zk; S) = [4i=1safe i(Zk; S) wheresafe1(Zk; S) = fF j Zk �̂=) Fgsafe2(Zk; S) = fF j FnH � ZknHgsafe3(Zk; S) = fF j FnH � �:ZknHgsafe4(Zk; S) = fZj jEjnH [Zk := Zj ℄ � EknH [Zk := Zj ℄g:Example 6. Let a; b 2 L and h 2 H . Consider the system S:8>>>><>>>>: X = h:Y + �:ZY = a:YZ = �:YW = a:(h:b:X + �:b:X) + b:Y + h:WV = a:V + h:YWe have that Y 2 safe1(X;S), W 2 safe2(W;S) (and also W 2 safe1(W;S)),and Y 2 safe4(V; S).Consider now the system S0 of Example 5, in this ase we have that (h:X +�:X) 2 safe3(X;S0). 10



The following lemma is useful to prove the main result of this setion, i.e.,to haraterize syntatially safe systems.Lemma 6. Let E 2 HP[;℄ be derived in Core. If E  E0 h! E00, then E0 �̂=)E000 and E00 nH � E000 nH.Let E 2 HP [A℄ be derived in Core without applying the rule (Par). If E  E0 h! E00 without using the de�nitions of the onstants in A, then E0 �̂=) E000and E00 nH � E000 nH.De�nition 9 (Safe system). Let S = fZk def= Ekgk2K be a system of de�ni-tions of the form Ek � Xik2Ik aik :Eik + Xjk2Jk hjk :Fjk :The system S is said to be safe if and only if for eah jk 2 Jk it holds that Fjk 2safe(Zk; S) and for eah G in SubEx(S) = [k2K([ik2IkfEikg [ [jk2JkfFjkg)one of the following properties holds:{ Core proves G 2 HP [;℄, or{ Core proves G 2 HP[AG℄ without applying the rule (Par), for some set AG.We all the set A = [G2SubEx(S)AG safety set of S (notation: Safety(S)).Example 7. The system S(X def= a:X + �:(�:Y + a:Y ) + h:YY def= h:Y + �:Z + a:(�:Z + h:Z)is safe and its safety set is fX;Y; Zg. In fat:{ X h! Y and X �̂=) Y , hene Y 2 safe(X;S);{ Y h! Y and Y 2 safe(Y; S);{ X and (�:Y + a:Y ) and Y an be derived to be HP[fXg℄ and HP[fY g℄respetively without applying (Par);{ Z and (�:Z + h:Z) an be derived to be HP [fZg℄ without applying (Par).Theorem 3. Let S = fZk def= Ekgk2K be a safe system of de�nitions with safetyset A. Then for all k 2 K the onstant Zk is in HP [A n fZk0 j k0 2 Kg℄.Example 8. Consider again the system of Example 7. By Theorem 3, both Xand Y belongs to HP [fZg℄.Suppose now that we want to extend the system of de�nitions of exampleabove by adding the de�nition Z def= �:X+a:Y +b:Z. Sine we already disardedthe assumptions X and Y , we would like to be able to dedue Z 2 HP [;℄. Wean do it if we extend the notion of safe system by relaxing the request that allthe proofs are performed in Core and allow them to be arried on in any orretproof system for the judgenment E 2 HP [A℄ whih extends Core and satis�esLemma 6. 11



De�nition 10 (SafeSys). Let SafeSys be the system of rules obtained by addingto Core the following rule (Sys):G12HP [AG1 ℄ � � �Gn2HP [AGn ℄Z 2 HP[Safety(S) n Const(S)℄ S safe; Z 2 Const(S); fG1 : : :Gng = SubEx(S)where a system S is safe if and only if it satis�es all the onditions of De�nition 9with Core replaed by SafeSys in the two items.Theorem 4. If there exists a proof in SafeSys whih ends with E 2 HP[A℄,then E is P BNDC provided that the onstants in A are P BNDC.Example 9. In this example we illustrate a simple derivation in the full systemSafeSys. Let a; b 2 L and h 2 H . Consider the systemsSX = fX def= a:XgSY = fY def= h:Y gSZ = fZ def= h:Z + b:(X jY )gIn order to prove that Z is P BNDC we have to use three times the rule (Sys).
Z 2 HP[fZg℄ (Const) X 2 HP[fXg℄ (Const)X 2 HP[;℄ SX(Sys) Y 2 HP[fY g℄ (Const)Y 2 HP[;℄ SY (Sys)XjY 2 HP[;℄ (Par)Z 2 HP[;℄ SZ(Sys)6 Example: a Proess MonitorWe onsider the proess Aess Monitor whih has been widely disussed in [10℄.It is de�ned as a proess whih handles read and write requests from high andlow level users on two binary objets: a high level variable and a low level one. Toavoid information ows from high to low, two aess ontrol rules are imposed:(i) no read up: low level users annot read from high level objet; (ii) no writedown: high level users annot write into low level objet. As a onsequene, lowlevel users are allowed to write into both objets and read only from the low one;onversely, high level users an read from both objets and write only into thehigh one. As the objets are binary, there are only two values to read or write:0 and 1. When an objet reeives a read request it returns its atual value andresets itself in the same state; when it proesses a write request it moves intothe orresponding state.In [10℄, the authors develop di�erent de�nitions for the proess Monitor. Theaim is �nding a proess whih is BNDC and for whih this property is easy tohek. Here we show how it is easy to synthesize a P BNDC Monitor in SafeSys.12



Let aess read(u; x) and aess write(u; x; y) be the aess requests of theuser u (u = 0 low, u = 1 high) for the objet x (x = 0 low, x = 1 high)and the value y, and val(u; y) de�nes the values returned to the user u, wherey 2 f0; 1; errg. All the ations that involve high level users, i.e., the ones withu = 1 are onsidered high level ones.In order to develop Aess Monitor we assoiate to eah objet x a privatemonitor Monitor (x) whih handles the requests to the objet x in a seure way.As it is shown in [10℄, if we are able to build two P BNDC proesses realizingthe two private monitors, we an then easily onstrut (by (Par) and (Rest)rules) a P BNDC proess realizing Aess Monitor .Sine eah objet has two possible values we have to de�ne four proesses:M00 andM01 de�ningMonitor (0),M10 andM11 de�ningMonitor (1). For sakeof simpliity we indiate them by Mxy . To develop their (reursive) de�nitions,we �rst assume that all of them are P BNDC and then we onstrut a safesystem of de�nitions whose safety set ontains exatly these assumptions.We start by onsidering Monitor (0) whih handles the aesses to the lowlevel objet. For both of its omponents, there are six di�erent possible re-quests, two aess read : aess read(u; 0), u 2 f0; 1g, and four aess write :aess write(u; 0; y), u; y 2 f0; 1g.First we onsider the requests from the low level users (u = 0). Sine bothread and write on the same level are allowed, the reation of M0y are the naturalones: on a read request it returns the orret value (y) and on a write request itmoves into the right state. In Core there are the derivations:Mxy 2 HP[fMxyg℄ (Const) M0y 2 HP [fM0yg℄ (Const)val(0 ; y):M0y 2 HP [fM0yg℄ (Choie)The requests from the high level user (high ations), need more are. Sinehigh users annot write down, the only possible reation to the high requestsaess write(1; 0; z), z 2 f0; 1g is a reset of the atual state. As regards therequest aess read(1; 0), a problem arises sine the ation (val (1; y)) returningthe value y to the high level user is a high ation and we annot derive in Core thejudgement aess read(1; 0):val(1; y):M0y 2 HP[fM0yg℄, y 2 f0; 1g. Note thatproess aess read(1; 0):val(1; y):M0y is potentially dangerous as a deadlokould be aused sine no high level user is aepting the output ation val(1; y)(see [10℄ for more detail on how this ould be exploited to obtain an informationow from high to low). A possible solution is suggested in [3℄ where a lossyhannel is introdued. Intuitively, the low level objet sends the right value butits answer might be lost. This is represented by proess val(1; y):M0y + �:M0y .Note that now no deadlok may be aused by high ativity as it is always possibleto reah M0y through an internal ation. Now, in Core we an derive:M0y 2 HP[fM0yg℄ (Const)(val(1 ; y):M0y + �:M0y) 2 HP [fM0yg℄ (Choie)13



Summing up, to de�neMonitor (0) we an introdue the system of de�nitions:M00 def= aess read(0; 0):val(0; 0):M00+aess read(1; 0):(val(1; 0):M00 + �:M00 )+aess write(0; 0; 0):M00+aess write(0; 0; 1):M01+aess write(1; 0; 0):M00+aess write(1; 0; 1):M00M01 def= aess read(0; 0):val(0; 1):M01+aess read(1; 0):(val(1; 1):M01 + �:M01 )+aess write(0; 0; 0):M00+aess write(0; 0; 1):M01+aess write(1; 0; 0):M01+aess write(1; 0; 1):M01where eah G 2 SubEx(Monitor(0)) is derivable in Core without using (Par).In order to apply the rule (Sys) we have to prove also that the systemMonitor (0) is safe. To this aim, we have to prove that safe(M0y ;Monitor (0))ontainsM0y and (val (1; 0):M0y+�:M0y). Both statements holds sineM0y �̂=)M0y (safe1) and (val (1; 0):M0y + �:M0y)nH � �:M0y (safe3). Hene, we anapply the rule (Sys) to derive that both M00 and M01 are P BNDC .The onstrution of the monitor for the high level objet is similar to theone used to derive the system of de�nitions for Monitor (0). It is easy to see thateah subexpression in the right sides of the following system de�ning Monitor (1)is derivable in Core without using (Par).M10 def= aess read(1; 1):(val (1; 0):M10 + �:M10 )+aess read(0; 1):val(0; err):M10+aess write(0; 1; 0):M10+aess write(0; 1; 1):M11+aess write(1; 1; 0):M10+aess write(1; 1; 1):M11M11 def= aess read(1; 1):(val (1; 1):M11 + �:M11 )+aess read(0; 1):val(0; err):M11+aess write(0; 1; 0):M10+aess write(0; 1; 1):M11+aess write(1; 1; 0):M10+aess write(1; 1; 1):M11As in the previous ase we have to prove that the system is safe. To this aimwe have to prove that: safe(M1y ;Monitor (1)) ontains (val (1; 0):M1y + �:M1y),M1y and M1z , where z = 1� y. The �rst two onditions an be treated exatlyas in the previous ase. To prove the third one we need to observe that if we14



substitute M11 by M10 in both right sides of the two de�nitions and apply thenH transformation we obtain in both sides the same term:aess read(0; 1):val(0; err):M10+aess write(0; 1; 0):M10+aess write(0; 1; 1):M10 :Hene M1z 2 safe4(M1y ;Monitor(1 )), thus by (Sys) we an derive that bothM10 and M11 are P BNDC .7 Related Works and ConlusionIn this paper we have proposed a new loal haraterization of P BNDC and aproof system that allows us to eÆiently onstrut and verify P BNDC proesses.We have shown the e�etiveness of the new tehnique through the example ofthe Aess Monitor.It is worthwhile notiing that there are many other approahes to the veri�a-tion of information ow properties. For instane, there are veri�ation tehniquesfor information ow seurity whih are based on types (see, e.g., [28, 25, 13, 5℄)and ontrol ow analysis (see, e.g., [2, 6℄). However, most of them are onernedwith di�erent models, e.g., trae semantis [15, 16, 18, 19℄.In this paper we follow the approah of Foardi and Gorrieri [10℄ and fouson bisimulation based information ow properties. To the best of our knowl-edge, there is only another example of a proof system for seurity proposed byMartinelli in [17℄. However, Martinelli's system deals only with �nite proesses.Our proof system extends [17℄ to the ase of reursively de�ned proesses. Weavoid the state explosion problem by exploiting the ompositionality results ofP BNDC. Indeed, if a property is preserved when seure systems are omposed,then the analysis may be performed on subsystems and, in ase of suess, thesystem as a whole an be proved to be seure (see also [8, 9, 19℄).Referenes1. M. Abadi. Serey by Typing in Seurity Protools. Journal of the ACM,46(5):749{786, 1999.2. C. Bodei, P. Degano, F. Nielson, and H. Nielson. Stati analysis for the pi-aluluswith appliations to seurity. Information and Computation, 168(1):68{92, 2001.3. A. Bossi, R. Foardi, C. Piazza, and S. Rossi. Transforming Proesses to Chek andEnsure Information Flow Seurity. In Pro. of Int. Conf. on Algebrai Methodologyand Software Tehnology, LNCS. Springer, 2002. To appear.4. A. Bouali and R. de Simone. Symboli Bisimulation Minimization. In Pro. ofComputer Aided Veri�ation, volume 663 of LNCS, pages 96{108. Springer, 1992.5. G. Boudol and I. Castellani. Non-Interferene for Conurrent Programs. In Pro.of Int. Colloquium on Automata, Languages and Programming, volume 2076 ofLNCS, pages 382{395. Springer, 2001.15
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AppendixThis Appendix ontains all proofs of the results presented in the paper.Proof of Lemma 1. The proof of this lemma is done by transition indution,i.e., by indution on the length of the derivation of E a! E0 using the rules inFigure 1 (see [21℄). LetS = f(E0; F 0) j E0[Y := X ℄ � F 0[Y := X ℄;where X def= E; Y def= F and E[Y := X ℄ � F [Y := X ℄g:We prove that S is a strong bisimulation.Let (E0; F 0) 2 S and E0 a! E00 we have to prove that there exists F 00 suhthat F 0 a! F 00 and (E00; F 00) 2 S. The proof follows by transition indution onthe inferene E0 a! E00.{ E0 � a:E00. Sine a:E00[Y := X ℄ � F 0[Y := X ℄, also F 0 admits an a transitionF 0 a! F 00 where E00[Y := X ℄ � F 00[Y := X ℄. Then, (E00; F 00) 2 S.{ E0 � E01 + E02. Assume E01 a! E00. Sine (E01 + E02)[Y := X ℄ � F 0[Y := X ℄,there exists F 01 and F 02 suh that F 0 = F 01+F 02 and E01[Y := X ℄ � F 01[Y := X ℄.Then, by indutive hypothesis, there exists F 00 suh that F 01 a! F 00 and(E00; F 00) 2 S.{ E0 � E01jE02. As in the previous ase, there exist F 01 and F 02 suh that F 0 =F 01jF 02, E01[Y := X ℄ � F 01[Y := X ℄ and E02[Y := X ℄ � F 02[Y := X ℄. Weonsider the ase of synhronization, the other ases are similar and simpler.Assume a = � , E01 b! E001 , E02 �b! E002 and E00 � E001 jE002 ,. Then, by indutivehypothesis, there exist F 001 ; F 002 suh that F 01 b! F 001 , F 02 �b! F 002 , (E001 ; F 001 ) 2 S,(E002 ; F 002 ) 2 S. Hene there exists F 00 � F 001 jF 002 , suh that F 0 �! F 00 and(E00; F 00) 2 S.{ E0 � E1nv. Similar to the previous ases.{ E0 � E1[f ℄. Similar to the previous ases.{ E0 � Z where Z is a onstant. There are only two symmetri non trivialases: E0 � Z � X and F 0 � Y or E0 � Z � Y and F 0 � X . In both ases,E a! E00 by a shorter inferene, and sine E[Y := X ℄ � F [Y := X ℄, byindutive hypothesis, there exists F 00 suh that F a! F 00 and (E00; F 00) 2 S.utProof of Theorem 1. () Let E be a proess suh that for all E1 reahable fromE, if E1 h! E2 then E1 �̂=) E3 and E2 nH � E3 nH . LetS = f(Ei nH; (Eij�) nH) j� 2 EH is a proess and E  Eig:We prove that S is a weak bisimulation up to�. We have to onsider the followingases:{ (Eij�) nH �! (Eij�1) nH . Sine Ei nH �̂=) Ei nH , by de�nition of S wehave (Ei nH; (Eij�1) nH) 2 S. 17



{ (Eij�) nH l! (Ej j�) nH , with l 2 L [ f�g. Hene Ei nH l! Ej nH and,by de�nition of S, (Ej nH; (Ej j�) nH) 2 S.{ (Eij�)nH �! (Ej j�1)nH where Ei h! Ej . By hypothesis Ei nH �̂=) Ek nHand Ej nH � Ek nH . Hene, Ek nH � Ej nH S (Ej j�1) nH).{ EinH a! EjnH . Then, (Eij�)nH a! (Ej j�)nH and (EjnH; (Ej j�)nH) 2 S.)) Let E be P BNDC . Then, for all Ei reahable from E, Ei 2 P BNDC . Inpartiular, for all Ei reahable from E and for all � 2 EH , Ei nH � (Eij�)nH .Suppose that Ei h! Ej . Let � � �h. Then (Eij�) nH �! Ej nH . Sine Ei nH �(Eij�) nH , Ei nH �̂=) Ek nH and Ej nH � Ek nH . utProof of Lemma 2. (1) is an immediate onsequene of Theorem 1.(2) follows from Theorem 1, sine if E  E0 and E0 h! E00, then E0 �̂=) E0and E0 nH � 0 � E00 nH .In order to prove (3) and (4) it is suÆient to observe that if E is P BNDC ,then so are E n v and E[f ℄, sine the �rst operation does not add high leveltransitions, while the seond does not exhange low and high ations.As far as (5) is onerned, it is known that if E;F 2 P BNDC , then EjF isP BNDC (see [10℄).We now prove (6) by using Theorem 1. Let Ei; Fj 2 P BNDC , with i 2I; j 2 J . Consider R � (Pi2I ai:Ei+Pj2J (hj :Fj + �:Fj)). If R reahes R0 withat least one transition, then either there exists i 2 I suh that Ei reahes R0 orthere exists j 2 J suh that Fj reahes R0, hene R0 is P BNDC . If R reahesE0 with no transitions, then R0 � R, hene if R0 h! R00, then there exists j 2 Jsuh that R00 � Fj , and R0 �! Fj , so we have the thesis.(7) immediately follows from the operational semantis of SPA terms. utProof of Theorem 2. We prove that all the rules in Core are orret.The orretness of rules (Low) and (High) diretly follows from Lemma 2.Rule (Const) is trivially orret.From Lemma 2 we have the orretness of rules (Rest), (Label), (Par),(Choie), and (Def) in the ase in whih A = ;. The general ase followsimmediately by the de�nition of HP[A℄. utProof of Lemma 3. Immediate sine if X ai! Ei with i 6= j, then Y ai! Ei and ifX aj! Ej then Y aj! F with F � Ej . utProof of Lemma 4. By indution on the struture of E.{ E � X is a onstant. It is immediate, sine by de�nition Env is X n v.{ E � a:E0. By indutive hypothesis on E0 we have the thesis.{ E � E0+E00. We have E n v � E0 n v+E00 n v � E0nv +E00nv. If E0nv � 0, thenE0nv +E00nv � E00nv , hene we have the thesis. Similarly we obtain the thesis ifE00nv � 0. In the third ase we already have the thesis.18



{ E � E0jE00. It is trivial.{ E � E0 n w. We have E n v � E0 n w n v � E0 n v n w � E0nv n w.{ E � E0[f ℄. It is trivial. utProof of Lemma 5. Xnv � Env sine X def= E;� Env by Lemma 4;� Fnv by Lemma 1;� Fnv by Lemma 4;� Y nv sine Y def= F ; utProof of Lemma 6. The �rst part of the lemma immediately follows from The-orem 1, sine if E has been proved to be HP[;℄ in Core, then it is P BNDC .The seond part follows by indution on the length of the proof E 2 HP [A℄in Core.If E � P and P is a losed proess and P 2 EL then, sine P is P BNDC ,by Theorem 1 we have the thesis.If E � P and P is a losed proess and P 2 EH then, sine P is P BNDC ,by Theorem 1 we have the thesis.If E � X and X 2 A, then we immediately get the thesis, sine X reahesonly X and X does not perform high ations without using its de�nition.If E � X and X 62 A, then X def= E1 and Core proves that E1 2 HP [A℄, witha shorter proof. Sine X  E0 h! E00 if and only if E1  E0 h! E00 by indutivehypothesis on E1 we have the thesis.If E � E1 n v, then if E1 n v  E0 n v h! E00 n v by indutive hypothesisE0 �̂=) E000 with E00nH � E000nH , hene E0 �̂=) E000nv with E00nvnH � E000nvnHIf E � E1[f ℄, as in the previous ase we obtain the thesis by indutivehypothesis.If E �Pi2I ai:Ei +Pj2J (hj :Fj + �:Fj), then if E0 � E we immediately getthe thesis, otherwise we obtain it by indutive hypothesis. utProof of Theorem 3. By using Theorem 1 we have to prove that if Zk  P 0 h! P 00without applying the de�nitions of the onstants in A n fZk0 j k0 2 Kg, thenP 0 �̂=) P 000 without applying the de�nitions of the onstants in AnfZk0 jk0 2 Kg,with P 00 nH � P 000 nH .We proeed by indution of the number of appliations of the (De�nition)rule in the semanti derivation of Zk  P 0.If the rule has never been applied, then P 0 � Zk. If Zk h! P 00, then thereexists jk suh that P 00 � Fjk and Fjk 2 safe(Zk; S). Hene four ases are possible:(1) Zk �=) Fjk ; (2) FjknH � ZknH ; (3) FjknH � �:ZknH ; (4) Fjk � Zj and19



EjnH [Zk := Zj ℄ � EknH [Zk := Zj ℄. In ase (1) we obtain the thesis sine Fjk nH � Fjk nH no matter whih is the de�nition for the onstants whih our init. In ase (2) we have that Zk reahes with zero � ations Zk and Zk n H �ZknH � FjknH � Fjk nH . Similarly we obtain the thesis in ase (3). In ase (4)we obtain the thesis sine Zk reahes with zero � ations Zk and from Lemma 5Zk nH � Zj nH .If the rule has been applied exatly one, then the rule has been appliedto Zk in the �rst step, i.e. Zk aik! Eik  P 0 h! P 00 (or Zk hjk! Fjk : : :) and inthe derivation of Eik  P 0 h! P 00 the (De�nition) rule has never been applied.This means that Eik  P 0 h! P 00 without using the de�nitions of the Z's. FromLemma 6 we have that P 0 �̂=) P 000 without using the de�nition of the Z's andP 000 n H � P 00 n H . This implies that P 0 �̂=) P 000 with P 000 n H � P 00 n H nomatter whih is the de�nition of the Z's.Let us assume that we have proved that for eah k 2 K if Zk  P 0 h! P 00 withn appliations of the (De�nition) rule, then P 0 �̂=) P 000 with P 00 nH � P 000 nH .Let Zk  P 0 h! P 00 with n+ 1 appliations of the (De�nition) rule. This meansthat Zk aik! Eik  Zr  P 0 h! P 00 or Zk hjk! Fjk  Zr  P 0 h! P 00, andsine the (De�nition) rule has been applied one in the �rst step we have thatin Zr  P 0 h! P 00 the (De�nition) rule is applied at most n times. Hene byindutive hypothesis we have the thesis. utProof of Theorem 4. By Theorem 3 we have that if the rule (Sys) is appliedone, then the proof is orret.If the rule (Sys) is applied more than one, then we obtain the thesis sineLemma 6 holds also if G has been proved to be in HP[A℄ by applying the rule(Sys). This last an be proved by indution on the number of appliation of therule (Sys). ut
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