
An Abstract Interpretation Framework for (almost) Full Prolog1B. Le Charlier S. Rossi P. Van HentenryckUniversity of Namur University of Padova Brown University21 rue Grandgagnage 7 via Belzoni Box 1910, ProvidenceB-5000 Namur (Belgium) I-35131 Padova (Italy) RI 02912 (USA)AbstractA novel abstract interpretation framework is introduced, which captures Prolog depth-�rst strategyand the cut operation. The framework is based on a new conceptual idea, the notion of substitutionsequences, and the traditional �xpoint approach to abstract interpretation. It broadens the classof analyses that are amenable in practice to abstract interpretation and re�nes the precision ofexisting analyses. Its practicability is demonstrated in a companion paper [4]. This paper focuseson theoretical foundations.1 IntroductionAbstract interpretation has been shown to be a valuable tool to obtain high-performance imple-mentation of Prolog [24, 25]. Yet traditional abstract interpretation frameworks of Prolog (e.g.[5, 19, 20]) usually ignores many features of Prolog, such as the depth-�rst search strategy andthe cut operation. Still these frameworks are very valuable, since they allow many analyses suchas types, modes, and sharing to be performed with good accuracy and they were fundamental indeveloping practical analysis tools. However, as the technology matures, their limitations becomemore apparent. In particular, they lead to the following two inconvenients:1. The precision of the analysis is inherently limited for some classes of programs. A typicalexample is the de�nition of multi-directional procedures, using cuts and meta-predicates to selectamong several versions. Ignoring the depth-�rst search strategy and the cut prevents the compilerfrom performing various important compiler optimizations such as dead-code elimination [4].2. The existing frameworks are not expressive enough to capture certain analyses in their entirety.A typical example is determinacy analysis, where existing approaches either resort to special-purpose proofs (e.g. [22]) or their frameworks ignore certain aspects of the analysis, e.g. the cutand/or how to obtain the determinacy information from input/output patterns (e.g. [13, 9]).This paper proposes a step in overcoming these limitations. A novel abstract interpretationframework is introduced, which captures the depth-�rst seach strategy and the cut operation (onlydynamic predicates such as assert/retract are ignored). The key conceptual idea underlying theframework is the notion of substitution sequences which models the successive answer substitutionsof a Prolog goal. This notion enables the framework to deduce and reason about informationnot available in most frameworks, such as sure success and failure, the number of solutions, and/or1Partly supported by the O�ce of Naval Research under grant N00014-91-J-4052 ARPA order 8225 and theNational Science Foundation under grant numbers CCR-9357704 and a NSF National Young Investigator Award.0

termination, broadening the class of applications amenable to abstract interpretation and improvingthe accuracy of existing analyses.The main technical contribution of this paper is to show how to apply the traditional �xpointapproach [8] to the conceptual idea. A main di�culty lies in the fact that the abstract semanticscannot simply be de�ned as the least �xpoint of the abstract transformation obtained from thecollecting semantics, since the least �xpoint of the transformation obtained by \lifting" the con-crete semantics to sets of substitution sequences is not a consistent approximation of the concretesemantics. The notion of pre-consistent post�xpoint is introduced to remedy this problem. Thepractical consequences of this formalization are discussed and include the need for so-called upper-closed abstract domains and a special form of widening in the abstract interpretation algorithm.The paper also speci�es precisely all the abstract operations of the framework through consistencyconditions.It is important to point out that this paper is more than yet another abstract interpretationframework. The framework was motivated by computational considerations and its practicabilityand simplicity have been demonstatred on a cardinality analysis described in a companion paper[4]. The cardinality analysis, which is an instantiation of the framework to a speci�c abstractdomain, approximates among other things the number of solutions to a goal. It is shown thatthe analysis requires only a small overhead compared to a mode/sharing analysis and outperformsexisting determinacy analyses in precision.The rest of the paper is organized as follows. Section 2 motivates the paper through twoextremely simple examples and gives an overview of the framework. Section 3 is an informalpresentation of the main technical di�culties on a single example as well as the adopted solutions.Section 4 sketches the concrete semantics. Section 5 and 6 contain respectively the speci�cation ofthe abstract operations and the abstract semantics. Section 7 discusses the abstract interpretationalgorithm while section 8 presents related work, in particular the work of File and Rossi [12] andBarbuti et al. [2]. Section 9 concludes the paper. The appendices describe the concrete semanticsand sketch the proofs of the main technical results.2 Overview of the FrameworkTwo Simple Examples We start by two extremely simple examples which are not handled wellby existing abstract interpretation frameworks. Consider the programp(a).p(X) :- q(X). q(b).q(c).Assume that we are interested in determinacy analysis of p/1 called with a ground argument.Examinations of the clauses in isolation will not determine the determinacy of the goal. This wasrecognized in several places (e.g. [13, 9]) which proposes to use input/output patterns to remedy theproblem. However, these works focus on determining the patterns and cannot integrate all aspectsof the analysis in a single abstract interpretation framework. As a consequence, they need special-purpose proofs for the �nal part of the analysis losing the simplicity of the abstract interpretationframework. Similarly these work do not take control (depth-�rst search and the cut) into accountwhich reduces the precision of the analysis. Our framework handles all aspects of the analysis in asingle framework. Consider now the extension of the previous program1

r(X) :- p(X), ! .r(d).and assume that r/1 is called with a variable. Abstract interpretation frameworks ignoring thesearch rule and the cut cannot infer that p(X) surely succeeds and hence that the cut is executed.In fact, they simply ignore the cut and would conclude when instantiated with a type domain (e.g.[14, 7]) that r produces an element from fa; b; c; dg. Using our framework, it is possible to designan analysing concluding that r/1 only produces the element a. We now describe informally thebasic ideas on how to obtain such an analysis.Concrete Semantics The starting point of our approach is a concrete semantics which associateswith a program P a total function from the set of pairs h�; pi to the set of substitution sequences,where p is a predicate symbol and � is a substitution. The novelty is the notion of substitutionsequences which models the sequence of computed answer substitutions (e.g. [18]) produced bythe execution of p(x1; : : : ; xn)�. The resulting sequence can have di�erent shapes. If the executionterminates (producing m computed answer substitutions), S is a �nite sequence < �1; : : : ; �m >.If the execution produces m computed answer substitutions and then enters into an in�nite loop,then S is an incomplete sequence < �1; : : : ; �m;? >, where ? models non termination [3]. Finally,if the execution produces an in�nite number of computed answer substitutions, then S is an in�nitesequence < �1; : : : ; �i; : : : > (i 2 N). We note SUBST(S) the set of substitutions in S. The concretesemantics internally manipulates slightly more complex objects, substitution sequences with cut,to take the cut into account.Abstract Semantics The abstract semantics works with description of sequences called abstractsequences. It associates with a program a total function which, given a pair h�; pi (where � is anabstract substitution), returns an abstract sequence B, whose informal semantics can be describedas follows:"The execution of p(x1; : : : ; xn)� with � satisfying the property � produces a substitutionsequence S satisfying the property described by B."It is important to realize that abstract domains for sequences need not be much more compli-cated than traditional abstract domains. We illustrate this with two examples.Abstract Domain 1: An abstract sequence B 2 ASS is of the form h�;m;M; ti where � isan abstract substitution, m 2 N, M 2 N [f1g, t 2 fsnt ; st; ptg. The concretization functionCc : ASS ! CSS maps B on the set of substitution sequences S such that any substitution � whichis an element of S belongs to Cc(�) (the set of substitutions described by �); the number of elementsof S, excluding ?, is not smaller than m and not greater than M . Additionally, the sequences are�nite if t = st and incomplete or in�nite if t = snt. (snt means \sure non termination", st means\sure termination" and pt stands for \possible termination".) The abstract domain is used in thecompanion paper and, on our �rst program, the abstract semantics de�nes hp(fa; b; cg); 0; 1; st)i asthe result of a query q(ground). Note that the domain is not too complex computationally.2

Abstract Domain 2: The �rst abstract domain does not achieve maximal precision on the secondexample. A more precise domain consists of abstract sequences B of the form h< �1; : : : ; �m >; �;m;M; ti, where m, M and t are given the same meaning as before. If S 2 Cc(B), it must be ofthe form < �1; : : : ; �m >:: S0 with �i 2 Cc(�i) (1 � i � m), where :: denotes the usual concatenationoperation on sequences. Moreover, each substitution in S0 must belong to Cc(�). On the secondexample, the abstract semantics de�nes h< p(fag); p(fbg); p(fcg)>; p(fg); 3; 3; st)i as the result ofp(var). The new domain is likely to be computationally reasonable, since they are few situationswhere a large number of abstract substitutions will be maintained.Abstract Interpretation Algorithm The last step of the analysis is the computation of theabstract semantics with extensions of existing algorithms such as GAIA [17] and PLAI [21].3 Technical Di�culties and Adopted SolutionsThe foundation of this work is the �xpoint approach to abstract interpretation [8]. Starting froma concrete semantics, we try to de�ne a collecting semantics, an abstract semantics approximatingthe collecting semantics, and an algorithm to compute part of the abstract semantics. Applyingthis approach to the above informal ideas leads to some novel theoretical and practical problems.2The main problem is that the abstract semantics can no longer be de�ned as the least �xpoint of thebasic transformation obtained by \lifting" the concrete semantics to sets of substitution sequences.In this section, we illustrate these problems and their proposed solutions on a simple example.Concrete Semantics Consider the following programrepeat.repeat :- repeat.The concrete semantics of this program maps the input < �; repeat >, where � is the emptysubstitution, to the in�nite sequence < �; : : : ; �; : : : >. This comes from the fact that the result Sis described as the least �xpoint of a transformation �1 : PSS ! PSS :�1S =< � >:: S:where PSS is the set of substitution sequences. Operationally, this expresses that the �rst clause�rst succeeds once producing the result �. The second clause then succeeds exactly as many times asthe recursive call, producing the same sequence of results. PSS can be endowed with the followingordering: S1 v S2 i� either S1 = S2 or there exist S; S0 2 PSS such that S1 = S ::< ? > andS2 = S :: S0. PSS is then a pointed cpo with minimal element < ? >. �1 is continuous and has aleast �xpoint which is computed as follows: S0 =< ? >, Si+1 =< � >:: Si =< �; : : : ; �;? > (withi occurrences of �), and lfp(�1) = t1i=0Si =< �; : : : ; �; : : : > as expected.Collecting Semantics The technical problems arise when we \lift" the semantics to sets ofsubstitution sequences. The \collecting" semantics associates with the program the transformation�2 : }(PSS)! }(PSS) de�ned by �2� = f< � >:: S : S 2 �g:2Note that similar problems have been encountered in functional programming [1].3

}(PSS) is a complete lattice for set inclusion and �2 is monotonic. However, lfp(�2) is not aconsistent approximation of lfp(�1) (i.e. lfp(�1) 62 lfp(�2)), since lfp(�2) is the empty set. Notehowever that �2 is consistent with respect to �1 in the following sense: for all S 2 PSS and for all� 2 }(PSS), S 2 � implies �1(S) 2 �2(�).The �rst cause of inconsistency of lfp(�2) is that S0, the �rst iterate in the Kleene sequence forlfp(�1), obviously does not belong to the �rst iterate of the Kleene sequence for lfp(�2) (which isempty). In order to get a consistent approximation of lfp(�1), we may attempt to build anothersequence of sets of substitution sequences as follows:�0 = f< ? >g, �i+1 = �2�i = f< �; : : : ; �;? >g (i � 0).The problem is that this sequence is not increasing with respect to inclusion.This new problem could possibly be solved by using another ordering on (some subset of)}(PSS). This ordering should in a way combine the ordering on PSS and inclusion in }(PSS). Thetraditional solution to this problem in denotational semantics consists in using a power domainconstruction (e.g. [23]). Although this solution is elegant theoretically, it is somewhat heavy foran abstract interpretation framework which should lead to e�cient implementations. We adopteda solution which is less natural from a denotational standpoint but leads to e�ective analyses asdemonstrated by the companion paper [4]. The solution is best presented in three steps.First, �2 is replaced by a transformation �3:�3� = � [�2�:�3 is extensive (i.e. � � �3� for all �). In addition, the sequence de�ned by �0 = f< ? >g and�i+1 = �3�i is increasing and its limit is the set:�1 = 1[i=0�i = f< ? >;< �;? >; : : : ; < �; : : : ; �;? >; : : :g:�1 contains the entire Kleene sequence for lfp(�1) but still not lfp(�1) itself.The second step is thus to complete increasing chains of sets of substitution sequences (withrespect to v) with their limits. Sets of substitution sequences so completed are called upper-closedand we denote by CSS the set of such upper-closed sets3. �2 and �3 can be rede�ned over CSS. Theupper bound operation F in CSS is no longer S: it adds to the union the limit of every chain inthe union. Applying the new construction to �3 leads to the result �1 = F1i=0 �i which containsall non �nite sequences of empty substitutions.The last step of our construction consists in re�ning this correct but imprecise result. Insteadof starting the iteration with �3, �2 is used during an arbitrary number of steps before switchingto �3. Since each iterate for �2 contains the corresponding iterate for �1, switching to �3 after isteps guarantees that the set �1 contains all iterates from the i-th and also the limit, since setsare upper-complete. In the above example, we deduce that repeat produces at least i results.Abstract Computation The construction can be adapted to the abstract semantics by usingconsistent abstractions of �2 and �3. However, if the abstract domain is not noetherian, a wideningoperation must be used instead of the upper bound operation to ensure the �niteness of the analysis.3Upper-closed sets can actually be viewed as a (simple) form of power domain construction.4

Let us consider this last case. Consider an abstract domain ASS with a concretization functionCc : ASS ! CSS and with an element B0 such that < ? >2 Cc(B0). Consider also an abstractversion on �4 of �2, i.e.8S 2 PSS 8B 2 ASS : S 2 Cc(B)) �1S 2 Cc(�4B):The computation in the abstract domain iterates �4 for j steps:Bi+1 = �4Bi(0 � i � j):Then, unless a �xpoint has already been reached, the computations \jumps" to a value Bw suchthat Bj � Bw and �4Bw � Bw .The process is sound for the following reason. Let Sj be the iterates to lfp(�1). Since S0 = h?i 2Cc(B0) and �4 is consistent, Sj 2 Cc(Bj) by induction. Since Bj � Bw and Bw is a post�xpoint,Sk 2 Cc(Bw) for all k � j because Sk 2 Cc(Bw)) Sk+1 2 Cc(�4Bk), by consistency of �4. Hence,Sk+1 2 Cc(Bw) by �4Bw � Bw and monotonicity of Cc. Finally, since Cc(Bw) is upper-closed,lfp(�1) 2 Cc(Bw).To illustrate the process on a concrete example, consider the �rst abstract domain, droppingthe abstract substitution part since it is useless. �4 is de�ned by �4hm;M; ti = hm + 1;M + 1; tiand B0 = h0; 0; snti. The �rst iterations give Bj = hj; j; snti. To get a post�xpoint, the secondj is replaced by 1 to obtain Bw = hj;1; snti, since �4Bw = hj + 1;1; snti � Bw. Bw is aconsistent approximation of lfp(�1) and expresses that at least j substitutions are generated andthat the procedure surely loops. We do not know however if it loops after giving a �nite numberof substitutions or if it produces an in�nite number of substitutions.Theoretical Implications The above construct implies that the abstract semantics can nolonger be de�ned as the least �xpoint of the abstract transformation obtained by abstractingthe collecting semantics. The abstract semantics is de�ned as certain post�xpoints of the abstracttransformation (see the de�nition of pre-consistent set of abstract tuples later on).Practical Implications In practice, the construct imposes two requirements on the abstractdomain. First, it is necessary to make sure that the concretization function only returns upper-closed sets. This requirement, which is satis�ed by our two abstract domains, does not seem tobe too restrictive in practice. Second, the designer needs to decide when to apply the wideningoperation. This is of course domain-dependent. A heuristic is to let the decision be driven by thesubstitution part of the domain. The widening on abstract sequences is applied when this partstabilizes. This is the choice adopted in the companion paper and it seems to give an e�ectivetradeo� between precision and e�ciency.4 Concrete SemanticsSpace restrictions forbid us to include the concrete semantics in the paper (see the appendix). Theconcrete semantics is a �xpoint semantics de�ned on normalized programs [5], i.e. clause headsare of the form p(x1,: : : ,xn) and bodies contain atoms of the form p(xi1,: : : ,xin), xi = xj , xi1 =f(xi2,: : : ,xin), and !. To simplify the traditional problems with renaming, we use two sets of variablesand substitutions [17]. (Program) substitutions (denoted by �) are of the form fx1=t1; : : : ; xn=tng,5

where the ti are terms and the xi are (so-called) program variables (parameters). We assumeanother in�nite (disjoint) set of (so-called) standard variables. The ti's may only contain standardvariables. By de�nition, dom(�) = fx1; : : : ; xng and codom(�) is the set of variables in the ti's.We also use standard substitutions which are substitutions in the usual sense.They are denotedby � possibly subscripted and only use standard variables. mgu's are standard substitutions. Thecomposition �� of a program substitution with a standard substitution is de�ned in a non standardway by �� = fx1=t1�; : : : ; xn=tn�g. We note PS the set of program substitutions.The concrete semantics uses objects of the form h�; pi, h�; pri, h�; ci, and h�; gi, where p; pr ; c; gare respectively a predicate name, a procedure, a clause, and the body or a pre�x of the body of aclause. It also uses substitution sequences and objects of the form hS; cf i, where S is a substitutionsequence and cf 2 fcut ; nocutg. Objects of the form h�; pi are mapped to substitution sequenceswhich model the sequence of answer substitutions produced by p for �. Objects of the form h�; ciand h�; gi are mapped to objects of the form hS; cf i, where cf indicates whether the execution of theclause or of the pre�x has been cut. Assuming an underlying program P , we note by h�; pi 7�! Sthe fact that the concrete semantics of P maps h�; pi to S.5 Abstract OperationsAbstract Domains We assume the existence of three cpos: AS, ASS and ASSC. Elements of ASare called abstract substitutions and denoted by �. Elements of ASS are called abstract sequencesand denoted by B. Elements of ASSC are called abstract sequences with cut information anddenoted by C. The meaning of these abstract objects is given through monotonic concretizationfunctions: Cc : AS ! CS , Cc : ASS ! CSS and Cc : ASSC ! CSSC . CS = }(PS), CSS isthe set of sets of substitution sequences which are upper-closed. CSSC is similarly de�ned butincreasing chains only contain substitution sequences with identical cut information. CS , CSS andCSSC are ordered by inclusion. Each object O in AS , ASS and ASSC has a domain dom(O) whichis the common domain of all program substitutions in its concretization.Organization Each abstract operation is motivated and speci�ed by a consistency condition.Many of these operations are identical or simple generalizations of operations described in [16, 17],which were themselves inspired by [5]. Other are simple \conversion" operations between the threedi�erent domains. The newer operations are CONC, AI-CUT, EXTGS and they are explainedin detail since they contain the main originality of our framework. Reference [4] proposes animplementation of these operations on a particular abstract domain.Concatenation of Abstract Sequences: CONC(�,C,B)=B0. Let pr be a procedure of theform c1; : : : ; cn (n � 1). A su�x of pr is any sequence of clauses ci; : : : ; cn (1 � i � n). OperationCONC is used to \concatenate" (at the abstract level) the result C of a clause ci with an abstractsequence B resulting from \concatenating" the results of ci+1; : : : ; cn (1 � i < n). It is assumedthat all results are produced for the same abstract input substitution �. � is added as an extraparameter in order to improve the accuracy of the operation.In order to express the consistency conditions for the operation CONC, \concatenation" ofconcrete sequences needs to be de�ned �rst. Consider two sequences S1 and S2 without cut in-formation. S1 stands for the result of ci and S2 stands for the (combined) result of ci+1; : : : ; cn.6

If execution of ci terminates, then su�x ci+1; : : : ; cn is executed. Otherwise ci+1; : : : ; cn is notexecuted. Therefore, the combined result S12S2 of ci; : : : ; cn is de�ned byS12S2 = S1 :: S2 if S1 is �nite (i.e. neither incomplete nor in�nite),S1 otherwise.The de�nition can be extended to sequences with cut information. If no cut is executed in ci(because ci does not contain a cut or ci fails or loops before reaching a cut), the previous reasoningapplies. Otherwise, su�x ci+1; : : : ; cn is not executed. In the �rst case, the result of ci is hS1; nocuti,while, in the second case, the result is hS1; cuti. So, the combined result hS1; cf i2S2 of ci; : : : ; cnis de�ned byhS1; cf i2S2 = S12S2 if cf = nocut,S1 if cf = cut.Operation CONC performs the concatenation of abstract sequences, i.e. of descriptions of setsof sequences, and is de�ned as follows (recall that we note CONC(�,C,B)=B0)4:� 2 Cc(�);hS1; cf i 2 Cc(C);S2 2 Cc(B);8�0 2 SUBST(S1) [SUBST(S2) : �0 � � 9>>>=>>>;) hS1; cf i2S2 2 Cc(B0):Since � represents many di�erent input substitutions, C and B may contain incompatible sub-stitution sequences, i.e. sequences containing substitutions which are not all instances of the sameinput substitution. Concatenations of incompatible substitution sequences are removed by the lastcondition, since they do not correspond to any actual execution. (�0 � � means that �0 is moreinstantiated than �.)5Abstract Uni�cation of two program variables: AI-VARS(�) = B0. This operation is sim-ilar to operation AI-VAR of [16, 17] but returns an abstract sequence instead of an abstract sub-stitution. As the concrete uni�cation may only fail or succeed (assuming an occur-check), Cc(B0)should only contain �nite substitutions of length 0 or 1:� 2 Cc(�);� 2 mgu(x1�; x2�))) < �� >2 Cc(B0); � 2 Cc(�);; = mgu(x1�; x2�))) <>2 Cc(B0):Abstract Uni�cation of a variable and a functor: AI-FUNCS(�; f) = B0. The operation issimilar to the previous one: let Smgu = mgu(x1�; f(x2; : : : ; xn)�).� 2 Cc(�);� 2 Smgu)) < �� >2 Cc(B0); � 2 Cc(�);; = Smgu)) <>2 Cc(B0):4In order to enhance readability of the speci�cations, it is assumed that all free symbols are implicitely universallyquanti�ed and range over a domain which is \obvious" from the context. \," denotes conjunction.5In the implementation B is only computed on demand, since it is not always needed.7

Abstract Treatment of the Cut: AI-CUT(C) = C0. Let g be the sequence of literals beforea cut (!) in a clause. Execution of g for a given input substitution � either fails or loops withoutproducing any result, or produce one or more results before failing, looping or producing resultsfor ever. Execution of the goal g ; ! also fails or loops without producing results in the �rst casebut, in the second case, it produces exactly one result (the �rst result of g) and then stops. Atthe abstract level, C represents a set of substitution sequences produced by g, while C 0 representsthe corresponding set of substitution sequences produced by g ; ! . Clearly the sequences inCc(C0) should be obtained by \cutting" the sequences in Cc(C) after their �rst element if it is asubstitution. Hence, the following speci�cation:h<>; cf i 2 Cc(C)) h<>; cf i 2 Cc(C 0);h< ? >; cf i 2 Cc(C)) h< ? >; cf i 2 Cc(C 0);h< � >:: S; cf i 2 Cc(C)) h< � >; cuti 2 Cc(C 0):We now turn to the projection and extension operations. The �rst and the third are the same asin our previous papers [16, 17] and we provide their speci�cations without additional explanations.The second one is a simple generalization of an existing one to sequences. The fourth one is a morecomplex generalization and we explain it in detail.Extension at Clause entry: EXTC(c; �) = �0. Assume that � is an abstract substitution onfx1; : : : ; xng and c is a clause containing variables fx1; : : : ; xmg (m � n).� 2 Cc(�);y1; : : : ; ym�n are distinctstandard variables;y1; : : : ; ym�n 62 codom(�) 9>>>=>>>;) fx1=x1�; : : : ; xn=xn�; xn+1=y1; : : : ; xm=ym�ng 2 Cc(�0):Restriction at Clause Exit: RESTRC(c; C) = C 0. With the same notations as above, theexecution of the body of c, for the input �0, produces the abstract sequence with cut informationC. Operation RESTRC simply restricts C to the variables in D = fx1; : : : ; xng: 6h< �1; : : : ; �i; : : : >; cf i 2 Cc(C)) h< �1jD; : : : ; �ijD; : : : >; cf i 2 Cc(C 0):Restriction before a call: RESTRG(l; �) = �0. Assume that � is an abstract substitution onD = fx1; : : : ; xmg, and l is a literal p(xi1 ; : : : ; xin) (or xi1 = xi2 (n = 2) or xi1 = f(xi2 ; : : : ; xin))(or any other built-in using variables xi1 ; : : : ; xin).� 2 Cc(�)) fx1=xi1�; : : : ; xn=xin�g 2 Cc(�0):Extension of the Result of a Call: EXTGS(l; C;B) = C0 This operation is rather complexand we �rst motivate it through the correspondence between the concrete and abstract executions.We assume the same notations as for RESTRG, that l occurs in the body of a clause c and that gis the sequence of literals before l in the body.6The notation �jD should be obvious (otherwise see the appendix).8

In the concrete semantics, execution of g for an input substitution � produces a sequence (withcut information) hS; cf i. Then l is executed for each substitution �i of S, producing a new sequenceSi for each �i. The \result" of g; l is the sequence S12 : : :2Si : : :. 7At the abstract level, C stands for a set of possible S's while B stands for (a superset of) allcorresponding Si's. Because of the abstraction, the mapping between each S and its correspondingSi's is lost as well as the ordering of the Si's. Operation EXTGS has to reestablish this mappingas best as possible by a kind of backward uni�cation.Note that, in the above (concrete) concatenation, there can be in�nitely many Si's and thede�nition of 2 must be extended as follows:20k=1Sk =<>; 2i+1k=1Sk = (2ik=1Sk)2Si+1 (i � 0); 21k=1Sk = t1i=0((2ik=1Sk)2 < ? >):It can be veri�ed that this de�nition �ts the intuition in all cases. For instance, if one of the Si isincomplete or in�nite, subsequent sequences are ignored. 21k=1 <>=< ? > which expresses thatthe computation of an in�nite number of sequences (albeit all empty) never terminates.More technically, B is obtained by 1) extracting the substitution part � of C (the sequencestructure is forgotten), 2) applying RESTRG to �, 3) executing procedure p with input � giving B.Therefore, B is an abstract sequence on fx1; : : : ; xng and we have to reexpress it on fxi1 ; : : : ; xingwhile combining it with C. The precise speci�cation is as follows. NELEM(S) stands for thenumber of elements in S. NELEM(S) = NSUBST(S)+ 1 if S is incomplete; in this case, we de�neSNELEM (S) =< ? >, by convention. Otherwise, NELEM(S) = NSUBST(S).hS; cf i 2 Cc(C);(8k : 1 � k � NSUBST(S) :�k is the k-th substitution of S;�0k = fx1=xi1�k ; : : : ; xn=xin�kg;S0k 2 Cc(B);S0k =< �0k�k;1; : : : ; �0k�k;j ; : : : >;Sk =< �k�k;1; : : : ; �k�k;j ; : : : >) 9>>>>>>>>>>=>>>>>>>>>>;) h2NELEM (S)k=1 Sk ; cf i 2 Cc(C 0):In order to prevent introduction of undesired variable sharing in the result, we can also specifythat no substitution �k;j introduces \new" variables already in codom(�k) but not in codom(�0k).Formally: dom(�k;j) � codom(�0k) and (codom(�k)ncodom(�0k))\ codom(�k;j) = ; 8k; j.Finally, we need three less important conversion operations.SEQ(C) = B0. This operation forgets the cut information in C. It is applied to the result of thelast clause of a procedure before combining this with the result of the other clauses.hS; cf i 2 Cc(C)) S 2 Cc(B0):SUBST(C) = �0. This operation forgets still more information. It extracts the \abstract substi-tution part" of C. It is applied before executing a literal in a clause. See operation EXTGS.hS; cf i 2 Cc(C);� is an element of S)) � 2 Cc(�0):7Note that the execution of g is in fact interleaved with the executions of l in Prolog. However, in abstractinterpretation, it is natural to assume that g is completed before starting executions of l because abstract executionsalways terminates. 9

EXT-NOCUT(�) = C 0. The empty pre�x of the body of a clause produces a one element sequenceand contains no cut. This is expressed by the following speci�cation:8� 2 Cc(�)) h< � >; nocuti 2 Cc(C 0):Other built-ins. Built-ins such as var, ground, functor, arithmetic predicates, : : : can be handledin our framework. In fact, any meta predicate can be dealt with except assert and retract becausethey modify the underlying program. We do not describe the abstract treatment of these built-insfor space reasons but they are taken into account by our implementation (see [4]).6 Abstract SemanticsSets of Abstract Tuples The abstract semantics of a program P is de�ned as a set of abstracttuples (�; p; B) where p is a predicate symbol of arity n occurring in P , � 2 AS , B 2 ASS anddom(�) = dom(B) = fx1; : : : ; xng. The underlying domain UD of the program is the set of all(�; p) such that � 2 AS , dom(�) = fx1; : : : ; xng and p occurs in P . In fact, we only considersets of abstract tuples which are functions from UD into ASS and we use both B = sat(�; p) or(�; p; B) 2 sat . We denote SATT the set of all those sets.Abstract Transformation This transformation is in the same spirit as the transformation pro-posed in [16]. The main di�erence is that (output) abstract substitutions are replaced by abstractsequences. Abstract operations are modi�ed accordingly. For example, the semantics in [16] usesan operation UNION to collect clause results. This operation is now replaced by operation CONC.Two major simpli�cations with respect to the concrete semantics have been however introducedto handle literals more simply. Let g be a goal of the form g0; l and C be the abstract sequenceresulting from the execution of g0. First, the input abstract sequence C for l is \abstracted" to asingle abstract substitution �00 approximating all substitutions in the concretization of C, i.e. thesequence structure of C is \lost". Second, the input and ouput sequences for l are combined in allpossible way through a unique operation EXTGS. This simpli�cation was shown to provide a goodtrade-o� between accuracy and e�ciency for the abstract domains considered in [4]. This trade-o�could be reconsidered for more elaborate domains.The abstract transformation is de�ned in terms of one function and one transformation given in�gure 1. T is an auxiliary function for the de�nition of the transformation TSAT. T has argumentsof the form (�; cons; sat) where cons may be a predicate name p, a procedure or a su�x of aprocedure (both denoted pr), a clause c or a goal g (i.e. the body or a pre�x of the body of aclause). � is a substitution whose domain agrees with the particular cons. sat is a set of abstracttuples. The result of T is either an abstract sequence B (for p and pr) or an abstract sequence withcut information C (for c and g).T (�; p; sat) executes p(x1; : : : ; xn) with input abstract substitution � by calling the functionT (�; pr; sat) that executes all clauses de�ning p on �. T (�; c:pr0; sat) concatenates the resultsproduced by the �rst clause and by the rest of the procedure. T (�; c; sat) executes a clause byextending the abstract substitution � to all variables in c, executing the body and restricting theresult to the variables in the head. T (�; g; sat) executes the body of a clause by considering each8In [4], operations EXTC and EXT-NOCUT are combined into a single operation EXTCS.10

TSAT (sat) = f(�; p; B) : (�; p) 2 UD and B = T (�; p; sat)gT (�; p; sat) = T (�; pr; sat)where pr is the procedure de�ning pT (�; pr; sat) =SEQ(C)where C = T (�; c; sat) if pr is cT (�; pr; sat) =CONC(�;C;B)where B = T (�; pr0; sat)C = T (�; c; sat) if pr is c:pr0T (�; c; sat) = RESTRC(c; C)where C = T (EXTC(c; �); g; sat)g is the body of cT (�;<>; sat) = Cwhere C = EXT-NOCUT(�)T (�; (g; !); sat) = AI-CUT(C)where C = T (�; g; sat)T (�; (g; l); sat) =EXTGS(l; C;B)where B = AI-VARS(�0) if l is xi = xjAI FUNCS(�0; f) if l is xi = f(: : :)sat(�0; p) if l is p(: : :)�0 = RESTRG(l; �00)�00 = SUBST(C)C = T (�; g; sat). Figure 1: The Abstract Transformationliteral in turn. The empty pre�x of the body produces a one element abstract sequence with theinformation that no cut has been executed so far. When the next literal to execute is a cut, operationAI-CUT is executed. Otherwise the next literal l is executed with input �00 that approximates allsubstitutions in the concretization of C. Operation RESTRG expresses �00 in terms of the formalparameters x1; : : : ; xn of l. If l is a procedure call then only a lookup in sat is performed, otherwiseeither operation AI-VARS or AI-FUNCS is executed. Operation EXTGS is performed after eachcall in order to obtain the result of the full goal. TSAT is a transformation from SATT to SATT.Abstract Semantics Transformation TSAT can be shown monotonic if the abstract operationsare. However monotonicity is not an essential requirement for our framework because we do notde�ne the abstract semantics as the least �xpoint of TSAT which is not consistent in general asexplained in section 2. In order to get a consistent sat, the transformation is applied to sat's whichare pre-consistent. 11

De�nition 1 [Pre-Consistency] A set of abstract tuples sat is pre-consistent i�, for each abstracttuple (�; p; B) 2 sat , h�; pi 7�! S with � 2 Cc(�) implies that there exists S 0 v S such thatS0 2 Cc(B):When there exists an abstract sequence B<?> such that < ? >2 Cc(B<?>), it is easy tode�ne a �rst pre-consistent set of abstract tuples, since < ? >v S for all S. Moreover, applyingtransformation TSAT to pre-consistent sats gives other pre-consistent sats which are better lowerapproximations of the concrete outputs by consistency of the abstract operations. Finally, a post-�xpoint is reached to obtain consistency. The abstract semantics can thus be formalized as anypre-consistent post�xpoint of the abstract transformation. Formally, the results whose proofs aresummarized in appendix and follows the informal reasoning of Section 2 can be stated as follows.Lemma 2 Let sat be a pre-consistent set of abstract tuples. Then TSAT(sat) is pre-consistent.Theorem 3 [Consistency of the Abstract Semantics] Let sat be a pre-consistent set of abstracttuples such that TSAT(sat) � sat. Then sat is consistent. That is: let p be a predicate symbol, �be a substitution, � be an abstract substitution, S be a substitution sequence. We haveh�; pi 7�! S;� 2 Cc(�))) S 2 Cc(sat(�; p)):7 The Generic Abstract Interpretation AlgorithmWe now discuss how post�xpoints of the abstract transformation can be computed. The key idea isthat a post�xpoint can be computed by a generalization of existing generic abstract interpretationalgorithms [5, 21, 16, 17]. We focus on the generalizations and their justi�cations here. See [4] fora description of the algorithm. The key generalization in the algorithm is the use of a more generalform of widening, called E-widening, when updating the set of abstract tuples with a new result.De�nition 4 [E-widening] Let A be an abstract domain and Bi; B0i be elements ofA. A E-wideningis an operation r : A � A! A which, given the sequences B1; : : : ; Bi; : : : and B00; : : : ; B0i; : : : suchthat B0i+1 = Bi+1rB0i (i � 0), satis�es1. B0i � Bi (i � 1);2. There is a j � 0 such that all B0i with j � i are equal.The E-widening is used as follows in the algorithm. Given an input pair (�; p), the output abstractsequence is computed by generating two sequences B1; : : : ; Bi; : : : and B00; : : : ; B0i; : : : as follows:1. B00 = B<?> is stored in the initial sat as the output for (�; p);2. Bi results from the i-th abstract execution of procedure p for abstract input �;3. B0i = BirB0i�1 is stored in the current sat after the i-th abstract execution of procedure p;4. reexecution stops when Bi+1 � B0i.Termination of the algorithm is guaranteed because all B0i must be equal for all i greater thansome j. Hence, since B0j = B0j+1 and B0j+1 � Bj+1, we have Bj+1 � B0j . Consistency of the resultis guaranteed because each B0i is pre-consistent and the algorithm terminates with a post�xpoint.Pre-consistency of the B0i follows from B0i � Bi and the pre-consistency of Bi due to Lemma 2. Anexample of E-widening is de�ned in [4]. 12

8 Related WorkPerhaps the closest related work is the work of File and Rossi [12], who describe an extensionof the framework in [6], where an OLDT abstract tree is adorned with information about suresuccess or failure of the goals. The information is then used in the cut operation to prune theOLDT-tree whenever the cut is reached in all corresponding executions. Sure success is modelledin our framework by abstract sequences having only non-empty sequences in their concretizations.Sure failure is modelled by the empty sequence. There are several di�erences between the twoframeworks. At the theoretical level, their framework can be characterized as operational and non-compositional while ours is compositional and based on the �xpoint approach. At the algorithmiclevel, there are two main di�erences. The �rst is best described on a goal p(X), !. Wheneverp(X) surely succeeds, their framework stops after generating the �rst "sure" solution, while ourscomputes the entire abstract sequence for p(X) and then cuts it to maintain at most one solution.Our algorithm may thus imply some redundant work. However, if p(X) is used in several contexts,their algorithm should recognize this situation and expand the OLDT-tree further. The seconddi�erence comes from the fact that our framework may deduce sure success even though the successbranch may be unknown, while it is not clear how to obtain this result in their approach. Finally, ourapproach has been shown computationally tractable in [4]. At the time of writing, no experimentalresult have been reported on their approach.The work of Barbuti et al. [2] also aims at modelling Prolog control. The main di�erencebetween their work and ours is that their framework is intended to use control information deducedfrom outside, while our framework both deduces and uses control information inside the framework.Our framework is usually not able to compute precise termination information (except fornon recursive procedures) since this is inherently outside the scope of computational induction,the basis of the abstract interpretation approach followed here. However some applications such ascardinality analysis [4] could be improved by allowing the framework to use termination informationfrom the outside as in [2]. Furthermore, our framework is able to provide precise information aboutnon-termination. This is an important consequence of the fact that the limit of an in�nite chainof incomplete substitution sequences is either an incomplete substitution sequence or an in�nitesequence. Precise information about non termination may improve other analyses signi�cantly inthe case of incorrect programs, making it useful for static debugging.9 ConclusionThis paper has introduced a novel abstract interpretation framework, capturing the depth-�rstsearch strategy and the cut operation of Prolog. The framework is based on the notion of sub-stitution sequences and the abstract semantics is de�ned as a pre-consistent post�xpoint of theabstract transformation. Abstract interpretation algorithms need upper-closed domains and a spe-cial widening operator to compute the semantics. This approach overcomes some of the limitationsof existing frameworks. In particular, it broadens the applicability of the abstract interpretationapproach to new analyses and improves the precision of existing analyses. Its practicability hasbeen demonstrated in the companion paper [4]. 13

References[1] S. Abramski and C. Hankin. An introduction to abstract interpretation. In S. Abramski and C. Hankin, editors,Abstract Interpretation of Declarative Languages, chapter 1, pages 9{31. Ellis Horwood Limited, 1987.[2] R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modelling Prolog control. In Proceedings of POPL'92, pages95{104. ACM Press, 1992.[3] M. Baudinet. Proving Termination Properties of Prolog Programs: A Semantic Approach. In Proc. Third IEEESymp. on Logic In Computer Science, pages 336{347. IEEE, 1988.[4] C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality Analysis of Prolog. Technical report,Department of Computer Science, Brown University, March 1994. (Submitted to ILPS'94).[5] M. Bruynooghe. A practical framework for the abstract interpretation of logic programs. Journal of LogicProgramming, 10(2):91{124, February 1991.[6] P. Codognet and G. Fil�e. Computations, abstractions and constraints in logic programs. In Proceedings of(ICCL'92), Oakland, U.S.A., April 1992.[7] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type analysis of prolog using type graphs. In Proceedingsof (PLDI'94), Orlando, Florida, June 1994.[8] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static analysis of programs byconstruction or approximation of �xpoints. In Proceedings of (POPL'77).[9] S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C. Sekar. Extracting Determinacy in Logic Programs.In ICLP-93, Budapest (Hungary), June 1993.[10] A. de Bruin and E. de Vink. Continuation Semantics for Prolog with cut. In Proc. TAPSOFT'89, Lecture Notesin Computer Science, pages 178{192, Berlin, 1989. Springer-Verlag.[11] S.K. Debray and P. Mishra. Denotational and operational semantics for Prolog. (5(1)):61{91, 1988.[12] G. Fil�e and S. Rossi. Static analysis of Prolog with cut. In Proc. of LPAR'93.[13] R. Giacobazzi. Detecting Determinate Computations by Bottom-up Abstract Interpretation. In ESOP'92, pages167{181, 1992.[14] G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of program variables by means ofabstract interpretation. Journal of Logic Programming, 13(4), 1992.[15] N.D. Jones and A. Mycroft. Stepwise development of operational and denotational semantics for Prolog. InSten-�Ake Tarnlund, editor, Proceedings of ICLP'84, pages 281{288.[16] B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract interpretation algorithm and itscomplexity analysis. In Proceedings of (ICLP'91).[17] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract Interpretation Algorithmfor Prolog. (TOPLAS), January 1994.[18] J.W. Lloyd. Foundations of Logic Programming. Springer Series: Symbolic Computation{Arti�cial Intelligence.Springer-Velag, second, extended edition, 1987.[19] K. Marriott and H. S�ndergaard. Semantics-based dataow analysis of logic programs. In G. Ritter, editor,Information Processing'89, pages 601{606, San Fransisco, California, 1989.[20] C.S. Mellish. Abstract interpretation of Prolog programs. In Abstract Interpretation of Declarative Languages,chapter 8, pages 181{198. Ellis Horwood Limited, 1987.[21] K. Muthukumar and M. Hermenegildo. Compile-Time Derivation of Variable Dependency Using AbstractInterpretation. Journal of Logic Programming, 13(2-3):315{347, August 1992.[22] D. Sahlin. Determinacy Analysis for Full Prolog. In PEPM'91, 1991.[23] D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc., 1988.[24] A. Taylor. LIPS on MIPS: Results from a Prolog Compiler for a RISC. In Proceedings of (ICLP'90), Jerusalem,Israel, June 1990. MIT Press.[25] P. Van Roy and A. Despain. High-Performance Computing with the Aquarius Compiler. IEEE Computer, 25(1),January 1992. 14

A The Concrete SemanticsA.1 IntroductionThis appendix presents a �xpoint semantics for (normalized) de�nite logic programs with cutwhich can be proved equivalent to Prolog \standard" semantics (i.e. SLD-resolution with the left-most selection rule and the depht-�rst search strategy). The "raison d'être" of this instrumentalsemantics is the proof of consistency of the abstract semantics. The semantics is not aimed atreplacing existing proposals such as [10, 11, 15] but these proposals are too far from our abstractsemantics to provide a convenient basis for a consistency proof.Technically, the concrete semantics is a denotational semantics, since it is compositional and usesa �xpoint construction over a complete partial order SCTT built on the relation v on substitutionsequences. However, our de�nition uses (pseudo) transition rules to highlight the similarities anddi�erences with operational semantics for logic programs which do not take into account the searchrule nor the cut. As a result, the concrete semantics \looks" very much like a simple SOS semanticsbut it is not operational because its �xpoint construction uses the ordering on SCTT instead ofset inclusion. De�ning an equivalent operational semantics in SOS style would require either tocomplicate the semantic objects (to take into account the choice points, backtracking and so on) orto introduce an in�nite hierarchy of transition rules corresponding to the di�erent iterates of theKleene's sequence leading to the �xpoint.A.2 Basic de�nitionsWe complement here the set of de�nitions of the main paper. Let � be a substitution and D �dom(�). The restriction of � to D, denoted �jD , is the substitution �0 such that dom(�0) = Dand x� = x�0 for all x 2 D. The notion of free variable is non-standard to avoid clashes betweenvariables during renaming. A free variable is represented by a binding to a standard variable thatappears nowhere else. We use mgu(t1; t2) to denote the set of most general uni�ers of t1 and t2.Let Si2N be an increasing chain of substitution sequences, i.e. S0 v : : : v Si v : : :. The leastupper bound sequence t1i=0Si can be constructed as follows:t1i=0Si = Sk if 9k 2 N such that Si = Sk (8i � k)< �1; : : :�i; : : : > if 8i 2 N9k; S 0k : Sk =< �1; : : : ; �i >:: S0k .A.3 Concrete OperationsWe de�ne here some operations which are used by the concrete semantics. It can be observed thatall operations return a set of program substitutions (resp. substitution sequences) although theresult is conceptually a single substitution (resp. substitution sequence) in general. When a setcontains many elements they are equivalent up to renaming. For brevity we omit some obviouspreconditions in the de�nitions.Extension and Restriction for a Clause The EXTC operation extends a substitution onvariables on the head of a clause to all variables in the clause. Let c be a clause, var(c) = D andvar(head(c)) = D0. The RESTRC operation restricts a substitutions sequence on all variables in aclause to the variables in the head. 15

EXTC (c; �) = f �0 : dom(�0) = D; �0D0 = � and 8x 2 D nD0, x is free in �0 gRESTRC (c; S) = f SjD0 gRestriction and Extension for a Call The RESTRG operation expresses a substitution �, onthe parameters xi1 ; : : : ; xin of a call l, in terms of its formal parameters x1; : : : ; xn. The EXTGoperation extends a substitution � with a substitutions sequence S representing the result of exe-cuting a call l on �.RESTRG(l; �) = f �0 : dom(�0) = fx1; : : : ; xng; and xk�0 = xik� (1 � k � n) gEXTG(l; �; S) = f< ��1; : : : ; ��i; : : : >: 9�0 2 RESTRG(l; �) such that S =< �0�1; : : : ; �0�i; : : : >and dom(�i) � codom(�0) and (codom(�)ncodom(�0)) \ codom(�i) = ; 8i gUni�cation Operations Operation AI-VAR uni�es x1� with x2�. Operation AI-FUNC uni�esx1� with f(x2; : : : ; xn)�. Observe that the operations do not specify the parameters x1; x2 (resp.x1; x2; : : : ; xn) as arguments. This is because operation RESTRG is applied before.AI-VAR(�) = f <> g if ; = mgu(x1�; x2�)f< �� >: � 2 mgu(x1�; x2�)g otherwiseAI-FUNC(�; f) = f <> g if ; = mgu(x1�; f(x2; : : : ; xn)�)f< �� >: � 2 mgu(x1�; f(x2; : : : ; xn)�)g otherwiseA.4 The Concrete Semantic Domain SCTTWe de�ne the concrete semantic domain SCTT with respect to a �xed underlying program P . Theconcrete underlying domain CUD is the set of pairs h�; pi such that � is a program substitution, pis a n-ary predicate of P and dom(�) = fx1; : : : ; xng. A set of concrete tuples is a total function7�!: CUD ! PSS such that each pair h�; pi is mapped to a substitution sequence S where dom(�) =dom(S). This is denoted by h�; pi 7�! S. (In fact, S should be de�ned up to a renaming of thestandard variables occurring in it but we ignore this technicality, for the sake of simplicity.)By de�nition, SCTT is the set of all sets of concrete tuples. Its minimal element is 7�!? suchthat h�; pi 7�!?< ? > fot all h�; pi. The ordering on SCTT is de�ned by7�!v7�!0 i� 8h�; pi 2 CUD : h�; pi 7�! S and h�; pi 7�!0 S 0) S v S 0:It is easy to show that SCTT is a cpo for this ordering.A.5 Auxiliary Semantic RulesIn order to de�ne the concrete semantics as the least �xpoint of a continuous transformation ofSCTT, we �rst introduce a set of semantic rules which extend a set of concrete tuples 7�! to afunction from ECUD to PSS [(PSS � fcut ; nocutg). The extended concrete underlying domainECUD consists of the pairs of the form h�; pi, h�; ci, h�; gi, h�; pri, h�; li, where p, c, g, pr, l arerespectively a predicate symbol, a clause, the body or a pre�x of the body of a clause, a procedureor a su�x of a procedure, and (an occurrence of) a literal in the body of a clause (for the programP). The semantic rules specify the result of executing c, g, pr, l for the input p, assuming that7�!: CUD ! PSS is used as an oracle to solve the procedure calls.16

The rules are given and explained below. The derived function is also denoted 7�!.Execution of a Body The empty pre�x produces a one element sequence (the cut is not ex-ecuted). A cut is executed in a clause i� it follows a sequence of literals producing at least oneresult. Then it reduces this sequence to its �rst element. Otherwise failure or non terminationoccurs. Execution of other literals is more complicated. The result of g; l can be \computed" asfollows. First, the result S of g is computed. Then literal l is executed with each substitution �kin S (restriction and renaming are handled by RESTRG). Each resulting sequence S0k is extendedwrt �k . Finally, all extended sequences are concatenated.g ::= <>h�; gi 7�! h< � >; nocuti g ::= g0; !h�; g0i 7�! hS; cfiS 2 f<>;< ? >gh�; gi 7�! hS; cfi g ::= g0; !h�; g0i 7�! hS; cfiS =< � >:: S0h�; gi 7�! h< � >; cutig ::= g0; ll ::= xi1 = xi2h�; g0i 7�! hS; cfiS =< �1; : : : ; �k; : : : >�0k 2 RESTRG(l; �k)S0k 2 AI-VAR(�0k)Sk 2 EXTG(l; �k; S0k)h�; gi 7�! h2NELEM(S)k=1 Sk; cfi g ::= g0; ll ::= xi1 = f(xi2 ; : : : ; xin)h�; g0i 7�! hS; cfiS =< �1; : : : ; �k; : : : >�0k 2 RESTRG (l; �k)S0k 2 AI-FUNC(�0k; f)Sk 2 EXTG(l; �k; S0k)h�; gi 7�! h2NELEM(S)k=1 Sk; cfi g ::= g0; ll ::= p(xi1 ; : : : ; xin)h�; g0i 7�! hS; cfiS =< �1; : : : ; �k; : : : >�0k 2 RESTRG(l; �k)h�0k; pi 7�! S0kSk 2 EXTG(l; �k; S0k)h�; gi 7�! h2NELEM(S)k=1 Sk; cfiProcedure and Clause Execution If a cut is executed in the �rst clause of a procedure, otherclauses are not executed. Otherwise the result of the procedure (for input �) is the concatenationof the sequences produced by the �rst clause and by the rest of the procedure. Non termination ofthe �rst clause is correctly handled due to the de�nition of 2.Executing a clause c with input � amounts to extending � to all variables in c, executing thebody of c, and restricting the sequence of results to the variables in the head. The cut is executedin the clause i� it is executed in its body.pr ::= ch�; ci 7�! hS; cfih�; pri 7�! S pr ::= c:pr0h�; ci 7�! hS; cutih�; pri 7�! S pr ::= c:pr0h�; ci 7�! hS; nocutih�; pr0i 7�! S0h�; pri 7�! S2S0 c ::= p(x1; : : : ; xn) g�1 2 EXTC (c; �)h�1; gi 7�! hS0; cfiS 2 RESTRC (c; S0)h�; ci 7�! hS; cfiA.6 The Concrete SemanticsWe �rst de�ne a semantic transformation: TSCT : SCTT ! SCTT , by the following rule. Notethat h�; pri 7�! S is de�ned by means of the previous rules which use 7�! as an oracle (a basecase). pr de�nes p in Ph�; pri 7�! Sh�; pi TSCT7�! S17

Theorem 5 Transformation TSCT : SCTT ! SCTT is monotonic and continuous.Proof It can be shown that all basic operations used by the semantic rules (e.g. 2) are monotonicand continuous. The theorem follows. 2De�nition 6 [Concrete Semantics] By de�nition, the concrete semantics of P (the underlyingprogram) is lfp(TSCT). We note it 7�! in the sequel.Theorem 7 [Correctness of the Concrete Semantics] Let p(t1; : : : ; tn) be an initial goal where p isthe name of a n-ary procedure of the underlying program P . Consider the sequence �1; : : : ; �i; : : :of computed answer substitution produced for p(t1; : : : ; tn) wrt P using SLD-resolution, the left-most selection rule, the depht-�rst search strategy and the usual meaning of the cut. Let � =fx1=t1; : : : ; xn=tng. De�ne S =< ��1; : : : ; ��m >, if the execution terminates after producing mresults; S =< ��1; : : : ; ��m;? >, if the execution produces m computed answer substitutions andthen enters into an in�nite loop; S =< ��1; : : : ; ��i; : : : > (i 2 N), if the execution produces anin�nite number of computed answer substitutions. We have:h�; pi 7�! S:Proof [Sketch] Let us note i7�! the i-th iterate of the Kleene's sequence leading to 7�!. We cande�ne a sequence Ti of SLD-trees obtained by limiting the depth of procedure unfolding up to i andpasting an (arti�cial) in�nite branch on each unfolded goal. Then the sequence Si corresponding tothe sequence of computed answer substitutions for Ti is such that: h�; pi i7�! Si: The result followsby continuity. 2B Correctness of the Abstract SemanticsWe use the notations and de�nitions of the main paper.Lemma 8 Let sat be a set of abstract tuples such that sat is pre-consistent and is a post�xpointof TSAT , i.e. TSAT (sat) � sat. Let (�; p) 2 UD and � 2 Cc(�). Let S such that h�; pi 7�! S andSi such that h�; pi i7�! Si (0 � i). Then for all i 2 N, there exists S 0i 2 PSS such that Si v S0i v Sand S 0i 2 Cc(sat(�; p)).Proof [By induction on i.] The result is straightforward for i = 0 since sat is pre-consistent.Suppose i > 0. By induction hypothesis, for all (�; p) 2 UD and � 2 Cc(�), there exists S 0i�1 2 PSSsuch that Si�1 v S0i�1 v S and S 0i�1 2 Cc(sat(�; p)):This de�nes a set of concrete tuples i�17�!0 such thati�17�! v i�17�!0 v7�! :By monotonicity of the concrete transformation,i7�! vTSCTi�17�!0v7�! :18

By consistency of the abstract operations, for all (�; p) 2 UD ; � 2 Cc(�) and S 0i such thath�; pi TSCTi�17�!0 S0i;we have S 0i 2 Cc(sat 0(�; p)) where sat 0 = TSAT(sat). But, since sat is a post-�xpoint, S0i 2Cc(sat 0(�; p)) implies S0i 2 Cc(sat(�; p)). 2Theorem 9 [Correctness] Let sat be a set of abstract tuples. If sat is a post�xpoint of TSAT ,i.e. TSAT (sat) � sat, and is pre-consistent, then it is consistent, i.e., for all (�; p) 2 UD and forall � 2 Cc(�), h�; pi 7�! S implies that S 2 Cc(sat(�; p)):Proof Assume �xed (�; p) 2 UD and � 2 Cc(�). Consider the corresponding sequences S 0i in thelemma. From these S 0i, we construct an increasing chain: S000 v : : :S 00i v by de�ning S000 =< ? >and S00i = S0i t S00i�1 (i > 0). The least upper bound S 0i t S 00i�1 is de�ned because S 0i; S 00i�1 v S.Moreover, S 0i t S 00i�1 is either equal to S 0i or to S 00i�1 which implies that it belongs to Cc(sat(�; p)):Clearly, Si v S 00i v S for all i so that S = F1i=0 Si v F1i=1 S00i v S. Therefore, since Cc(sat(�; p))is upper-complete, S 2 Cc(sat(�; p)): 2

19

