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as Non-Interferene, has been introdued in [13℄, and subsequently developed bymany authors in many di�erent settings [9, 10, 21, 23, 14℄.In this paper we onsider the seurity property Persistent BNDC (P BNDC,for short), proposed in [11℄, and further studied in [4℄. P BNDC is a seurityproperty based on Non-Interferene suitable to analyze proesses in ompletelydynami hostile environments. In [11℄ it is proved that the P BNDC property isequivalent to an already proposed seurity property alled SBSNNI and studiedin [9℄. From the analysis presented in [9℄ two important problems emerge: howto verify the P BNDC property and how to onstrut P BNDC proesses. The�rst problem has been onsidered in [11℄ and it has been shown to be deidable.The seond problem has been analyzed in [4℄ where we exploit the omposi-tionality properties of P BNDC proesses to de�ne a proof system whih allowsus to statially prove that a proess is P BNDC by just inspeting its syntax.The proof system onsists of two layers, a kernel whih deals only with non-reursive proesses and a seond layer where a rather omplex rule, involvingmany expensive heks, handles reursive proesses. The system is orret butnot omplete, for instane it does not deal with reursive proesses involving theparallel operator. The inompleteness and the omplexity of the system is dueto the lak of a ompositionality result for onstant de�nitions, whih is the onlyway reursion is expressed in the SPA language, a variant of Milner's CCS [19℄.In this paper we onsider another form of reursion expressed using the repli-ation operator (!) instead of onstant de�nitions. The two approahes have thesame expressive power in �-alulus [20, 24℄, but as reently proved in [7℄, repli-ation annot supplant reursion in CCS. In this paper we show that the lassof P BNDC proesses is ompositional with respet to the repliation operator.This allows us to extend the kernel Core of the proof system in [4℄ with a newinferene rule for the repliation, thus allowing us to deal also with reursiveproesses involving the parallel operator. Moreover, we prove a partial omposi-tionality of P BNDC with respet to onstant de�nitions, i.e., we identify a lassof onstant de�nitions whih an be safely added to our language and treatedby the extended proof system.The paper is organized as follows. In Setion 2 we introdue the language,and reall the de�nition of P BNDC proess and its properties. In Setion 3 weprove that P BNDC is ompositional with respet to the repliation operator,and then present a proof system whih, by exploiting the new ompositionalityresult, extends the kernel presented in [4℄ by adding reursion through repliationin a very simple way. In Setion 4 we (re)-introdue onstant de�nitions. Finally,in Setion 5 we draw some onlusions. All the proofs an be found in [5℄.2 Basi Notions2.1 The LanguageIn this setion we report the syntax and semantis of the proess algebra weonsider. It is a variation of Milner's CCS [19℄, similar to SPA [9℄, where the2



set of visible ations is partitioned into high level ations and low level ones inorder to speify multilevel systems. Di�erently from [19℄, we use the repliation(!) operator instead of the onstant de�nitions. Intuitively, the proess !E (bangE) means EjEj : : :, i.e., the parallel omposition of as many opy as needed ofthe proess E. In Setion 4 we will reintrodue onstant de�nitions.The syntax of our proess algebra is based on the same elements as CCS thatis: a set L of visible ations suh that L = I [ O where I = fa; b; : : :g is a setof input ations and O = f�a;�b; : : :g is a set of output ations; a speial ation� whih models internal omputations, i.e., not visible outside the system; aomplementarily funtion�� : L ! L, suh that ��a = a, for all a 2 L; At = L[f�gis the set of all ations. The set of visible ations is partitioned into two sets, Hand L, of high and low ations suh that H = H and L = L. A proess E is aterm built using the following produtions:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j!Ewhere a 2 At , v � L, f : At ! At is suh that f(L) � L [ f�g, f(H) �H [ f�g, f(��) = f(�) and f(�) = � .Given a �xed set L we denote by E ! the set of all proesses, by E !H the set ofall high level proesses, i.e., those onstruted over H [ f�g, and by E !L the setof all low level proesses, i.e., those onstruted over L [ f�g.The operational semantis of proesses is given in terms of a Labelled Tran-sition System (LTS). In partiular, the operational semantis of our languageis the LTS (E !;At ;!), where the states are the terms of the algebra and thetransition relation !� E ! � At � E ! is de�ned by strutural indution as theleast relation generated by the inferene rules reported in Figure 1.In the paper we use the following notations. If t = a1 � � � an 2 At� andE a1! � � � an! E0, then we say that E0 is reahable from E and write E t! E0, orsimply E  E0. We also write E t=) E0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E0where ( �!)� denotes a (possibly empty) sequene of � labelled transitions. Ift 2 At�, then t̂ 2 L� is the sequene gained by deleting all ourrenes of �from t. As a onsequene, E â=) E0 stands for E a=) E0 if a 2 L, and forE( �!)�E0 if a = � (note that �=) requires at least one � labelled transition while�̂=) means zero or more � labelled transitions). Given two proesses E;F wewrite E � F when E and F are syntatially equal.The onept of observation equivalene between two proesses is based onthe idea that two systems have the same semantis if and only if they annot bedistinguished by an external observer. This is obtained by de�ning an equiva-lene relation over E !. We report the de�nitions of weak bisimulation and strongbisimulation [19℄. Intuitively, weak bisimulation equates two proesses if theymutually simulate their behavior step by step, but it does not are about inter-nal � ations. So, when P simulates an ation of Q, it an also exeute some �ations before or after that ation.De�nition 1 (Weak Bisimulation). A symmetri binary relation R � E !�E !over proesses is a weak bisimulation if (E;F ) 2 R implies, for all a 2 At,3



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 !̀ E01 E2 �̀! E02Parallel ` 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restrition if a 62 vE n v a! E0 n vE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0 E !̀ E0 E �̀! E00Repliation ` 2 L!E a! E0j!E !E �! E0jE00j!EFig. 1. The operational rules� if E a! E0, then there exists F 0 suh that F â=) F 0 and (E0; F 0) 2 R;Two proesses E;F 2 E ! are weakly bisimilar, denoted by E � F , if there existsa weak bisimulation R ontaining the pair (E;F ).The relation � is the largest weak bisimulation and is an equivalene rela-tion [19℄.Strong bisimulation is stronger than weak bisimulation, sine it onsider the� ations as all the other ations.De�nition 2 (Strong Bisimulation). A symmetri binary relation R � E !�E ! over proesses is a strong bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F a! F 0 and (E0; F 0) 2 R;Two proesses E;F 2 E ! are strong bisimilar, denoted by E � F , if there existsa strong bisimulation R ontaining the pair (E;F ).The relation � is the largest weak bisimulation and is an equivalene rela-tion [19℄. Moreover, two strongly bisimilar proesses are also weakly bisimilar.2.2 The P BNDC Seurity PropertyIn this setion we reall the Persistent Bisimulation-based Non Deduibility onCompositions (P BNDC, for short) seurity property (see [11℄). We start by4



introduing an equivalene relation on low ations that is a sort of weak bisim-ulation whih onsiders only the low ations. Hene, when two proesses areweakly bisimilar on low ations they annot be distinguished by a low level user.De�nition 3 (Weak Bisimulation on Low Ations). A symmetri binaryrelation R � E ! � E ! over proesses is a weak bisimulation on low ations, if(E;F ) 2 R implies, for all a 2 L [ f�g,� if E a! E0, then there exists F 0 suh that F â=) F 0 and (E0; F 0) 2 R.Two proesses E;F 2 E ! are weakly bisimilar on low ations, denoted by E �l F ,if there exists a weak bisimulation on low ations R ontaining the pair (E;F ).The relation �l is the largest weak bisimulation on low ations and it is anequivalene relation [5℄. Moreover, it holds E �l F if and only if E nH � F nH .Using weak bisimulation on low ations we reall the notion of Bisimulation-based Non Deduibility on Compositions (BNDC, for short) [9℄ whih is at thebasis of P BNDC. The BNDC seurity property aims at guaranteeing that noinformation ow from the high to the low level is possible, even in the preseneof an attaker. A system E is BNDC if for every high proess � a low userannot distinguish E from (Ej�), i.e., if � annot interfere [13℄ with the lowlevel exeution of E.De�nition 4 (BNDC). Let E 2 E !. E 2 BNDC i� 8 � 2 E !H ; E �l (Ej�).In [11℄ it is shown that BNDC is not strong enough for systems in dynamienvironments. To deal with these situations, the property P BNDC is intro-dued. Intuitively, a system E is P BNDC if it never reahes inseure states.De�nition 5 (P BNDC). Let E 2 E !. E 2 P BNDC i� E  E0 implies E0 2BNDC.Although the deidability of BNDC is still an open problem, P BNDC isdeidable (in polynomial time) as shown in [11℄. In [4℄ another deidable har-aterization of P BNDC proesses has been proposed. It allows us to expressP BNDC in terms of a loal property of high level ations and it realls theunwinding onditions proposed in other settings. Also if we are using a variationof the SPA, with repliations instead of onstant de�nitions, the haraterizationpresented in [4℄ holds.Theorem 1 (Unwinding). Let E 2 E !. E 2 P BNDC i� if E  Ei h! Ej ,then Ei �̂=) Ek and Ej �l Ek.The following lemma rephrases the orresponding lemma in [4℄ and it provesthat the lass of P BNDC proesses enjoys the following ompositionality prop-erties.Lemma 1. The lass of P BNDC proesses ontains all the proesses in E !L[E !Hand is losed with respet to restrition, renaming, and parallel omposition.Moreover, if Ei; Fj 2 P BNDC, ai 2 L and hj 2 H, i 2 I and j 2 J , thenPi2I ai:Ei +Pj2J (hj :Fj + �:Fj) 2 P BNDC.5



3 P BNDC and RepliationsIn this setion we �rst extend the ompositionality result of Lemma 1 by provingthat P BNDC is losed also with respet to the repliation operator. Then wepresent a proof system for P BNDC proesses.3.1 Compositionality of P BNDC wrt !We start by observing that the proesses reahable from !E have the form of aparallel omposition of a �nite number of proesses reahable from E and !E.Lemma 2. Let E 2 E ! be a proess. If !E  E0, then there exist n � 0 andE1; : : : ; En suh that E  Ei, for i = 1; : : : ; n and E0 � E1jE2j : : : jEnj!E:Hene the set fE1; : : : ; Eng of proesses reahable from E haraterizes theproess E1jE2j : : : jEnj!E reahable from !E.There is an interesting onnetion between the proesses reahable from Eand the proesses reahable from !E when E is P BNDC : if the sets fF1; : : : ; Fngand fG1; : : : ; Gng of proesses reahable from E are pairwise weakly bisimilaron low ations, i.e., Fi �l Gi, this relation is preserved also on the proessesreahable from !E that they haraterize.Lemma 3. Let E be a P BNDC proess and 8i 2 f1; ::; ng Fi; Gi be reahablefrom E. If 8i 2 f1; ::; ng Fi �l Gi then F1jF2 : : : jFnj!E �l G1jG2 : : : jGnj!E:The two previous lemmas, together with the unwinding ondition (see The-orem 1), allow us to prove that P BNDC is ompositional with respet to therepliation operator.Theorem 2. Let E 2 E ! be a proess. If E 2 P BNDC, then !E 2 P BNDC.3.2 A Proof System for Proesses with RepliationsIn [4℄ it has been presented a proof system whih allows us to build P BNDCproesses in an inremental way. The proof system is omposed by a set of ruleswhose onlusions are in the form E 2 HP [A℄, where A is a set of onstants.The intended meaning of the judgment is that E is a P BNDC proess providedthat all the onstants in A are P BNDC . The set A plays the role of a set ofassumptions: if it is empty then E is P BNDC otherwise we are still workingon our onstrution under open hypothesis. It is immediate to observe that thesystem desribed in [4℄ is orret also using set of proesses, instead of set ofonstants, as assumptions. Hene, in this setion the meaning of E 2 HP[A℄ isthat E is a P BNDC proess provided that all the proesses in A are P BNDC .We show how to exploit Lemma 1 and Theorem 2 in order to extend the systemto the ase of proesses with repliation. In partiular, let us onsider the proofsystem System ! whose rules are shown in Figure 21.1 We use E[F=G℄ to denote the proess we obtain by replaing all the ourrenes of Gin E with F , where G denotes a proess whose ourrenes in E an be syntatiallyand unambiguously identi�ed. 6



E 2 HP [fEg℄ E is a proess (Pro)E 2 HP [;℄ E 2 E !L (Low) E 2 HP [;℄ E 2 E !H (High)E 2 HP[A℄E n v 2 HP[A℄ (Rest) E 2 HP [A℄E[f ℄ 2 HP [A℄ (Label)E 2 HP [A℄ F 2 HP[B℄EjF 2 HP [A [B℄ (Par)Ei 2 HP[Ai℄ Fj 2 HP[Bj ℄Pi2I ai:Ei +Pj2J(hj :Fj + �:Fj) 2 HP [[IAi [ [JBj ℄ ai 2 L [ f�g; hj 2 H(Choie)E 2 HP[A℄!E 2 HP[A℄ (Repl) E[G℄ 2 HP[A℄ F 2 HP[B℄E[F=G℄ 2 HP[(A n fFg) [B℄ (Subst)Fig. 2. The proof system System !Theorem 3 (Corretness). System ! is orret, i.e., if there exists a proof inSystem ! whih ends with E 2 HP [A℄, then E is P BNDC provided that all theproesses in A are P BNDC.Corollary 1. Let E 2 E !. If there exists a proof of E 2 HP [;℄, then E isP BNDC .Example 1. Consider the proess CH de�ned asCH � ((in0:(out0:�:0+ �:�:0) + in1:(out1:�:0+ �:�:0))j!(�:(in0:(out0:�:0+ �:�:0) + in1:(out1:�:0+ �:�:0)))) n f�; �gwhere in0; in1; �; � 2 L and out0; out1 2 H . This proess CH is a hannel whihmay aept a value 0 (or 1) through the low level input in0 (or in1). When itholds a value, it may deliver it through a high level output out0 (or out1). Thehannel an transmit values in�nitely many times. In fat, when the � ation isreahed the proess resets itself and reursively repeats the sequene of ations.This proess is a variation of the hannel desribed in [19℄. It is easy to seethat we an derive the judgement CH 2 HP [;℄ in System !.This example shows that System ! is more powerful than Core of [4℄, in fatCore annot handle any reursive proess. In [4℄ we introdued a more omplexrule to deal with reursion. 7



4 Adding Constant De�nitionsIn this setion we add some onstant de�nitions to our language. Then, exploit-ing the ompositionality of P BNDC with respet to the repliation operator,we prove a ompositionality result for P BNDC with respet to the onstantde�nitions we onsider. We do not add all onstant de�nitions, sine in CCS,di�erently from �-alulus [24℄, repliation is not expressive enough to representall onstant de�nitions [7℄.4.1 De�nitions using RepliationsIn standard CCS [19℄ omplex reursive systems are de�ned parametrially, asZ def= E[Z℄; where Z is a proess identi�er and E[Z℄ a proess expression whihmay ontain \alls" to Z as well as to other parametri proesses.Example 2. Consider the proess Z reursively de�ned as Z def= a:Z + b:0: Intu-itively this proess an perform either an ation a and return in its initial stateor an ation b and terminate. Similarly it is possible to onsider two mutuallyde�ned proessesX and Y where X performs an ation a and then alls Y ; whileY performs an ation b and alls X . Their de�nitions areX def= a:Y Y def= b:XThis way of de�ning reursive proesses was taken as basi in [9℄ and in otherprevious works on P BNDC (see [4℄). In the ontext of the �-alulus in [20℄,an enoding is de�ned whih eliminates a �nite number of onstant de�nitionsusing repliation. As already notied in [24℄, the same enoding applied to fullCCS does not work (see also Remark 1). In what follows we identify a fragmentof CCS on whih the enoding is orret.Let At = L[f�g be a set of ations, with L partitioned into the two sets Hand L, as desribed in Setion 2.1. Let C be a �nite set of onstants. Considerall the proesses D whih an be obtained using the following produtions:D ::= 0 j a:D j D +D j DjD j Zwhere Z 2 C is a onstant whih must be assoiated to a de�nition Z def= D.Let Edef be the set of proesses de�ned with this syntax. Given a proess D,onst(D) denotes all the onstants whih our in D. We say that a proess Dis onstant-free if onst(D) = ;.In order to de�ne the semantis of the proesses in Edef we add to the rulesof Figure 1 the following rule to deal with onstant de�nitions.Constant if Z def= DZ �! DThis rule tells us that if Z def= D then Z performs a � transition and then behavesas D. 8



Example 3. Let Z be the onstant de�ned in Example 2. By applying one therule Constant we obtain that Z �! a:Z + b:0, then either a:Z + b:0 b! 0 ora:Z + b:0 a! Z. In the seond ase we an apply again the rule Constant.All the proesses in Edef an be translated into an equivalent (bisimilar)proess of the language E ! presented in Setion 2.1 (i.e., into a proess withrestrition and repliation and without onstant de�nition).We briey reall how the enoding whih removes the onstant de�nitionsworks. Let Z1; : : : ; Zn be n onstants de�ned as Zi def= Di, where for all i =1; : : : ; n onst(Di) � fZ1; : : : ; Zng. Let S = f�1; �1; : : : ; �n; �ng be a new set ofations disjoint from At . We assoiate to the onstant Zi the ations �i and �iand we introdue the notation2:bZi � !(�i:Di[�1:0=Z1; : : : ; �n:0=Zn℄);where in Di eah onstant Zj is replaed by the onstant-free expression �j :0.Sine onst(Di) � fZ1; : : : ; Zng, bZi is a onstant-free expression.De�nition 6 (Enoding of Edef). Let D 2 Edef be a proess with onst(D) �fZ1; : : : ; Zng. Its enoding [[D℄℄ is the onstant-free proess[[D℄℄ � (D[�1:0=Z1; : : : ; �n:0=Zn℄j bZ1j : : : j bZn) n S:In partiular, when D is one of the Zi's we obtain[[Zi℄℄ � (�i:0j bZ1j : : : j bZn) n S:Example 4. Let Z be the onstant de�ned in Example 2. The enoding of Z is[[Z℄℄ � (�:0j bZ)nS,but bZ �!(�:0:((a:Z+b:0)[�:0=Z℄))) �!(�:0:(a:�:0+b:0))) henewe obtain [[Z℄℄ � (�:0j!(�:0:(a:�:0+ b:0)))nS. Note that bZ and [[Z℄℄ are di�erent.Remark 1. In the enoding, the ation �i is used to make a \all to the pro-edure" Zi whih is represented by bZi. The enoding does not work in the fullCCS, sine the sope of the restritions and renamings is not enlarged to thebZi. Consider for instane a onstant Z de�ned as Z def= a:Z and the proessE � (Z)nfag: The proess E an only perform a � ation, then it terminates. Ifwe apply our enoding we obtain [[E℄℄ � ((�:0) n fagj!(�:a:�:0)) n S: Di�erentlyfrom E, the proess [[E℄℄ performs a � , and then it is able to perform an ationa, sine in bZ the ation a is allowed. Atually, we an overome this problemand de�ne a orret translation for E (see De�nition 7). Another proess whihannot be translated is obtained using two mutual reursive onstant de�nitionsX def= (a:X jb:a:Y ) n fa; ag Y def= (b:Y ja:b:X) n fb; bg2 We use the notation D[Z1; : : : ; Zn℄ when we want to stress the fat that the onstantsZ1; : : : ; Zn an our in D. 9



The proess F � X an perform only b and � ations. Its enoding would be theproess [[F ℄℄ de�ned as(�X :0j!(�X :((a:�X :0jb:a:�Y :0) n fa; ag))j!(�Y :((b:�Y :0ja:b:�X :0) n fb; bg))) n S:The proess [[F ℄℄ an perform also a ations, sine the restrition on a is notapplied to bY . The solution we will apply later to enlarge the enoding annotbe applied to this proess.The following theorem states the observational equivalene between D and[[D℄℄ when D belongs to Edef . Sine D 2 Edef and [[D℄℄ 2 E ! the bisimulation weestablish is a relation on Edef � E !.Theorem 4. For eah D 2 Edef it holds D � [[D℄℄.The ations �i's introdued in the enoding are neither high nor low levelations. They are used only in the enoding, in order to obtain onstant free-proesses, but they are not visible outside beause of the outmost restrition.Indeed, they are introdued only to �re in�nitely many times the ations of theDi's. Nevertheless, we have to deide how to treat them in the de�nition of theattakers and in the de�nition of the low level observational equivalene. Weonsider this issue in the next setion.Before moving to our seurity property we show how to apply the enodingto a riher language in whih restrition and renaming an be used \outside"the reursive de�nitions. In partiular, onsider all the proesses E de�ned bythe following produtions:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j!E j Zwhere Z 2 C is a onstant whih must be assoiated to a de�nition Z def= D,with D 2 Edef . Let Edef! be the set of proesses de�ned with this syntax.Sine the onstants are de�ned using proesses in Edef , by Theorem 4, we havethat Z � [[Z℄℄. Observing that � is a ongruene on our language we immediatelyget that the following enoding an be applied to the proesses in Edef!.De�nition 7 (Enoding of Edef!). Let E 2 Edef! be a proess with onst(E) �fZ1; : : : ; Zng its enoding ffEgg is the onstant-free proessffEgg � E[[[Z1℄℄=Z1; : : : ; [[Zn℄℄=Zn℄:Corollary 2. For eah E 2 Edef! it holds E � ffEgg.Example 5. Consider the onstant Z and the proess E de�ned in Remark 1.The proess E is in Edef!. Its enoding is ffEgg � ((�:0j!(�:a:�:0)) n S) n fag:Now, we orretly obtain that E performs a � transitions, then it terminates.The onstants X and Y of Remark 1 do not belong to Edef!. In fat, in orderto translate X we would need a orret enoding of Y , and this is not possiblewithout a orret enoding of X , i.e., we enter in a loop. We an onlude thatEdef! is still not expressive as CCS with onstant de�nitions. On the other hand,Corollary 2 says that Edef! is expressive as E !. The relation between Edef! andEdef is still an open problem; we onjeture that Edef! is more powerful.10



4.2 P BNDC and De�nitionsLet At = L[H [f�g as de�ned in Setion 2.1. Let S be a new set of (synhro-nization) ations suh that S \At = ; and S = S, i.e., S is losed with respetto the omplementation operation. In what follows we onsider as set of ationsAt 0 = L[H [ f�g [ S. Moreover, we require that if f is a relabelling funtion,then 8� 2 S; f(�) = �. As previously observed the ations of S do not represent`real' ations, but they are only instrumental for the enoding. The proesses westart with have no ations in S, while their enodings do. For this reason it isneessary to deide how to treat S with respet to our seurity notions. In orderto keep the ompositionality of P BNDC it is onvenient to assimilate them tolow level ations. Therefore, the high level attaker annot perform them andthe low level user an observe them. In this way we an treat in a ompositionalway also proesses in whih these ations our. In partiular, we extend theonept of weak bisimulation on low ations onsidering the ations in S as ifthey were ations in L. With a slight abuse of notation from now on we say thattwo proesses E;F 2 Edef! (built also using ations in S) are weakly bisimilaron low ations, denoted by E �l F , if there exists a symmetri binary relationR � Edef! � Edef! suh that if (E;F ) 2 R, then for all a 2 L [ S [ f�g,� if E a! E0, then there exists F 0 suh that F â=) F 0 and (E0; F 0) 2 R.Clearly �l is still the largest weak bisimulation on low ations and it is anequivalene relation. Moreover it is still true that E �l F i� E nH � F nH .Using this de�nition of �l the notions of BNDC and P BNDC an be on-sistently transposed. Notie that using these extended de�nitions Theorem 1and Theorem 2 ontinue to hold. As far as Lemma 1 is onerned some trivialhanges are neessary. In partiular, let Edef!HS (EdefHS) be the set of all proessesin Edef! (Edef) onstruted over H [ S [ f�g. Similarly, let Edef!LS (EdefLS ) be theset of all proesses onstruted over L [ S [ f�g and Edef!HL (EdefHL) be the set ofall proesses onstruted over L [ H [ f�g. In the �rst sentene of Lemma 1it is neessary to onsider onstant-free proesses in Edef!LS [ Edef!H . In the thirdsentene the ations ai's an range over L[S [ f�g. Moreover, from Theorem 4we immediately get the following result.Corollary 3. Let Z1; : : : ; Zn be onstants de�ned as Zi def= Di, with Di 2 EdefHLfor i = 1; : : : ; n. If for all i = 1; : : : ; n it holds onst(Di) � fZ1; : : : ; Zng and[[Zi℄℄ 2 P BNDC, then all the Zi's are P BNDC .4.3 Extension of the Proof System to Proesses with De�nitionsIn order to deal with the language extended with the ations in S and with theonstant de�nitions we have to modify some of the rules of the proof systemdesribed in Setion 3.2 and to add new rules to deal with onstant de�nitions.In partiular, we hange the rules (Low) and (Choie) by onsidering L [ Sinstead of L and by adding \E is onstant-free" to the rules (Low) and (High).Then we add the following rules to deal with onstant de�nitions11



E n S 2 HP[;℄ E 2 Edef!HS ; E is onstant-free (High2)[[Xi℄℄ 2 HP[A℄Xi 2 HP [A℄ (Xi def= Di)ni=1; Di 2 EdefHL (Const)where [[Xi℄℄ is a onstant-free proess.We all Systemdef! the modi�ed system. Corollary 3 ensures its orretness.Example 6. Consider the hannel C as de�ned in [3℄ (see [19℄) and its enoding.C = in0:(out0:C + �:C) + in1:(out1:C + �:C)[[C℄℄ � (�:0j !(�:(in0:(out0:�:0+ �:�:0) + in1:(out1:�:0+ �:�:0)))) n SIt is easy to see that we an derive C 2 HP [;℄ in our extended proof system.Notie that the proess CH desribed in Example 1 is exatly the proess weobtain after a � transition of [[C℄℄.Corollary 4. Let E 2 Edef! be a proess. If there exists a proof of E 2 HP[;℄in Systemdef!, then E is P BNDC .By exploiting the result of Corollary 2 we an add the derived rule below,whih an be used to shorten derivations involving onstant de�nitions:ffEgg 2 HP [A℄E 2 HP[A℄ E 2 Edef!HL (Trans)Example 7. Let Z be de�ned as Z def= l:Z+h:l:0+ �:l:0 and onsider the proessE � l:Z, where l 2 L and h 2 H . By applying rule (Trans) we an diretlyprove that E is P BNDC without expliitly prove that [[Z℄℄ is P BNDC .Example 8. Consider the two proesses X and Y mutually de�ned as followsX def= l:X jY Y def= �:X + h:Xwhere l 2 L and h 2 H . Their enodings in E ! are[[X ℄℄ � (�X :0j!(�X :(l:�X :0j�Y :0))j!(�Y :(�:�X :0+ h:�X :0))) n S[[Y ℄℄ � (�Y :0j!(�X :(l:�X :0j�Y :0))j!(�Y :(�:�X :0+ h:�X :0))) n SIt is easy to derive the judgements [[X ℄℄ 2 HP[;℄ and [[Y ℄℄ 2 HP[;℄ in System !,hene we onlude that X and Y are P BNDC proesses.It is worth notiing that the system proposed in [4℄ annot treat the proess ofExample 8. In fat, as already observed in the introdution, the system of [4℄does not deal with reursive proesses involving the parallel operator.12
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