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Abstract—We present a process calculus for the analysis of
Mobile Ad Hoc Networks (MANETs) and their protocols. Our
calculus captures the ability of a MANET node to broadcast
a message to any other node within its physical transmission
range, and to move in and out of the transmission range of other
nodes in the network. In order to reason about cost-effective
ad hoc routing protocols, we also model unicast and multicast
communications. We show how to use our calculus to prove some
useful connectivity properties of MANETs.
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I. INTRODUCTION

A Mobile Ad Hoc Network (MANET) is a collection of
wireless mobile hosts which cooperate to establish communi-
cations without using any preset infrastructure of centralized
administration. Each device in a MANET is free to move
independently in any direction, and will therefore change its
links to other devices frequently. Each node must forward
traffic unrelated to its own usage, and then be a router. The
devices communicate with each other via radio transceivers
through the protocol IEEE 802.11 (WiFi) [11].

Energy efficiency is an important design criteria, since mo-
bile nodes may be powered by batteries with limited capacity.
Power failure of a node not only affects the node itself but also
its ability to forward packets on behalf of others and thus the
overall network lifetime. For this reason, many research efforts
have been devoted to develop energy-aware routing protocols.

Energy efficient routing protocols use broadcast to transmit
unicast and multicast data packets between nodes. The use of
unicast and multicast has many benefits including power and
bandwidth saving, and lower error rates. Indeed, since radio
signals are likely to overlap with others in a geographical
area, a straightforward broadcasting by flooding is usually
very costly and results in serious redundancy, contention, and
collisions. For this reason, modern ad hoc routing protocols
indicates the real addresses of transmitted packets to reduce
the number of control packets (see, for instance, [1], [9]).

In this paper we present the BUM calculus for the analysis
of Broadcast, Unicast and Multicast communications of mobile
ad hoc networks. This is an extension of CMN (Calculus of
Mobile Ad Hoc Networks) [5] where the connectivity of a
node is represented by a location and a transmission radius.
In our calculus broadcast communications are limited to the
transmission cell of the sender, while unicast and multicast
communications are modelled by specifying, for each output
action, the addresses of the intended recipients of the message.

We show how to use this calculus to prove some useful
connectivity properties of MANETs which can be exploited
to control power/energy consumption and reduce interference.

The proofs of the results presented in the paper as well as a
concrete example using the AODV protocol are reported in [3].

Plan of the paper: Section II presents the BUM calculus
together with its semantics. Section III defines an equivalent
lts-semantics, based on bisimilarity. Connectivity properties
for MANETs are studied in Section IV.

II. THE CALCULUS

We introduce the BUM calculus that models mobile ad hoc
networks as a collection of nodes, running in parallel, and
using channels to broadcast messages. Our calculus extends
CMN [5] to support multicast and unicast communications,
and allows one to model the arbitrary and unexpected connec-
tions and disconnections of nodes.

We use letters c and d for channels; m and n for nodes; l,
k and h for locations; r for transmission radii; x, y and z for
variables. Closed values contain nodes, locations, transmission
radii and any basic value (booleans, integers, ...). Values
include also variables. We use u and v for closed values and
w for (open) values. We denote by ṽ, w̃ tuples of values.

The syntax of BUM is shown in Table I. Networks are
collections of nodes (which represent devices), running in
parallel, using channels to communicate messages. As usual, 0
denotes the empty network and M1|M2 represents the parallel
composition of two networks. Processes are sequential and
live within the nodes. Process 0 denotes the inactive process.
Process c(x̃).P can receive a tuple w̃ of (closed) values via
channel c and continue as P{w̃/x̃}, i.e., as P with w̃ substi-
tuted for x̃ (where |x̃| = |w̃|). Process c̄L〈w̃〉.P can send a
tuple of (closed) values w̃ via channel c and continue as P. The
tag L is used to maintain the set of locations of the intended
recipients: L =∞ represents a broadcast transmission, while
a finite set of locations L denotes a multicast communication
(unicast if L is a singleton). Syntactically, L may be a variable,
but it must be a set of locations when the output prefix is ready
to fire. Process [w1 = w2]P,Q behaves as P if w1 = w2, and
as Q otherwise. We write A〈w̃〉 to denote a possibly recursive
process defined as A(x̃) def= P , with |x̃| = |w̃|, where x̃
contains all channels and variables that appear free in P .

Each node has a location and a transmission radius. Nodes
cannot be created or destroyed. We write n[P ]µλ,r for a node
named n (this is the logic location of the device in the



Networks Processes

M,N ::= 0 Empty network P,Q,R ::= 0 Inactive process
|M1|M2 Parallel composition | c(x̃).P Input
| n[P ]µλ,r Node (or device) | c̄L〈w̃〉.P Output

| [w1 = w2]P,Q Matching
| A〈w̃〉 Recursion

TABLE I: Syntax

network), located at λ, with transmission radius r, mobility tag
µ, and executing a process P . The tag µ is m for mobile nodes,
and s for stationary nodes; λ denotes the physical location of
the node, and it is: a generic location l if the device is a mobile
node connected to the network; a fixed location ln if the device
is a stationary, connected, node n; the tag nil if the device is
a mobile node disconnected; the tag nil(ln) if the device is a
stationary, disconnected, node located at ln.

In the process c(x̃).P , the tuple x̃ is bound in P . We denote
by fv(·) and fc(·) free variables and channels, respectively,
and identify processes and networks up to α-conversion. We
denote by

∏
i∈IMi the parallel composition of networks Mi,

for i ∈ I . We write cl for c{l}, c̄L〈w〉 for c̄L〈w〉.0, 0 for
n[0]µλ,r and [w1 = w2]P for [w1 = w2]P,0. We assume that
there are no free variables in a network (while there can be
free channels). Moreover, we assume that in any network each
node identifier is unique.

Reduction Semantics. The dynamics of the calculus is specified
by the reduction relation (−→) over networks, described in
Table II. As usual, it relies on an auxiliary relation, called
structural congruence (≡), such that for instance M |N ≡
N |M , (M |N)|M ′ ≡ M |(N |M ′) and M |0 ≡ M (see [3]
for full details). We assume the possibility of comparing
locations in order to determine whether a node lies or not
within the transmission cell of another node. This is done
through function d(·, ·) which takes two locations and returns
their distance. If one of the arguments is nil or nil(ln) it
returns the value ∞, modelling the fact that nodes which are
not connected to the networks cannot receive any message.

Rule (R-Bcast) models the transmission of a tuple ṽ through
a channel cL. The set L associated to channel c indicates
the locations of the intended recipients. Indeed, nodes com-
municate using radio frequencies that enable only broadcast
messages. However a node may decide to communicate with
a specific group of nodes L. The cardinality of this set
indicates the kind of communication that is used: if L = ∞
then the recipients set is the whole network and a broadcast
transmission is performed, while if L is a finite set (resp., a
singleton) then a multicast (resp., a unicast) communication is
realized. In our calculus transmission is a non-blocking action:
transmission proceeds even if there are no nodes listening for
messages. The messages transmitted will be received only by
those nodes which lie in the transmission area of the sender.
Rule (R-Move) models arbitrary and unpredictable movements
of mobile nodes. δ denotes the maximum distance that a node

can cover in a computational step. Specific rules modelling
arbitrary connections and disconnections of nodes are also
defined. Notice that stationary nodes can only disconnect or
connect, they cannot move. We denote by −→∗ the reflexive
and transitive closure of −→.
Behavioral Semantics. The central actions of our calculus are
transmission and reception of messages. However, only the
transmission of messages can be observed. An observer cannot
be sure whether a recipient actually receives a given value.
Instead, if a node receives a message, then surely someone
must have sent it. Following [6], we use the term barb as
a synonymous of observable. In our definition of barb a
transmission is observable only if at least one location in the
set of the intended recipients is able to receive the message.

Definition 2.1: [Barb] We write M ↓c if M ≡
(n[c̄L〈ṽ〉.P ]µl,r|M ′), when ∃k ∈ L ∧ d(l, k) 6 r. We write
M ⇓c if M −→∗ M ′ ↓c.
Notice that, if M ≡ (n[c̄L〈ṽ〉.P ]µl,r|M ′) and M ↓c then at
least one of the recipients in L is able to receive the message.

To define our observation equivalence we will ask for the
largest relation which satisfies the following properties. Let R
be a relation over networks:
Barb preservation. R is barb preserving if M RN and M ↓c
implies N ⇓c.
Reduction closure. R is reduction closed if M RN and
M −→ M ′ implies that there exists N ′ such that N−→∗N ′
and M ′RN ′.
Contextuality. R is contextual if M RN implies C[M ]RC[N ]
for any context C[·], where C[·] ::= [·] | [·]|M | M |[·] .

Definition 2.2: [Reduction barbed congruence] Reduction
barbed congruence, written ∼=, is the largest symmetric relation
over networks, which is reduction closed, barb preserving, and
contextual.

III. BISIMULATION-BASED PROOF METHOD

We develop a proof technique for the relation ∼=. More
precisely, we define a LTS semantics for BUM terms, which is
built upon the rules in Table III. Transitions for processes are
of the form P

η−→ P ′, where η ranges over input and output
actions of the form cṽ and c̄Lṽ, respectively. Transitions for
networks are of the form M

γ−→ M ′, where γ is as follows:
γ ::= c?ṽ@l | cL!ṽ[l, r] | c!ṽ@K | τ.

Rules for processes are simple and they do not need deeper
explanations. Let us illustrate the rules for networks. Rule
(Snd) models the sending, with transmission radius r, of the
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(R-Bcast)
∀i ∈ I.d(l, li) ≤ r ∧ |x̃| = |ṽ|

n[c̄L〈ṽ〉.P ]µl,r|
∏
i∈Ini[c(x̃i).Pi]

µi

li,ri
−→ n[P ]µl,r|

∏
i∈Ini[Pi{ṽ/x̃i}]

µi

li,ri

(R-sDisc)
−

n[P ]sln,r −→ n[P ]snil(ln),r

(R-sConn)
−

n[P ]snil(ln),r −→ n[P ]sln,r

(R-mDisc)
−

n[P ]ml,r −→ n[P ]mnil,r
(R-mConn)

−
n[P ]mnil,r −→ n[P ]ml,r

(R-Move)
d(l, k) ≤ δ

n[P ]ml,r −→ n[P ]mk,r
(R-Par)

M −→M ′

M |N −→M ′|N
(R-Struct)

M ≡ N N −→ N ′N ′ ≡M ′

M −→M ′

TABLE II: Reduction Semantics

tuple ṽ through channel c to a specific set L of recipients,
while rule (Rcv) models the reception of ṽ at l via channel
c. Rule (Bcast) models the broadcast message propagation: all
the nodes lying within the transmission cell of the transmitter
may receive the message, regardless of the fact that they are
in L. Rule (Obs) models the observability of a transmission:
every output action may be detected (and hence observed) by
any node located within the transmission cell of the sender.
We are interested in observing the output actions reaching
at least one of the intended recipients. The action c!ṽ@K
represents the transmission of the tuple ṽ of messages via c
to a set K of recipients in L, located within the transmission
cell of the transmitter. When K 6= ∅ this is an observable
action corresponding to the barb ↓c. Rule (Lose) models
message loss. Rule (Move) models migration of a mobile node
from a location l to a new location k, where δ represents
the maximum distance that a node can cover in a single
computational step. Arbitrary and unpredictable connections
and disconnections of both stationary and mobile nodes are
modeled by rules (sDisc), (sConn), (mDisc), (mConn). Note
that while a mobile node may reconnect in any arbitrary
location, a stationary one is bound to its specific location.

Lemma 3.1: Let M be a network.

• If M
c?ṽ@l−−−−→ M ′, then there are n, P , µ, l, r and

M1, such that M ≡ (n[c(x̃).P ]µl,r|M1) and M ′ ≡
(n[P{ṽ/x̃}]µl,r|M1).

• If M
cL!ṽ[l,r]−−−−−→ M ′, then there are n, P , µ, l, r,

M1 and I (possibly empty), with ni, Pi, µi, li, ri,
with d(l, li) ≤ r for all i ∈ I , such that: M ≡
(n[c̄L〈ṽ〉.P ]µl,r|

∏
i∈I ni[c(x̃i).Pi]

µi

li,ri
|M1) and M ′ ≡

(n[P ]µl,r|
∏
i∈I ni[Pi{ṽ/x̃i}]

µi

li,ri
|M1).

Lemma 3.2: Let M be a network. It holds that (i) M ↓c
if and only if M c!ṽ@K−−−−→ for some tuple of values ṽ and set
of locations K; (ii) if M τ−→ M ′ then M −→M ′; (iii) if
M −→M ′ then M τ−→≡M ′.

We define a labelled bisimilarity that is a complete charac-
terization of our reduction barbed congruence. It is built upon
the following actions: α ::= c?ṽ@l | c!ṽ@K | τ.

Since we are interested in weak behavioral equivalences,

that abstract over τ -actions, we introduce the notion of weak
action. We denote by ⇒ the reflexive and transitive closure
of τ−→; we use c?ṽ@l=⇒ to denote ⇒ c?ṽ@l−−−−→⇒; we use c?ṽ@F=⇒ to
denote c?ṽ@l1=⇒ . . .

c?ṽ@ln=⇒ for F = {l1, . . . , ln}; we use c!ṽ@K=⇒
to denote c?ṽ@F1=⇒ c!ṽ@K1−−−−−→c?ṽ@F ′

1=⇒ . . .
c?ṽ@Fn=⇒ c!ṽ@Kn−−−−−→c?ṽ@F ′

n=⇒ for
K =

⋃n
i=1Ki, F =

⋃n
i=1(Fi ∪ F ′i ) and F ∩K = ∅; finally,

α̂=⇒ denotes ⇒ if α = τ and α=⇒ otherwise.
Notice that c!ṽ@K=⇒ means that a distributed observer receiv-

ing an instance of message ṽ, at each location in K, in sev-
eral computational steps, cannot assume that those messages
belong to the same broadcast transmission, but they may be
different transmissions of the same message. The presence of
the weak input actions c?ṽ@Fi=⇒ are due to the fact that we want
to ignore all the inputs executed by each location which is not
included in the set of the intended receivers.

Definition 3.3: [Labelled bisimilarity] A binary relation R
over networks is a simulation if MRN implies:

• If M α−→M ′, α 6= c?ṽ@l, then ∃ N ′ such that N α̂=⇒ N ′

with M ′RN ′;
• If M c?ṽ@l−−−−→ M ′ then ∃ N ′ such that either N c?ṽ@l=⇒ N ′

with M ′RN ′ or N ⇒ N ′ with M ′RN ′.
We say that N simulates M if there is some simulation R
such that MRN . A relation R is a bisimulation if both R
and its converse are simulations. Labelled bisimilaty, written
≈, is the largest bisimulation over networks.

Theorem 3.4: Let M and N be two networks. M ∼= N if
and only if M ≈ N .

IV. PROPERTIES OF MOBILE AD HOC NETWORKS

In this section we use the BUM calculus to define and prove
some useful properties of MANETs.

First observe that all the properties described in [5] can be
proved also using our model; the properties we introduce here
cannot be expressed in CMN. We assume that for each process
P executed by a network node, it is possible to identify the
set of all the intended recipients that may appear in an output
action performed by P . We denote by rcv(P ) the minimum
set of locations ensuring that for each output action c̄L〈w̃〉
performed by P it holds that L ⊆ rcv(P ). Indeed, the tag L
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Rules for Processes

(Output)
−

c̄L〈ṽ〉.P
c̄Lṽ−−→ P

(Input)
−

c(x̃).P cṽ−→ P{ṽ/x̃}
(Rec)

P{ṽ/x̃} η−→ P ′ A(x̃) def= P

A〈ṽ〉 η−→ P ′

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 6= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

Rules for Networks

(Snd)
P

c̄Lṽ−−→ P ′

n[P ]µl,r
cL!ṽ[l,r]−−−−−→ n[P ′]µl,r

(Rcv)
P

cṽ−→ P ′

n[P ]µl,r
c?ṽ@l−−−−→ n[P ′]µl,r

(Par)
M

γ−→M ′

M |N γ−→M ′|N

(Bcast)
M

cL!ṽ[l,r]−−−−−→M ′ N
c?ṽ@l′−−−−→ N ′ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−−→M ′|N ′
(Obs)

M
cL!ṽ[l,r]−−−−−→M ′ K ⊆ {k : d(l, k) ≤ r ∧ k ∈ L} K 6= ∅

M
c!ṽ@K−−−−→M ′

(Lose)
M

cL!ṽ[l,r]−−−−−→M ′

M
τ−→M ′

(sDisc)
−

n[P ]sln,r
τ−→ n[P ]snil(ln),r

(sConn)
−

n[P ]snil(ln),r

τ−→ n[P ]sln,r

(Move)
d(l, k) ≤ δ

n[P ]ml,r
τ−→ n[P ]mk,r

(mDisc)
−

n[P ]ml,r
τ−→ n[P ]mnil,r

(mConn)
−

n[P ]mnil,r
τ−→ n[P ]ml,r

TABLE III: LTS rules

associated to an output action occurring in P can be either a
variable or a set of locations, then we are not able to statically
calculate rcv(P ). However, since an ad hoc network is usually
designed to guarantee the communications within a specific
area, we can reasonably assume that the underling protocol
will always multicast messages to recipients located within
the interested area and we can abstractly represent them by a
finite set of locations.

Radius of maximum observability. We can define a “radius of
maximum observability”, that is a radius ensuring the correct
reception of a message from all the locations in the recipients
set. In particular, we define the “minimum radius of maximum
observability”, which corresponds to the distance between the
sender of the message and the most distant recipient. Clearly,
this property is relevant only for stationary nodes, since mobile
nodes can always move within the transmission cell of the
transmitter to receive the communication.

Theorem 4.1: [Radius of maximum observability] Let
n[P ]sλ,r be a stationary node located at ln such that rcv(P ) =
L and d(ln, k) 6 r for all k ∈ L. Then n[P ]sλ,r ≈
n[P ]sλ′,r′ ∀r′ ≥ r. In this case, we say that r is a radius
of maximum observability for n[P ]sλ,r.

Definition 4.2: [Minimum radius of maximum observabil-
ity] Let n[P ]sλ,r be a stationary node located at ln such
that rcv(P ) = L. We say that r is the minimum radius
of maximum observability for n[P ]sλ,r, if r is a radius of
maximum observability, and for all r′ < r it holds that r′

is not a radius of maximum observability for n[P ]sλ,r.
The notion of minimum radius of maximum observability

is relevant when dealing with the problem of power saving,
since it provides us a way of reducing the transmission power
of a node without loosing connectivity.
Simulation of stationary nodes in different locations. The tag L
associated to each output action allows us to express a property
of simulation for stationary devices in different locations. Two
stationary nodes, placed at different locations (with therefore
different neighbors), but communicating with the same set of
intended recipients, result to be observational equivalent.

Theorem 4.3: [Simulation of stationary nodes at different
locations] Let n[P ]sλ,r and m[P ]sλ′,r′ be two stationary nodes
located at ln and lm, respectively. Assume rcv(P ) = L, K =
{k | d(ln, k) ≤ r∧k ∈ L} and K ′ = {k | d(lm, k) ≤ r′∧k ∈
L}. It holds that

1) If K ′ ⊆ K, then n[P ]sλ,r simulates m[P ]sλ′,r′ ;
2) If K = K ′, then n[P ]sλ,r ≈ m[P ]sλ′,r′ .

This property is useful, e.g., to minimize the number of routers
within a network area while ensuring the correct communica-
tion between a given set of locations. If two different routers
exhibit the same behaviour, then one of them can be turn off,
thus allowing one to save both power and physical resources.
Range repeaters. Range repeaters are devices which regenerate
a network signal in order to extend the range of the existing
network infrastructure. Here we generalize the definition of
repeater given in [5] and introduce a notion of complete range
repeater. For simplicity we consider here range repeaters with
one channel; range repeaters with two channels, receiving
values through an input channel and retransmitting them
through an output channel, are studied in [3].
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Definition 4.4: [Range repeater] Let c be a channel, lrr be
a fixed location, r be a transmission radius and L be a set of
locations. A repeater with one channels c relative to L is a
stationary device, denoted by rr[c ↪→L c]slrr,r

, where

c ↪→L c
def= c(x).c̄L〈x〉.c ↪→L c.

Range repeaters are usually exploited to enlarge the trans-
mission cell of a stationary node and, if such a node always
communicates with the same set of devices, each time through
the same channel, by using a range repeater we can simulate
the presence of the sender in the location of the repeater.

Theorem 4.5: [Range repeaters] Let n[P ]sl,r be stationary
with fc(P ) ⊆ {c} and rcv(P ) = L. Let rr[c ↪→L c]slrr,r′

be
a range repeater with d(l, lrr) ≤ r and d(l, lrr) ≤ r′. Then
n[P ]sl,r | rr[c ↪→L c]slrr,r′

simulates n[P ]slrr,r′
.

We introduce the notion of complete range repeater, that
is a repeater which has a radius large enough to reach all its
intended recipients.

Definition 4.6: [Complete range repeater] A range repeater
rc[c ↪→L c]slrc,r

is said complete with respect to L if L ⊆ K
where K = {k : d(lrc, k) 6 r}.

Theorem 4.7: [Complete range repeaters] Let n[P ]sl,r be a
stationary node such that fc(P ) ⊆ {c} for some channel c
and rcv(P ) = L. Let rc[c ↪→L c]slrc,r′

be a complete range
repeater with respect to L and d(l, lrc) ≤ r. Then all the
recipients in L are reachable by n, i.e., ∀k ∈ L, it holds that
d(k, l) 6 (r + r′).

Interference. As stated in the introduction, one of the most
critical problems in managing an ad hoc network is the power
consumption. A technique based on topology control can be
used to reduce the initial topology of the network in order to
save energy and extend the lifetime of the network. Choosing a
low transmission power for a node will reduce its connectivity
within the network, but it will also reduce its power con-
sumption. The foremost approach to achieve substantial energy
consumption while preserving network connectivity consists in
minimizing interference between network nodes.

Following the definition of interference introduced in [2],
we can define the level of interference relative to a transmis-
sion as the number of network nodes listening the transmitted
message, but not interested in receiving it.

Definition 4.8: [Interference] Let cL!ṽ[l, r] be an output
action, and K = {k : d(l, k) ≤ r}. The level of interference
relative to cL!ṽ[l, r] is defined as: I(cL!ṽ[l, r]) = |K − L|.

If the set of nodes not interested in receiving the message
is empty, i.e., if I(cL!ṽ[l, r]) = 0, then we say that the
communication is interference-free.

Using our model, we can formalize the absence of interfer-
ence for a network node by comparing the behaviour of that
node with the behaviour of the same node but broadcasting
its messages to the whole network. If the two behaviours are
bisimilar, then we can state that only the specified recipients
of the node are able to listen the transmitted messages, i.e., the
node transmissions are not received by any other node which
is not in the recipients set.

We define the broadcasting version of a process P , noted
brd(P ), as:
• if P = 0 then brd(P ) = 0;
• if P = c(x̃).P ′ then brd(P ) = c(x̃).brd(P ′);
• if P = c̄L〈ṽ〉.P ′ then brd(P ) = c̄∞〈ṽ〉.brd(P ′).
• if P = [w1 = w2]Q,R then
brd(P ) = [w1 = w2]brd(Q), brd(R).

Definition 4.9: [Absence of Interference] A node n[P ]µl,r is
interference-free if n[P ]µl,r ∼= n[brd(P )]µl,r.

Theorem 4.10: If n[P ]µl,r is interference-free then for all
output actions cL!ṽ[l, r] performed by n[P ]µl,r it holds that
I(cL!ṽ[l, r]) = 0.

V. CONCLUSION

Ad hoc networks is a new area of mobile communication
networks that has attracted significant attention due to its chal-
lenging research problems. Many researchers have proposed
formal models [10], [4], [7], [8], [5] in order to reason on
MANETs properties and problems. The main limitations of
CMN are the absence of rules for arbitrary connections and
disconnections of nodes, and the impossibility of representing
multicast and unicast communications.

In this paper we extended CMN by associating a tag to each
transmission; the tag represents a set of recipients and enables
us to prove some important connectivity properties.
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