
Bridging Language-Based and Process Calculi Security?
Riccardo Focardi1, Sabina Rossi1, and Andrei Sabelfeld21Dipartimento di Informatica, Università Ca’ Foscari di Venezia, 30172 Venezia, Italy

E-mail:ffocardi,srossig@dsi.unive.it2Dept. of Computer Science, Chalmers University of Technology, 41296 Göteborg, Sweden
E-mail: andrei@cs.chalmers.se

Abstract. Language-based and process calculi-based information security are
well developed fields of computer security. Although these fields have much in
common, it is somewhat surprising that the literature lacksa comprehensive ac-
count of a formal link between the two disciplines. This paper develops such a
link between a language-based specification of security anda process-algebraic
framework for security properties. Encoding imperative programs into a CCS-
like process calculus, we show that timing-sensitive security for these programs
exactly corresponds to the well understood process-algebraic security property
of persistent bisimulation-based nondeducibility on compositions (P BNDC).
This rigorous connection opens up possibilities for cross-fertilization, leading to
both flexible policies when specifying the security of heterogeneous systems and
to a synergy of techniques for enforcing security specifications.

1 Introduction

As computing systems are becoming increasingly complex, security challenges become
increasingly versatile. In the presence of such challenges, we believe that practical se-
curity solutions are unlikely to emerge from a single theoretical framework, but rather
need to be based on a combination of different specialized approaches. The goal of this
paper is to develop a flexible way of specifying the security of heterogeneous systems—
using a combination of language-based definitions and process-algebraic ones. The in-
tention is to be able to specify security partly by language-based security models (e.g.,
for parts of the system that are implemented by code with no communication) and partly
by process-algebraic models (e.g., communication-intensive parts of the system). This
combined approach empowers us with a synergy of techniques for enforcing security
properties (e.g., combining security type systems with process equivalence checking) to
analyze parts of the system separately and yet establish thesecurity of the entire system.

Language-based information security [27] and process calculus-based information
security [7, 25] are well developed fields of computer security. Although process calculi
are programming languages, there are different motivations and traditions in address-
ing information security by the two communities. While the former is concerned with
preventing secret data from being leaked through the execution of programs, the latter
deals with preventing secret events from being revealed through the execution of com-
municating processes. Although these fields have much in common (e.g., both rely on? This work was supported by the EU-FET project MyThS (IST-2001-32617).

noninterference[12] as a baseline security policy stating that secrets do not interfere
with the attacker-observable behavior of the system), it issomewhat surprising that the
literature lacks a comprehensive account of a formal link between the two disciplines
(which in particular means that it has not been established whether the interpretations
of noninterference by the two disciplines are compatible).

This paper develops a rigorous link between a language-based specification of secu-
rity for imperative programs and a process-algebraic framework of security properties.
More specifically, we link two compositional security properties: a timing-sensitive se-
curity characterization for a simple imperative language and a persistent security char-
acterization for a CCS-like process calculus. We achieve this connection through the
following steps:(i) we uniform the semantics of the imperative language to the standard
Labelled Transition Systemsemantics of process calculi, by making read/write memory
actions explicitly observable as labelled transitions;(ii) based on this semantics, we
formalize low level observations in the imperative language in terms of a bisimulation
relation;(iii) we encode the programming language into the process calculus, ensuring
a lock-step semantic relation between the source and targetlanguages; we prove that the
new bisimulation notion for the imperative language is preserved by the encoding;(iv)
this tight relation reveals some unexpected uniformities allowing us to precisely iden-
tify what the program security characterization corresponds to in the process-calculus
world: it turns out to be the well understood property of persistent bisimulation-based
nondeducibility on compositions (orP BNDC).

Such a link opens up various possibilities for cross-fertilization, leading to flexible
policies when specifying the security of complex systems and to a rich combination of
techniques for enforcing security specifications. Findingexactly what property from the
family of process-algebraic properties [7, 9] correspondsto the language-based timing-
sensitive security sheds valuable light on the nature of thelanguage-based property. As
a direct benefit, the results of this paper enable us to use security checkers based on
process-equivalence checking (such as CoSeC [6] and CoPS [23], with the latter one
based precisely onP BNDC) for certifying language-based security.

For clarity, this paper uses a simple sequential language. However, it is a distributed
setting that will enable us to fully capitalize on the formalconnection. Indeed, the se-
curity specifications for both the source (imperative) and target (process algebraic) lan-
guages are compositional [28, 9]. Because the source-language security specification is
suitable for both multithreaded [28] and distributed [26, 21] settings, we are confident
that the formal link established in this paper can be generalized to a distributed scenario,
where different components can be analyzed with specialized techniques. For example,
communication-intensive parts of the system (where conservative language-based se-
curity mechanisms for the source language such as type systems are too restrictive) can
be analyzed at the level of the target language, gaining on the precision of the analysis.

The paper is organized as follows. Section 2 presents the source imperative language
Imp and the target process-algebraic language VSPA. Section 3 develops an encoding
of the source language into the target language and demonstrates a semantic relation
between Imp’s programs and their VSPA’s translations. Section 4 establishes a formal
connection between the security properties of the two languages. The paper closes by
discussing related work in Section 5 and conclusions and future work in Section 6.

hjskip; sji tik! hjstop; sjihjExp; sji # vhjId := Exp; sji tik! hjstop; [Id 7! v℄sjihjC1; sji tik! hjstop; s0jihjC1;C2; sji tik! hjC2; s0ji hjC1; sji tik! hjC01; s0jihjC1;C2; sji tik! hjC01;C2; s0jihjB; sji # Truehjif B then C1 else C2; sji tik! hjC1; sjihjB; sji # Falsehjif B then C1 else C2; sji tik! hjC2; sjihjB; sji # Truehjwhile B do C; sji tik! hjC; while B do C; sjihjB; sji # Falsehjwhile B do C; sji tik! hjstop; sji
Fig. 1. Small-step semantics of Imp commands

The proofs of the results presented in this paper are reported in [10].

2 The source language and target calculus

In this section, we present Imp, the source imperative language, and VSPA, the target
process calculus, along with security definitions for the respective languages.

2.1 The Imp programming language

We consider a simple sequential programming language, Imp [30], described by the
following grammar: B;Exp ::= F (Id ; : : : ; Id)C ::= stop j skip j Id := Exp j C;C j if B then C else C j while B do C
Let C;D; : : : range over commands (programs),Id ; Id1; : : : range over identifiers
(variables),B;B1; : : : , Exp;Exp1; : : : range over boolean and arithmetic expressions,
respectively,F; F1; : : : range over function symbols, and, finally,v; v1; : : : range over
the set of basic valuesVal . For simplicity, but without loss of generality, we assume
that exactly one function symbol occurs in an expression.

A configurationis a pairhjC; sji of a commandC and a state (memory)s. A states is a finite mapping from variables to values. The small-step semantics are given by
transitions between configurations, defined by standard transition rules (see Fig. 1).

Arithmetic and boolean expressions are executed atomically by # transitions. The
tik!

transitions are deterministic. The general form of a deterministic transition ishjC; sji tik!

hjC 0; s0ji. Here, one step of computation starting with a commandC in a states gives a
new commandC 0 and a new states0. There are no transitions from configurations that
contain the terminal programstop. We write [Id 7! v℄s for the state obtained froms
by setting the image ofId to v. For example, the assignment rule describes one step of
computation that leads to termination with the state updated according to the value of
the expression on the right-hand side of the assignment.

Security specification We assume that the set of variables is partitioned intohighand
low security classes corresponding to high and low confidentiality levels. Note that our
results are not specific to this security structure (which isadopted for simplicity)—a
generalization to an arbitrary security lattice is straightforward. Variablesh andl will
denote typical high and low variables respectively. Two statess and t are low-equals =L t if the low components ofs andt are the same.

Confidentiality is preserved by a computing system if low-level observations reveal
nothing about high-level data. The notion of noninterference [12] is widely used for
expressing such confidentiality policies. Intuitively, noninterference means that low-
observable behavior is unchanged as high inputs are varied.The indistinguishability
of behavior for the attacker can be represented naturally bythe notion ofbisimulation
(e.g., [7, 28]). The following definition is recalled from [28]:

Definition 1. Strong low-bisimulationuL is the union of all symmetric relationsR
such that ifC R D then for all statess and t such thats =L t wheneverhjC; sji tik!hjC 0; s0ji then there existD0 andt0 such thathjD; tji tik! hjD0; t0ji, s0 =L t0, andC 0 R D0.
Intuitively, two programsC andD are strongly low-bisimilar if varying the high parts
of memories at any point of computation does not introduce any difference between
the low parts of the memories throughout the computation. Protecting variations at any
point of computation results in a rather restrictive security condition. However, this
restrictiveness is justified in a concurrent setting (whichis the ultimate motivation of
our work) when threads may introduce secrets into high memory at any computation
step. Based on this notion of low-bisimulation, a definitionof security is given in [28]:

Definition 2. A programC is secure if and only ifC uL C.

Examples Because the underlying low-bisimulation is strong, or lock-step, it captures
timing-sensitive security of programs. Below, we exemplify different kinds of informa-
tion flow handled by the security definition:l := h This is an example of anexplicit flow. To see that this program is insecure ac-

cording to Definition 2, take somes andt that are the same excepts(h) = 0 andt(h) = 1. Sincehjl := h; sji tik! hjstop; [l 7! 0℄sji andhjl := h; tji tik! hjstop; [l 7!1℄tji hold, the resulting memories are not low-equal. Because these are the only
possible transitions for both configurations, we havel := h 6uL l := h.

if h > 0 then l := 1 else l := 0 This exemplifies animplicit flow [4] through branch-
ing on a high condition. If the computation starts with low-equal memoriess andt
that are the same excepts(h) = 0 andt(h) = 1, then, after one step of computation

(the test of the condition), the memories are still low-equal. However, after another
computation step they become different inl (0 or 1, depending on the initial value
of h). Because these are the only possible transitions for configurations with boths
andt, the program is not self-low-similar and thus is insecure.

while h > 0 do h := h� 1 Assuming the worst-case scenario, an attacker may ob-
serve the timing of program execution. The attacker may learn the value ofh
from the timing behavior of the program above. This is an instance of atiming
covert channel[19]. The program is rightfully rejected by Definition 2. Indeed,
take somes and t that are the same excepts(h) = 1 and t(h) = 0. We havehjwhile h > 0 do h := h � 1; sji tik! hjh := h � 1;while h > 0 do h :=h � 1; sji tik! hjwhile h > 0 do h := h � 1; [h 7! 0℄sji tik! hjstop; [h 7! 0℄sji
but hjwhile h > 0 do h := h � 1; tji tik! hjstop; tji 6tik! with no transition from the
latter configuration to match the transitions of the previous sequence.

The examples above are insecure. Here is an instance of a secure program:

if h = 1 then h := h+ 1 else skip Indeed, neither the low part of the memory nor the
timing behavior depends on the value ofh. A suitable symmetric relation that
makes this program low-bisimilar to itself is, e.g., the relationf(if h = 1 then h :=h+ 1 else skip; if h = 1 then h := h+ 1 else skip); (h := h+ 1; skip); (skip; h :=h+ 1); (h := h+ 1; h := h+ 1); (skip; skip); (stop; stop)g.

2.2 The VSPA calculus

TheValue-passing Security Process Algebra(VSPA, for short) is a variation of Milner’s
value-passing CCS [22], where the set of visible actions is partitioned into high-level
actions and low-level ones in order to specify multilevel-security systems.

Let E;E1; E2; : : : range overprocesses, x; x1; x2; : : : range overvariables, ; 1;2; : : : range overinput channels, and�; �1; �2; : : : range overoutput channels. As for
Imp, letB;B1; : : : , Exp;Exp1; : : : range over boolean and arithmetic expressions, re-
spectively,F; F1; : : : range over function symbols, and, finally,v; v1; : : : range over the
set of basic valuesVal . (The set of basic valuesVal , and boolean/arithmetic expressions
are the same as in Imp.) The set of visible actions isL = f(v) j v 2 Valg[f(v) j v 2Valg where(v) and(v) represent the input and the output of valuev over the channel, respectively. The syntax of VSPA processes is defined as follows:E ::= 0 j (x):E j �(Exp):E j �:E j E1 +E2 j E1jE2 j E nR j E[g℄ jA(Exp1; : : : ;Expn) j if B thenE1 elseE2B;Exp ::= F (x1; : : : ; xn)
Each constantA is associated with a definitionA(x1; : : : ; xn) def= E, wherex1; : : : ; xn
are distinct variables andE is a VSPA process whose only free variables arex1; : : : ; xn.R is a set of channels andg is a function relabeling channel names which preserves the
complementation operator��. Finally, the set of channels is partitioned intohigh-level
channelsH and low-levelonesL. By an abuse of notation, we write(v); (v) 2 H
whenever; 2 H , and similarly forL.

(x):E (v)�! E[v=x℄ (v):E (v)�! E �:E ��! EE1 a�! E01E1 +E2 a�! E01 E2 a�! E02E1 +E2 a�! E02E1 a�! E01E1jE2 a�! E01jE2 E2 a�! E02E1jE2 a�! E1jE02 E1 (v)�! E01 E2 (v)�! E02E1jE2 ��! E01jE02E a�! E0E[g℄ g(a)�! E0[g℄ E a�! E0 a =2 RE nR a�! E0 n RE[v1=x1; : : : ; vn=xn℄ a�! E0 A(x1; : : : ; xn) def= EA(v1; : : : ; vn) a�! E0E1 a�! E01
if True thenE1 elseE2 a�! E01 E2 a�! E02

if False thenE1 elseE2 a�! E02
Fig. 2. VSPA operational semantics

Intuitively, 0 is the empty process;(x):E is a process that reads a valuev 2 Val
from channel assigning it to variablex; (Exp):E is a process that evaluates ex-
pressionExp and sends the resulting value as output over; E1 + E2 represents the
nondeterministic choice between the two processesE1 andE2; E1jE2 is the parallel
composition ofE1 andE2, where executions are interleaved, possibly synchronizedon
complementary input/output actions, producing an internal action � ; E n R is a pro-
cessE prevented from using channels inR; E[g℄ is the processE whose channels are
renamedvia the relabeling functiong; A(Exp1; :::;Expn) behaves like the respective
definition where the variablesx1; � � � ; xn are substituted with the results of expres-
sionsExp1; � � � ;Expn; finally, if B thenE1 elseE2 behaves asE1 if B evaluates to
True and asE2, otherwise. We implicitly equate processes whose expressions are sub-
stituted by the corresponding values, e.g.,(F (v1; : : : vn)):E is the same as(v):E ifF (v1; : : : vn) = v. This corresponds to the# expression evaluation of Imp. The op-
erational semantics of VSPA is given in Fig. 2. We denote byE the set of all VSPA
processes and byEH the set of all high-level processes, i.e., using only channels inH .

Theweak bisimulationrelation [22] equates two processes if they are able to mutu-
ally simulate each other step by step. Weak bisimulation does not care about internal�
actions. We writeE a=) E0 if E(�!)� a! (�!)�E0. Moreover, we letE â=) E0 stand
for E a=) E0 in casea 6= � , and forE(�!)�E0 in casea = � .

Definition 3 (Weak bisimulation). A symmetric binary relationR � E � E over pro-
cesses is aweak bisimulationif whenever(E;F) 2 R andE a! E0, then there existsF 0 such thatF â=) F 0 and(E0; F 0) 2 R.

Two processesE;F 2 E areweakly bisimilar, denoted byE � F , if there exists a
weak bisimulationR containing the pair(E;F). The relation� is the largest weak
bisimulation and it is an equivalence relation [22].

Persistent BNDC security In [9] we give a notion of security for VSPA processes
calledPersistent BNDC, whereBNDC stands forBisimulation-based Nondeducibility
on Compositions. BNDC [5] is a generalization to concurrent processes of noninterfer-
ence [12], consisting of checking a processE against all high-level processes� .

Definition 4 (BNDC). LetE 2 E . E 2 BNDC iff 8� 2 EH ; E nH � (Ej�) nH .

Intuitively, BNDC requires that high-level processes� have no effect at all on the
(low-level) execution ofE.

To introducePersistent BNDC(P BNDC) we define a new observation equivalence
where high-level actionsmaybe ignored, i.e., they may be matched by zero or more�
actions. An actiona is high if a is either an input(v) or an output(v), over a high-
level channel 2 H . Otherwise,a is low. We write~a to denotêa if a is low, anda or �̂
if a is high. We now define weak bisimulation up to high, by just using ~a in place ofâ,
thus allowing high-level actions to be simulated by (possibly empty) sequences of� ’s.

Definition 5 (Weak bisimulation up to high). A symmetric binary relationR � E�E
over processes is aweak bisimulation up to highif whenever(E;F) 2 R andE a! E0,
then there existsF 0 such thatF ~a=) F 0 and(E0; F 0) 2 R.

We say that two processesE;F areweakly bisimilar up to high, writtenE �nH F , if(E;F) 2 R for some weak bisimulation up to highR.

Definition 6 (P BNDC). LetE 2 E . E 2 P BNDC iff E nH �nH E:
Intuitively, P BNDC requires that forbidding any high-level activity (by restriction) is

equivalent to ignoring it. For example, processE def= h:�l + �l is P BNDCsince the high
level inputh is simulated, inE n H , by not moving. Indeed, the high level activity is
not visible to the low level users who can only observe the lowlevel output�l. Notice
that this secure process allows some low level actions to follow high actions.

It has been proved [9] thatP BNDC corresponds to requiringBNDC over all the
possible reachable states. This is why we call itPersistent BNDC.

Proposition 1. E 2 P BNDC iff 8 E0 reachable fromE;E0 2 BNDC .

Note thatP BNDC is similarly spirited to Imp’s security definition. In particular, the� process inBNDC corresponds to the possibility for arbitrary changes in thehigh
part of state over the computation. Further, persistence inP BNDC corresponds to
requiring strong low-bisimulation on reachable Imp commands. There are also obvious
differences, highlighting the specifics of the applicationdomains of the two security
specifications:P BNDC is concerned with protecting the occurrence of high events
whereas program security protects high memories.

P BNDC satisfies useful compositionality properties and is much easier to check
thanBNDC, since no quantification over all possible high-level processes is required.

Example We give a very simple example of an insecure process. In particular, we show
an indirect flow due to the possibility for a high-level user to lock and unlock a process:E def= hlok:hunlok:l+ l

s(Id) = vhjC; sji egetId (v)! hjC; sji hjC; sji eputId (v)! hjC; [Id 7! v℄sji hjC; sji a! hjC0; s0ji a =2 RhjC; sji n R a! hjC0; s0ji n R
Fig. 3. Semantic rules for environment

wherehlok andhunlok are high-level channels andl is a low-level one. (To sim-
plify we are not even sending values over channels.) At a firstglance, processE seems
to be secure as it always performsl before terminating, thus low-level users should
deduce nothing of what is done at the high level. However, a high-level user might lock
the process throughhlok and never unlock it, thus leading to an unexpected behavior
sincel would be locked too. This ability for a high-level user to synchronize with a
low-level one constitutes an indirect information flow and is detected byP BNDCsinceE hlok! hunlok:l cannot be simulated byE nH . In fact,E nH can execute neither
high-level actions nor� ones, thus the only possibility it has to simulatehlok is not
moving. However, this simulation is fine as long as the reached states are bisimilar up
to high, i.e.,hunlok:l �nH E nH , but this is not true.

3 Mapping Imp into VSPA

With the source and target languages in place, this section develops an encoding of the
former into the latter. The encoding is done in two steps: enriching Imp’s semantics with
process calculi-style environment interaction rules and encoding the extended version of
Imp into VSPA. A lock-step relation of Imp’s executions withtheir VSPA’s translations
guarantees that the encoding is semantically adequate.

3.1 Extending Imp semantics

The original definition of strong low-bisimulation (Definition 1) implicitly takes into
account an environment that is capable of both reading from and writing to the state at
any point of computation. Alternatively, and rather naturally, we can represent this envi-
ronment explicitly, by the semantic rules for reading and modifying the state, depicted
in Fig. 3. Reading the valuev of a variableId is observable by an actionegetId (v);
writing the valuev to Id is observable by an actioneputId (v). (We adopt the process
calculi convention of using�� to denote output actions.)

Assumea 2 ftik; eget�(�); eput�(�)g. Action a is high (a 2 H) if for some
high variableId we have eithera = egetId (�) or a = eputId (�). Otherwise,a islow (a 2 L). High and low actions represent high and low environments,respectively.
Similarly to VSPA’s restriction, we define a restriction on actions in the semantics for
Imp, also shown in Fig. 3. For a set of actionsR, anR-restricted configurationhjC; sjinR
behaves ashjC; sji except that its communication on actions fromR is prohibited. The
restriction is helpful for relating the extended semanticsto Imp’s original semantics:
configurationhjC; sji n fegetId (v); eputId (v) j Id is a variable andv 2 Valg behaves
under the extended semantics exactly ashjC; sji under the original semantics.

These extended semantics of Imp are useful for different reasons:(i) They make
read/write actions on the state explicitly observable as labeled transitions in the style
of Labeled Transition Systemsemantics for process calculi. This helps us proving a se-
mantic correspondence in Section 3.2.(ii) Further, the extended semantics allow us to
characterize the security of Imp programs using a notion of bisimulation up to high,
similar to the one defined for VSPA. As a matter of fact, in Section 4, we show how
security of Imp programs can be equivalently expressed in the style ofP BNDC, facil-
itating the proof that the security of Imp programs is the same asP BNDC security of
their translations into VSPA.

3.2 Translation

We translate Imp into VSPA following the translation described by Milner in [22], with
the following important modifications:(i) We make explicit the fact that the external
(possibly hostile) environment can manipulate the shared memory but cannot directly
interact with a program. This is achieved by equipping registers, i.e., processes imple-
menting Imp variables, with read/write channels accessible by the environment. All the
other channels are “internalized” through restriction operators.(ii) We use alok to
guarantee the atomicity of expression evaluations. In fact, Imp expressions are evalu-
ated in one atomic step. Since expression evaluation is translated into a process which
sequentially accesses registers in order to read the actualvariable values, to regain atom-
icity we need to guarantee that variables are not modified during this reading phase.

The language we want to translate contains program variables, to which values may
be assigned, and the meaning of a program variableId is a “storage location”. We
therefore begin by defining a storage register holding a valuev as follows:Reg(v) def= putx:Reg(x) + getv:Reg(v)+lok:(eputx:unlok:Reg(x) + unlok:Reg(v))+lok:(egetv:unlok:Reg(v) + unlok:Reg(v))
(We shall often writeput(x) asputx etc.) Thus, viaget the stored valuev may be
read from the register, and viaput a new valuex may be written to the register. Actionseget andeput are intended to model the interactions of an external observer with the
register. Before and after such actions,lok andunlok are required to be executed
in order to guarantee mutual exclusion on the memory betweenexpression evaluations
and the environment. This implements the atomic expressionevaluation of Imp. We also
have an (abstract) time-out mechanism, that nondeterministically unlocks the registers.
This is necessary to avoid blocking the program by the environment via refusing to
accepteget or to executeeput after the lock has been grabbed. As a matter of fact, we
want the environment to interact with the registers withoutinterfering in any way with
the program execution. The (global) lock is implemented by the process:Lok def= lok:unlok:Lok
For each program variableId , we introduce a registerRegId (y) def= Reg(y)[gId ℄, wheregId is the relabeling functionfputId=put; getId=get; eputId=eput; egetId=egetg.

This representation of registers—or program variables—asprocesses is fundamen-
tal to our translation; it indicates that resources like variables, as well as the programs
which use them, can be thought of as processes, so that our calculus can get away with
the single notion of process to represent different kinds ofentity.

There is no basic notion of sequential composition in our calculus, but we can define
it. To do this, we assume that processes may indicate their termination by a special
channeldone. We say that a process iswell-terminatingif it cannot do any further move
after performingdone; as we will see, the processes which arise from translating Imp
commands are all well-terminating, since they terminate with done:0 (writtenDone)
instead of just0.

The combinatorBefore for sequential composition is as follows:P Before Q def= (P [b=done℄jb:Q) n fbg
whereb is a new name, so that no conflict arises with thedone action performed byQ. It is easy to see thatBefore preserves well-termination, i.e., ifP andQ are well-
terminating then so isP Before Q.

An expression of the language will “terminate” by yielding up its results via the
special channelres, not used by processes. IfP represents such an expression, then we
may wish another processQ to refer to the result by using the value variablex. To this
end, we define another combinator,Into:P Into(x) Q(x) def= (P jres(x):Q(x)) n fresgQ(x) is parametric onx andInto binds this variable to the result of the expressionP .
Notice that we do not need to relabelres to a new channel, as we did with the special
channeldone. Indeed,Q(x) is a process and not an expression, thus it does not use
channelres to communicate with sibling processes and no conflict is everpossible.
Note thatQ(x) might useres into a nestedInto combinator. In this case, however,res
would be inside the scope of a restriction thus not be visibleat this externalInto level.

The translation functionT of Imp commands into VSPA processes is given in Fig. 4.
Each expressionF (Id1; : : : Idn) is translated into a process which collects the values
of Id1; : : : Idn and returnsF (x1; : : : ; xn) over channelres. A states associating vari-
ablesId1; : : : ; Idm to valuess(Id1); : : : ; s(Idm), respectively, is translated into the
parallel composition of the relative registers. The translation of commands is straight-
forward. Note that before and after each expression evaluation we lock and release the
global lock so that the environment cannot interact with thememory while expressions
are evaluated. This achieves atomic expression evaluations as in Imp. ConfigurationshjC; sji are translated as the parallel composition of the globalLok and the translations
of C ands. ACC s = fputId1 ; getId1 ; : : : ; putIdm ; getIdm ; lok; unlokg is the set
of all channels used by commands to access registers, plus the lock commands. Thus,
the restriction overACC s [fdoneg aims both at internalizing all the communications
between commands and registers and at removing the lastdone action. The environ-
ment channelseputId andegetId are not restricted and, together withtik, they are
the only observable actions ofT [[hjC; sji℄℄: eputId andegetId are high if the corre-
sponding Imp variableId is high; all the other observable actions, includingtik, are
low (the security level of unobservable actions is irrelevant for the security definition).

T [[F (Id1; : : : Idn)℄℄ = getId1x1: � � � :getIdnxn:res(F (x1; : : : ; xn)):0T [[s℄℄ = Reg Id1(s(Id1))j : : : jReg Idm(s(Idm))T [[stop℄℄ = 0T [[skip℄℄ = lok:tik:unlok:DoneT [[Id := Exp℄℄ = lok:T [[Exp℄℄ Into(x) (putIdx:tik:unlok:Done)T [[C1;C2℄℄ = T [[C1℄℄ Before T [[C2℄℄T [[if B then C1 else C2℄℄ = lok:T [[B℄℄ Into(x) (if x then tik:unlok:T [[C1℄℄else tik:unlok:T [[C2℄℄)T [[while B do C℄℄ = Z whereZ def= lok:T [[B℄℄ Into(x) (if x then tik:unlok:T [[C℄℄ Before Z else tik:unlok:Done)T [[hjC; sji℄℄ = (T [[s℄℄ j T [[C℄℄ j Lok) nACC s [fdonegT [[hjC; sji nR℄℄ = T [[hjC; sji℄℄ n R
Fig. 4. Translation of commands

Examples Consider the programl := h whereh is a high variable andl is a low one.
These variables are represented by processesRegh(s(h)) andReg l(s(l)) for a states.T [[l := h℄℄ =lok:T [[h℄℄ Into(x) (putlx:tik:unlok:Done)=(lok:gethx:resx:0 j res(x):(putlx:tik:unlok:done:0)) n fresg
(Notice that expressionh can be seen asID(h) whereID is the identity function overVal .) The execution of the translation in a states is as follows wheres0 = [l 7! s(h)℄s:T [[hjl := h; sji℄℄ = (T [[s℄℄ j T [[l := h℄℄ j Lok) n ACC s [fdoneg=(T [[s℄℄ j (lok:gethx:resx:0 j res(x):(putlx:tik:unlok:done:0)) n fresgj Lok) n ACC s [fdoneg (by definition ofT [[l := h℄℄)�!(T [[s℄℄ j (gethx:resx:0 j res(x):(putlx:tik:unlok:done:0)) n fresgj unlok:Lok) n ACC s [fdoneg (by synchronization onlok)�!(T [[s℄℄ j (ress(h):0 j res(x):(putlx:tik:unlok:done:0)) n fresgj unlok:Lok) n ACC s [fdoneg (fetching the values(h) of h fromRegh)�!(T [[s℄℄ j (0 j (putls(h):tik:unlok:done:0)) n fresgj unlok:Lok) n ACC s [fdoneg (passings(h) on res)�!(T [[s0℄℄ j (0 j (tik:unlok:done:0)) n fresgj unlok:Lok) n ACC s0 [fdoneg (updatingReg l with s(h); new state iss0)tik! (T [[s0℄℄ j (0 j unlok:done:0)) n fresgj unlok:Lok) n ACC s0 [fdoneg (performingtik)�!(T [[s0℄℄ j (0 j done:0)) n fresg j Lok) nACC s0 [fdoneg (unlocking)�(T [[s0℄℄ j 0 j Lok) nACC s0 [fdoneg (bisimilarity)=T [[hjstop; s0ji℄℄ (definition of translation)

We have demonstrated thatT [[hjl := h; sji℄℄ ^tik=) P for P such thatP � T [[hjstop; s0ji℄℄.
As another example, the programif h > 0 then l := 1 else l := 0 is translated into:T [[if h > 0 then l := 1 else l := 0℄℄=lok:T [[h > 0℄℄ Into(x)(if x then tik:unlok:T [[l := 1℄℄ else tik:unlok:T [[l := 0℄℄)=(lok:gethx:res(x > 0):0 j res(x):(if x then tik:unlok:T [[l := 1℄℄ else tik:unlok:T [[l := 0℄℄)) n fresg=(lok:gethx:res(x > 0):0 j res(x):(if x then tik:unlok:(lok:res1:0 j res(x):(putlx:tik:unlok:done:0)) n fresgelse tik:unlok:(lok:res0:0 j res(x):(putlx:tik:unlok:done:0)) n fresg)) n fresg

Semantic correspondenceThe propositions below state the semantic correspondence
between anyR-restricted configurationhjC; sjinR and its translationT [[hjC; sjinR℄℄. LetEnv = feget�(�); eput�(�)g denote the set of all the possible environment actions.

Proposition 2. Given anR-restricted configurationfg = hjC; sjinR, withR � Env , iffg a! fg 0 then there exists a processP 0 such thatT [[fg ℄℄ â=) P 0 andP 0 � T [[fg 0℄℄.
Moreover, whena = tikwe have thatT [[fg ℄℄ �̂=) ~P tik�! P 0 and ~P � tik:T [[fg 0℄℄.
Intuitively, every (possibly restricted) Imp configuration move is coherently simulated
by its VSPA translation, in a way that the reached process is weakly bisimilar to the
translation of the reached configuration. Moreover, fortik moves, the translationT [[fg ℄℄ always reaches a state equivalent totik:T [[fg 0℄℄ before actually performing
thetik. Intuitively, this is due to the fact that the lock is released only aftertik is
performed. Notice that ifR = ; there is no restriction at all.

Next proposition is about the other way around: each processwhich is weakly
bisimilar to the translation of a (possibly restricted) Impconfigurationfg always moves
to processes weakly bisimilar to eitherT [[fg 0℄℄ or tik:T [[fg 00℄℄, wherefg 0 andfg 00
are reached fromfg by performing the expected corresponding actions. As for previous
proposition,tik:T [[fg 00℄℄ represents an intermediate state reached before performing
the actualtik action.

Proposition 3. Given anR-restricted configurationfg = hjC; sji nR, withR � Env ,
and a processP

– if P � T [[fg ℄℄ andP �! P 0 then eitherP 0 � P or P 0 � tik:T [[fg 0℄℄ andfg tik! fg 0;
– if P � T [[fg ℄℄ andP a! P 0 with a 6= �; tik, then eitherP 0 � T [[fg 0℄℄ andfg a! fg 0 or P 0 � tik:T [[fg 00℄℄ andfg a! fg 0 tik! fg 00.

4 Security correspondence

We study the relationship between the security of Imp programs and that of VSPA
processes. First, we give a notion of weak bisimulation up tohigh in the Imp setting,
which allows us to characterize the security of Imp programsin aP BNDCstyle. Then,
we show that this new characterization of Imp program security exactly corresponds to
requiringP BNDC of VSPA program translations. More specifically, we prove that a
programC is secure if and only if its translationT [[hjC; sji℄℄ is P BNDCfor all statess.
P BNDC-like security characterization for Imp In order to define weak bisimulation
up to high, similarly to what we have done for VSPA, we define the operation~a to bea
in casea is low, anda or null (which means no action) in casea is high.

Definition 7. A symmetric binary relationR on (possibly restricted) configurations is
a bisimulation up to highif wheneverfg1 R fg2 andfg1 a! fg 01, there existsfg 02
such thatfg2 ~a! fg 02 andfg 01 R fg 02.

We writeunH for the union of all bisimulations up to high. This definitionbrings us
close to the nature of the process-algebraic security specification from Section 2.2. Us-
ing bisimulation up to high and restriction we can faithfully represent the original defi-
nition of strong low-bisimulation. The following proposition states the correspondence
between strong low-bisimulation (defined on thetik actions of the original semantics)
and bisimulation up to high (defined on the extended semantics) with restriction:

Proposition 4. C uL D iff hjC; sji unH hjD; sji nH andhjC; sji nH unH hjD; sji, 8 s.
As a direct consequence, the security of Imp can be expressedin a “P BNDCstyle”:

Corollary 1. A programC is secure iffhjC; sji unH hjC; sji nH for all s.
Program security is P BNDC The following theorem shows that weak bisimulation
up to high is preserved in the translation from Imp to VSPA.

Theorem 1. Let fg1 = hjC; sji n R andfg2 = hjD; tji n R0, withR;R0 � H , be two
configurations (possibly) restricted over high level actions. It holds thatfg1 unH fg2
iff T [[fg1℄℄ �nH T [[fg2℄℄.
This theorem has the flavor of a full-abstraction result (cf.[1]) for the indistinguisha-
bility relation �nH . As a corollary of the theorem, we receive a direct link between
program security andP BNDC security:

Corollary 2. A programC is secure iff its translationT [[hjC; sji℄℄ isP BNDC 8 s.
Examples Recall from Section 2.1 that the programl := h is rejected by the security
definition for Imp. Recall from Section 3.2 thatT [[l := h℄℄ = (lok:gethx:resx:0 j res(x):(putlx:tik:unlok:done:0)) n fresg

To see that this translation is rejected byP BNDC, take a states that, for example,
maps all its variables to0. We demonstrate thatT [[hjl := h; sji℄℄nH 6�nH T [[hjl := h; sji℄℄.
Varying the high variable from0 to1 on the right-hand side can be done by the transitionT [[hjl := h; sji℄℄ eputh(1)! F for someF . If the translation were secure then this transition
would have to be simulated up toH by T [[hjl := h; sji℄℄ n H . Such a transition would
have to be â� transition becauseeputh(1) is a high transition, butT [[hjl := h; sji℄℄ nH
is restricted from high actions. Therefore,T [[hjl := h; sji℄℄ n H would reduce to some
processE, whose register forh remains0.

By the definition of weak bisimulation up toH , we would haveE n H �nH F .
Let subsequent actions correspond to traversing the two processes passingputl(0)
andputl(1), respectively, and reachingunlok. Note that actions on internal channelslok; geth; res; putl are hidden from the environment. However, as an effect of the
latter action, the register forl will store different values. Even though thetik actions
can still be simulated, this breaks bisimulation because the externally visible actiongetl(0) by the successor ofE (afterunlok) cannot be simulated by the successor ofF (afterunlok).

Further, recall from Section 2.1 that the programif h > 0 then l := 1 else l := 0 is
rejected by Imp’s security definition. In Section 3.2 we saw thatT [[if h > 0 then l := 1 else l := 0℄℄ =(lok:gethx:res(x > 0):0 j res(x):(if x then tik:unlok:(lok:res1:0 j res(x):(putlx:tik:unlok:done:0)) n fresgelse tik:unlok:(lok:res0:0 j res(x):(putlx:tik:unlok:done:0)) n fresg)) n fresg
The information flow fromh > 0 to l is evident in the translation. The result of in-

specting the expressionh > 0 is sent on the channelres. When this result is received
and checked, either it triggers the process that puts1 in the register forl or a similar
process that puts0 to that register.

As above, the VSPA translation fails to satisfyP BNDC. Varying the high state by
a high environment actioneputh(�) in the beginning leads to different values in the
register forl. This difference can be observed by low environment actionsegetl(�).
5 Related work

A large body of work on information-flow security has been developed in the area of
programming languages (see a recent survey [27]) and process calculus (e.g., [7, 25, 24,
13, 18]). While both language-based and process calculus-based security are relatively
established fields, only little has been done for understanding the connection between
the two.

A line of work initiated by Honda et al. [14] and pursued by Honda and Yoshida [15,
16] develops security type systems for the�-calculus. The use of linear and affine types
gives the power for these systems to soundly embed type systems for imperative multi-
threaded languages [29] into the typed�-calculus. This direction is appealing as it leads

to automatic security enforcement mechanisms by security type checking. Neverthe-
less, automatic enforcement comes at the price of lower precision. Our approach opens
up possibilities for combining high-precision security verification (such as equivalence
checking in process calculi [23]) with type-based verification. Steps in this direction
have been made in, e.g., [17, 2, 31], however, not treating timing-sensitive security.

Giambiagi and Dam’s work onadmissible flows[3, 11] illustrates a useful synergy
of an imperative language and a CCS-like process calculus. The assurance provided by
admissible flows is that a security protocol implementation(written in the imperative
language) leaks no more information than prescribed in the specification (written in the
process calculus).

Mantel and Sabelfeld [21] have suggested an embedding of a multithreaded and
distributed language into MAKS [20], an abstract frameworkfor modeling the security
of event-based systems. The translation of a program is secure (as an event system)
if and only if the program itself is secure (in the sense that the program satisfies self-
low-similarity). While this work offers a useful connection between language-based
and event-based security, it is inherently restricted to expressing event systems as trace
models. In the present work, the security of both the source and target languages is de-
fined in terms of bisimulation. This enables us to capture additional information leaks,
e.g., through deadlock behavior [7], which trace-based models generally fail to detect.

Our inspiration for handling timing-sensitive security stems from the work by Fo-
cardi et al. [8], where explicittik events are used to keep track of timing in a scenario
of a discrete-time process calculus.

6 Conclusion and future work

We have established a formal connection between a language-based and a process calcu-
lus security definition of information security. Concretely, we have shown that a timing-
sensitive security definition corresponds toP BNDC , persistent bisimulation-based
nondeducibility on compositions. Thereby, we have identified a point in the space of
process calculus-based definitions [7] that exactly corresponds to compositional timing-
sensitive language-based security.

Drawing on Milner’s work [22], we have developed a generallyuseful encoding of
an imperative language into a CCS-like calculus. We expect that this encoding will be
helpful for both future work on information security topicsas well as other topics that
necessitate representation of programming languages in process calculus.

This paper sets solid ground for future work in the followingdirections:
Security policies: We have used as a starting point a timing-sensitive language-based

security specification. This choice has allowed us to establish a tight, timing-sensitive,
correspondence between computation steps in the imperative language and the actions
of processes. However, it is important to consider a full spectrum of attackers, including
the attacker that may not observe (non)termination. Futurework includes weakening
security policies and investigating the relation between the two kinds of security for a
termination-insensitive attacker.

Concurrency and distribution: Concurrency and distribution are out of scope for
this paper for lack of space. However, the technical machinery is already in place to add

multithreading and distribution to the imperative language (for example, the program
security characterization is known to be compositional forImp with dynamic thread
creation [28]). We conjecture that in presence of concurrency,P BNDC will remain to
correspond to the language-based security definition. We expect parallel compositions
of Imp threads to be encoded by parallel compositions of VSPAprocesses. In this case,
the security correspondence result would be a consequence of the compositionality of
the two properties. We anticipate the security correspondence to hold without major
changes in the encoding. The effect of distribution features in both source and target
languages is certainly a worthwhile topic for future work. An extension of the source
language with channel-based communication [26] is a natural point for investigating
the connection to process calculi security. As a matter of fact, P BNDC has been
specifically developed for communicating processes, thus it should be applicable even
when channels are used both for communication and for manipulating memories.

Modular security: According to the vision we stated in the introduction, for the se-
curity analysis of heterogeneous systems we need heterogeneous, scalable techniques.
The key to scalability is modular analysis that allows analyzing parts of a systems in
isolation and plug together secure components together. That the resulting system is
secure is guaranteed by compositionality results. While compositionality properties for
Imp and VSPA have been studied separately, we intend to explore the interplay be-
tween the two. In particular, we expect to obtain stronger compositionality results for
the image of secure imperative programs in VSPA than for regular VSPA processes.

References

1. M. Abadi. Protection in programming-language translations. InProc. International Collo-
quium on Automata, Languages, and Programming, volume 1443 ofLNCS, pages 868–883.
Springer-Verlag, July 1998.

2. D. Clark, C. Hankin, and S. Hunt. Information flow for Algol-like languages.Journal of
Computer Languages, 28(1):3–28, April 2002.

3. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple payment
protocol. InProc. IEEE Computer Security Foundations Workshop, pages 233–244, July
2000.

4. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

5. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process Algebras.
Journal of Computer Security, 3(1):5–33, 1994/1995.

6. R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for the Verifica-
tion of Information Flow Security Properties.IEEE Transactions on Software Engineering,
23(9):550–571, 1997.

7. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow).
In R. Focardi and R. Gorrieri, editors,Foundations of Security Analysis and Design, volume
2171 ofLNCS, pages 331–396. Springer-Verlag, 2001.

8. R. Focardi, R. Gorrieri, and F. Martinelli. Information flow analysis in a discrete-time process
algebra. InProc. IEEE Computer Security Foundations Workshop, pages 170–184, July
2000.

9. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. InProc. of the
IEEE Computer Security Foundations Workshop, pages 307–319. IEEE Computer Society
Press, 2002.

10. R. Focardi, S. Rossi, and A. Sabelfeld. Bridging Language-Based and Process Calculi Secu-
rity. Technical Report CS-2004-14, Dipartimento di Informatica, Università Ca’ Foscari di
Venezia, Italy, 2004. http://www.dsi.unive.it/ricerca/TR/index.htm.

11. P. Giambiagi and M.Dam. On the secure implementation of security protocols. InProc.
European Symp. on Programming, volume 2618 ofLNCS, pages 144–158. Springer-Verlag,
April 2003.

12. J. A. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE Symp.
on Security and Privacy, pages 11–20, April 1982.

13. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous pi-
calculus.ACM TOPLAS, 24(5):566–591, 2002.

14. K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process be-
haviour. InProc. European Symp. on Programming, volume 1782 ofLNCS, pages 180–199.
Springer-Verlag, 2000.

15. K. Honda and N. Yoshida. A uniform type structure for secure information flow. InProc.
ACM Symp. on Principles of Programming Languages, pages 81–92, January 2002.

16. K. Honda and N. Yoshida. Noninterference through flow analysis. Journal of Functional
Programming, 2005. To appear.

17. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of
Computer Programming, 37(1–3):113–138, 2000.

18. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Technical Report
TR03-0007, Tokyo Institute of Technology, October 2003.

19. B. W. Lampson. A note on the confinement problem.Comm. of the ACM, 16(10):613–615,
October 1973.

20. H. Mantel. Possibilistic definitions of security – An assembly kit –. InProc. IEEE Computer
Security Foundations Workshop, pages 185–199, July 2000.

21. H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed and multi-
threaded programs.J. Computer Security, 11(4):615–676, September 2003.

22. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
23. C. Piazza, E. Pivato, and S. Rossi. CoPS - Checker of Persistent Security. InProc. Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 2988 ofLNCS, pages 144–152. Springer-Verlag, March 2004.

24. F. Pottier. A simple view of type-secure information flowin the pi-calculus. InProc. IEEE
Computer Security Foundations Workshop, pages 320–330, June 2002.

25. P. Ryan. Mathematical models of computer security—tutorial lectures. In R. Focardi and
R. Gorrieri, editors,Foundations of Security Analysis and Design, volume 2171 ofLNCS,
pages 1–62. Springer-Verlag, 2001.

26. A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 ofLNCS, pages 376–394. Springer-Verlag,
September 2002.

27. A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

28. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

29. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, January
1998.

30. G. Winskel.The Formal Semantics of Programming Languages: An Introduction. MIT Press,
Cambridge, MA, 1993.

31. N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. In Proc. Foundations
of Software Science and Computation Structure, volume 2303 ofLNCS, pages 417–433.
Springer-Verlag, April 2002.

