Bridging Language-Based and Process Calculi Security

Riccardo Focardj Sabina Ros$j and Andrei Sabelfekd

! Dipartimento di Informatica, Universita Ca’ Foscari dinézia, 30172 Venezia, ltaly
E-mail: {focardi,srosgi@dsi.unive.it
2Dept. of Computer Science, Chalmers University of Techgyld1296 Goteborg, Sweden
E-mail: andrei@cs.chalmers.se

Abstract. Language-based and process calculi-based informatiamigeare
well developed fields of computer security. Although theskl§ have much in
common, it is somewhat surprising that the literature lack®mprehensive ac-
count of a formal link between the two disciplines. This pagevelops such a
link between a language-based specification of securityaamcess-algebraic
framework for security properties. Encoding imperativegrsams into a CCS-
like process calculus, we show that timing-sensitive sgctor these programs
exactly corresponds to the well understood process-ageBecurity property
of persistent bisimulation-based nondeducibility on cosifions _BNDC).
This rigorous connection opens up possibilities for crestlization, leading to
both flexible policies when specifying the security of hetegneous systems and
to a synergy of techniques for enforcing security specifoast

1 Introduction

As computing systems are becoming increasingly complexyriig challenges become
increasingly versatile. In the presence of such challengeselieve that practical se-
curity solutions are unlikely to emerge from a single théoed framework, but rather
need to be based on a combination of different specializptbaghes. The goal of this
paper is to develop a flexible way of specifying the securfityaterogeneous systems—
using a combination of language-based definitions and psealgebraic ones. The in-
tention is to be able to specify security partly by languagsed security models (e.g.,
for parts of the system that are implemented by code with nnaonication) and partly
by process-algebraic models (e.g., communication-intenqarts of the system). This
combined approach empowers us with a synergy of technigueanforcing security
properties (e.g., combining security type systems witlt@ss equivalence checking) to
analyze parts of the system separately and yet establisletoeity of the entire system.
Language-based information security [27] and processitiedebased information
security [7, 25] are well developed fields of computer saguiiithough process calculi
are programming languages, there are different motivataond traditions in address-
ing information security by the two communities. While tloerfier is concerned with
preventing secret data from being leaked through the eixecaf programs, the latter
deals with preventing secret events from being revealaeditiit the execution of com-
municating processes. Although these fields have much imzon(e.g., both rely on

* This work was supported by the EU-FET project MyThS (IST-2G2617).

noninterferencg12] as a baseline security policy stating that secrets ddnterfere
with the attacker-observable behavior of the system),dbimewhat surprising that the
literature lacks a comprehensive account of a formal linkveen the two disciplines
(which in particular means that it has not been establisheether the interpretations
of noninterference by the two disciplines are compatible).

This paper develops a rigorous link between a languagedispeeification of secu-
rity for imperative programs and a process-algebraic fraonk of security properties.
More specifically, we link two compositional security profes: a timing-sensitive se-
curity characterization for a simple imperative language a persistent security char-
acterization for a CCS-like process calculus. We achieigedbnnection through the
following steps{(i) we uniform the semantics of the imperative language to #redstrd
Labelled Transition Systeaemantics of process calculi, by making read/write memory
actions explicitly observable as labelled transitiofig) based on this semantics, we
formalize low level observations in the imperative langaiagterms of a bisimulation
relation;(ii¢) we encode the programming language into the process cajanauring
a lock-step semantic relation between the source and farggiages; we prove that the
new bisimulation notion for the imperative language is presd by the encodingiv)
this tight relation reveals some unexpected uniformitiesang us to precisely iden-
tify what the program security characterization corregfsoto in the process-calculus
world: it turns out to be the well understood property of ent bisimulation-based
nondeducibility on compositions (&_BNDC).

Such a link opens up various possibilities for cross-fiedtion, leading to flexible
policies when specifying the security of complex systendstara rich combination of
techniques for enforcing security specifications. Findirgctly what property from the
family of process-algebraic properties [7, 9] correspdndble language-based timing-
sensitive security sheds valuable light on the nature ofathguage-based property. As
a direct benefit, the results of this paper enable us to useigecheckers based on
process-equivalence checking (such as CoSeC [6] and C@PShjizh the latter one
based precisely oR_BND(C) for certifying language-based security.

For clarity, this paper uses a simple sequential languageeher, it is a distributed
setting that will enable us to fully capitalize on the fornsahnection. Indeed, the se-
curity specifications for both the source (imperative) aardet (process algebraic) lan-
guages are compositional [28, 9]. Because the source-dayegaecurity specification is
suitable for both multithreaded [28] and distributed [28], 8ettings, we are confident
that the formal link established in this paper can be geizedto a distributed scenario,
where different components can be analyzed with specthtexchniques. For example,
communication-intensive parts of the system (where coatige language-based se-
curity mechanisms for the source language such as typansysiee too restrictive) can
be analyzed at the level of the target language, gaining®prtcision of the analysis.

The paperis organized as follows. Section 2 presents thresouperative language
Imp and the target process-algebraic language VSPA. ®e8tievelops an encoding
of the source language into the target language and dematesst semantic relation
between Imp’s programs and their VSPA's translations.iBeet establishes a formal
connection between the security properties of the two laggs. The paper closes by
discussing related work in Section 5 and conclusions anadwork in Section 6.

tic

(skip, s) 25" (stop, s}
(Ezp,s) J v
(Id := Eup, s) =3 (stop, [Id — v]s)
(C1,5) =5 (stop, 5') (C1,5) =5 (C1, 5')
(C1;Cay8) 255 (Co, ') (Ch;Ca, s) 255 (C); Cay ')
(B, s) | True
(if Bthen C; else Cs, s) 5 (C), s)
{B, s) | False
(if Bthen C; else Cs, s) 5 {Cs, s)
{B, s) | True
(while B do C, s) 3 (C; while B do C, s)
{B, s) | False

tick

{while B do C, s) = (stop, s)

Fig. 1. Small-step semantics of Imp commands

The proofs of the results presented in this paper are repor{d 0].

2 The source language and target calculus

In this section, we present Imp, the source imperative lagguand VSPA, the target
process calculus, along with security definitions for trepeetive languages.

2.1 The Imp programming language

We consider a simple sequential programming language, 8@ flescribed by the
following grammar:

B, Ezp == F(Id,...,Id)
C ::=stop | skip | Id := Ezp | C; C | if B then C else C' | while B do C

Let C,D,... range over commands (programgy, Id,,... range over identifiers
(variables),B, By, ..., Ezp, Ezp,, ... range over boolean and arithmetic expressions,
respectivelyF, Fy, ... range over function symbols, and, finally,v,, ... range over
the set of basic value®al. For simplicity, but without loss of generality, we assume
that exactly one function symbol occurs in an expression.

A configurationis a pair{C, s) of a command” and a state (memory) A state
s is a finite mapping from variables to values. The small-seapantics are given by

transitions between configurations, defined by standartsitian rules (see Fig. 1).
Arithmetic and boolean expressions are executed atoribgll transitions. Thés*

transitions are deterministic. The general form of a deieistic transition is{C, s) = eig

(C',s"). Here, one step of computation starting with a comm@rid a states gives a

new command’ and a new state’. There are no transitions from configurations that
contain the terminal prograstop. We write [Id — v]s for the state obtained from

by setting the image afd to v. For example, the assignment rule describes one step of
computation that leads to termination with the state uptlateording to the value of
the expression on the right-hand side of the assignment.

Security specification We assume that the set of variables is partitionedingb and
low security classes corresponding to high and low confidetytialzels. Note that our
results are not specific to this security structure (whichdspted for simplicity)—a
generalization to an arbitrary security lattice is stréigtward. Variables: and! will
denote typical high and low variables respectively. Twdesta and¢ are low-equal
s =, tif the low components of andt are the same.

Confidentiality is preserved by a computing system if loweleobservations reveal
nothing about high-level data. The notion of noninterfeeefil2] is widely used for
expressing such confidentiality policies. Intuitively,materference means that low-
observable behavior is unchanged as high inputs are varhea indistinguishability
of behavior for the attacker can be represented naturalthéwyotion ofbisimulation
(e.g., [7,28]). The following definition is recalled fromgR

Definition 1. Strong low-bisimulatioree, is the union of all symmetric relation®
such that ifC’ R D then for all statess and ¢ such thats =;, ¢ wheneverC, s) “$*
tick

(C', s') then there exisD’ andt’ suchthat{D,t) "= (D’,t'),s' =1 ¢, andC’' R D'.
Intuitively, two programs” and D are strongly low-bisimilar if varying the high parts
of memories at any point of computation does not introdugediffierence between
the low parts of the memories throughout the computationteeting variations at any
point of computation results in a rather restrictive sagucondition. However, this
restrictiveness is justified in a concurrent setting (whgkhe ultimate motivation of
our work) when threads may introduce secrets into high mgrabany computation
step. Based on this notion of low-bisimulation, a definitirsecurity is given in [28]:

Definition 2. A program(' is secure if and only i€ = C.

Examples Because the underlying low-bisimulation is strong, or lstép, it captures
timing-sensitive security of programs. Below, we exemytiffferent kinds of informa-
tion flow handled by the security definition:

l := h This is an example of aexplicit flow To see that this program is insecure ac-

cording to Definition 2, take someandt that are the same exceqt) = 0 and
tick tick

t(h) = 1. Since(l := h,s) = ({stop,[l — O]s) and{l := h,t) = (stop,[l —
1]¢) hold, the resulting memories are not low-equal. Becaussetlage the only
possible transitions for both configurations, we have h #p, [:= h.

if h > 0thenl:=1elsel :=0 This exemplifies aimplicit flow [4] through branch-
ing on a high condition. If the computation starts with logual memories andt¢
that are the same exceqff) = 0 and¢(h) = 1, then, after one step of computation

(the test of the condition), the memories are still low-dgdawever, after another
computation step they become different i or 1, depending on the initial value
of h). Because these are the only possible transitions for amatigns with boths
andt, the program is not self-low-similar and thus is insecure.

while h > 0do h := h — 1 Assuming the worst-case scenario, an attacker may ob-
serve the timing of program execution. The attacker maynlé¢he value ofh
from the timing behavior of the program above. This is ananse of atiming
covert channe[19]. The program is rightfully rejected by Definition 2. leed,
take somes andt¢ that are the same excepth) = 1 andt(h) = 0. We have
(while b > 0doh := h—1,s) 5 (h := h — 1;while b > 0do h :=
h—1,s) S (while b > 0doh := h — 1,[h — 0]s) “25* (stop, [k — 0]s)
but (while h > 0 do h := h — 1,¢) = (stop, t) “3$* with no transition from the
latter configuration to match the transitions of the presisequence.

The examples above are insecure. Here is an instance of ieggogram:

if h = 1then h := h + 1 else skip Indeed, neither the low part of the memory nor the
timing behavior depends on the value /of A suitable symmetric relation that
makes this program low-bisimilar to itself is, e.g., theaten {(if » = 1 then h :=
h + 1 else skip,if h = 1then h := h + 1 else skip), (h := h + 1, skip), (skip, h :=
h+1),(h:=h+1,h:=h+1),(skip, skip), (stop, stop) }.

2.2 The VSPA calculus

TheValue-passing Security Process Algetw&PA, for short) is a variation of Milner’s
value-passing CCS [22], where the set of visible actionsaititppned into high-level
actions and low-level ones in order to specify multilevetirity systems.

Let E, E, E, ... range oveprocessesr, x1, 2, ... fange ovewvariables ¢, ¢,
cs, ... range oveinput channelsandg, ¢, ¢, ... range oveoutput channelsAs for
Imp, letB, By, ..., Exp, Exp,, ... range over boolean and arithmetic expressions, re-
spectively,F’, F, . .. range over function symbols, and, finallyy,, . . . range over the
set of basic value®al. (The set of basic valueigal, and boolean/arithmetic expressions
are the same as in Imp.) The set of visible action& is {c¢(v) | v € Val} U{c(v) |v €
Val} wherec(v) ande(v) represent the input and the output of valuaver the channel
¢, respectively. The syntax of VSPA processes is defined assi

E:=0|c(z).E|c(Ezp).E|7.E|E + E> | Ey|E2 | E\R| E[g] |
A(Ezp,,...,Ezp,) | if Bthen E, elseFE,

B,Exp == F(x1,...,2p)
Each constant is associated with a definitia#(z1, . .., z,) def E,wherezxq,...,z,
are distinct variables anfl is a VSPA process whose only free variablesare . ., z,.
Ris a set of channels angds a function relabeling channel names which preserves the
complementation operater Finally, the set of channels is partitioned irtgh-level
channelsH andlow-levelonesL. By an abuse of notation, we writév),¢(v) € H
whenever, ¢ € H, and similarly forL.

c(2).E Y E/z] tw)ESE 1E-SE
E, % B} E, % Ej
Ei+E, 5 E, Ei+FE,- E|
B % B, B % B} B YU E B E
E\|E> - Ej|E» Ey|Ex - E1|E} Ei\|E: 5 E4|E},
E-%E E-E a¢R
Bl “ plg) E\R— PR
Evi/z1,...,vn /5] L A(z1, ..., xn) def E
Avi,...,un) = E/
E, % B} E, % E)
if True then E; elseE, -+ E, if False then E; elseE> — E)

Fig. 2. VSPA operational semantics

Intuitively, 0 is the empty process{x).E is a process that reads a value Val
from channele assigning it to variable:; ¢(Ezp).E is a process that evaluates ex-
pressionEzp and sends the resulting value as output ayef, + E, represents the
nondeterministic choice between the two procedseand E,; E;|E- is the parallel
composition ofE; andE,, where executions are interleaved, possibly synchroroped
complementary input/output actions, producing an inteacdionr; E \ R is a pro-
cessE prevented from using channelsR) E[g] is the proces& whose channels are
renamedvia the relabeling functiowy; A(Ezp,, ..., Ezp,,) behaves like the respective
definition where the variables,, - - - , z,, are substituted with the results of expres-
sionsEzxp,, - - - , Ezp,,; finally, if B then E; elseE, behaves a%), if B evaluates to
True and ask,, otherwise. We implicitly equate processes whose expessre sub-
stituted by the corresponding values, eqE (v, . ..vy)).E is the same ag(v).E if
F(vy,...v,) = v. This corresponds to thg expression evaluation of Imp. The op-
erational semantics of VSPA is given in Fig. 2. We denote€lipie set of all VSPA
processes and I the set of all high-level processes, i.e., using only chinneg.

Theweak bisimulatiomelation [22] equates two processes if they are able to mutu-
ally simulate each other step by step. Weak bisimulatiors e care about internal

Q,

actions. We writef} == E' if E(5)* % (5)*E'. Moreover, we let? == E' stand
for E == E'in casea # 7, and forE(-3)*E' in casea = 7.

Definition 3 (Weak bisimulation). A symmetric binary relatio® C £ x £ over pro-
cesses is aveak bisimulatiorif wheneverE, F) € RandE % E', then there exists
F' such thatF == F'" and(E', F') € R.

Two processedl, F' € £ areweakly bisimilar denoted byE =~ F, if there exists a

weak bisimulationR containing the paifE, F'). The relations is the largest weak
bisimulation and it is an equivalence relation [22].

Persistent BNDC security In [9] we give a notion of security for VSPA processes
called Persistent BNDCwhereBNDC stands forBisimulation-based Nondeducibility
on CompositionBNDC 5] is a generalization to concurrent processes of norfeter
ence [12], consisting of checking a procdsagainst all high-level processék

Definition 4 (BNDC). LetE € £. E € BNDC iffVIT € £y, E\ H ~ (E|II) \ H.

Intuitively, BNDC requires that high-level processBshave no effect at all on the
(low-level) execution off.

To introducePersistent BNDGP_BNDC) we define a new observation equivalence
where high-level actionsiaybe ignored, i.e., they may be matched by zero or more
actions. An actior is high if a is either an input(v) or an outpu(v), over a high-
level channet € H. Otherwisegq is low. We writea to denotei if a is low, anda or 7
if a is high. We now define weak bisimulation up to high, by jushgsi in place ofa,
thus allowing high-level actions to be simulated by (padgs#mpty) sequences afs.

Definition 5 (Weak bisimulation up to high). A symmetric binary relatioi® C £ x &
over processes isweak bisimulation up to higliwheneve(E, F) € RandE % E,

then there exist$” such thatF’ == F’ and(E',F') € R.

We say that two processés F' areweakly bisimilar up to highwritten E' ~\ i F', if
(E, F) € R for some weak bisimulation up to high.

Definition 6 (P_-BNDC).LetE € £. E € P.BNDC iff E\ H ~\y E.

Intuitively, P.BNDC requires that forbidding any high-level activity (by réstion) is

equivalent to ignoring it. For example, proc@sdéf h.l + [is P.BNDCsince the high
level inputh is simulated, inE' \ H, by not moving. Indeed, the high level activity is
not visible to the low level users who can only observe the llowel outputl. Notice
that this secure process allows some low level actions tovidiigh actions.

It has been proved [9] th&_BNDC corresponds to requirinBNDC over all the
possible reachable states. This is why we cadfeitsistent BNDC

Proposition 1. E € P_BNDC iff V E' reachable fromE, E' € BNDC.

Note thatP_BNDC is similarly spirited to Imp’s security definition. In pactilar, the
1T process inBNDC corresponds to the possibility for arbitrary changes intiggh
part of state over the computation. Further, persistencB_iBNDC corresponds to
requiring strong low-bisimulation on reachable Imp coma®There are also obvious
differences, highlighting the specifics of the applicatdmmains of the two security
specificationsP_BNDC is concerned with protecting the occurrence of high events
whereas program security protects high memories.

P_BNDC satisfies useful compositionality properties and is mudieeao check
thanBNDC, since no quantification over all possible high-level pssss is required.

Example We give a very simple example of an insecure process. Inqodati we show
an indirect flow due to the possibility for a high-level usetdck and unlock a process:

E “ nlockhunlock.T +1

sUd) = v (Cos) ™Y (O (10> vsp 10812 40 s) a¢ R
(C,s) T C, 5) (C,sh\ R (C',s') \ R

Fig. 3. Semantic rules for environment

wherehlock andhunlock are high-level channels ardis a low-level one. (To sim-
plify we are not even sending values over channels.) At adiestce, procesg seems

to be secure as it always performsefore terminating, thus low-level users should
deduce nothing of what is done at the high level. Howevergh-teével user might lock
the process throudhilock and never unlock it, thus leading to an unexpected behavior
sincel would be locked too. This ability for a high-level user to siironize with a

low-level one constitutes an indirect information flow asdietected by>_.BNDCsince

E "§* hunlock.I cannot be simulated b \ H.Infact, E \ H can execute neither

high-level actions nor ones, thus the only possibility it has to simulafieck is not
moving. However, this simulation is fine as long as the reddtates are bisimilar up
to high, i.e.hunlock.1 ~\y E \ H, but this is not true.

3 Mapping Imp into VSPA

With the source and target languages in place, this secéeelops an encoding of the
former into the latter. The encoding is done in two stepsclintg Imp’s semantics with
process calculi-style environmentinteraction rules arabéing the extended version of
Imp into VSPA. A lock-step relation of Imp’s executions witkeir VSPA's translations
guarantees that the encoding is semantically adequate.

3.1 Extending Imp semantics

The original definition of strong low-bisimulation (Defiidn 1) implicitly takes into
account an environment that is capable of both reading frodnvaiting to the state at
any point of computation. Alternatively, and rather naliyrave can represent this envi-
ronment explicitly, by the semantic rules for reading andlifying the state, depicted
in Fig. 3. Reading the value of a variableld is observable by an acticgget,(v);
writing the valuev to Id is observable by an actiosput,,(v). (We adopt the process
calculi convention of usingto denote output actions.)

Assumea € {tick,eget (-),eput (-)}. Action a is high (a € H) if for some
high variableld we have eithen = eget;;(-) or a = eput,(-). Otherwisea is
low (a € L). High and low actions represent high and low environmeetpectively.
Similarly to VSPA's restriction, we define a restriction octians in the semantics for
Imp, also shown in Fig. 3. For a set of actidRsan R-restricted configuratioC, s)\ R
behaves a$C, s) except that its communication on actions frdiis prohibited. The
restriction is helpful for relating the extended semanta&$mp’s original semantics:
configuration(C, s) \ {eget,;(v), eput,,(v) | Id is a variable ana € Val} behaves
under the extended semantics exactlyj@ss) under the original semantics.

These extended semantics of Imp are useful for differerstoresi(¢) They make
read/write actions on the state explicitly observable aglid transitions in the style
of Labeled Transition Systesemantics for process calculi. This helps us proving a se-
mantic correspondence in Section 32) Further, the extended semantics allow us to
characterize the security of Imp programs using a notionisifriulation up to high,
similar to the one defined for VSPA. As a matter of fact, in ®ectl, we show how
security of Imp programs can be equivalently expresseddrstyle ofP_.BNDC, facil-
itating the proof that the security of Imp programs is the sasP_BNDC security of
their translations into VSPA.

3.2 Translation

We translate Imp into VSPA following the translation deBed by Milner in [22], with
the following important modificationgi) We make explicit the fact that the external
(possibly hostile) environment can manipulate the sharedhary but cannot directly
interact with a program. This is achieved by equipping 1tegss i.e., processes imple-
menting Imp variables, with read/write channels accesdiglthe environment. All the
other channels are “internalized” through restrictionrapars.(ii) We use alock to
guarantee the atomicity of expression evaluations. In fagd expressions are evalu-
ated in one atomic step. Since expression evaluation islat@u into a process which
sequentially accesses registers in order to read the aettiable values, to regain atom-
icity we need to guarantee that variables are not modifieshdtinis reading phase.

The language we want to translate contains program vasatolevhich values may
be assigned, and the meaning of a program variables a “storage location”. We
therefore begin by defining a storage register holding aevahs follows:

Reg(v) def putz.Reg(x) + getv.Reg(v)
+1lock.(eputz.unlock.Reg(z) + unlock.Reg(v))
+1ock.(egetv.unlock.Reg(v) + unlock.Reg(v))

(We shall often writeput(x) asputz etc.) Thus, viaget the stored value may be
read from the register, and vipat a new valuer may be written to the register. Actions
eget andeput are intended to model the interactions of an external olesevith the
register. Before and after such actiobsck andunlock are required to be executed
in order to guarantee mutual exclusion on the memory betwgpression evaluations
and the environment. This implements the atomic expressialuation of Imp. We also
have an (abstract) time-out mechanism, that nondeterticially unlocks the registers.
This is necessary to avoid blocking the program by the enwrent via refusing to
acceplkget or to executeput after the lock has been grabbed. As a matter of fact, we
want the environment to interact with the registers withoterfering in any way with
the program execution. The (global) lock is implementedheygrocess:

Lock def lock.unlock.Lock

For each program variable, we introduce a registateg;, (y) def Reg(y)[g14], where
gr1q4 1s the relabeling functiofiput , /put, get,,/get, eput,,/eput, eget,/eget}.

This representation of registers—or program variablesprasesses is fundamen-
tal to our translation; it indicates that resources likdalales, as well as the programs
which use them, can be thought of as processes, so that aufumatan get away with
the single notion of process to represent different kindsmity.

There is no basic notion of sequential composition in ourudak, but we can define
it. To do this, we assume that processes may indicate thairation by a special
channelone. We say that a processigll-terminatingf it cannot do any further move
after performingdone; as we will see, the processes which arise from translating |
commands are all well-terminating, since they terminati @one.0 (written Done)
instead of juso.

The combinatoBefore for sequential composition is as follows:

P Before Q % (P[b/done]|b.Q) \ {b}
whereb is a new name, so that no conflict arises with #fleae action performed by
Q. It is easy to see thabefore preserves well-termination, i.e., ¥ and@ are well-
terminating then so i® Before Q.

An expression of the language will “terminate” by yielding iis results via the
special channétes, not used by processes.ffrepresents such an expression, then we
may wish another proceggto refer to the result by using the value variabl€rlo this
end, we define another combinatbio:

P Into(z) Q(z) ¥ (Plres(z).Q(z)) \ {res}

Q(z) is parametric orx and Into binds this variable to the result of the expressian
Notice that we do not need to relaheds to a new channel, as we did with the special
channeldone. Indeed,Q(x) is a process and not an expression, thus it does not use
channelres to communicate with sibling processes and no conflict is gesssible.
Note thatQ)(x) might useres into a nestednto combinator. In this case, howevegs
would be inside the scope of a restriction thus not be visblbis externalnto level.
The translation functioff” of Imp commands into VSPA processes is givenin Fig. 4.
Each expressiof’(Idy, ... Id,) is translated into a process which collects the values
of Idy,...Id, and returng’(z1, ..., z,) over channetes. A states associating vari-
ablesId,,..., Id,, to valuess(Id,),...,s(Id,,), respectively, is translated into the
parallel composition of the relative registers. The tratish of commands is straight-
forward. Note that before and after each expression evatuate lock and release the
global lock so that the environment cannot interact withrttemory while expressions
are evaluated. This achieves atomic expression evalsagisnn Imp. Configurations
(C, s) are translated as the parallel composition of the gldlaak and the translations
of C'ands. ACC = {puty, ,get;y,,...,Puty; ,get;; ,lock,unlock} isthe set
of all channels used by commands to access registers, @usdk commands. Thus,
the restriction ove”l CC s U {done} aims both at internalizing all the communications
between commands and registers and at removing thédastaction. The environ-
ment channelsput,;, andeget,, are not restricted and, together withck, they are
the only observable actions Gf[(C, s)]: eput;, andeget;, are high if the corre-
sponding Imp variabldd is high; all the other observable actions, includinigk, are
low (the security level of unobservable actions is irrefenfar the security definition).

TIF(Idy, ... Id,)] = get 4, 1.+ .get y xn.Tes(F(x1,...,2n)).0
Tls] = Regq, (s(1d1))]. .. |Regq,, (s(Idm))
T[stop] =0
T[skip] = lock.tick.unlock.Done
T[Id := Ezp] = lock.T [Ezp] Into(z) (put ,z.tick.unlock.Done)
T[C1; C2] = T[C1] Before T[C:]
TTif B then C, else C:] = Tock.T[B] Into(z) (if z then tick.unlock.7 [C1]
else tick.unlock.7[C2])
T[while BdoC] =2 whereZ Lef lock.7[B] Into(z) (if then tick.
unlock.7[C] Before Z else tick.unlock.Done)
(TTs] | TICT | Lock) \ ACCs U {done}
THC, sM\ R

TG,)]
TUC, s) \ B]

Fig. 4. Translation of commands

Examples Consider the prograi:= h whereh is a high variable andlis a low one.
These variables are represented by proceRsegs(s(h)) and Reg,(s(1)) for a states.

Tl := h] =Lock.T[h] Into(z) (put,z.tick.unlock.Done)
=(lock.get,z.Tesz.0 | res(z).(put,z.tick.unlock.done.0)) \ {res}
(Notice that expressioh can be seen aB)(h) wherelD is the identity function over

Val.) The execution of the translation in a statis as follows where’ = [[— s(h)]s:

TI{ :=h,s)] =(T[s] | Tl := h] | Lock) \ ACCs U {done}
=(T[s] | (Tock.get,z.Tesz.0 | res(z).(put,z.tick.unlock.done.0)) \ {res}

| Lock) \ ACC; U {done} (by definition of 71 := h])
5(TTs] | (get,x.Tesz.0 | res(z).(put,z.tick.unlock.done.0)) \ {res}
| unlock.Lock) \ ACCs U {done} (by synchronization olock)
5(TTs] | (xess(h).0 | res(z).(put,z.tick.unlock.done.0)) \ {res}
| unlock.Lock) \ ACC, U {done} (fetching the value(h) of h from Reg,,)
5(TTs] | (0| (put,;s(h).tick.unlock.done.0)) \ {res}
| unlock.Lock) \ ACCs U {done} (passings(h) on res)
S(TIs']11 (0| (tick.unlock.done.0)) \ {res}
| unlock.Lock) \ ACC4 U {done} (updatingReg, with s(h); new state is’)
(7 s'] | (0| unTock.done.0)) \ {res}
| unlock.Lock) \ ACC4 U {done} (performingtick)
S(T[s']| (0| done.0)) \ {res}| Lock) \ ACC, U {done} (unlocking)
~(T[s'110]| Lock) \ ACC, U {done} (bisimilarity)

=T [{stop, s'}] (definition of translation)

tick

We have demonstrated tHA{(l := h, s)] = P for P such thatP ~ T [(stop, s')].
As another example, the prograi > 0 then := 1 else [:= 0 is translated into:

Tlifh > 0thenl:=1elsel:= 0]
=lock.T [h > 0] Into(z)
(if = then tick.unlock.7 [l := 1] else tick.unlock.7 [l := 0])
=(Tlock.get,z.Tes(z > 0).0 | res(x).
(if z then tick.unlock.7T [l := 1] else tick.unlock.7 [l := 0])) \ {res}
=(Tock.get,z.Tes(z > 0).0 | res(x).
(if = then tick.unlock.
(Lock.Tes1.0 | res(z).(put,z.tick.unlock.done.0)) \ {res}
else tick.unlock.
(LTock.Tes0.0 | res(z).(put,z.tick.unlock.done.0)) \ {res})) \ {res}

Semantic correspondenceThe propositions below state the semantic correspondence
between anyr-restricted configuratiofC, s) \ R and its translatiof [{C, s} \ R]. Let
Env = {eget (), eput (-)} denote the set of all the possible environment actions.

Proposition 2. Given anR-restricted configuratiorfg = (C, s)\ R, with R C Enuv, if
cfg = cfg’ then there exists a proceg¥ such that7 [cfg] == P’ and P’ ~ T [cfq'].

Moreover, whem, = tick we have thaf [cfg] = P 25 P’ andP =~ tick.T[cfy'].
Intuitively, every (possibly restricted) Imp configuratimove is coherently simulated
by its VSPA translation, in a way that the reached processemkly bisimilar to the
translation of the reached configuration. Moreover, tack moves, the translation
Tlcfg] always reaches a state equivalentiek.7 [cfg'] before actually performing
the tick. Intuitively, this is due to the fact that the lock is reledsmly aftertick is
performed. Notice that if2 = () there is no restriction at all.

Next proposition is about the other way around: each proedssh is weakly
bisimilar to the translation of a (possibly restricted) lognfiguratiorcfg always moves
to processes weakly bisimilar to eithEfcfg'] or tick.T[cfg"'], wherecfg' andcfg”
are reached fromfg by performing the expected corresponding actions. As fevipus
proposition,tick.7 [cfg"] represents an intermediate state reached before perfprmin
the actuakick action.

Proposition 3. Given anR-restricted configurationfg = (C, s) \ R, with R C Env,
and a proces$’

—if P ~ T[cfg] and P 5 P’ then eitherP’ ~ P or P' ~ tick.7[cfg'] and
cfg 25" cfy';
—if P~ T[cfg] and P % P’ with a # 7,tick, then eitherP’ ~ T[cfg'] and

cfg 5 cfg' or P ~ tick.T[cfy"] andcfg = cfy’ 5" cfy".

4 Security correspondence

We study the relationship between the security of Imp pnogrand that of VSPA
processes. First, we give a notion of weak bisimulation upigh in the Imp setting,
which allows us to characterize the security of Imp progranas®_BNDC style. Then,
we show that this new characterization of Imp program sécaxactly corresponds to
requiringP_BNDC of VSPA program translations. More specifically, we provatth
programC' is secure if and only if its translatioh[{C, s)] is P.BNDCfor all statess.

P_BNDC-like security characterization for Imp In order to define weak bisimulation
up to high, similarly to what we have done for VSPA, we defiredperatiord to bea
in caseu is low, anda or null (which means no action) in cages high.

Definition 7. A symmetric binary relatio on (possibly restricted) configurations is
a bisimulation up to highf whenevercfg, R cfg, andcfg, = cfg}, there exists:fg),
such thatcfg, = cfgh, andcfg| R cfgh.

We write =, i for the union of all bisimulations up to high. This definitibnings us
close to the nature of the process-algebraic security fipagtadn from Section 2.2. Us-
ing bisimulation up to high and restriction we can faithjukepresent the original defi-
nition of strong low-bisimulation. The following proposih states the correspondence

between strong low-bisimulation (defined on thiek actions of the original semantics)
and bisimulation up to high (defined on the extended sengmniith restriction:

Proposition 4. C' =, D iff (C,s) =\g (D,s) \ H and(C,s) \ H =\g (D, s),V s.
As a direct consequence, the security of Imp can be expréssetP_BNDC style”:

Corollary 1. A programC is secure iff{C, s) =\ g (C, s) \ H forall s.

Program security is P.BNDC The following theorem shows that weak bisimulation
up to high is preserved in the translation from Imp to VSPA.

Theorem 1. Let ¢fg, = (C,s) \ Randcfg, = (D,t) \ R', with R, R' C H, be two
configurations (possibly) restricted over high level agolt holds thatfg, =\ g cfg,
iff TTcfg,] R\H Tlefg5]-

This theorem has the flavor of a full-abstraction result [(£]) for the indistinguisha-
bility relation ~\ ;7. As a corollary of the theorem, we receive a direct link betwe
program security ané®_BNDC security:

Corollary 2. A program(' is secure iff its translatio [{C, s)] is P.BNDC'V s.

Examples Recall from Section 2.1 that the progrdm= h is rejected by the security
definition for Imp. Recall from Section 3.2 that

Tl := h] = (lock.get,z.Fesz.0 | res(z).(put,xz.tick.unlock.done.0)) \ {res}

To see that this translation is rejected ByBNDC, take a states that, for example,

maps all its variables t0. We demonstrate that[{l := h, s)]\ H #&\u T[{l := h, s)].

Varying the high variable frorfi to 1 on the right-hand side can be done by the transition
ut,

T == h,s)] “() 2 for someF. If the translation were secure then this transition
would have to be simulated up # by 7[{! := h,s)] \ H. Such a transition would
have to be & transition becauseput,, (1) is a high transition, bul [{! := h, s)] \ H
is restricted from high actions. Therefofg[{l := h,s)] \ H would reduce to some
processE, whose register fok remaing).

By the definition of weak bisimulation up t&, we would haveE' \ H ~\py F'
Let subsequent actions correspond to traversing the twoepses passingut,(0)
andput, (1), respectively, and reachinmlock. Note that actions on internal channels
lock, get,, res, put; are hidden from the environment. However, as an effect of the
latter action, the register férwill store different values. Even though thé&ck actions
can still be simulated, this breaks bisimulation becauseettternally visible action
get,(0) by the successor df (afterunlock) cannot be simulated by the successor of
F (afterunlock).

Further, recall from Section 2.1 that the progréi > 0 then := 1l else ! := 0 is
rejected by Imp’s security definition. In Section 3.2 we shatt

Tlifh>0thenl:=1elsel:=0] =
(Tock.get,z.Tes(z > 0).0 | res(x).
(if = then tick.unlock.
(Lock.Tes1.0 | res(z).(put,z.tick.unlock.done.0)) \ {res}
else tick.unlock.
(Lock.Tes0.0 | res(z).(put,z.tick.unlock.done.0)) \ {res})) \ {res}

The information flow fromh > 0 to [is evident in the translation. The result of in-
specting the expressidn> 0 is sent on the channeks. When this result is received
and checked, either it triggers the process that putsthe register foii or a similar
process that pugto that register.

As above, the VSPA translation fails to satifyBNDC. Varying the high state by
a high environment actioaput, (-) in the beginning leads to different values in the
register forl. This difference can be observed by low environment acié&ges, (-).

5 Related work

A large body of work on information-flow security has beenealeped in the area of
programming languages (see a recent survey [27]) and @oaésulus (e.g., [7, 25, 24,
13, 18]). While both language-based and process calcuasebsecurity are relatively
established fields, only little has been done for understgnthe connection between
the two.

A line of work initiated by Honda et al. [14] and pursued by Harand Yoshida [15,
16] develops security type systems for thealculus. The use of linear and affine types
gives the power for these systems to soundly embed typensy$te imperative multi-
threaded languages [29] into the typedalculus. This direction is appealing as it leads

to automatic security enforcement mechanisms by secwyjity thecking. Neverthe-
less, automatic enforcement comes at the price of loweigpoec Our approach opens
up possibilities for combining high-precision securityifieation (such as equivalence
checking in process calculi [23]) with type-based verifmat Steps in this direction

have been made in, e.g., [17, 2, 31], however, not treatinopgj-sensitive security.

Giambiagi and Dam’s work oadmissible flow§3, 11] illustrates a useful synergy
of an imperative language and a CCS-like process calcuhesa$surance provided by
admissible flows is that a security protocol implementafioritten in the imperative
language) leaks no more information than prescribed infbeication (written in the
process calculus).

Mantel and Sabelfeld [21] have suggested an embedding ofléthmeaded and
distributed language into MAKS [20], an abstract framewimrkmodeling the security
of event-based systems. The translation of a program igedas an event system)
if and only if the program itself is secure (in the sense thatgrogram satisfies self-
low-similarity). While this work offers a useful conneatidbetween language-based
and event-based security, it is inherently restricted fressing event systems as trace
models. In the present work, the security of both the soundetarget languages is de-
fined in terms of bisimulation. This enables us to capturetewai@l information leaks,
e.g., through deadlock behavior [7], which trace-basedatsogenerally fail to detect.

Our inspiration for handling timing-sensitive securitersis from the work by Fo-
cardi et al. [8], where explicitick events are used to keep track of timing in a scenario
of a discrete-time process calculus.

6 Conclusion and future work

We have established a formal connection between a landuaggd and a process calcu-
lus security definition of information security. Concrgtele have shown that a timing-
sensitive security definition corresponds BaBNDC, persistent bisimulation-based
nondeducibility on compositions. Thereby, we have idezdifa point in the space of
process calculus-based definitions [7] that exactly cporeds to compositional timing-
sensitive language-based security.

Drawing on Milner’s work [22], we have developed a generalbgful encoding of
an imperative language into a CCS-like calculus. We expettthis encoding will be
helpful for both future work on information security topias well as other topics that
necessitate representation of programming languagesaegs calculus.

This paper sets solid ground for future work in the followitigections:

Security policiesWe have used as a starting point a timing-sensitive langr@ged
security specification. This choice has allowed us to eistalal tight, timing-sensitive,
correspondence between computation steps in the impetatiguage and the actions
of processes. However, it is important to consider a fultspen of attackers, including
the attacker that may not observe (non)termination. Fuitek includes weakening
security policies and investigating the relation betwdenttvo kinds of security for a
termination-insensitive attacker.

Concurrency and distributianConcurrency and distribution are out of scope for
this paper for lack of space. However, the technical maciiisealready in place to add

multithreading and distribution to the imperative lange#fpr example, the program
security characterization is known to be compositionallfop with dynamic thread
creation [28]). We conjecture that in presence of concuayg?_ BNDC will remain to
correspond to the language-based security definition. \Weabparallel compositions
of Imp threads to be encoded by parallel compositions of VB@&esses. In this case,
the security correspondence result would be a consequéiice compositionality of
the two properties. We anticipate the security correspocel¢o hold without major
changes in the encoding. The effect of distribution featuneboth source and target
languages is certainly a worthwhile topic for future worka Axtension of the source
language with channel-based communication [26] is a nlapmiat for investigating
the connection to process calculi security. As a matter of, fE_BNDC has been
specifically developed for communicating processes, thsisauld be applicable even
when channels are used both for communication and for mkatipg memories.
Modular security According to the vision we stated in the introduction, foe se-
curity analysis of heterogeneous systems we need hetarogsnscalable techniques.
The key to scalability is modular analysis that allows amily parts of a systems in
isolation and plug together secure components togethat thle resulting system is
secure is guaranteed by compositionality results. Whitepmasitionality properties for
Imp and VSPA have been studied separately, we intend to exgie interplay be-
tween the two. In particular, we expect to obtain strongenpositionality results for
the image of secure imperative programs in VSPA than forlee(SPA processes.

References

1. M. Abadi. Protection in programming-language transtagi InProc. International Collo-
quium on Automata, Languages, and Programmimjume 1443 o£ NCS pages 868-883.
Springer-Verlag, July 1998.

2. D. Clark, C. Hankin, and S. Hunt. Information flow for Algidke languages.Journal of
Computer Language28(1):3—-28, April 2002.

3. M. Dam and P. Giambiagi. Confidentiality for mobile cod&eTcase of a simple payment
protocol. InProc. IEEE Computer Security Foundations Workshpages 233-244, July
2000.

4. D. E. Denning and P. J. Denning. Certification of prograorsskecure information flow.
Comm. of the ACM20(7):504-513, July 1977.

5. R. Focardi and R. Gorrieri. A Classification of Securitparties for Process Algebras.
Journal of Computer Securit(1):5-33, 1994/1995.

6. R. Focardi and R. Gorrieri. The Compositional Securitgier: A Tool for the Verifica-
tion of Information Flow Security Propertie$EEE Transactions on Software Engineering
23(9):550-571, 1997.

7. R. Focardi and R. Gorrieri. Classification of Securitygenties (Part I: Information Flow).
In R. Focardi and R. Gorrieri, editorBpundations of Security Analysis and Desigalume
2171 ofLNCS pages 331-396. Springer-Verlag, 2001.

8. R.Focardi, R. Gorrieri, and F. Martinelli. Informatioo analysis in a discrete-time process
algebra. InProc. IEEE Computer Security Foundations Workshpages 170-184, July
2000.

9. R. Focardi and S. Rossi. Information Flow Security in DpiContexts. InProc. of the
IEEE Computer Security Foundations Workshppges 307—319. IEEE Computer Society
Press, 2002.

10.

11.

12.
13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
. C. Piazza, E. Pivato, and S. Rossi. CoPS - Checker ofsRarsiSecurity. IrProc. Inter-
24.

25.

26.

27.
28.

29.

30.

31.

R. Focardi, S. Rossi, and A. Sabelfeld. Bridging LanguBgsed and Process Calculi Secu-
rity. Technical Report CS-2004-14, Dipartimento di Infatica, Universita Ca’ Foscari di
Venezia, Italy, 2004. http://www.dsi.unive.it/ricert&l/index.htm.

P. Giambiagi and M.Dam. On the secure implementatiorecfirity protocols. InProc.
European Symp. on Programminglume 2618 oL NCS pages 144-158. Springer-Verlag,
April 2003.

J. A. Goguen and J. Meseguer. Security policies andisgamdels. InProc. IEEE Symp.
on Security and Privacypages 11-20, April 1982.

M. Hennessy and J. Riely. Information flow vs. resourcgess in the asynchronous pi-
calculus.ACM TOPLAS24(5):566-591, 2002.

K. Honda, V. Vasconcelos, and N. Yoshida. Secure inftiondlow as typed process be-
haviour. InProc. European Symp. on Programmjnglume 1782 o£NCS pages 180-199.
Springer-Verlag, 2000.

K. Honda and N. Yoshida. A uniform type structure for seanformation flow. InProc.
ACM Symp. on Principles of Programming Languageeges 81-92, January 2002.

K. Honda and N. Yoshida. Noninterference through flowlysis Journal of Functional
Programming 2005. To appeatr.

R. Joshi and K. R. M. Leino. A semantic approach to seaf@rnation flow. Science of
Computer Programming37(1-3):113-138, 2000.

N. Kobayashi. Type-based information flow analysis Far pi-calculus. Technical Report
TRO03-0007, Tokyo Institute of Technology, October 2003.

B. W. Lampson. A note on the confinement problé®omm. of the ACM16(10):613-615,
October 1973.

H. Mantel. Possibilistic definitions of security — An @sgly kit —. InProc. IEEE Computer
Security Foundations Workshopages 185-199, July 2000.

H. Mantel and A. Sabelfeld. A unifying approach to theusitg of distributed and multi-
threaded programgl. Computer Securifyi1(4):615-676, September 2003.

R. Milner. Communication and ConcurrenciPrentice-Hall, 1989.

national Conference on Tools and Algorithms for the Coredtam and Analysis of Systems
volume 2988 oLLNCS pages 144-152. Springer-Verlag, March 2004.

F. Pottier. A simple view of type-secure information flawthe pi-calculus. IrfProc. IEEE
Computer Security Foundations Workshppges 320-330, June 2002.

P. Ryan. Mathematical models of computer security—iaifttectures. In R. Focardi and
R. Gorrieri, editorsFoundations of Security Analysis and Designlume 2171 ofLNCS
pages 1-62. Springer-Verlag, 2001.

A. Sabelfeld and H. Mantel. Static confidentiality esfment for distributed programs.
In Proc. Symp. on Static Analysiglume 2477 oLLNCS pages 376—394. Springer-Verlag,
September 2002.

A. Sabelfeld and A. C. Myers. Language-based informafliow security.|IEEE J. Selected
Areas in Communication21(1):5-19, January 2003.

A. Sabelfeld and D. Sands. Probabilistic noninterfeeefor multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshmgges 200-214, July 2000.

G. Smith and D. Volpano. Secure information flow in a mitkiteaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languagesmjes 355—-364, January
1998.

G. Winskel.The Formal Semantics of Programming Languages: An IntrodncMIT Press,
Cambridge, MA, 1993.

N. Yoshida, K. Honda, and M. Berger. Linearity and bidimtion. In Proc. Foundations
of Software Science and Computation Structwaume 2303 ofLNCS pages 417-433.
Springer-Verlag, April 2002.

