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Bossi et al.to allow one to \delay" the seletion of ertain atoms in the query until theirarguments beome suÆiently instantiated.The additional exibility introdued by the adoption of a dynami seletionmehanism has the disadvantage that the most of the literature on terminationof logi programs (see [15℄ for a survey on the subjet) does not apply whena dynami seletion rule is employed. Notable exeptions are Bezem's [7℄ andand Cavedon's [8℄, whih provide results for unrestrited seletion rules.We know of few authors who takled the spei� problem of terminationof logi programs with a dynami seletion rule. Apt and Luitjes's [3℄ exploitsproperties of a restrited lass of SLD-derivations to prove termination oflogi programs augmented with delay delarations that imply determinayand mathing. Marhiori and Teusink's [14℄ introdues the lass of delayreurrent programs and proves that programs in this lass terminate for allloal delay seletion rule. More reently, Smaus's [16℄ studies the terminationof input-onsuming derivations of well and niely moded programs.Goal of this paper is to study the dynami behavior of programs usingdynami sheduling, and to provide suÆient onditions whih guarantee theirtermination.The �rst obstale we enounter is of providing an \algebrai" way of repre-senting delay delarations. For this purpose, we follow here the same approahof [16℄ and we substitute the use of delay delarations by the restrition toinput-onsuming derivations.The de�nition of input-onsuming derivation is done in two phases: �rstwe give the program a mode, that is, we partition the positions of eah atomourring in input and output positions. Then, in presene of modes, input-onsuming derivations are preisely those in whih only atoms whose inputarguments will not be instantiated by the uni�ation are allowed to be seleted.We laim that in most \usual" moded programs using a dynami sele-tion rule, delay delarations are employed preisely for ensuring the input-onsumedness of the derivations. Clearly, this thesis annot be proven, yetit is for instane substantiated by the fat that onept of input-onsumingresolution is very similar to the seletion mehanism employed in Moded FlatGHC [20℄, and by the arguments in [16℄. In Setion 3 we provide furthertehnial arguments sustaining this thesis.In this paper we study some properties of input-onsuming derivations. Weshow that if we restrit to programs and queries whih are niely-moded, thena one way swithing-lemma holds and a simple method for proving terminationan be applied.In order to study termination properties, we de�ne the lass of input termi-nating programs whih haraterizes programs whose input-onsuming deriva-tions are �nite. In order to prove that a program is input terminating we usethe onept of weakly semi-reurrent program whih is muh less restritivethan the similar onept of semi-reurrent program introdued by Apt and Pe-dreshi in [4℄. We show that if P is niely-moded and weakly semi-reurrent2



Bossi et al.then all its input-onsuming derivations starting from a niely-moded queryterminate.Our work generalizes the method desribed by Smaus in [16℄ for provingthe termination of input-onsuming derivations of well and niely-moded pro-grams and queries. First, as opposed to [16℄, we do not require programs andqueries to be well-moded; we only assume that they are niely-moded. Se-ond, our onept of weak semi-reurreny provides a ondition to hold for allinstanes of a lause while the notion of ICD-aeptability proposed by Smausonly onsiders lause ground instanes. This small generalization allows us toprove termination of input-onsuming derivations of queries where the inputarguments are not neessarily ground. For example, we an prove terminationof all the input-onsuming derivations of the program APPEND starting froma query append(s; t; u) provided that u is linear and variable disjoint froms and t. With the method of [16℄ one an only prove termination of thoseinput-onsuming derivations where the initial query satis�es the additionalondition that s and t are ground.We show that the results presented in this paper an be extended to pro-grams and queries whih are permutation niely-moded [17℄.We apply our method to many benhmarks from well-known olletions toshow appliability and e�etiveness of the results presented in this paper.The paper is organized as follows. Setion 2 ontains some preliminarynotations and de�nitions. In Setion 3 input-onsuming derivations are in-trodued and some properties of them are proved. In Setion 4 a method forproving termination of programs is presented, �rst in a non-modular way, thenfor modular programs. Setion 5 reports the results obtained by applying ourmethod to various benhmarks. Finally, Setion 6 onludes the paper.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi resultsof the semantis of logi programs [1,2,13℄.2.1 Terms and SubstitutionsLet T be the set of terms built on a �nite set of data onstrutors C and adenumerable set of variable symbols V. A substitution � is a mapping fromV to T suh that Dom(�) = fXj �(X) 6= Xg is �nite. For any syntatiobjet o, we denote by Var(o) the set of variables ourring in o. A syntatiobjet is linear if every variable ours in it at most one. We denote by �the empty substitution. The omposition �� of the substitutions � and � isde�ned as the funtional omposition, i.e., ��(X) = �(�(X)). We onsiderthe pre-ordering � (more general than) on substitutions suh that � � � i�there exists  suh that � = �. The result of the appliation of a substitution� to a term t is said an instane of t and it is denoted by t�. We also onsider3



Bossi et al.the pre-ordering � (more general than) on terms suh that t � t0 i� thereexists � suh that t� = t0. We denote by � the assoiated equivalene relation(variane). A substitution � is a uni�er of terms t and t0 i� t� = t0�. Wedenote by mgu(t = t0) any most general uni�er (mgu, in short) of t and t0. Anmgu � of terms t and t0 is alled relevant i� Var(�) � Var(t) [ Var(t0).2.2 Programs and DerivationsLet P be a �nite set of prediate symbols. An atom is an objet of the formp(t1; : : : ; tn) where p 2 P is an n-ary prediate symbol and t1; : : : ; tn 2 T .Given an atom A, we denote by Rel(A) the prediate symbol in A. A queryis a possibly empty �nite sequene of atoms A1; : : : ; Am. The empty queryis denoted by 2. Following the onvention adopted by Apt in [2℄, we usebold haraters to denote (possibly empty) sequenes of atoms. A lause is aformula H  B where H is an atom (the head) and B is a query (the body).When B is empty, H  B is written H  and is alled a unit lause. Aprogram is a �nite set of lauses. We denote atoms by A;B;H; : : : ; queries byQ;A;B;C; : : : ; lauses by ; d; : : : ; and programs by P .Computations are onstruted as sequenes of \basi" steps. Consider anon-empty query A; B;C and a lause . Let H  B be a variant of  variabledisjoint from A; B;C. Let B and H unify with mgu �. The query (A;B;C)�is alled a resolvent of A; B;C and  with respet to B, with an mgu �. Aderivation step is denoted byA; B;C �=)P; (A;B;C)�:H  B is alled its input lause. The atom B is alled the seleted atomof A; B;C. If P is lear from the ontext or  is irrelevant then we drop areferene to them. A derivation is obtained by iterating derivation steps. Amaximal sequeneÆ := Q0 �1=)P;1 Q1 �2=)P;2 � � �Qn �n+1=)P;n+1 Qn+1 � � �of derivation steps is alled a derivation of P [ fQ0g provided that for everystep the standardization apart ondition holds, i.e., the input lause employedis variable disjoint from the initial query Q0 and from the substitutions andthe input lauses used at earlier steps.Derivations an be �nite or in�nite. If Æ := Q0 �1=)P;1 � � � �n=)P;n Qn is a�nite pre�x of a derivation, also denoted Æ := Q0 �7�! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation and � is a partial omputed answer substitution(p..a.s., for short) of P[fQ0g. If Æ is maximal and ends with the empty querythen � is alled omputed answer substitution (.a.s., for short). The length ofa (partial) derivation Æ, denoted by len(Æ), is the number of derivation stepsin Æ. We all B-step any derivation step in a derivation Æ of A; B;C in whihthe seleted atom is B or any other atom obtained by resolving B.4



Bossi et al.3 Input-Consuming Derivations3.1 Basi De�nitionsLet us �rst reall the notion of mode. A mode is a funtion that labels asinput or output the positions of eah prediate in order to indiate how thearguments of a prediate should be used.De�nition 3.1 [Mode℄ Consider an n-ary prediate symbol p. By a mode forp we mean a funtion mp from f1; : : : ; ng to fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) position ofp (with respet to mp). We assume that eah prediate symbol has a uniquemode assoiated to it; multiple modes may be obtained by simply renamingthe prediates.If Q is a query, we denote by In(Q) (resp. Out(Q)) the set of terms �llingin the input (resp. output) positions of prediates in Q. Moreover, whenwriting an atom as p(s; t), we are indiating with s the sequene of terms�lling in the input positions of p and with t the sequene of terms �lling inthe output positions of p.The notion of input-onsuming derivation was introdued in [16℄ and isde�ned as follows.De�nition 3.2 [Input-Consuming℄� An atom p(s; t) is alled input-onsuming resolvable wrt a lause  :=p(u;v) Q and a substitution � i� � = mgu(p(s; t) = p(u;v)) and s = s�.� A derivation step A; B;C �=) (A;B;C)�is alled input-onsuming i� the seleted atom B is input-onsuming resolv-able wrt the input lause  and the substitution �.� A derivation is alled input-onsuming i� all its derivation steps are input-onsuming.The following Lemma states that we are allowed to restrit our attentionto input-onsuming derivations with relevant mgu's.Lemma 3.3 Let p(s; t) and p(u;v) be two atoms. If there exists an mgu �of p(s; t) and p(u;v) suh that s� = s then there exists a relevant mgu # ofp(s; t) and p(u;v) suh that s# = s.Proof. Sine p(s; t) and p(u;v) are uni�able, there exists a relevant mgu�rel of them (fr. [2℄, Theorem 2.16). Now, �rel is a renaming of �. Thuss�rel is a variant of s. Then there exists a renaming � suh that Dom(�) �Var(s; t;u;v) and s�rel� = s. Now, take # = �rel�. 2From now on, we assume that all mgu's used in the input-onsumingderivation steps are relevant. 5



Bossi et al.Example 3.4 Consider the program REVERSE with aumulator in the modesde�ned below.mode reverse(In; Out):mode reverse a(In; Out; In):reverse(Xs; Ys)  reverse a(Xs; Ys; [ ℄):reverse a([ ℄; Ys; Ys):reverse a([XjXs℄; Ys; Zs)  reverse a(Xs; Ys; [XjZs℄):Consider also the query reverse([X1; X2℄; Zs). The derivation Æ of REVERSE[freverse([X1; X2℄; Zs)g depited below is input-onsuming.Æ := reverse([X1; X2℄; Zs) ) reverse a([X1; X2℄; Zs; [ ℄))reverse a([X2℄; Zs; [X1℄)) reverse a([ ℄; Zs; [X2; X1℄)) 2:Input-Consuming vs. Delay DelarationsIn the introdution we have stated the laim that in most \usual" modedprograms using a dynami seletion rule, delay delarations are employed pre-isely for ensuring the input-onsumedness of the derivations. As we havealready mentioned, this thesis is already substantiated by the fat that on-ept of input-onsuming resolution is very similar to the seletion mehanismemployed in Moded Flat GHC [20℄, and by the arguments in [16℄.We now want to add another argument sustaining it.First, as a large body of literature shows, the vast majority of \usual"programs are atually moded (see for example [5,6℄ or onsider for instanethe stritly moded logi programming language Merury [18℄).Seondly, it is lear that the sope of a delay delaration is to guaranteethat the interpreter will not selet the \wrong" lause to resolve a goal. Infat, if the interpreter always seleted the \right" lause, by the known resultsover independene from the seletion rule one would not have to worry aboutthe order of the seletion of the atoms in the query. Typially, delay dela-rations are used to prevent the seletion of an atom until a ertain degree ofinstantiation is reahed. This degree of instantiation ensures that the atomis uni�able only with the heads of the \right" lauses. In presene of modes,the degree of instantiation we are interested in is learly the one of the inputpositions, whih are the one arrying the information.Now, take an atom p(s; t) and suppose that it is resolvable with a lause by means of an input-onsuming derivation step. Then, for every instanes0 of s, we have that the atom p(s0; t) is as well resolvable with a lause by means of an input-onsuming derivation step. In other words, no furtherinstantiation of the input positions of p(s; t) an rule out  as a possible lausefor resolving it. Thus  must be one of the \right" lauses for resolving p(s; t)and we an say that p(s; t) is in its input positions \suÆiently instantiated"to be resolved with . 6



Bossi et al.On the other hand, following the same reasoning, it is easy to see that ifp(s; t) is resolvable with  but not via an input-onsuming derivation step,then there exists an instane s0 of s, suh that p(s0; t) is not resolvable via .In this ase we an say that p(s; t) is not instantiated enough to know whether is one of the \right" lauses for resolving it.3.2 Niely-Moded ProgramsIn this the sequel of the paper we'll restrit to programs and queries whihare Niely-Moded. We report here the de�nition of this onept together withsome important properties of niely-moded programs.De�nition 3.5 [Niely-Moded℄� A query Q := p1(s1; t1); : : : ; pn(sn; tn) is niely-moded if t1; : : : ; tn is a linearvetor of terms and for all i 2 f1; : : : ; ngVar(si) \ n[j=iVar(tj) = ;:� A lause  = p(s0; t0) Q is niely-moded if Q is niely-moded andVar(s0) \ n[j=1Var(tj) = ;:� A program P is niely-moded if all of its lauses are niely-moded.Note that a one-atom query p(s; t) is niely-moded if and only if t is linearand Var(s) \ Var(t) = ;.Example 3.6� The program REVERSE with aumulator in the modes depited in the Ex-ample 3.4 is niely-moded.� The following program MERGE is niely-moded.mode merge(In; In; Out):merge(Xs; [ ℄; Xs):merge([ ℄; Xs; Xs):merge([XjXs℄; [YjYs℄; [YjZs℄)  Y < X; merge([XjXs℄; Ys; Zs):merge([XjXs℄; [YjYs℄; [XjZs℄)  Y > X; merge(Xs; [YjYs℄; Zs):merge([XjXs℄; [XjYs℄; [XjZs℄)  merge(Xs; [XjYs℄; Zs):We now start investigating the properties of niely-moded programs em-ploying input-onsuming seletion rules.7



Bossi et al.The following result is due to Smaus [16℄, and states that the lass ofprograms and queries we are onsidering is losed under resolution.Lemma 3.7 [16℄ Every resolvent of a niely-moded query Q and a niely-moded lause , where the derivation step is input-onsuming and Var(Q) \Var() = ;, is niely-moded.The following Remark (also in [16℄) is an immediate onsequene of thede�nition of input-onsuming derivation step and the fat that the mgu's weonsider are relevant.Remark 3.8 [16℄ Let the program P and the query Q := A; p(s; t);C beniely-moded. If A; p(s; t);C �=) A;B;C is an input-onsuming derivationstep with seleted atom p(s; t), then A� = A.We now need one tehnial result, stating that the only variables of a querythat an be \a�eted" in the derivation proess are those ourring in someoutput positions.Lemma 3.9 Let the program P and the query Q be niely-moded. Let Æ :=Q �7�! Q0 be a partial input-onsuming derivation of P [ fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.Proof. Let us �rst establish the following laim.Claim 3.10 Let z and w be two variable disjoint sequenes of terms suh thatw is linear and � = mgu(z = w). If s1 and s2 are two variable disjoint termsourring in z then s1� and s2� are variable disjoint terms.Proof. The result follows from Lemmata 11.4 and 11.5 in [4℄. 2We proeed with the proof of the lemma by indution on len(Æ).Base Case. Let len(Æ) = 0. In this ase Q = Q0 and the result followstrivially.Indution step. Let len(Æ) > 0. Suppose that Q := A; p(s; t);C andÆ := A; p(s; t);C �1=) (A;B;C)�1 �27�! Q0where p(s; t) is the seleted atom of Q,  := p(u;v)  B is the input lauseused in the �rst derivation step, �1 is a relevant mgu of p(s; t) and p(u;v) and� = �1�2.Let x 2 Var(A; p(s; t);C) and x 62 Var(Out(A; p(s; t);C)). We �rst showthat(1) x�1 = x.We distinguish two ases.(a) x 2 Var(s). In this ase, property (1) follows from the hypothesis thatÆ is input-onsuming. 8



Bossi et al.(b) x 62 Var(s). Then, by the hoie of x, x 62 Var(p(s; t)). In this ase,property (1) follows from the standardization apart ondition and relevaneof �1.Now we show that(2) x�2 = x.Again, we distinguish two ases:() x 62 Var((A;B;C)�1). In this ase, beause of the standardizationapart ondition, x will never our in (A;B;C)�1 �27�! Q0. Hene, x 62 Dom(�2)and x�2 = x.(d) x 2 Var((A;B;C)�1). In this ase, in order to prove (2) we showthat x 62 Var(Out((A;B;C)�1)). The result then follows by the indutivehypothesis.From the standardization apart ondition, relevane of �1 and (1), it followsthat Dom(�1) \ Var(Q) � Var(t).From the hypothesis that Q is niely-moded, Var(t) \ Var(Out(A;C)) = ;.Hene, Var(Out(A;C))�1 = Var(Out(A;C)). Sine x 62 Var(Out(A;C)),this proves that x 62 Var(Out((A;C)�1)).It remains to prove that x 62 Var(Out(B�1). We distinguish two further ases.(d1) x 62 Var(s). In this ase, x 62 Var(Out(B�1) follows immediately bythe standardization apart ondition and the relevane of �1.(d2) x 2 Var(s). By known results (see [2℄, Corollary 2.25), there existstwo relevant mgu �1 and �2 suh that� �1 = �1�2,� �1 = mgu(s = u),� �2 = mgu(t�1 = v�1).From relevane of �1 and the fat that, by niely-modedness of Q, Var(s) \Var(t) = ;, we have that t�1 = t, and by the standardization apart on-dition Var(t) \ Var(v�1) = ;. Now by niely-modedness of , Var(u) \Var(Out(B)) = ;. Sine �1 is relevant and by the standardization apartondition it follows that(3) Var(u�1) \ Var(Out(B�1)) = ;.The proof proeeds now by ontradition. Suppose that x 2 Var(Out(B�1�2)).Sine by hypothesis x 2 Var(s), and s = u�1�2, we have that Var(u�1�2) \Var(Out(B�1�2)) 6= ;. By (3), this means that there exist two distint vari-ables z1 and z2 in Var(�2) suh that z1 2 Var(Out(B�1)), z2 2 Var(u�1)and(4) Var(z1�2) \ Var(z2�2) 6= ;.Sine, by the standardization apart ondition and relevane of the mgu's,Var(�2) � Var(v�1)[Var(t) and (Var(Out(B�1))[Var(u�1))\Var(t) = ;,we have that z1 and z2 are two disjoint subterms of v�1. Sine �2 = mgu(t =9



Bossi et al.v�1), t is linear and disjoint from v�1, (4) ontradits Claim 3.10. 2The following orollary is an immediate onsequene of the above lemmaand the de�nition of niely-moded program.Corollary 3.11 Let the program P and the one-atom query A be niely-moded. Let Æ := A �7�! Q0 be a partial input-onsuming derivation of P [fAg.Then, for all x 2 Var(In(A)), x� = x.The Left-Swithing LemmaNext is the main result of this setion, showing that for input-onsumingniely-moded programs one half of the well-known swithing lemma holds.This shows that it is always possible to proeed left-to-right to resolve theseleted atoms 1 .Lemma 3.12 (Left-Swithing) Let the program P and the query Q0 beniely-moded. Let Æ be a partial input-onsuming derivation of P [ fQ0g ofthe form Æ := Q0 �1=)1 Q1 � � �Qn �n+1=)n+1 Qn+1 �n+2=)n+2 Qn+2where� Qn is a query of the form A; A;B; B;C,� Qn+1 is a resolvent of Qn and n+1 wrt B,� Qn+2 is a resolvent of Qn+1 and n+2 wrt A�n+1.Then, there exists Q0n+1, �0n+1, �0n+2 and a derivation Æ0 suh that�n+1�n+2 = �0n+1�0n+2and Æ0 := Q0 �1=)1 Q1 � � �Qn �0n+1=)n+2 Q0n+1 �0n+2=)n+1 Qn+2where� Æ0 is input-onsuming,� Æ and Æ0 oinide up to the resolvent Qn,� Q0n+1 is a resolvent of Qn and n+2 wrt A,� Qn+2 is a resolvent of Q0n+1 and n+1 wrt B�0n+1.� Æ and Æ0 oinide after the resolvent Qn+2.Proof. Let A := p(s; t), B := q(u;v), n+1 := q(u0;v0)  D and n+2 :=p(s0; t0) E. Hene, �n+1 = mgu(q(u;v) = q(u0;v0)) and(1) u�n+1 = u, sine Æ is input-onsuming.1 Notie that this is however di�erent than saying that the leftmost atom of a query shouldalways be resolvable: it an very well be the ase that the leftmost atom is resolvable andthe one next to it is resolvable. 10



Bossi et al.By (1) and the fat that Qn is niely-moded and �n+1 is relevant, we havep(s; t)�n+1 = p(s; t). Then, �n+2 = mgu(p(s; t)�n+1 = p(s0; t0)) = mgu(p(s; t) =p(s0; t0)) and(2) s�n+2 = s, sine Æ is input-onsuming.Moreover,(3) �n+1�n+2 = mgufp(s; t) = p(s0; t0); q(u;v) = q(u0;v0)g= �n+2�0n+2where�0n+2 = mgu(q(u;v)�n+2 = q(u0;v0)�n+2)= mgu(q(u;v)�n+2 = q(u0;v0))We onstrut the derivation Æ0 as follows.Æ0 := Q0 �1=)1 Q1 � � �Qn �0n+1=)n+2 Q0n+1 �0n+2=)n+1 Qn+2where(4) �0n+1 = �n+2.By (2), Qn �0n+1=)n+2 Q0n+1 is an input-onsuming derivation step.Observe now thatu�0n+1�0n+2 = u�n+2�0n+2; (by (4))= u�n+1�n+2; (by (3))= u�n+2; (by (1))= u�0n+1; (by (4))This proves that also Q0n+1 �0n+2=)n+1 Q0n+2 is an input-onsuming derivationstep. 2It is important to notie that if we drop the niely-modedness onditionthe above Lemma would not hold any longer: it is not diÆult to write alassial oroutining program whih is not niely-moded for whih the abovelemma does not apply (see for instane the program reader-writer in [11℄).Corollary 3.13 Let the program P and the query Q := A;B be niely-moded.Suppose that Æ := A;B �7�! C1;C2is a partial input-onsuming derivation of P [ fQg where C1 and C2 areobtained by partially resolving A and B, respetively.11



Bossi et al.Then there exists a partial input-onsuming derivationÆ0 := A;B �17�! C1;B�1 �27�! C1;C2where all the A-steps are performed in the pre�x A;B �17�! C1;B�1 of Æ0 and� = �1�2.4 TerminationIn this setion we study the termination of input-onsuming derivations of logiprograms. To this end we re�ne the ideas of Bezem [7℄ and Cavedon [8℄ whostudied the termination of logi programs in a very strong sense, namely withrespet to all seletion rules, and of Smaus [16℄ who arahterized terminatinginput-onsuming derivations of well and niely-moded programs.4.1 Input Terminating ProgramsWe �rst introdue the key notion of this setion.De�nition 4.1 [Input Termination℄ A program is alled input terminatingi� all its input-onsuming derivations started with a niely-moded query are�nite.The method we are going to use in order to prove that a program is input-terminating is based on the following onept of moded level mapping intro-dued by Etalle et al. in [10℄.De�nition 4.2 [Moded Level Mapping℄ Let P be a program and BEP be theextended Herbrand Base for the language assoiated with P . A funtion j j isa moded level mapping for P i�:� it is a funtion j j : BEP ! N from atoms to natural numbers;� for any t and u, jp(s; t)j = jp(s;u)j.For A 2 BEP , jAj is the level of A.The ondition jp(s; t)j = jp(s;u)j states that the level of an atom is in-dependent from the terms �lling in its output positions. There is atuallya small yet important di�erene between this de�nition and the one in [10℄:in [10℄ the level mapping is de�ned on ground atoms only. Therefore this isatually an extension of the de�nition of [10℄.Example 4.3 Let us denote by TSize(t) the term size of a term t, that isthe number of funtion and onstant symbols that our in t. A moded levelmapping for the program REVERSE with aumulator of the Example 3.4 isjreverse(Xs; Ys)j = TSize(Xs)jreverse a(Xs; Ys; Zs)j = TSize(Xs)where Xs is the �rst input argument.12



Bossi et al.4.2 Weak Semi-ReurrenyIn order to give a suÆient ondition for termination, we are going to employa generalization of the onept of semi-reurrent program de�ned by Apt andPedreshi in [4℄. First, we need a preliminary de�nition.De�nition 4.4 Let P be a program, p and q be relations. We say that prefers to q in P i� there is a lause in P with p in the head and q in the body.We say that p depends on q and write p v q in P i� (p; q) is in the reexiveand transitive losure of the relation refers to.Aording to the above de�nition, p ' q � p v q ^ p w q means that pand q are mutually reursive, and p A q � p w q ^ p 6' q means that p alls qas a subprogram. Notie that A is a well-founded ordering.Finally, we an provide the key onept we are going to use in order toprove input-termination.De�nition 4.5 [Weak Semi-Reurreny℄ Let P be a program and j j :BEP ! Nbe a moded level mapping.� A lause of P is alled weakly semi-reurrent with respet to j j i� for everyinstane of it, H  A; B;Cif Rel(H) ' Rel(B) then jHj > jBj.� A program P is alled weakly semi-reurrent with respet to j j i� all itslauses are. P is alled weakly semi-reurrent i� it is weakly semi-reurrentwith respet to some moded level mapping j j : BEP ! N.The notion of weak semi-reurreny di�ers from the onept of semi-reurreny introdued by Apt and Pedreshi in [4℄ in two ways. First, ourde�nition provides a ondition to hold for every instane of a program lausenot only for ground instanes as in [4℄. Seond, we do not require any de-reasing neither non inreasing of the level mapping between the head H ofa rule instane and every orresponding non reursive body atom B: indeed,the additional ondition jHj � jBj is required in [4℄ for any body atom B suhthat Rel(H) 6' Rel(B).We an now state our �rst basi result on termination, in the ase of non-modular programs.Theorem 4.6 Let P be a niely-moded program. If P is weakly semi-reurrentthen P is input-terminating.Proof. It will be obtained from the proof of Theorem 4.10 by setting R = ;.2Example 4.7 Consider the program MERGE de�ned in the Example 3.6. Letj j be the moded level mapping for MERGE de�ned byjmerge(Xs; Ys; Zs)j = TSize(Xs) + TSize(Ys):13



Bossi et al.It is easy to prove that MERGE is weakly semi-reurrent with respet to themoded level mapping above. By Theorem 4.6, all input-onsuming derivationsof the program MERGE started with a query merge(u; s; t) where t is linear andvariable disjoint from u and s are terminating.4.3 Modular TerminationThis setion ontains a generalization of Theorem 4.6 to the modular ase, aswell as the omplete proofs for it.The following lemma is a ruial one.Lemma 4.8 Let the program P and the query Q := A1; : : : ; An be niely-moded. Suppose that there exists an in�nite input-onsuming derivation Æ ofP [ fQg. Then, there exist i 2 f1; : : : ; ng and substitution � suh that� there exists an input-onsuming derivation Æ0 of P [ fQg of the formÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� 7�! � � � ;� there exists an in�nite input-onsuming derivation of P [ fAi�g.Proof. Let Æ := A1; : : : ; An 7�! � � � be an in�nite input-onsuming derivationof P [ fQg. Then Æ ontains an in�nite number of Ak-steps for some k 2f1; : : : ; ng. Let i be the minimum of suh k. Hene Æ ontains a �nite numberof Aj-steps for j 2 f1; : : : ; i� 1g and there exists C and D suh thatÆ := A1; : : : ; An #7�! C;D 7�! � � �where A1; : : : ; An #7�! C;D is a �nite pre�x of Æ whih omprises all theAj-steps for j 2 f1; : : : ; i� 1g and C results from their resolution. By Corol-lary 3.13, there exists an in�nite input-onsuming derivation Æ0 suh thatÆ0 := A1; : : : ; An �7�! C; (Ai; : : : ; An)� �07�! C;D 7�! � � �where # = ��0. Let Æ00 := C; (Ai; : : : ; An)� �07�! C;D 7�! � � �. Note thatin Æ00 the atoms of C will never be seleted and, by Remark 3.8, will neverbe instantiated. Hene there exists an in�nite input-onsuming derivation Æ000of P [ f(Ai; : : : ; An)�g where an in�nite number of Ai�-steps are performed.Again, By Remark 3.8, for every �nite pre�x of Æ000 of the formAi�; (Ai+1; : : : ; An)� �17�! D1;D2 �2=) D01;D02where D1 and D2 are obtained by partially resolving Ai� and (Ai+1; : : : ; An)�,respetively, and D1;D2 �2=) D01;D02 is an Aj-step for some j 2 fi+1; : : : ; ng,we have that D01 = D1. Hene, from the hypothesis that there is an in�-nite number of Ai�-steps in Æ00, it follows that there exists an in�nite input-onsuming derivation of P [ fAi�g. 214



Bossi et al.The importane of the above lemma is shown by the following orollary ofit, whih will allow us to onentrate our attention on queries ontaining onlyone atom.Corollary 4.9 Let P be a niely-moded program. P is input-terminating i�for eah niely-moded one-atom query A all input-onsuming derivations ofP [ fAg are �nite.We an now state the main result of this setion. Here and in what followswe say that a relation p is de�ned in the program P if p ours in a head ofa lause of P , and that P extends the program R i� no relation de�ned in Pours in R.Theorem 4.10 Let P and R be two programs suh that P extends R. Supposethat(i) R is input-terminating,(ii) P is niely-moded and weakly semi-reurrent with respet to a moded levelmapping j j : BEP ! N.Then P [ R is input-terminating.Proof. First, for eah prediate symbol p, we de�ne depP (p) to be the numberof prediate symbols it depends on. More formally, depP (p) is de�ned as theardinality of the set fqj q is de�ned in P and p w qg. Clearly, depP (p) isalways �nite. Further, it is immediate to see that if p ' q then depP (p) =depP (q) and that if p A q then depP (p) > depP (q).We an now prove our theorem. By Corollary 4.9, it is suÆient to provethat for every niely-moded one-atom query A, all input-onsuming deriva-tions of P [ fAg are �nite.First notie that if A is de�ned in R then the result follows immediatelyfrom the hypothesis that R is input-terminating and that P is an extensionof R. So we an assume that A is de�ned in P .Let Æ be an in�nite input-onsuming derivation of P [ R [ fAg suh thatA is de�ned in P . ThenÆ := A �1=) (B1; : : : ; Bn)�1 �2=) � � �where H  B1; : : : ; Bn is the input lause used in the �rst derivation step and�1 = mgu(A = H). Clearly, (B1; : : : ; Bn)�1 has an in�nite input-onsumingderivation in P [ R. By Lemma 4.8, for some i 2 f1; : : : ; ng and for somesubstitution �2,(1) there exists an in�nite input-onsuming derivation of P [ R [ fAg of theform A �1=) (B1; : : : ; Bn)�1 �27�! C; (Bi; : : : ; Bn)�1�2 � � � ;(2) there exists an in�nite input onsuming derivation of P [ fBi�1�2g:We proeed by proving that (2) is a ontradition.15



Bossi et al.Let � = �1�2. Note that H�  (B1; : : : ; Bn)� is an instane of a lause of P .The proof follows by indution on hdepP (Rel(A)); jAji with respet to theordering � de�ned by: hm;ni � hm0; n0i i� either m > m0 or m = m0 andn > n0.Base. Let depP (Rel(A)) = 0 and jAj = 0. In this ase, A does not dependon any prediate symbol of P , thus all the Bi as well as all the atoms ourringin its desendents in any input-onsuming derivation are de�ned in R. Thehypothesis that R is input-terminating ontradits point (2) above.Indution step. Let depP (Rel(A)) > 0 and jAj > 0. We distinguish twoases:(a) Rel(H) A Rel(Bi),(b) Rel(H) ' Rel(Bi).In ase (a) we have that depP (Rel(A)) = depP (Rel(H�)) > depP (Rel(Bi�)).So, hdepP (Rel(A)); jAji = hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji.In ase (b), from the hypothesis that P is weakly semi-reurrent w.r.t. j j, itfollows that jH�j � jBi�j. Consider the partial input-onsuming derivationA �7�! C; (Bi; : : : ; Bn)�, by Corollary 3.11 and the fat that j j is a modedlevel mapping, we have that jAj = jA�j = jH�j. Hene, hdepP (Rel(A)); jAji =hdepP (Rel(H�)); jH�ji � hdepP (Rel(Bi�)); jBi�ji.In both ases, the ontradition follows by the indutive hypothesis. 2Example 4.11 The program FLATTEN using di�erene-lists is niely-modedin the modes desribed below (with \n" replaed by \,").mode flatten(In; Out):mode flatten dl(In; Out; In):mode onstant(In):mode 6= (In; In):flatten(Xs; Ys)  flatten dl(Xs; Ys n [ ℄):flatten dl([ ℄; Ys n Ys):flatten dl(X; [XjXs℄ n Xs)  onstant(X); X 6= [ ℄:flatten dl([XjXs℄; Ys n Zs)  flatten dl(Xs; Y1s n Zs);flatten dl(X; Ys n Y1s):Consider the moded level mapping for FLATTEN de�ned byjflatten(Xs; Ys)j = TSize(Xsjflatten dl(Xs; Ys n Zs)j = TSize(Xs):It is easy to see that the program FLATTEN is weakly semi-reurrent withrespet to the moded level mapping above. Hene, all input-onsuming deriva-tions of FLATTEN starting from a query flatten(u; s) where s is linear andvariable disjoint from u are terminating.16



Bossi et al.Permutation Niely-ModedAt this point it is worth notiing that, sine the programs we are onsideringdo not use a �xed seletion rule the result we have provided (Theorems 4.6 and4.10) hold also in the ase that programs and queries are permutation niely-moded [17℄, that is programs and queries for whih would be niely-modedafter a permutation of the atoms in the bodies. Therefore, for instane, wean treat the program FLATTEN as it is presented in [2℄, i.e.,flatten(Xs; Ys)  flatten dl(Xs; Ys n [ ℄):flatten dl([ ℄; Ys n Ys):flatten dl(X; [XjXs℄ n Xs)  onstant(X); X 6= [ ℄:flatten dl([XjXs℄; Ys n Zs)  flatten dl(X; Ys n Y1s);flatten dl(Xs; Y1s n Zs):where the atoms in the body of the last lause are permuted with respet tothe version of the Example 4.11.5 AppliabilityIn this setion we report the results that we obtained by applying the termina-tion riterion presented in this paper to several benhmarks from well-knownolletions.In Table 1 benhmarks from Apt's olletion are onsidered (see [2℄ and[4℄). Benhmarks from the DPPD's olletion, maintained by Leushel andavailable at the URL: http://dsse.es.soton.a.uk/ mal/systems/dppd.html,are referred to in Table 2. Table 3 onsiders various benhmarks from Linden-strauss's olletion (see the URL: http://www.s.huji.a.il/ naomil). Finally,Table 4 onerns with benhmarks from F. Bueno, M. Garia de la Banda andM. Hermenegildo that an be found at the URL: http://www.lip.dia.�.upm.es.For eah benhmark we speify the name and the modes of the main proe-dure. In the tables below NM stays for niely-moded and the orrespondingentry is yes when we an �nd some modes for the subproedures with respetto whih the whole program is niely moded. The next to olumns refer tosuh a modes: IT stays for input terminating and WSR stays for weaklysemi-reurrent.6 ConlusionWe presented a method for proving termination of programs and queries whihare (permutation) niely-moded. Sine input-onsuming derivations do notuse any �xed seletion rule, our method an be applied for proving termina-tion of programs whih employ a dynami seletion rule. Our results stritlyimprove on [16℄ in the fat that we drop the ondition that programs and17



Bossi et al.NM IT WSR NM IT WSRappend(In, , ) yes yes yes ordered(In) yes yes yesappend( , ,In) yes yes yes overlap( ,In) yes yes yesappend(Out,In,Out) yes no overlap(In,Out) yes yes noappend3(In,In,In,Out) yes yes yes perm( ,In) yes yes yesolor map(In,Out) yes no perm(In,Out) yes noolor map(Out,In) yes no qsort(In, ) yes yes noolor map(In,In) yes yes yes qsort(Out,In) yes nodsolve(In, ) yes no reverse(In, ) yes yes yeseven(In) yes yes yes reverse(Out,In) yes nofold(In,In,Out) yes yes yes selet( ,In, ) yes yes yeslist(In) yes yes yes selet( , ,In) yes yes yeslte(In, ) yes yes yes selet(In,Out,Out) yes nolte( ,In) yes yes yes subset(In,In) yes yes yesmap(In, ) yes yes yes subset (In,Out) yes nomap( ,In) yes yes yes subset (Out,In) yes nomember( ,In) yes yes yes sum( ,In, ) yes yes yesmember(In,Out) yes yes no sum( , ,In) yes yes yesmergesort(In, ) yes yes no sum(In,Out,Out) yes nomergesort(Out,In) yes no type(In,In,Out) no yes nomergesort variant( , ,In) yes yes yes type(In,Out,Out) no noTable 1Benhmarks from Apt's Colletionqueries have to be well-moded. This is partiularly important in the formu-lation of the queries: for instane, in the above program flatten, our resultsshow that every input-onsuming derivation starting in a query of the formflatten(t,s) terminates provided that t is linear and disjoint from s, whilethe results of [16℄ apply only if t is a ground term.As side-e�et of our investigation, we also showed that for this lass ofprograms one side of the well-known Swithing Lemma holds.Appliability and e�etiveness of our approah has been demonstrated byapplying it to several benhmarks for most of whih we an prove weaklysemi-reurreny.Automatization of our method depends on the apability of automatiallyinferring moded level mappings. It is well-known the relation between norms,whih de�ne the size of terms, and level mappings: roughly, level mappingsare obtained by extending norms to funtion from atoms to natural numbers.Deorte, De Shreye and Fabris's [9℄ presents two tehniques for the automatiinferene of norms. We argue that the same tehniques an be applied toautomatize termination proofs based on our approah.
18



Bossi et al.NM IT WSR NM IT WSRapplast(In,In,Out) yes yes yes math app( ,In) yes yes yesapplast(Out, , ) yes no math app(In,Out) yes noapplast( ,Out, ) yes no max lenth(In,Out,Out) yes yes yesontains( ,In) yes yes yes meno solve(In,Out) yes yes noontains(In,Out) yes no power(In,In,In,Out) yes yes yesdepth(In,In) yes yes yes prune(In, ) yes yes yesdepth(In,Out) yes yes no prune( ,In) yes yes yesdepth(Out,In) yes no relative (In, ) yes nodupliate(In,Out) yes yes yes relative( ,In) yes nodupliate(Out,In) yes yes yes rev a(In,In,Out) yes yes yesflipflip(In,Out) yes yes yes rotate(In, ) yes yes yesflipflip(Out,In) yes yes yes rotate( ,In) yes yes yesgenerate(In,In,Out) yes no solve( , , ) yes noliftsolve(In,Out) yes no ssupply(In,In,Out) yes yes yesliftsolve(Out,In) yes no trae(In,In,Out) yes yes yesliftsolve(In,In) yes yes yes transpose( ,In) yes yes yesmath(In, ) yes no transpose(In,Out) yes nomath( ,In) yes yes no unify(In,In,Out) yes noTable 2Benhmarks from DPPD's ColletionNM IT WSR NM IT WSRak(In,In, ) yes yes no least(In, ) yes yes yesonatenate(In, , ) yes yes yes least( ,In) yes yes yesonatenate( , ,In) yes yes yes normal form(In, ) yes noonatenate( ,In, ) yes no normal form( ,In) yes nodesendant(In, ) yes no queens( ,Out) yes yes nodesendant( ,In) yes no queens( ,In) yes yes yesdeep(In, ) yes yes yes poss(In) yes yes yesdeep(Out, ) yes no poss(Out) yes noredit(In, ) yes yes yes rewrite(In, ) yes yes yesredit( ,In) yes yes yes rewrite( ,In) yes yes yesholds( ,Out) yes no transform( , , ,Out) yes noholds( ,In) yes yes yes transform( , , , In) yes yes yeshuffman(In, ) yes yes no twoleast(In, ) yes yes yeshuffman( ,In) yes no twoleast( ,In) yes yes yesTable 3Benhmarks from Lindenstrauss's ColletionReferenes[1℄ Apt, K. R., Introdution to Logi Programming, in J. van Leeuwen, editor,Handbook of Theoretial Computer Siene, volume B: Formal Models and19



Bossi et al.NM IT WSRaiakl.pl init vars(In,In,Out,Out) yes yes yesann.pl analyze all(In,Out) yes yes yesbid.pl bid(In,Out,Out,Out) yes yes yesboyer.pl tautology(In) yes nobrowse.pl investigate(In,Out) yes yes yesfib.pl fib(In,Out) yes nofib add.pf fib(In,Out) yes yes yeshanoiapp.pl shanoi(In,In,In,In,Out) yes nohanoiapp su.pl shanoi(In,In,In,In,Out) yes yes yesmmatrix.pl mmultiply(In,In,Out) yes yes yesour.pl ourall(In,In,Out) yes yes yespeephole.pl peephole opt(In,Out) yes yes yesprogeom.pl pds(In,Out) yes yes yesrdtok.pl read tokens(In,Out) yes noread.pl parse(In,Out) yes noserialize.pl sarialize(In,Out) yes yes notak.pl tak(In,In,in,Out) yes notitatoe.pl play(In) yes nowarplan.pl plans(In,In) yes noTable 4Benhmarks from Hermenegildo's ColletionSemantis, Elsevier, Amsterdam and The MIT Press, Cambridge, (1990), 495{574[2℄ Apt, K. R., \From Logi Programming to Prolog", Prentie Hall, 1997[3℄ Apt, K. R. and Luitjes, I., Veri�ation of logi programs with delay delarations,in A. Borzyszkowski and S. Sokolowski, editors, Proeedings of the FourthInternational Conferene on Algebrai Methodology and Software Tehnology,(AMAST'95), Leture Notes in Computer Siene, Berlin, 1995[4℄ Apt, K. R. and Pedreshi, D., Modular termination proofs for logi and pureProlog programs in G. Levi, editor, Advanes in Logi Programming Theory,pages 183{229. Oxford University Press, 1994[5℄ Apt, K. R. and Pellegrini, A., On the our-hek free Prolog programs, ACMToplas, 16(3) (1994) 687{726[6℄ Apt, K. R., and Marhiori, E., Reasoning about Prolog programs: from Modesthrough Types to Assertions, Formal Aspets of Computing, 6(6A) (1994) 743{765[7℄ Bezem, M., Strong termination of logi programs, Journal of LogiProgramming, 15(1&2) (1993) 79{9720
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