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high level) and publi (i.e., low level) informationmay oexist, non-interferenerequires that on�dential inputs never a�et the outputs on the publi inter-fae of the system, i.e., never interfere with the low level users. If suh aproperty holds, one an onlude that no information ow is ever possiblefrom high to low level.Starting from Sutherland [36℄, many de�nitions extending the onept ofnon-interferene to non-deterministi systems have been proposed in the litera-ture. They are developed in di�erent settings suh as programming languages[4,33,34,35℄, trae models [25,26℄, proess aluli [11,14,22,30,31,32℄, proba-bilisti models [2,12℄, timed models [15,21℄, ryptographi protools [1,5,16℄.In [13℄, Foardi and Gorrieri express the onept of non-interferene in theSeurity Proess Algebra (SPA) language, in terms of bisimulation semantis.In partiular, inspired by [37℄, they introdue the notion of Bisimulation-based non Deduibility on Compositions (BNDC ): a system E is BNDC ifwhat a low level user sees of the system is not modi�ed (in the sense of thebisimulation semantis) by omposing any high level proess � with E. Themain advantage of BNDC with respet to trae-based properties is that itis powerful enough to detet information ows due to the possibility, for ahigh level maliious proess, to blok or unblok a system. In partiular, in[13,14℄, it is shown that a maliious proess may build a hannel from high tolow, by suitably bloking and unbloking some system servies aessible bylow level users. The system used to build this overt hannel turns out to beseure with respet to trae-based properties. This motivates the use of moredisriminating equivalenes suh as bisimulation.Although Martinelli [24℄ has shown that a lass of BNDC -like properties isdeidable over �nite state proesses, the problem of eÆiently verifying BNDCis still open. Indeed, deidability of BNDC is an open problem. The maindiÆulty onsists of getting rid of the universal quanti�ation on high levelproesses �. Another drawbak of BNDC is that it is not ompositional withrespet to the main SPA operators, suh as the parallel omposition and thenondeterministi hoie. Compositionality results are useful sine they help indesigning eÆient veri�ation algorithms and in de�ning proof systems whihallow one to inrementally build systems whih are seure by onstrution.For these reasons many deidable and ompositional suÆient onditionsfor BNDC have been studied in the literature. In [9℄ it has been provedthat four of these suÆient onditions, namely Persistent BNDC (P BNDC ),Strong BNDC (SBNDC ), Compositional P BNDC (CP BNDC ), and Pro-gressing P BNDC (PP BNDC ), an be haraterized in terms of unwindingonditions.Unwinding onditions demand properties of individual ations: they aimat \distilling" the loal e�et of performing high level ations. As observed bymany authors (see [31,29,23,32℄) they are easier to handle and more amenable2



to automated proof with respet to global onditions.In this paper we bridge the gap between unwinding onditions and om-positionality. In partiular, we introdue a parametri notion of unwindingwhih generalizes the unwinding haraterizations onsidered in [9℄. We ex-ploit the parametri unwinding ondition to formulate general omposition-ality results. Suh results aim at establishing a link between the semantisof the operator with respet to whih we want to ensure ompositionalityand the relations involved in the unwinding ondition. The ompositionalityproperties of P BNDC, SBNDC, CP BNDC, and PP BNDC are just speialinstanes of our general results. In the same spirit, we analize how to preserveunwinding onditions under re�nement (see [8℄). By exploiting the parametriunwinding ondition and its general ompositionality properties, we an alsode�ne proof systems (see [7℄) whih allow us to build proesses whih are se-ure by onstrution. Finally we suggest methods to retify (see [6℄) inseureproesses in order to obtain proesses whih satisfy the unwinding onditionsharaterizing spei� seurity properties.The paper is organized as follows. In Setion 2, we reall the syntax andthe semantis of the SPA language. In Setion 3 we introdue the seurityproperties BNDC and P BNDC. Moreover, in Setion 3.1 we de�ne a generalunwinding shema and give a uniform presentation of the seurity propertiesP BNDC, SBNDC, CP BNDC, and PP BNDC as di�erent instanes of thegeneral shema. In Setion 4 we analize the relationships between unwind-ing onditions and ompositionality with respet to the SPA operators andre�nement. We exploit these results to develop proof systems for propertiesharaterized through unwinding. In Setion 5 we exploit the general unwind-ing shema to present a method for retifying inseure proesses. Finally, inSetion 6 we draw some onlusions.This paper surveys previous work by the authors [6,7,8,9,10℄. The abovementioned general framework is an original ontribution whih allows us touniformly present our results and also to generalize some of them.2 PreliminariesIn this setion we report the syntax and semantis of the proess algebrawe onsider. It is a variation of Milner's CCS [27℄, similar to the SeurityProess Algebra (SPA, for short) language [14℄, where the set of visible ationsis partitioned into high level ations and low level ones in order to speifymultilevel systems. In addition to onstant de�nitions, we allow one to usethe repliation (!) operator for de�ning reursive systems.The syntax of our proess algebra is based on the same elements as CCSthat is: a set L of visible ations suh that L = I [ O where I = fa; b; : : :gis a set of input ations and O = f�a;�b; : : :g is a set of output ations; a3



speial ation � whih models internal omputations, i.e., not visible outsidethe system; a omplementation funtion �� : L ! L, suh that ��a = a, for alla 2 L. At = L [ f�g is the set of all ations. The set of visible ations ispartitioned into two sets, H and L, of high and low ations suh that H = Hand L = L.The syntax of SPA terms 6 (or proesses) is de�ned as follows:E ::= 0 j a:E j E + E j EjE j E n v j E[f ℄ j Z j !Ewhere a 2 At , v � L, f : At ! At is suh that f(��) = f(�), f(�) = � ,f(H) � H [ f�g, and f(L) � L [ f�g, and Z is a onstant that must beassoiated with a de�nition Z def= E.Intuitively, 0 is the empty proess that does nothing; a:E is a proessthat an perform an ation a and then behaves as E; E1 + E2 represents thenondeterministi hoie between the two proesses E1 and E2; E1jE2 is theparallel omposition of E1 and E2, where exeutions are interleaved, possiblysynhronized on omplementary input/output ations, produing an internalation � ; E n v is a proess E prevented from performing ations in v; E[f ℄is the proess E whose ations are renamed via the relabelling funtion f ; !E(bang E) is the proess EjEj : : :, i.e., the parallel omposition of as many opyas needed of the proess E.We say that a proess E is guarded if it an be built by using the rulea:E + a:E instead of E + E in the syntax of SPA terms above.We denote by E the set of all SPA proesses and by EH the set of all highlevel proesses, i.e., those onstruted only using ations in H [ f�g.The operational semantis of SPA agents is given in terms of LabelledTransition Systems (LTS, for short). A LTS is a triple (S;A;!) where S is aset of states, A is a set of labels (ations), !� S � A� S is a set of labelledtransitions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2) meansthat the system an move from the state S1 to the state S2 through the ationa. The operational semantis of SPA is the LTS (E ;At ;!), where the statesare the terms of the algebra and the transition relation !� E � At � E isde�ned by strutural indution as the least relation generated by the inferenerules depited in Figure 1. We use also the notion of rooted labelled transitionsystem whih is a LTS augmented with a distinguish node, the root. Given aproess E we denote by LTS(E) = (SE; E;At ;!) the rooted LTS onstitutedof the subpart of the SPA LTS reahable from E. E is a �nite-state proessif LTS(E) has a �nite number of nodes, that is SE is �nite.The onept of observation equivalene is used to establish equalities among6 Atually, the SPA syntax does not inlude the ! operator. We maintain the name SPAfor our language sine adding ! does not inrease the expressive power of the language.4



Pre�x �a:E a! ESum E1 a! E 01E1 + E2 a! E 01 E2 a! E 02E1 + E2 a! E 02Parallel E1 a! E 01E1jE2 a! E 01jE2 E2 a! E 02E1jE2 a! E1jE 02E1 a! E 01 E2 �a! E 02E1jE2 �! E 01jE 02 a 2 LRestrition E a! E 0E n v a! E 0 n v if a 62 vRelabelling E a! E 0E[f ℄ f(a)! E 0[f ℄Constant E a! E 0Z a! E 0 if Z def= ERepliation E a! E 0!E a! E 0j!E E a! E 0 E �a! E 00!E �! E 0jE 00j!E a 2 L
Fig. 1. The operational rules for SPAproesses and it is based on the idea that two systems have the same semantisif and only if they annot be distinguished by an external observer. This isobtained by de�ning an equivalene relation over E . The strong bisimulationrelation [27℄ equates two proesses if they are able to mutually simulate theirbehavior step by step.We will use the following auxiliary notations. At� denotes the set of(possibly empty) sequenes of ations, while At+ denotes the set of nonemptysequenes of ations. If t = a1 � � �an 2 At� and E a1! � � � an! E 0, then we writeE t! E 0. We also write E t=) E 0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E 0 where( �!)� denotes a (possibly empty) sequene of � labelled transitions. If t 2 At�,then t̂ 2 L� is the sequene gained by deleting all ourrenes of � from t. Asa onsequene, E â=) E 0 stands for E a=) E 0 if a 2 L, and for E( �!)�E 05



if a = � (note that �=) requires at least one � labelled transition while �̂=)means zero or more � labelled transitions). We say that E 0 is reahable fromE when there exists t 2 At� suh that E t! E 0. We denote by Reah(E) theset of all sates reahable from E.The notion of strong bisimulation an be de�ned through the simulationpreorder as follows.De�nition 2.1 (Simulation) A binary relation R � E � E over agents is asimulation if (E; F ) 2 R implies, for all a 2 At,� if E a! E 0, then there exists F 0 suh that F a! F 0 and (E 0; F 0) 2 R.An agent E is simulated by another agent F , denoted by E � F , if thereexists a simulation R ontaining the pair (E; F ).The relation � is the largest simulation and it is a preorder relation, i.e.,it is reexive and transitive.De�nition 2.2 (Strong Bisimulation) A binary relation R � E � E overagents is a strong bisimulation if both R and R�1 are simulations.Two agents E; F 2 E are strongly bisimilar, denoted by E �B F , if thereexists a strong bisimulation R ontaining the pair (E; F ).The relation �B is the largest strong bisimulation and it is an equivalenerelation.In many appliations strong bisimulation is too demanding, i.e., it is too�ne. In partiular, the internal transitions are treated as all the other ations.The weak bisimulation relation is similar to strong bisimulation, but it doesnot are about internal � ations.De�nition 2.3 (Weak Bisimulation) A binary relation R � E � E overagents is a weak bisimulation if (E; F ) 2 R implies, for all a 2 At,� if E a! E 0, then there exists F 0 suh that F â=) F 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 suh that E â=) E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar, denoted by E �B F , if there existsa weak bisimulation R ontaining the pair (E; F ).The relation �B is the largest weak bisimulation and it is an equivalenerelation [27℄.In our seurity properties we need the notions of weak bisimulation on lowations, whih equates proesses whih are bisimilar from the low level userpoint of view, and progressing bisimulation on low ations, whih also requiresthat eah � ation is simulated by at least one � .De�nition 2.4 (Weak Bisimulation on Low Ations) A binary relationR � E � E over agents is a weak bisimulation on low ations if (E; F ) 2 R6



implies, for all ` 2 L [ f�g,� if E !̀ E 0, then there exists F 0 suh that F ^̀=) F 0 and (E 0; F 0) 2 R;� if F !̀ F 0, then there exists E 0 suh that E ^̀=) E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar on low ations, denoted by E �lB F ,if there exists a weak bisimulation R ontaining the pair (E; F ).It is immediate to prove that E �lB F is equivalent to E n H �B F n F .Progressing bisimulation on low ations is similar to weak bisimulation on lowations, but it is based on the notion of progressing bisimulation introduedin [28℄.De�nition 2.5 (Progressing Bisimulation on Low Ations) A binaryrelation R � E � E over agents is a progressing bisimulation on low ationsif (E; F ) 2 R implies, for all ` 2 L [ f�g,� if E !̀ E 0, then there exists F 0 suh that F `=) F 0 and (E 0; F 0) 2 R;� if F !̀ F 0, then there exists E 0 suh that E `=) E 0 and (E 0; F 0) 2 R.Two agents E; F are progressing bisimilar on low ations, denoted by E �lP F ,if there exists a weak bisimulation R ontaining the pair (E; F ).3 Bisimulation Based Seurity PropertiesIn [13℄, Foardi and Gorrieri express the onept of non-interferene in terms ofbisimulation semantis through the notion of Bisimulation-based non Deduibili-ty on Compositions (BNDC ). Property BNDC is based on the idea of hekingthe system against all high level potential interations, representing every pos-sible high level maliious program. In partiular, a system E is BNDC if forevery high level proess � a low level user annot distinguish E from (Ej�),i.e., if � annot interfere with the low level exeution of the system E. Inother words, a system E is BNDC if what a low level user sees of the systemis not modi�ed by omposing any high level proess � to E.De�nition 3.1 (BNDC) Let E 2 E. E 2 BNDC if8 � 2 EH ; E �lB (Ej�)Example 3.2 Let us onsider an abstrat spei�ation M x of a binary mem-ory ell. M x ontains the binary value x and is aessible, by high and lowusers, through the four operations rh; wh; rl; wl representing a high read, a highwrite, a low read and a low write, respetively. Eah operation is implementedthrough two di�erent ations, one for eah binary value. For example wh 0and wh 1 indiate a high level user writing value 0 and 1, respetively. 7 The7 The following expression forM x is indeed a de�nition sheme: the atual proessesM 07



Fig. 2. The LTS of the memory ell M x.LTS of proess M x is depited in Figure 2.M x def= rh x : M x+ wh 0 : M 0 + wh 1 : M 1+ rl x : M x + wl 0 : M 0 + wl 1 : M 1Notie that read (write) operations are modelled as outputs (inputs). ProessM x an send the stored value x through the two output ations rh x and rl x.Moreover, write operations are performed by aepting an input wh y and wl y(with y 2 f0; 1g) and moving to M y, i.e., storing y into the memory ell.Notie that M 0 and M 1 are totally inseure proesses. As a matter offat, a high level user may use the memory ell to diretly send on�dentialinformation to the low level. Using BNDC we detet that M 0 and M 1 areinseure. In fat, onsidering the proess � � wh 1:0 we get that (M0j�)nH ��:M1 n H whih is not weak bisimilar to M0 n H, sine in �:M1 n H the lowlevel user reads 1, while in M0 nH he reads 0.In [14℄, Foardi and Gorrieri observe that the BNDC property is diÆ-ult to use in pratie: its deidability is still an open problem. It wouldbe desirable to have an alternative formulation of BNDC whih avoids theuniversal quanti�ation on high level proesses and exploits loal informationonly. One of the main diÆulty in �nding suh an alternative haraterizationomes from the fat that BNDC is not persistent and thus the requirementson the proesses reahable from a BNDC proess E should be di�erent fromthe requirements on E itself. In [17℄, it is introdued a seurity property alledPersistent BNDC (P BNDC, for short), in whih persistene is imposed byde�nition.De�nition 3.3 (P BNDC) Let E 2 E. E 2 P BNDC if8 E 0 2 Reah(E); E 0 2 BNDC :The deidability of P BNDC over �nite state proesses has been provedin [17℄ by exploiting a bisimulation based haraterization.and M 1 are obtained by replaing x with 0 and 1, respetively.8



Fig. 3. The LTS of the memory ell Mh x.A standard way to protet on�dential data is to apply the multilevel se-urity model of [3℄. First, we need to assign a seurity level to any informationontainers (alled objets); then the following aess ontrol rules are imposed:(i) no low level user an read from high level objets; (ii) no high user anwrite into low level objets. Indeed, these are the only two (diret) waysfor leaking on�dential information. Sometimes they are suÆient to ensureseurity as desribed in the following example.Example 3.4 The memory ell of Example 3.2 is neither BNDC nor P BNDC.In order to protet on�dential data we an transform M x into both a highlevel ellMh x (see Figure 3), by eliminating any low level read operation (rule(i) above),Mh x def= rh x : Mh x+ wh 0 : Mh 0 + wh 1 : Mh 1+ wl 0 : Mh 0 + wl 1 : Mh 1and a low level ell M l x, by eliminating any high level write operation (rule(ii) above):M l x def= rh x : M l x+ rl x : M l x+ wl 0 : M l 0 + wl 1 : M l 1We an prove that both Mh x and M l x are P BNDC.Other bisimulation based persistent seurity properties have been studiedin the literature. We reall here the following: Strong BNDC (SBNDC, forshort), introdued in [13℄, Compositional P BNDC (CP BNDC, for short),introdued in [8℄, and Progressing P BNDC (PP BNDC, for short), introduedin [9℄. All these properties are inluded in the BNDC lass, i.e., if a proesssatis�es one of them, then it is BNDC. In the next subsetion we introduethem through a uniform unwinding de�nition.3.1 Unwinding De�nitionsThe idea behind the notion of unwinding is to introdue some onstraints onthe transitions of the system (see [32℄) whih imply some global properties. In9



partiular, when an unwinding ondition is used to de�ne a non-interfereneproperty it usually requires that eah high level ation an be \simulated" insuh a way that it is impossible for the low level user to infer whih high levelations have been performed (see [29℄).In this setion we give a uniform presentation of the seurity propertiesP BNDC, SBNDC, CP BNDC, and PP BNDC by introduing a generalizedunwinding ondition. Our unwinding is parametri with respet to two binaryrelations on proesses: an equivalene relation, vl, whih represents the lowlevel indistinguishability and a transition relation, 9 9 K, whih haraterizesthe loal onnetivity required by the unwinding ondition.De�nition 3.5 (Generalized Unwinding) Let vl be a binary equivalenerelation on E and 9 9 K be a binary relation on E. We de�ne the unwindinglass W(vl; 9 9 K) asW(vl; 9 9 K) def= fE 2 E j 8 F;G 2 Reah(E) and 8 h 2 Hif F h! G then 9G0 suh that F 9 9 KG0 and G vl G0g:The unwinding ondition haraterizing an unwinding lass learly im-plies persistene. Moreover, any proess E whih does not perform high levelations belongs to any unwinding lass W(vl; 9 9 K), sine the unwinding on-dition is trivially satis�ed.The following theorem follows from the unwinding haraterizations ofP BNDC studied in [7℄ and of PP BNDC studied in [9℄, and from the originalde�nitions of SBNDC in [13℄ and of CP BNDC in [8℄.Theorem 3.6 (Unwinding) Let E 2 E be a proess.� E 2 P BNDC i� E 2 W(�lB ; �̂=));� E 2 SBNDC i� E 2 W(�lB ;�);� E 2 CP BNDC i� E 2 W(�lB ; �=));� E 2 PP BNDC i� E 2 W(�lP ; �=));where � is the syntati equality between proesses.The above theorem helps us to understand the loal meaning of our seurityproperties. Let F be a proess reahable from a P BNDC proess E. If Fan perform a high level transition reahing a proess G, then F an alsosimulate suh a move reahing, through a (possible empty) sequene of silenttransitions, a proess G0 whih is undistinguishable from G from a low levelview. In the ase of SBNDC the sequene of silent transitions is replaedby no transitions, i.e., G0 is F itself, while in the ase of CP BNDC andPP BNDC the silent sequene annot be empty. Moreover, in PP BNDCweak bisimulation on low ations is replaed by progressing bisimulation on10



Fig. 4. The LTS of the memory ell Nh x.low ations.Example 3.7 Consider the memory ells Mh x and M l x desribed in Ex-ample 3.4. Exploiting the unwinding haraterization of P BNDC given inTheorem 3.6 it is easy to see that both Mh 0 and Mh 1 are P BNDC. First,notie that Mh 0 �lB Mh 1, sine there is no way for a low level user to dis-tinguish between the two states. As a matter of fat, the only possible low levelations are the two write operations wl 0; wl 1 whih, both in Mh 0 and inMh 1, move the system into the same states. The fat that M l 0 and M l 1are P BNDC is even easier to prove: the only high level ations rh 0; rh 1 donot hange the system state. Moreover, sine neither Mh x nor M l x performany � transition, one an infer that they are also SBNDC. Finally, one annotie that Mh x andM l x are neither CP BNDC nor PP BNDC, sine thereare not � moves exeutable by the two proesses.Consider now the proesses Nh x (see Figure 4) and N l x obtained byadding a time-out realized by a � -loop in the initial state of both Mh x andM l x, i.e.,Nh x def= rh x : Nh x + wh 0 : Nh 0 + wh 1 : Nh 1+ wl 0 : Nh 0 + wl 1 : Nh 1 + � : Nh xN l x def= rh x : N l x + rl x : N l x+ wl 0 : N l 0 + wl 1 : N l 1 + � : N l x:The proesses Nh x and N l x are both CP BNDC and PP BNDC.The unwinding haraterizations allow us to easily prove that PP BNDC �CP BNDC � P BNDC, SBNDC � P BNDC, and the proesses ontainingonly low level ations satisfy all of them. The situation is summarized inFigure 5.4 How to Inrementally Build Seure ProessesCompositionality is useful for both veri�ation and synthesis. On one hand,if a property is preserved when systems are omposed, then the analysis pro-11
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Fig. 5. Seurity Properties.ess an be deomposed and applied to subsystems in order to prove that thesystem as a whole satis�es the desired property. On the other hand, in thesynthesis of a system, ompositionality makes it possible to deal with all thesubomponents in a uniform way. In this setion we analyze the relations be-tween the unwinding onditions and ompositionality results. We show thatall the seurity properties we onsidered are ompositional with respet to theparallel operator, while not all of them are fully ompositional. In partiular,P BNDC and SBNDC are not preserved by the nondeterministi hoie op-erator. In general, when we build a system that may (nondeterministially)hoose to behave as one of two seure subsystems, we ould obtain an inse-ure system. As also observed in [18℄, this seems to be ounterintuitive. Onthe ontrary, PP BNDC and CP BNDC are fully ompositional, i.e., they areompositional also with respet to the nondeterministi hoie.Besides standard algebra operators, we also onsider re�nement operatorswhih are useful for the stepwise development of seure proesses. Indeed, oneusually starts from a very abstrat spei�ation of the desired system whih isthen re�ned and deomposed until one arrives at a onrete spei�ation thatan diretly be implemented. If properties are preserved under eah re�nementstep then those properties whih have been already investigated in some phaseneed not to be re-investigated in later phases.Given an unwinding lass W(�l; 9 9 K) and a partial funtion f : Ek �! E ,we say that W(�l; 9 9 K) is ompositional with respet to f if E1; : : : ; Ek 2W(�l; 9 9 K) implies that either f(E1; : : : ; Ek) 2 W(�l; 9 9 K) or f(E1; : : : ; Ek)is not de�ned (denoted by f(E1; : : : ; Ek) ").To study ompositionality properties of unwinding lasses we �rst intro-due the following notions of preservation and reetion.De�nition 4.1 (Preservation and Reetion) Let f : Ek �! E be a par-tial funtion and � � E � E be a relation.The funtion f preserves � if the following ondition holds. Let I ℄ J be anypartition of f1; : : : ; kg with I 6= ;. If 8i 2 I (Gi �G0i) and 8j 2 J (Gj � G0j)12



thenf(G1; : : : ; Gk)� f(G01; : : : ; G0k) or (f(G1; : : : ; Gk) " and f(G01; : : : ; G0k) ")The funtion f reets � if the following ondition holds. If f(G1; : : : ; Gk)�M , then 9 I; J , I ℄ J = f1; : : : ; kg and I 6= ; suh that8i 2 I (Gi �G0i) and 8j 2 J (Gj � G0j) and M � f(G01; : : : ; G0k)The ondition I 6= ; in the above de�nition has the aim of onsidering alsonon reexive relations, e.g. the relation h!.Example 4.2 Let � be the weak bisimulation relation, i.e., E�F if and onlyif E �B F . It holds that the parallel omposition operator preserves weakbisimulation [27℄. On the other hand, the nondetermisti hoie operator doesnot preserve weak bisimulation. In fat, 0 �B �:0, but a:0 + 0 6�B a:0 + �:0.Let � be the reahability relation, i.e., f(E; F ) j E 2 E and F 2 Reah(E)g.The parallel operator reets �. In fat, if G1jG2 reahes M , i.e., M 2Reah(G1jG2) thenM � G01jG02 with both G01 2 Rah(G1) and G02 2 Rah(G2).Compositionality of an unwinding lass an be proved by means of thefollowing theorem.Theorem 4.3 (Reetion-Preservation Composition) Let f : Ek �! Ebe a partial funtion reeting h! and the reahability relation and preserving9 9 Kand �l. Then W(�l; 9 9 K) is ompositional with respet to f .Proof. It is not restritive to assume k = 2.Let E; F 2 W(�l; 9 9 K). We have to prove that f(E; F ) 2 W(�l; 9 9 K).If f(E; F ) reahes M , then, sine f reets the reahability relation 8 , thereexist G;K (one of them possibly equal to E or F , respetively) suh that Ereahes G, F reahes K, andM � f(G;K). If M h!M 0, then, sine f reetsh!, three ases are possible:� G h! G0 and M 0 � f(G0; K);� K h! K 0 and M 0 � f(G;K 0);� G h! G0, K h! K 0, and M 0 � f(G0; K 0).In the �rst ase G 9 9 KG00 and G00 �l G0. Hene, sine f preserves 9 9 K and�l we have M 9 9 Kf(G00; K) and f(G00; K) �l f(G0; K). The seond and thethird ases are similar. Hene, f(E; F ) 2 W(�l; 9 9 K). 2As we will see in the next subsetion, the hypotheses of the above theo-rem are satis�ed when we deal with operators whose semantis is reursively8 Note that the reahability relation is reexive.13



de�ned on subproesses (e.g., the parallel operator j). Other operators have asemantis whih is a \union" of the semantis of subproesses (e.g., the nonde-terministi hoie operator). To deal with suh kind of operators we introduethe notions of propagation and projetion.De�nition 4.4 (Propagation and Projetion) Let f : Ek �! E be a par-tial funtion and � � E � E be a relation.The funtion f propagates � if the following ondition holds. If 9i suh that(Gi �G0i), then f(G1; : : : ; Gk)�G0i or f(G1; : : : ; Gk) ".The funtion f projets � if the following ondition holds. If f(G1; : : : ; Gk)�M , then 9i suh that Gi �M .Example 4.5 Let � be the relation a! and f be the nondetermisti hoieoperator +. It holds that + propagates a!. In fat, if G1 a! G01 then G1+G2 a!G01. Moreover, + projets a!, sine if G1 +G2 a! M then either G1 a! M orG2 a!M .We say that a proess E positively reahes a proess E 0 if there exists aproess E 00 and an ation a suh that E a! E 00 and E 00 reahes E 0.Theorem 4.6 (Projetion-Propagation Composition) Let f : Ek �! Ebe a partial funtion projeting h! and the positive reahability relation andpropagating 9 9 K. Then W(�l; 9 9 K) is ompositional with respet to f .Proof. It is not restritive to assume k = 2.Let E; F 2 W(�l; 9 9 K). We have to prove that f(E; F ) 2 W(�l; 9 9 K). Iff(E; F ) reahes M , then, two ases are possible:� M � f(E; F );� f(E; F ) positively reahes M .In the �rst ase we have to prove that if f(E; F ) h!M 0, then f(E; F ) 9 9 KM 00and M 00 �l M 0. If f(E; F ) h! M 0, sine f projets h!, it is not restritive toassume that E h! M 0. Sine E 2 W(�l; 9 9 K), by de�nition, E 9 9 KM 00 andM 00 �l M 0. From the fat that f propagates 9 9 Kwe get that f(E; F ) 9 9 KM 00,i.e., the thesis.In the seond ase, sine f projets the positive reahability relation, wean safely assume that E reahes M . Sine E 2 W(�l; 9 9 K) and E reahesM , we immediately get the thesis. 24.1 Compositionality with respet to the Algebra OperatorsThe following result is an immediate onsequene of Theorem 4.3, sine allthe operators it deals with reet h! and the reahability relation.Corollary 4.7 (Restrition, Renaming, Parallel, De�nition) Consider14



an unwinding lass of proesses W(�l; 9 9 K).� Let v � L. If the funtion restv : W(�l; 9 9 K) �! E de�ned as restv(E) =E n v preserves 9 9 K and �l, then W(�l; 9 9 K) is ompositional with respetto the v-restrition;� Let g be a renaming. If the funtion reng : W(�l; 9 9 K) �! E de�ned asreng(E) = E[g℄ preserves 9 9 K and �l, then W(�l; 9 9 K) is ompositionalwith respet to the g-renaming;� If the funtion par : W(�l; 9 9 K)2 �! E de�ned as par(E; F ) = EjF pre-serves 9 9 K and �l, then W(�l; 9 9 K) is ompositional with respet to theparallel omposition j;� If the funtion def :W(�l; 9 9 K) �! E de�ned as def(E) = Z, with Z def= E,preserves 9 9 Kand �l, then W(�l; 9 9 K) is ompositional with respet to theonstant de�nition def= .The following result is a onsequene of Theorem 4.6, sine the nondeter-ministi hoie operator projets h! and the positive reahability relation.Corollary 4.8 (Non Deterministi Choie) LetW(�l; 9 9 K) be an unwind-ing lass of proesses. If the funtion sum : W(�l; 9 9 K)2 �! E de�ned assum(E; F ) = E + F propagates 9 9 K, then W(�l; 9 9 K) is ompositional withwith respet to the nondeterministi hoie operator +.Theorem 4.9 (Low Pre�x) Let W(�l; 9 9 K) be an unwinding lass of pro-ess. If l 2 L is a low level ation, then W(�l; 9 9 K) is ompositional withrespet to the low pre�x operator whih maps E into l:E.Proof. We have to prove that if E 2 W(�l; 9 9 K) and l 2 L, then l:E 2W(�l; 9 9 K). If l:E reahes E 0, then two ases are possible:� E 0 � l:E;� E 0 2 Reah(E).In the �rst ase E 0 annot perform any high level ation, hene we have noth-ing to prove. In the seond ase by the hypothesis that E 2 W(�l; 9 9 K) weimmediately get the thesis. 2The repliation operator needs an ad-ho theorem sine it does not re-ets h! and the reahability relation. In fat, if !E reahes E 0 this does notorrespond to the fat that E reahes E 00 and E 0 �!E 00. In partiular, if !Ereahes E 0 we an prove that E 0 is of the form E1j : : : jEnj!E where all theEi's are reahed by E. The following theorem allows us to exploit this formof `reetion' of the reahability relation to obtain suÆient onditions for theompositionality with respet to the repliation operator.Theorem 4.10 (Repliation) LetW(�l; 9 9 K) be an unwinding lass of pro-15



esses. If it holds that(1) 9 9 K is inluded in the reahability relation, i.e., if E 9 9 KF then E reahesF ,(2) for eah F 2 W(�l; 9 9 K) and k � 0 the funtion fFk : W(�l; 9 9 K)k �! Ede�ned as fFk (E1; : : : ; Ek) = E1j : : : jEkj!F preserves �l,(3) for eah k � 0 the funtion gk : Ek �! E suh that gk(E1; : : : ; Ek) =E1j : : : jEk preserves 9 9 K,(4) if F 9 9 KF 0, then !F 9 9 KF 0j!F ,then W(�l; 9 9 K) is ompositional with respet to the repliation operator !.Proof. First we prove the following laim.Claim 1. If !F reahes F 0, then there exist n � 0 and F1; : : : ; Fn suh that Freahes Fi, for i = 1; : : : ; n and F 0 � F1jF2j : : : jFnj!F:Sine !F reahes F 0, there exists t 2 At� suh that !F t! F 0. We proeedby indution on the length ln of t.If ln = 0, then F 0 �!F , hene we have the thesis with n = 0.Let us assume that we have proved the thesis for all the ln � m. Letln = m+1. This means that there exists F 00 suh that !F t0! F 00, t0 has lengthm, and F 00 a! F 0. By indutive hypothesis there exist n � 0 and F1; : : : ; Fnsuh that F reahes Fi, for i = 1; : : : ; n and F 00 � F1jF2j : : : jFnj!F: If theation a is performed by one of the Fi's, say F1, we have the thesis, sine Freahes F1 and F1 a! F 01 and F 0 � F 01jF2j : : : jFnj!F: Similarly we obtain thethesis if a = � is a synhronization between two of the Fi's. If the ation ais performed by !F applying the �rst rule of Repliation, then F a! Fn+1 andF 0 � F1jF2j : : : jFnjFn+1j!F: Similarly we obtain the thesis in the remainingtwo ases, i.e. if a is performed by !F applying the seond rule of Repliationor if a is a synhronization between one of the Fi's and !F .Now we have to prove that if F 2 W(�l; 9 9 K), then !F 2 W(�l; 9 9 K), i.e.,if !F reahes F 0 and F 0 h! G, then F 0 9 9 KG0 with G0 �l G.If !F reahes F 0, by Claim 1, we have that F 0 is of the form F1j : : : jFnj!F .If n = 0, then F 0 �!F . If !F h! G, then F h! G00 and G � G00j!F . SineF 2 W(�l; 9 9 K), we have that F 9 9 KK and K �l G00. By hypothesis (4),!F 9 9 KKj!F . Moreover, by hypothesis (1), we have that K 2 W(�l; 9 9 K),hene sine, by hypothesis (2), fF1 preserves �l, we get Kj!F �l G00j!F .If n > 0, then F 0 � F1j : : : jFnj!F . If F 0 h! G, then two ases are possible:� there exists i suh that Fi h! F 0i and G � F1j : : : jF 0i j : : : jFnj!F ;� F h! F 00 and G � F1j : : : jFnjF 00j!F .
16



In the �rst ase, sine F 2 W(�l; 9 9 K) reahes Fi we have that Fi 9 9 KKwith K �l F 0i . Sine, by hypotheses (3) and (2), gn+1 preserves 9 9 K and fFnpreserves �l we get that F 0 9 9 KG0 � F1j : : : jKj : : : jFnj!F and G0 �l G.In the seond ase, sine F 2 W(�l; 9 9 K), F 9 9 KK with K �l F 00. Hene,by hypothesis (4), we get that !F 9 9 KKj!F . Sine, by hypothesis (3), gn+1preserves 9 9 Kwe have that F 0 9 9 KG0 � F1j : : : jFnjKj!F . By hypothesis (1)we obtain K 2 W(�l; 9 9 K), hene we an exploit the fat that fFn+1 preserves�l to get G0 �l G. 2We are now ready to apply our general results to the seurity propertiesP BNDC, SBNDC, CP BNDC, and PP BNDC.Corollary 4.11 P BNDC, SBNDC, CP BNDC, PP BNDC are ompositionalwith respet to the following operators:� the l-pre�x operator, for eah l 2 L;� the v-restrition operator, for eah v � L;� the g-renaming operator, for eah renaming g;� the parallel omposition j;� the onstant de�nition def= ;� the repliation operator !.CP BNDC, PP BNDC are ompositional with respet to the nondeterministihoie operator +.Proof. As far as the �rst 5 operators are onerned, the ompositionalityan be proved by observing that the hypothesis of Theorem 4.9 and Corollary4.7 hold.To prove the ompositionality with respet to the repliation operator weneed to prove that the hypothesis of Theorem 4.10 hold.(1) The relations ( �!)�; ( �!)0; ( �!)+ are inluded in the reahability.(2) We prove that the fFk 's preserve �l. In the ase of P BNDC the fatthat eah fFk preserves �lB an be proved by proving thatR = f(E1j : : : jEkj!F;E 01j : : : jE 0kj!F ) j Ei; E 0i; F 2 P BNDC and Ei �lB E 0igis a weak bisimulation on low ations (see Lemma 5 of [10℄). In the ase ofSBNDC and CP BNDC the thesis follows from the ase of P BNDC, sinethey are both inluded in P BNDC and they use �lB, as P BNDC does. Inthe ase of PP BNDC the proof an be obtained similarly by proving thatR = f(E1j : : : jEkj!F;E 01j : : : jE 0kj!F ) j Ei; E 0i; F 2 PP BNDC and Ei �lP E 0igis a progressing bisimulation on low ations.17



(3) The fat that eah gk preserves ( �!)�; ( �!)0; ( �!)+ is a onsequene ofthe semantis of the parallel operator.(4) Also the last hypothesis, i.e., F 9 9 K F 0 implies !F 9 9 K F 0j!F , anbe easily proved for our seurity properties (modulo the use of struturalongruene in the ase of SBNDC and P BNDC ).To prove that CP BNDC and PP BNDC are ompositional with respetto the nondeterministi hoie operator we an apply Corollary 4.8. 2Example 4.12 Consider the parallel omposition of the high and low memoryells Mh x and M l x de�ned in Example 3.4, i.e.,Mhjl x def= Mh xjM l x:Sine bothMh 0 andM l 0 are P BNDC, by Corollary 4.11,Mhjl 0 is P BNDCtoo. Similarly an unbounded number of high memory ells de�ned asM !h x def=!Mh x:is P BNDC.Consider now the non-deterministi omposition of Mh x and M l x. Inpartiular, onsider the memory ell Mh+l x that behaves as either Mh x orM l x, i.e., Mh+l x def= Mh x +M l x:We know that Mh x and M l x are P BNDC, however their non-deterministiomposition, i.e., Mh+l x, is not. Indeed, onsider the exeution of a highlevel write ation wh 0. This moves the whole Mh+l 0 system to Mh 0 (notiethat M l 0 does not aept the high level input wh 0). The problem is that alow level user an observe this move by trying to write some value into thememory ell. As a matter of fat, sine Mh 0 does not aept low level inputs,the low level user an dedue that some high level ation has been performed.This indiret information ow an be exploited to build a so alled overt-hannel (see, e.g., [14℄ for more detail). Formally, we an prove that Mh+l 0is neither P BNDC, SBNDC, CP BNDC nor PP BNDC by observing thatthe move Mh+l 0 wh 0! Mh 0 annot be simulated by Mh+l 0.Consider now the the memory ell Nh+l x obtained as non-deterministiomposition of the ells Nh x and N l x of Example 3.7, i.e.,Nh+l x def= Nh x +N l x:Sine we have already showed that Nh x and N l x are both CP BNDC andPP BNDC, by ompositionality results we obtain that Nh+l x is both CP BNDCand PP BNDC. Notie that the problem of simulating the move Nh+l 0 wh 0!Nh 0 is now solved by performing the � of the added � : Nh 0 branh in the18



de�nition of Nh 0. In partiular we have that Nh+l 0 �! Nh 0.4.2 Compositionality with respet to Re�nementIn [8℄ we introdued a new notion of re�nement for SPA proesses. Intuitively,an abstrat spei�ation (given here as a SPA system) de�nes the set of pos-sible (allowed) behaviors of a system. Re�ning a spei�ation orresponds tohoosing among these allowed behaviors, the ones that will be atually imple-mented. The idea is that a re�ned spei�ation should never show behaviorsthat were not foreseen in the initial spei�ation. To formalize this idea, werequire that (i) eah state of the abstrat spei�ation is re�ned to, at most,one state of the more onrete (i.e., re�ned) spei�ation; (ii) the behaviorof the re�ned states is simulated by the abstrat states, i.e., it should alwaysbe possible to simulate an ation performed by a re�ned state by the orre-sponding abstrat state, and the two reahed states should be still one there�nement of the other.Re�nement is formalized as a partial funtion from proesses.De�nition 4.13 (Re�nement) A binary relation R � E �E over proessesis a re�nement if� R�1 is a simulation and� R is a partial funtion from E to E.We say that E is a re�nement of F , denoted by E � F , if there exists are�nement R suh that R(F ) = E.The following theorem has been proved in [8℄ but it is easy to see that it isalso a onsequene of Theorem 4.3. Just note that any re�nement R reetsh! and the reahability relation sine, by de�nition, R�1 is a simulation.Theorem 4.14 Let W(�l; 9 9 K) be an unwinding lass of proesses and R bea re�nement. If R preserves 9 9 K and �l, then W(�l; 9 9 K) is ompositionalwith respet to R.Example 4.15 Consider the proesses Mh x and M l x introdued in Exam-ple 3.4. We have seen that they are both P BNDC. It is now interesting tostudy how this property is preserved by further re�ning the proesses. To thisaim we apply Theorem 4.14. Notie that neither Mh 0 nor M l 0 performany � transitions, thus the only ondition that we should are about is thatthe re�nement preserves �lB. As a onsequene, removing high level ationsdoes not a�et the seurity of the two systems. For example, if we allow thehigh level user to only reset the ell value to 0 (by removing the wh 1 : Mh 1branh), the resulting proess is still P BNDC.On the other hand, modi�ations of low behavior should be performed o-herently in all equivalent states. For example, the re�nement19



Fig. 6. The LTS of the memory ell P h x.P h 0 def= rh 0 : P h 0 + wh 0 : P h 0 + wh 1 : P h 1P h 1 def= rh 1 : P h 1 + wh 0 : P h 0 + wh 1 : P h 1 + wl 0 : P h 0in whih the low level user an reset to 0 the high level ell, only when the ellontains value 1 (notie that in P h 0 no low level write operations are allowed)is not preserving �lB. The LTS of P h 0 is depited in Figure 6.It is easy to see that P h 0 62 P BNDC. The fat that P h 0 is not P BNDCreveals a slightly subtle information ow due to the fat that a low level usermay trak the ontent of the high level ell by trying to reset it: every timethe reset sueeds the low level user an onlude that the ell ontains value1. A orret re�nement ahieving the same low level reset behavior desribedabove, should inlude the branh wl 0 : P h 0 also in P h 0.4.3 Proof Systems for Unwinding lassesUnwinding onditions are also useful for giving eÆient proof tehniques. In-deed, we used them to de�ne proof systems whih allow us to statially provethat a proess is seure, i.e., by just inspeting its syntax [7,10℄. These sys-tems o�er a means to build proesses whih are seure by onstrution, in aninremental way. They extend the one given in [24℄ for �nite proesses, i.e.,proesses that may only perform �nite sequenes of ations. In partiular, weare able to deal also with reursive proesses whih may perform unboundedsequenes of ations. Here we provide a general sheme for the onstrutionof orret proof rules for unwinding lasses of proesses whih generalize theproof rules proposed in [7,10℄.Theorem 4.16 Let W(�l; 9 9 K) be an unwinding lass of proesses. Let Sysbe a proof system whose rules are of the following formE1; : : : ; Ek 2 W(�l; 9 9 K)f(E1; : : : ; Ek) 2 W(�l; 9 9 K)where W(�l; 9 9 K) is ompositional with respet to f , or the rule20



E 2 ELE 2 W(�l; 9 9 K)Then Sys is orret, i.e., if there exists a derivation of E 2 W(�l; 9 9 K) inSys, then E 2 W(�l; 9 9 K).By Theorem 4.16 and Corollary 4.11 we get for instane the following ruleE1; E2 2 P BNDCE1jE2 2 P BNDCHowever, by onsidering the proof system obtained exploiting only to theoperators in Corollary 4.11 we an only prove that the proesses in EL areP BNDC ; SBNDC ;CP BNDC ;PP BNDC . In fat, we have no way to in-trodue high level ations. In the ase of P BNDC we have that P BNDC isompositional with respet to the funtions of the form f : Ep+q �! E de�nedas f(F1; : : : ; Fp; G1; : : : ; Gq) = X1�i�p li:Fi + X1�j�q(hj:Gj + �:Gj)where li 2 L for all i = 1; : : : ; p and hj 2 H for all j = 1; : : : ; q (see alsoTheorem 5.2). Hene we an add to the proof system the rules of the formF1; : : : ; Fk; G1; : : : ; Gh 2 P BNDCP1�i�p li:Fi +P1�j�q(hj:Gj + �:Gj) 2 P BNDCwhih allows use to build seure proesses not in EL. These rules an be usedalso in the ases of CP BNDC and PP BNDC, while in the ase of SBNDCwe an prove the orretness of the ruleE 2 SBNDCE + h:E 2 SBNDC5 How to Retify Inseure ProessesIn [6℄ we propose a general method for retifying non P BNDC proesses. Theidea is to automatially transform a proess E into a P BNDC proess E� andto identify a large lass of proesses for whih the transformation preservesthe low level observational semantis, i.e., for the low level user E and E� arenot distinguishable. This transformation an be used to onstrut \seure"proesses from a �rst possibly \inseure" de�nition. Here we generalize thetransformation presented in [6℄ to deal with any unwinding lass of proessesand sequenes s of ations. Given a proess E and a sequene of ationss = s1 : : : sn 2 At+, we denote by s:E the proess s1: : : : :sn:E.21



De�nition 5.1 (Es) LetW(�l; 9 9 K) be an unwinding lass of proesses om-positional with respet to the v-restrition, for eah v � L�, the g-renaming,for eah renaming g, the parallel omposition operator j, the onstant de�ni-tion def= , the repliation operator !. Given a guarded proess E and s 2 At+with n > 0 we indutively de�ne Es as follows:0s = 0 (E n v)s = Es n v (E[g℄)s = Es[g℄(E1jE2)s = Es1jEs2 Zs def= F s !Es =!(Es)(Pi li:Fi +Pj hj:Gj)s =Pi li:F si +Pj(hj:Gsj + s:Gsj)where li 2 L [ f�g, hj 2 H, and Z was assoiated to Z def= F .Theorem 5.2 (Reti�ations) LetW(�l; 9 9 K) be an unwinding lass of pro-esses ompositional with respet to the v-restrition, for eah v � L�, theg-renaming, for eah renaming g, the parallel omposition operator j, the on-stant de�nition def= , the repliation operator !. Let E 2 E be a guarded proess.If s 2 At+ is a sequene of ations and suh that E s! F implies E9 9 KF ,then Es 2 W(�l; 9 9 K):Proof. By indution on E. If E � 0, then Es � 0 2 W(�l; 9 9 K).If E � E1nv, then by indutive hypothesis on E1, Es1 2 W(�l; 9 9 K), hene,sineW(�l; 9 9 K) is ompositional with respet to the v-restrition, we get thethesis. The ases of renaming, parallel omposition, onstant de�nition, andrepliation are similar.If E � Pli2L[f�g li:Fi +Phj2H hj:Gj and Es reahes E 0 two ases arepossible:� E 0 is Es;� one of the F si ; Gsj's reahes E 0.In the �rst ase if Es h! E 00 we have that there exists j suh that E 00 � Gj.Hene, Es 9 9 KGj and Gj �l Gj, sine �l is an equivalene relation.In the seond ase the thesis follows by indutive hypothesis on the F si ; Gsj's.2Corollary 5.3 Let E 2 E be a guarded proess.E� 2 P BNDC ;CP BNDC ;PP BNDC :Example 5.4 The memory ell M x presented in Example 3.2 was not se-ure. We transformed it into two memory ells, a high level one and a lowlevel one. Sine the low level user annot read from the high memory ell andthe high level user annot write on the low memory ell we obtain that thetwo memory ell are seure. Imagine now that we want to model the low levelmemory ell in suh a way that eah value an be read at most one. At the22



Fig. 7. The LTS of the memory ell Ql e� .beginning the ell Ql e is empty, when a low level user writes a value x theell is moved in the state Ql x in whih it remains until either a high or a lowlevel user read the value. After a reading the ell is reset in the state Ql e.Ql e def= wl x : Ql xQl x def= rl x : Ql e+ rh x : Ql eIn partiular, with this implementation eah value is read exatly one. How-ever, Ql e is not P BNDC. In fat, if any user reads the value the low leveluser annot write a new value, i.e., the system is bloked. Applying to Ql eour reti�ation we getQl e� def= wl x : Ql x�Ql x� def= rl x : Ql e� + rh x : Ql e� + �:Ql e�In this ase the reti�ation orresponds to the modelling of a timeout: if thevalue is not read within a ertain amount of time, the system reset the ell.Now eah value is read at most one.The LTS's of Ql e� is depited in Figure 7.The above theorem does not requires the ompositionality with respetto the non-deterministi hoie operator. As a onsequene the orretionan be applied only to guarded proesses. In the ase we deal with a fullyompositional unwinding lass we an extend the orretion to non guardedproesses.De�nition 5.5 (Es) Let W(�l; 9 9 K) be an unwinding lass of proesses om-positional with respet to the v-restrition, for eah v � L�, the g-renaming,for eah renaming g, the parallel omposition operator j, the onstant de�ni-tion def= , the repliation operator ! and the nondeterministi hoie operator +.Given a proess E and s 2 At+ we indutively de�ne Es as follows:0s = 0 (l:E)s = l:Es (h:E)s = h:Es + s:Es(E n v)s = Es n v (E[g℄)s = Es[g℄ (E1jE2)s = (E1)sj(E2)sZs def= Fs !Es =!(Es) (E1 + E2)s = (E1)s + (E2)s23



where l 2 L [ f�g, h 2 H, and Z was assoiated to Z def= F .Theorem 5.6 (Reti�ations) LetW(�l; 9 9 K) be an unwinding lass of pro-esses ompositional with respet to the v-restrition, for eah v � L�, theg-renaming, for eah renaming g, the parallel omposition operator j, the on-stant de�nition def= , the repliation operator !, and the nondeterministi hoieoperator +. Let E 2 E be a proess. If s 2 At+ is a sequene of ations andsuh that E s! F implies E9 9 KF , thenEs 2 W(�l; 9 9 K):Proof. The result an be proved by indution on E exploiting the fatthat all the unwinding lasses are ompositional with respet to the low pre�xoperator. 2Corollary 5.7 Let E 2 E be a proess.E� 2 CP BNDC ;PP BNDC :6 ConlusionsIn this paper we onsider information ow seurity properties of SPA pro-esses expressed in terms of unwinding onditions. The aim of the presentwork is to bridge the gap between unwinding onditions and omposition-ality results. This is done by exploiting a generalized unwinding onditionW(�l; 9 9 K), parametri with respet to a low level behavioral equivalene �land a transition relation 9 9 K. To prove the ompositionality of a lass ofseure proesses, expressed as an instane of W(�l; 9 9 K), with respet to anoperator f we need to establish onnetions between the semantis of f andthe relations �l and 9 9 K. By instantiating f as one of the algebra operators weredisover already proved ompositionality results (e.g., the ompositionalityof P BNDC with respet to the parallel operator). Moreover, by instantiat-ing f as a re�nement operator, whih solves the non-deterministi hoies,we obtain results onerning the preservation of the seurity properties un-der re�nement. Unwinding onditions an be also exploited for de�ning proofsystems whih provide eÆient tehniques for the veri�ation and the develop-ment of seure proesses. Proof systems allow us to verify whether a proessis seure just by inspeting its syntax, and thus avoiding the state-explosionproblem. Moreover, they also allow us to build proesses whih are seureby onstrution in an inremental way. Finally ompositionality of unwindingonditions an be easily exploited to retify inseure proesses.24
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