
Modelling Downgrading in Information Flow Security �
Annalisa Bossi, Carla Piazza, Sabina Rossi

Dipartimento di Informatica - Università Ca’ Foscari di Venezia
e-mail:fbossi,piazza,srossig@dsi.unive.it

Abstract

Information flow security properties such as noninterfe-
rence ensure the protection of confidential data by strongly
limiting the flow of sensitive information. However, to deal
with real applications, it is often necessary to admit mecha-
nisms for downgrading or declassifying information.

In this paper we propose a general unwinding framework
for formalizing different noninterference properties permit-
ting downgrading, i.e., allowing information to flow from
a higher to a lower security level through a downgrader.
The framework is parametric with respect to the observa-
tion equivalence used to discriminate between different pro-
cess behaviours. We prove general compositionality pro-
perties and provide conditions under which both horizontal
and vertical refinements are preserved under all the security
properties obtained as instances of the unwinding frame-
work. Finally, we present a decision procedure to check our
security properties and prove some complexity results.

1. Introduction

Since the seminal work by Goguen and Meseguer [7],
noninterference plays a central role in the formalization of
information flow security. It aims at characterizing the com-
plete absence of any information flow or, indeed stronger, of
any causal flow from high level entities to low level ones. As
already noticed by many authors, see, e.g., [1, 12, 13, 17, 18,
19, 20, 21], this requirement is too strong. Absolute nonin-
terference can hardly be achieved in real systems. In order
to deal with real applications, it is often necessary to admit
mechanisms fordowngradingor declassifyinginformation.
For instance, even when two high level users communicate
through an encrypted channel, a small amount of informa-
tion can be leaked: indeed, a low level user may infer that a� This work has been partially supported by the EU project IST-2001-

32617 “Models and Types for Security in Mobile Distributed Sys-
tems” (MyThS) and the FIRB project RBAU018RCZ “Interpretazione
astratta e model checking per la verifica di sistemi embedded”.

communication occurred, but this is not necessarily a sensi-
tive information leak. As another example consider a sim-
ple device that allows information to flow from low to high
but not viceversa. Such a device is feasible from a theoret-
ical point of view only, in practice some flow from high to
low is necessary to regulate the flow from low to high and
avoid buffer overflows.

In order to permit systems to leak information by de-
sign, information flow controls often include some notion
of downgrading whose invocation is limited to appropria-
tely trusted subjects. The term downgrading is in fact used
to refer to those situations in which trusted entities are per-
mitted to move information from a higher to a lower se-
curity level. Thus the policy requirements may admit re-
stricted/controlled information flows. For instance we have
a downgrading when the classification of a previously sen-
sitive file is turned to unclassified by a security officer.

The problem of detecting only uncontrolled information
flows has first been considered by Goguen and Meseguer in
[8]. They introduce the notion ofconditional noninterfer-
encewhich admits flows from a high to a low level through a
controlled channel. A more formal treatment of conditional
noninterference is presented by Haigh and Young in [10].
Rushby in [19] develops a formal theory of downgrading
for deterministic systems based on the notion ofintransitive
noninterference. Flows from the high level to a trusted part
and flows from the trusted part to the low level are admis-
sible since the trusted part takes care of controlling them,
while a direct flow from high to low is not allowed. Pin-
sky in [17] unifies the concepts of standard and intransitive
noninterference usingpurge functions. In [18] Roscoe and
Goldsmith present a formalization of intransitive noninter-
ference in the context of deterministic CSP.

The approaches mentioned above are limited to deter-
ministic systems (except for [18] which can deal with a lim-
ited form of nondeterminism), and thus they are not appli-
cable to distributed systems. In order to bridge this gap, in
[13] Mantel proposes a generic security model for nondeter-
ministic systems usingbasic security predicateswhich can
cope with intransitive flow policies. In [1] Backes and Pfitz-
mann propose a notion of intransitiveprobabilistic nonin-
terference for reactive systems. In [15] Mullins introduces a

property namedAdmissible Interference(AI) for processes
expressed as terms of the CCS process algebra. This proper-
ty is based on trace equivalence and can be understood as a
generalization of theStrong Deterministic NonInterference
(SNNI) property defined by Focardi and Gorrieri in [5].

All the properties discussed so far are based on traces and
thus they do not allow to infer prohibited flows due to the
possibility for a system component to block or unblock the
system. Ryan and Schneider in [20] outline some generali-
zations of the notion of noninterference for CSP processes
to handlepartial and conditional information flows. Their
approach is parametric with respect to an equivalence re-
lation over processes. Lafrance and Mullins in [11] intro-
duce the notion ofBisimulation-based Non-deterministic
Admissible Interference(BNAI) which is a generalization of
theBisimulation-based Non-Deducibility on Compositions
(BNDC) property presented by Focardi and Gorrieri in [5].

In this paper we propose a general unwinding framework
for formalizing different noninterference properties permit-
ting downgrading, i.e., allowing information to flow from a
higher to a lower security level through a downgrader. The
framework allows us to model both transitive and intransi-
tive noninterference properties for distributed systems ex-
pressed as terms of theSecurity Process Algebra(SPA) lan-
guage [5] extended with downgrading actions, and called
here SPAD . To give an intuition, a processE satisfies (an
instance of) our unwinding framework if for each stateF
reachable fromE, if F may perform a high level action
reaching a stateG thenF may also perform a sequence of
invisible actions reaching a stateG0 such thatG andG0 are
indistinguishable for a low level user which is only able to
observe low level actions.

The framework is parametric with respect to the observa-
tion equivalence used to distinguish between different pro-
cess behaviours. In particular, we show how it can be in-
stantiated by using trace equivalence and weak bisimilarity.
Thus, differently from known proposals, we do not restrict
ourselves to trace models. Indeed, as already noticed by Fo-
cardi and Gorrieri [5], there are applications in which trace
equivalence is too weak while bisimilarity provides a more
suitable notion of observation (see Section 3, Example 3.6).

Our general unwinding framework is obtained as a sim-
ple generalization of a previous unwinding schema for the
definition of “strict” noninterference properties of SPA pro-
cesses (a survey on our earlier work can be found in [2]).
Analogously to the properties studied in [2], the security
properties obtained as instances of the general framework
presented here are all persistent, in the sense that if a pro-
cess satisfies one of them then all its reachable states sat-
isfy the same noninterference property. As discussed in Sec-
tion 3 (see Examples 3.1, 3.2 and 3.4), persistence turns out
to be fundamental in the treatment of downgrading. In fact,
if we did not require persistence, we would not discover

the uncontrolled information flows occurring after the first
downgrading action.

We study how secure processes satisfying an instance of
our general unwinding framework can be composed and re-
fined while preserving the security property. In fact, in the
stepwise development of complex systems it is important to
consider security related issues from the very beginning in
order to avoid the construction of poorly protected or, even
worst, insecure processes. We first prove general composi-
tionality results of our unwinding framework with respect to
the SPA operators. Then we provide conditions under which
refinement is preserved under all the security properties ob-
tained as instances of the unwinding framework. In particu-
lar, we consider two forms of refinement, namely horizontal
refinement and vertical refinement. Horizontal refinement
is usually expressed in terms of preorder relations, such as
trace inclusion, and aims at removing possible sources of
nondeterminism, while vertical refinement consists in the
replacement of abstract actions by processes which repre-
sent their implementation. Finally, we present a decision
procedure to check our unwinding-based security proper-
ties, and prove some complexity results.

The paper is organized as follows. In Section 2 we re-
call the syntax and the semantics of the SPA language and
report the definitions of some “strict” noninterference prop-
erties. In Section 3 we introduce the SPAD language and
present our general unwinding framework for the definition
of noninterference properties permitting downgrading. We
discuss different instances of our framework with both trace
equivalence and weak bisimilarity. In Section 4 we prove
various compositionality results of our class of properties
with respect to the SPA operators. In Section 5 we provide
conditions under which our properties are preserved under
both horizontal and vertical refinement. In Section 6 we pro-
pose a decision procedure to check unwinding-based se-
curity properties permitting downgrading, and prove some
complexity results. Finally, in Section 7 we draw some con-
clusions and discuss related work. All the proofs of the re-
sults presented in this paper are reported in the Appendix.

2. Preliminaries

We briefly recall theSecurity Process Algebra(SPA) lan-
guage that we will use to model distributed systems. More-
over we report the definitions of some security properties
whose aim is to completely avoid any flow of information
from the high to the low level.

2.1. The SPA language

The SPA language [5] is a slight extension of Milner’s
CCS [14]. Analogously to CCS its syntax is based on:
a setL of visible actions such thatL = I [O where

I = fa; b; : : :g is a set ofinput actions andO = f�a;�b; : : :g
is a set ofoutputactions; a complement function�� : L ! L,
such that��a = a, for all a 2 L; a special action� which mo-
dels internal computations, i.e., not visible outside the sys-
tem.At = L [f�g is the set of allactions. Function�� is
extended toAt by defining�� = � . Differently from CCS,
the set of visible actions is partitioned into high level ac-
tions and low level ones in order to specify multilevel sys-
tems. Thus we consider two sets,H andL, of high and low
level actions which are closed with respect to��, i.e.,H = H
andL = L; moreover they are disjoint and form a covering
of L, i.e.,H \ L = ; andH [L = L.

The syntax of SPAterms(or processes) is as follows:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Z
wherea 2 At , v � L, f : At ! At with f(��) = f(�),f(�) = � , f(H) � H , andf(L) � L. Moreover,Z is a

constant that must be associated with a definitionZ def= E.
Let E be the set of SPA terms, ranged over byE andF .

Let L(E) denote thesort of E, i.e., the set of the actions
syntactically occurring inE. The set of high level processes

is defined asEH def= fE 2 E j L(E) � H [f�gg.
The operational semantics of SPA processes is given in

terms ofLabelled Transition Systems. A Labelled Transi-
tion System(LTS) is a triple(S;A;!) whereS is a set of
states,A is a set of labels (actions),!� S�A�S is a set of
labelled transitions. The notation(S1; a; S2) 2! (or equiv-
alentlyS1 a! S2) means that the system can move from the
stateS1 to the stateS2 through the actiona. An LTS isfinite
if it has a finite number of states and transitions. The opera-
tional semantics of SPA is the LTS(E ;At ;!), where the
states are the terms of the algebra and the transition relation!� E � At � E is defined by structural induction as the
least relation generated by the axioms and inference rules
reported in Figure 1. The operational semantics of a pro-
cessE is the subpart of the SPA LTS reachable fromE. We
write E1 � E2 if the processesE1 andE2 have two iso-
morphic LTSs, i.e., they behave exactly in the same way.

The concept ofobservation equivalencebetween two
processes is based on the idea that two systems have the
same semantics if and only if they cannot be distinguished
by an external observer. This is obtained by defining an
equivalence relation over terms of the SPA LTS, equating
two processes when they are indistinguishable. In the liter-
ature there are various equivalences of this kind. In this pa-
per we consider the equivalence relationsweak bisimilarity,�B, andtrace equivalence,�T .

Let us first introduce the following auxiliary notations. Ift = a1 � � � an 2 At� andE a1! � � � an! E0, then we writeE t! E0 and we say thatE0 is reachablefrom E. We de-
note byReah(E) the set of all processes reachable fromE. We also writeE t=) E0 if E(�!)� a1! (�!)� � � � (�!)� an!

(�!)�E0 where(�!)� denotes a (possibly empty) sequence
of � transitions. Ift 2 At�, then t̂ 2 L� is the sequence
gained by deleting all occurrences of� from t. As a conse-

quence,E â=) E0 stands forE a=) E0 if a 2 L, and forE(�!)�E0 if a = � (note that
�=) requires at least one�

transition while
�̂=) means zero or more� transitions).

Weak Bisimilarity[14] equates two processes if they are
able to mutually simulate their behavior step by step. More-
over, it does not care about internal� actions.

Definition 2.1 (Weak Bisimulation) A symmetric bi-
nary relationR over processes is aweak bisimulationif(E;F) 2 R implies, for alla 2 At , if E a! E0, then there

existsF 0 such thatF â=) F 0 and(E0; F 0) 2 R;
Two processesE;F 2 E areweakly bisimilar, denoted

byE �B F , if there exists a weak bisimulationR contain-
ing the pair(E;F).

The relation�B (weak bisimilarity) is the largest weak
bisimulation and it is an equivalence relation.

Trace equivalenceequates two processes if they have the
same sets of traces, again, without considering the� actions.

Definition 2.2 (Trace Equivalence) The set of tracesTr(E) associated with a processE is defined by:Tr(E) = ft 2 L� j 9E0 : E t=) E0g: Two pro-
cessesE;F are trace equivalent, denoted byE �T F , ifTr(E) = Tr(F).

Trace equivalence is less demanding than weak bisimi-
larity, hence if two processes are weakly bisimilar, then they
are also trace equivalent.

To define our security properties we need to consider
low level observation equivalences, i.e., equivalences estab-
lishing which processes are indistinguishable from the low
level point of view. This implicitly characterizes the power
of possible attackers. Given an equivalence relation� we
can relativize it to the low level view in the following way.

Definition 2.3 (Equivalence on Low Actions)Let� be an
equivalence relation over processes. We say that two pro-
cessesE andF are�-equivalent on low actions, denoted byE �l F , if EnComp(L) � F nComp(L) whereComp(L)
is the complementary set ofL in L, i.e.,Comp(L) = LnL.

In particular, we will consider trace equivalence on low
actions,�lT , and weak bisimilarity on low actions,�lB.

2.2. Total Non Interference

In this section we recall some security properties for SPA
processes which aim at characterizing classes of processes
having no information flows from high to low.

The Non-Deducibility on Compositions(NDC) and
the Bisimulation-based Non-Deducibility on Composi-
tions (BNDC) properties have been introduced by Fo-

�a:E a! E E1 a! E01E1 +E2 a! E01 E2 a! E02E1 +E2 a! E02 E1 a! E01E1jE2 a! E01jE2 E2 a! E02E1jE2 a! E1jE02E1 a! E01 E2 �a! E02E1jE2 �! E01jE02 a 2 L E a! E0E n v a! E0 n v if a 62 v E a! E0E[f ℄ f(a)! E0[f ℄ E a! E0Z a! E0 if Z def= E
Figure 1. The operational rules for SPA

cardi and Gorrieri [5] in order to capture every possible
information flow from aclassified(high) level of confi-
dentiality to anuntrusted (low) one. The definitions of
NDC and BNDC are based on the basic idea of nonin-
terference [7]: “No information flow is possible from
high to low if what is done at the high levelcannot inter-
fere in any way with the low level”. More precisely, a sys-
temE is NDC (BNDC) if what a low level user sees of the
system is not modified by composing any high process�
to E. The two properties differ only on the low level ob-
servation equivalence they consider.NDC is based on trace
equivalence on low actions,�lT , BNDCon weak bisimilar-
ity on low actions,�lB.

We introduce the formal definitions ofNDC andBNDC
by exploiting a generalization of them, parametric with re-
spect to the observation equivalence.

Definition 2.4 (NDC and BNDC)Let� be an equivalence
relation on processes andE be a SPA process. We say thatE 2 NDC (�) if 8 � 2 EH ; E �l (Ej�)
and useNDC for NDC (�T) andBNDC for NDC (�B).

Notice that in this case, sinceComp(L) = H , we have
thatE �l (Ej�) corresponds toEnH � (Ej�)nH . More-
over, since weak bisimilarity is stronger than trace equiva-
lence,BNDC impliesNDC.

Example 2.5 Let us consider an abstract specificationM x
of a binary memory cell.M x contains the binary valuex
and is accessible, by high and low users, through the four
operationsrh; wh; rl; wl representing a high read, a high
write, a low read and a low write, respectively. Each op-
eration is implemented through two different actions, one
for each binary value. For examplewh 0 andwh 1 indi-
cate a high level user writing value0 and1, respectively.1

The LTS of processM x is depicted in Figure 2.M x def= rh x : M x+ wh 0 : M 0 + wh 1 : M 1+ rl x : M x+ wl 0 : M 0 + wl 1 : M 1
1 The following expression forM x is indeed a definition scheme: the

actual processesM 0 andM 1 are obtained by replacingx with 0
and1, respectively.

Figure 2. The LTS of the memory cell M x.

Notice thatM 0 andM 1 are totally insecure processes.
As a matter of fact, a high level user may use the mem-
ory cell to directly send confidential information to the low
level. Using bothNDC and BNDC we detect thatM 0
andM 1 are insecure. In fact, considering the high level
process� � wh 1:0 we get that(M0j�) n H is neither
weakly bisimilar nor trace equivalent toM0 n H , since in(M0j�) nH the low level user can read both0 and1, while
in M0 nH he can only read0. 2

In [5], Focardi and Gorrieri observe that propertiesNDC
andBNDC are difficult to use in practice:NDC is not de-
cidable in polynomial time, while the decidability ofBNDC
is still an open problem. In [6], Focardi and Rossi introduce
the propertyPersistent BNDC(P BNDC) which is a natural
persistent extension ofBNDCand it is a sufficient condition
for BNDC. They show the decidability ofP BNDCover fi-
nite state processes by exploiting a bisimulation based char-
acterization. The idea is that a systemE is P BNDC if for
every high level process� and for every stateE0 reachable
fromE a low level user cannot distinguishE0 fromE0j�.

Other persistent security properties have been studied in
the literature. We recall here the following:Strong NDC
(SNDC) introduced in [3],Strong BNDC(SBNDC) intro-
duced in [5], andCompositional PBNDC (CP BNDC) in-
troduced in [3].SNDCimpliesNDC, while the other prop-
erties implyBNDC.

All the persistentproperties mentioned above can be de-
fined as instances of ageneralized unwinding conditionin-
troduced in [3]. The idea behind the notion of unwinding
is to specify some constraints on the transitions of the sys-
tem which imply some global properties. In particular, when
an unwinding condition is used to define a noninterference

Figure 3. The LTS of the memory cell Mh x.

property it usually requires that each high level action can
be “simulated” in such a way that it is impossible for the
low level user to infer which high level actions have been
performed [18]. The generalized unwinding condition in-
troduced in [3] is parametric with respect to two binary re-
lations on processes: a low level equivalence relation,vl,
which represents the low level view, and a transition rela-
tion, 9 9 K, which characterizes a local connectivity.

Definition 2.6 (Generalized Unwinding) Let � be an
equivalence relation and9 9 Kbe a binary relation on pro-
cesses. Theunwinding classW(vl; 9 9 K) is defined asW(vl; 9 9 K) def= fE 2 E j 8 F;G 2 Reah(E)

if F h! G then9G0 such thatF 9 9 KG0 andG vl G0g:
The notion of generalized unwinding on the SPA lan-

guage entails a complete absence of information flow fromH to L, since all the high level actions (
h!) are required to

be simulated (9 9 K) in a way which is transparent to the low
level users (�l).

We can say that the properties based on the general-
ized unwinding schema characterizepassive attacks: the
low level user observing the low level behavior of the sys-
tem tries to infer the high level decisions. On the contrary,
theNDC(�) schema deals withactive attacks: the process� actively try to send down information to the low level
user. As we will see, there is often a connection between
properties characterizing passive attacks and propertiesin-
volving active attackers.

The following theorem follows from the unwinding char-
acterization ofP BNDC [2] and from the original defini-
tions ofSBNDC, SNDCandCP BNDC [2, 3].

Theorem 2.7 (Unwinding)LetE be a SPA process.� E 2 SNDC iff E 2 W(�lT ;�);� E 2 P BNDC iff E 2 W(�lB ; �̂=));� E 2 SBNDC iff E 2 W(�lB ;�);� E 2 CP BNDC iff E 2 W(�lB ; �=)).
Example 2.8 The memory cell of Example 2.5 is neither
BNDC nor NDC. In order to protect confidential data we

can transformM x into both a high level cellMh x (see
Figure 3), by eliminating any low level read operation,Mh x def= rh x:Mh x+ wh 0:Mh 0 + wh 1:Mh 1+ wl 0:Mh 0 + wl 1:Mh 1
and a low level cellM l x, by eliminating any high level
write operation:M l x def= rh x:M l x+ rl x:M l x+ wl 0:M l 0 + wl 1:M l 1
We can prove that bothMh x andM l x are P BNDC,
SNDC, and SBNDC. They are notCP BNDC since they
cannot perform any� transition. 2

By exploiting our generalized unwinding framework we
can also introduce the analogous ofP BNDC with trace
equivalence as basic observation equivalence.

Definition 2.9 (P NDC) Let E be a SPA process. We say
thatE satisfies thePersistent Non-Deducibility on Compo-

sition (P NDC) property ifE 2 W(�lT ; �̂=)).
It is immediate to prove thatSNDC � P NDC .
The following theorem establishes a connection between

NDC andBNDC, which are based on the presence of an ac-
tive attacker, and the properties introduced using the gener-
alized unwinding which capture possible passive attacks.

Theorem 2.10 LetE be a SPA process. It holds:� if E 2 P NDC , thenE 2 NDC ;� if E 2 P BNDC , thenE 2 BNDC .

As a consequence of the above theorem we also get that
SNDC implies NDC, while SBNDCandCP BNDC imply
BNDC. This means that for our properties the existence of
an active attack implies the existence of a passive one.

3. Downgrading via Unwinding

Many authors noticed that the notion of noninterference
is too demanding when dealing with practical applications:
indeed no real policy ever calls for total absence of infor-
mation flow over any channel. In many practical applica-
tions confidential data can flow from high to low provided
that the flow is not direct and it is controlled by the system,
i.e., a trusted part of the system can control the downgrad-
ing of sensitive information. Consider for instance the case
in which the high level user edits a file and sends it through
a private channel to an encrypting protocol, the encrypting
protocol encrypts the file and sends it through a public chan-
nel. Even if the high level data are sent through a public
channel the encryption ensures that the low level users can-
not read the data. Indeed, low level users can only observe
that an encrypted file is passing on the public channel. In

this case the encrypting protocol represents the trusted part
of the system which controls the flow from high to low.

In this section we show how our generalized unwinding
can be instantiated in order to deal with processes admitting
downgrading. This can be done just by extending the SPA
language with a set of downgrading actions.

To model downgrading, we partition the set of visible ac-
tionsL into the setsD (of downgrading actions),H , andL
such thatD = D, H = H andL = L. Moreover, we
assume that for every relabelling functionf , f(�) = � ,f(H) � H , f(L) � L, andf(D) � D. We still denote
by EH the set of all high level processes. We denote byHD
the setH [D and use the notion SPAD (SPA with Down-
grading) to refer to this language.

Downgrading actions are used to model the behavior of
a trusted component. It is reasonable to assume that an at-
tacker cannot simulate the trusted part of the system, i.e.,it
cannot perform the actions inD. For instance, in the case of
protocol analysis the attacker cannot distribute the encryp-
tion keys. Moreover, we can assume that the low level users
cannot observe the actions performed by the trusted part.

If we considerNDC(�) in SPAD we get that a processE satisfiesNDC(�) if E nHD � (Ej�) nHD for all � 2EH , since nowomp(L) = H [D = HD .

Example 3.1 Consider the case in which an encrypting
protocol receives a confidential file on a private channel, en-
crypts it and sends the resulting file on a public channel. Letfileh be the high level input representing the reception of
the file on the private channel,end be the downgrading ac-
tion representing the encryption phase,okh be a confiden-
tial acknowledge to the high level user, andfilel be the low
level output of the encrypted data. The encrypting protocol
can be formalized as follows:En = fileh:end:okh:filel:0
If we consider any possible attacker� 2 EH we get thatEn nHD �B 0 �B (Enj�) nHD
which means thatEn satisfiesBNDC in SPAD . 2

Unfortunately imposing that a processE satisfiesBNDC,
more generallyNDC (�), over the language with down-
grading is not enough to guarantee no information flow. In
fact, all the (uncontrolled) flows which occur after the first
downgrading are not revealed.

Example 3.2 In the processEn above the high level ac-
tion fileh is downgraded through the actionend, while
the high actionokh is not downgraded. In particular, the ac-
tion okh causes an uncontrolled information flow from high
to low, since it can block or unblock the process. However,
as illustrated in Example 3.1, this flow is not revealed by

BNDC. This is due to the fact that it occurs after the down-
grading actionend and that theBNDC property does not
check all the reachable states. 2

Let us analyze now the generalized unwinding in the
SPAD language. To avoid confusion we use the notationWD(�l; 9 9 K) to refer to the unwinding class defined by the
relations� and9 9 Kin the language SPAD . A processE of
the SPAD language is in the classWD(�l; 9 9 K) if8F;G 2 Reah(E); if F h! G; then9G0 such thatF 9 9 KG0 andG �l G0;
whereG �l G0 is equivalent toG n HD � G0 n HD . On
SPAD our generalized unwinding does not entail a complete
absence of information flow. Consider for instance the pro-
cessE = h:d:l:0. In E there is clearly a flow fromH toD and fromD to L. However,E 2 WD(�lB ;�), sinceE �lB 0 �lB d:l:0. In fact, the bisimilarity on low actions,
which does not care about the actions inH [D, allows the
flows fromH to D. The fact that the unwinding imposes

constraints only on the high level transitions (
h!) implies

that also the flows fromD toL are allowed.
We can define the same security properties of The-

orem 2.7 and Definition 2.9 also for SPAD processes.
To avoid confusion with the properties in pure SPA, we
change their names by prefixing aD when we work
on SPAD. For instance, theDP NDC property re-
quires that ifE reaches a processF which moves toG
through a high level action, thenF can also perform a se-

quence of silent actions (̂
�=) is the reachability rela-

tion in this case) to reach a processG0 such thatG0 n HD
and G n HD are trace equivalent (�lT is the observa-
tion equivalence in this case). Hence both high and down-
grading actions are not observed by the low level user. The
other properties are obtained by using different reachabil-
ity relations and observation equivalences.

Definition 3.3 LetE be a SPAD process.� E 2 DP NDC iff E 2 WD(�lT ; �̂=));� E 2 DSNDC iff E 2 WD(�lT ;�);� E 2 DP BNDC iff E 2 WD(�lB ; �̂=));� E 2 DSBNDC iff E 2 WD(�lB ;�);� E 2 DCP BNDC iff E 2 WD(�lB ; �=)).
We can prove many relationships among the properties

introduced above. For instance it is immediate to prove thatDSBNDC is included in bothDSNDC andDP BNDC ,
whileDCP BNDC is included inDP BNDC .

Example 3.4 Consider again the encrypting protocol of
Example 3.1. It evolves into the processE0 = okh:filel:0
andE0 okh! E00 � filel:0. However, there is no process
reachable fromE0 through a sequence of� actions and

Figure 4. The LTS of the memory cell Nh on.

weakly bisimilar or trace equivalent, on low actions, toE00.
Indeed,En does not satisfies any of the properties of Defi-
nition 3.3. In fact, the low level user which observes the en-
crypted file passing on the public channel can infer that the
high level user has received the acknowledge. We can avoid
this kind of flow by adding a timeout to the protocolEn = fileh:end:(okh:filel:0+ �:filel:0):
Now the process satisfiesDP NDC , DP BNDC , andDCP BNDC . 2
Example 3.5 Consider the high memory cell of Exam-
ple 2.8 and assume that the high level user has the possi-
bility to ‘turn the memory cell on and off’, i.e., to start and
stop the reading/writing operations. We also assume that the
cell contains the value0 when it is turned on.

Let onh and offh represent the high level actions which
turn the cell on and off. The memory cellNh on (see Fig-
ure 4) is represented by the following systemNh on

def= onh:Nh 0Nh x def= rh x:Nh x+ wh 0:Nh 0 + wh 1:Nh 1+ wl 0:Nh 0 + wl 1:Nh 1 + offh:0
The cellNh on does not satisfy any of the properties

defined in previous section: if we consider� � onh:0
we have thatNh on n H � 0 is not trace equivalent to(Nh onj�) nH , i.e., it is notNDC. This represents the fact
that the low level user which can write on the cell infers
that the cell is off. Moreover, the statesNh 0 andNh 1 sat-
isfy only theNDC property. They are notBNDCbecause of
the flow occurring when the cell is turned off (deadlock).

However, if we assume that the actions onh and offh are
controlled by a trusted entity we can downgrade them get-
ting the following specificationP h on

def= onh:ond:P h 0P h x def= rh x:P h x+ wh 0:P h 0 + wh 1:P h 1+ wl 0:P h 0 + wl 1:P h 1 + �:offh:offd:0
where ond; offd 2 D are the downgrading actions. Now, the
cell isDP NDC , DSNDC , DP BNDC , andDSBNDC .

One can notice that in the definition ofP h x the high
level action offh has been replaced by the sequence of ac-
tions �:offh:offd, thus adding not only a downgrading ac-
tion offd but also a leading� action. The intuition for that
is the necessity of imposing a nondeterministic choice be-
tween a read/write operation, on the one hand, and the de-
cision of turning off the computer, on the other hand.2

As far as the choice between trace equivalence and
bisimilarity is concerned, as already pointed out by Focardi
and Gorrieri [5], trace equivalence cannot discriminate crit-
ical cases as shown by the next example.

Example 3.6 Let us consider a procedure in which a low
level user sends an application for a grant. The applica-
tion can follow either a normal path in which the low level
user has to pass two examination phases or a short path in
which the first examination is sufficient. The short path can
be taken only if a high level user sponsors the low level
user. However, also with a high level sponsor, sometimes
the normal path is taken, in order to randomly check that the
sponsors are honest. After the examinations there is a high
level decision phase whose final result (accepted/refused)
is downgraded to the low level user. We can model the ab-
stract specification of this procedure as followsGr � askl:(first exl:secondexl:dech:decd:readl:0+

sponsh:(first exl:dech:decd:readl:0+
first exl:secondexl:dech:decd:readl:0))

where askl is the low level application for the grant, firstexl
and secondexl are the two examination phases, sponsh is
the high level sponsoring action,dech is the high level de-
cision phase, anddecd is the downgrading to the low level
user of the decision. Thus the low level user reads the deci-
sion through the low level actionreadl.Gr satisfiesDSNDC , and hence alsoDP NDC . In fact,
if E1 is the process reached byGr after executing askl, thenE1 performs a high level action reaching a stateE2 such
thatE1 n HD � first exl:secondexl:0 �T first exl:0 +
first exl:secondexl:0 � E2 nHD .

However, when a short path is taken the low level user
can infer that a high level user has sponsored his appli-
cation. IndeedGr does not satisfy neitherDSBNDC norDP BNDC , sinceE1 nHD 6�B E2 nHD . In this case the
use of bisimilarity allows us to capture the flow which oc-
curs when the short path is taken. Notice that, the down-
grading actiondecd takes care of downgrading only the fi-
nal decision, while the undesired flow regarding the sponsh
action is correctly captured using bisimulation. 2

The next theorem relates unwinding properties for SPAD
and SPA processes. It allows us to check whether a SPAD
processE satisfies an unwinding conditionWD(�l; 9 9 K)
by testing whether all the SPA processes of the formE0nD,
with E0 reachable fromE, belong toW(�l; 9 9 K).

Theorem 3.7 (WD and W) Let 9 9 Kbe a binary relation
on SPAD such that for each processF it holdsF 9 9 KF 0 iffF nD 9 9 KF 0 nD. LetE be a SPAD process.E 2 WD(�l; 9 9 K) iff for eachE0 2 Reah(E),E0 nD 2 W(�l; 9 9 K).

The above theorem provides a relation between the prop-
erties of Definition 3.3 and those of Theorem 2.7. For in-
stance, by applying it to the unwinding condition defin-
ing the DP NDC property we get that a processE isDP NDC if and only if all the processes of the formE0nD,
withE0 reachable fromE, areP NDC . More in general the
following corollary holds.

Corollary 3.8 Let E be a SPAD process andX 2fP NDC ;SNDC ;P BNDC ;SBNDC ;CP BNDCg.E 2 DX iff E0 nD 2 X , 8E0 2 Reah(E).
We already noticed that our unwinding security proper-

ties are concerned with the observation of passive attacks.
However, the following theorem tells us that the absence of
passive attacks ensures the absence of active ones. Hence
the existence of a passive attack is a necessary condition for
the existence of an active one.

Theorem 3.9 LetE be a SPAD process.� If E 2 DP NDC , then8E0 2 Reah(E) and8� 2EH ,E0 nHD �T (E0 nDj�)nH; i.e.,E0nD 2 NDC .� E 2 DP BNDC iff 8E0 2 Reah(E) and8� 2 EH ,E0 nHD �B (E0 nDj�) nH; i.e.,E0 nD 2 BNDC .

Since E belongs toReah(E), if a processE isDP NDC (DP BNDC), thenE n D is NDC (BNDC).
Hence a high level malicious process cannot use the
non-downgraded high level actions to reveal information to
the low level user. Moreover, for all the processesE0 reach-
able fromE it holds E0 n D 2 NDC (BNDC), which
means that also after the execution of some downgrad-
ing actions any high level malicious process cannot send
information down to the low level.

4. Compositionality

In this section we study the compositionalily properties
of our generalized unwinding. Compositionality is useful
for both verification and synthesis: if a property is preserved
when systems are composed, then the analysis may be per-
formed on subsystems and, in case of success, the system
as a whole will satisfy the desired property by construction.
We establish some general compositionality results for the
security properties obtained as instances of our generalized
unwinding on SPAD and show how they apply to the prop-
erties of Definition 3.3.

Given a classWD(�l; 9 9 K) and a partial func-
tion f from k-tuples of processes to processes, we
say that WD(�l; 9 9 K) is compositional with respect

to f if E1; : : : ; Ek 2 WD(�l; 9 9 K) implies that ei-
ther f(E1; : : : ; Ek) 2 WD(�l; 9 9 K) or f(E1; : : : ; Ek) is
not defined (denoted byf(E1; : : : ; Ek) ").

The following notion ofpreservationof a relation with
respect to a function is at the basis of our results.

Definition 4.1 (Preservation)Let f be a partial function
from k-tuples of processes to processes and� be a rela-
tion on processes. The functionf preserves� if the follow-
ing condition holds. LetE1; : : : ; Ek andE01; : : : ; E0k be pro-
cesses, andI ℄ J be any partition off1; : : : ; kg with I 6= ;.
If 8i 2 I (Ei �E0i) and8j 2 J (Ej � E0j) thenf(E1; : : : ; Ek)� f(E01; : : : ; E0k) or(f(E1; : : : ; Ek) " andf(E01; : : : ; E0k) ")

In [2] we proved the following compositionality results
which can be applied also to SPAD.

Theorem 4.2 LetWD(�l; 9 9 K) be an unwinding class.� Let a 2 L [f�g andprea be a function fromWD(�l; 9 9 K) to processes such asprea(E) = a:E. ThenWD(�l; 9 9 K) is compositional with respect to thea-
prefix operator,prea;� Let v � L andrestv be a function fromWD(�l; 9 9 K)
to processes such asrestv(E) = E n v. If restv pre-
serves9 9 K and �l, thenWD(�l; 9 9 K) is composi-
tional with respect to thev-restriction operator,restv;� Let g be a renaming andreng be a function fromWD(�l; 9 9 K) to processes such asreng(E) = E[g℄. Ifreng preserves9 9 Kand�l, thenWD(�l; 9 9 K) is com-
positional with respect to theg-renaming opera-
tor, reng;� Let par be a function from(WD(�l; 9 9 K))2 to pro-
cesses such aspar(E;F) = EjF . If par preserves9 9 K
and�l, thenWD(�l; 9 9 K) is compositional with re-
spect to the parallel composition operatorj;

As a consequence we get the following corollary.

Corollary 4.3 Let E be a SPAD process andX 2fP NDC ;SNDC ;P BNDC ;SBNDC ;CP BNDCg. IfE 2 DX , then� a:E 2 DX , for all a 2 L [f�g;� E n v 2 DX , for all v � L;� E[g℄ 2 DX , for all relabelling functiong.

Unfortunately, our properties are not compositional with
respect to the parallel operator.

Example 4.4 Consider the processesE � h:d:l:0 andF � �d with h 2 H , l 2 L andd; �d 2 D. Both E andF areDP BNDC , however the process(EjF) is not. In-
deed the synchronization between the downgrading actionsd and �d produces a direct casuality between the high level
actionh and the low level actionl. 2

However, we can prove the compositionality with respect
to the parallel operator provided that processes do not syn-
chronize on downgrading actions.

Theorem 4.5 Let E;F be SPAD processes andX 2fP NDC ;SNDC ;P BNDC ;SBNDC ;CP BNDCg. IfE;F 2 DX and they cannot synchronize on downgrad-
ing actions, then(EjF) 2 DX .

Example 4.6 Let P h on be the memory cell of Exam-
ple 3.5. Since actionsond and offd are never used,
by Theorem 4.5 we get that the parallel composi-
tion (P h onjP h onj : : : jP h on) of an arbitrary num-
ber of cells is still DP NDC , DSNDC , DP BNDC ,DSBNDC . 2

Moreover, as illustrated below, propertiesDSNDC ;DP BNDC , andDSBNDC are not compositional with re-
spect to the nondeterministic choice operator.

Example 4.7 Consider the processesE � h:d:0 andF �l:0. BothE andF areDSBNDC (and hence they are alsoDSNDC andDP BNDC) butE + F is neitherDSNDC
nor DP BNDC nor DSBNDC . The problem lies in the
fact that while the high level action inE is safely simulated
by a sequence of zero� in E nHD , the same high level ac-
tion inE+F is not safely simulated by a sequence of zero�
in (E+F)nHD due to the presence of the additional com-
ponentF . This problem would not arise ifh were simulated
by at least one� action. 2

SinceDCP BNDC requires that each high level action
is simulated by at least one� action, it is compositional with
respect to the nondeterministic choice operator.

Theorem 4.8 Let E;F be SPAD processes. IfE;F 2DCP BNDC , thenE + F 2 DCP BNDC .

5. Refinement

In the development of a complex system it is common
practice to first describe it succinctly as a simple abstract
specification and then refine it stepwise to a more concrete
implementation. In the context of process algebra, this re-
finement methodology amounts to defining a mechanism
for replacing abstract processes with more concrete ones. In
the literature two kinds of refinement are distinguished:hor-
izontal refinement andvertical refinement. Horizontal re-
finement is usually expressed in terms of preorders, such as
trace inclusion, and aims at transforming the system into
a more nearly executable one by, for instance, removing
possible sources of nondeterminism. Vertical refinement in-
stead consists in the replacement of abstract actions by more
concrete processes which represent their implementation
(see [9] for a survey on action refinement and its relation-
ships with horizontal refinement).

A security-aware stepwise development requires that the
security properties of interest are either preserved or gained
during the development process, until a concrete specifica-
tion is obtained. Following this approach the security prop-
erties are guaranteed, and thus verified, by construction.

Below we consider the problem of preserving our securi-
ty properties under both horizontal and vertical refinement.

5.1. Horizontal Refinement

In [3] a general notion of horizontal refinement based on
simulation is introduced.

Definition 5.1 (Simulation) A binary relationS over pro-
cesses is asimulation if (E;F) 2 S implies that, for alla 2 At , if E a! E0, then there existsF 0 such thatF a! F 0
and(E0; F 0) 2 S.
We say that the processE is simulated bythe processF ,
denoted byE � F , if there exists a simulationS containing
the pair(E;F).
Definition 5.2 (Horizontal Refinement)A binary relationR over processes is ahorizontal refinementif� R�1, the inverse2 of R, is a simulation and� R is a partial function from processes to processes3.

We say thatE is a horizontal refinement ofF , denoted byE � F , if there exists a horizontal refinementR such thatR(F) = E.

Notice that horizontal refinement is more restrictive than
trace inclusion.

In [3] we have studied how to preserve unwinding-based
security properties under refinement. The notion of preser-
vation (Definition 4.1) is still at the basis of this result.

Theorem 5.3 (Unwinding and Horizontal Refinement)
Let WD(�l; 9 9 K) be an unwinding class andR be a re-
finement. IfR preserves9 9 Kand�l, thenWD(�l; 9 9 K) is
compositional with respect toR, i.e., ifE 2 WD(�l; 9 9 K)
andR(E) #, thenR(E) 2 WD(�l; 9 9 K).

By applying the above result to our properties we get the
following corollary.

Corollary 5.4 LetR be a refinement.� if R preserves�lT and
�̂=), thenDP NDC is compo-

sitional with respect toR;� if R preserves�lT , thenDSNDC is compositional
with respect toR;� if R preserves�lB and

�̂=), thenDP BNDC is com-
positional with respect toR;

2 (E1; E2) 2 R�1 () (E2; E1) 2 R.
3 Actually one could consider only total functions by using the process0 to complete the partial ones.

� if R preserves�lB , thenDSBNDC is compositional
with respect toR;� if R preserves�lB and

�=), thenDCP BNDC is
compositional with respect toR.

Example 5.5 Let us consider the memory cellP h on de-
scribed in Example 3.5. The cell satisfiesDP BNDC . LetR be the refinement defined asR(E) = E n fwl 0g, for
each processE. We have thatR preserves both�lB and�̂=), hence by the above corollaryR(P h on) still satisfiesDP BNDC . In fact, if we computeR(P h on) � Qh on
we get the following definitionQh on

def= onh:ond:Qh 0Qh x def= rh x:Qh x+ wh 0:Qh 0 + wh 1:Qh 1+ wl 1:Qh 1 + �:offh:offd:0
In Qh on the low level user may only write value1. Since
he cannot read the content of the cell, he may only infer that
the cell is on, that is a downgraded information. 2
5.2. Vertical Refinement

In [4] we formalized a notion of vertical refinement
based on syntactic replacement andcontextcomposition.

A contextC is nothing but a SPA term in which some
of the constants may not be associated to a definition. The
constants ofC which are not associated to a definition are
calledvariables. Note that when the termC contains a con-
stant definitionZ def= E, then the set of variables occurring
in C includes also the variables occurring inE. We will
use the notationC[X1; : : : ; Xn℄ to denote a context whose
variables areX1; : : : ; Xn. Moreover, ifT1; : : : ; Tn are pro-
cesses,C[T1; : : : ; Tn℄ denotes the process obtained by si-
multaneously replacingXi with Ti, for i = 1; : : : ; n in the
termC and in all its associated definitions. As an example,
consider the termT � a:Z + b:0 whereZ is a constant de-
fined byZ def= :Z + a:W andW is a variable. ThenT can
be written asT [W ℄ andT [0℄ is equal toa:Z[0℄+ b:0whereZ[0℄ is a new constant defined byZ[0℄ def= :Z[0℄ + a:0.

Given a processF and a variableY , we denote byF Y
or F Y [Y ℄ the context obtained by replacing each occur-
rence of0 in F with the variableY . WhenF is a con-
stant, or just it calls for constant definitions in its expres-
sion, the involved constants have to be renamed and rede-
fined according to the same principle. As an example, con-
sider the processF � a:Z + b:0 whereZ is defined byZ def= :Z + b:0. ThenF Y � a:ZY + b:Y whereZY is de-
fined byZY def= :ZY + b:Y .

To introduce our notion of vertical refinement we also
need to define which are therefinableactions of a process.

Definition 5.6 (Free and Bound actions)LetT be a SPAD
term. The set ofboundactions ofT , denoted bybound(T),

is inductively defined as follows:bound(0) = ;bound(Z) = ; whereZ is a variablebound(a:T) = bound(T)bound(T1 + T2) = bound(T1) [bound(T2)bound(T1jT2) = bound(T1) [bound(T2)bound(T n v) = bound(T) [vbound(T [f ℄) = bound(T) [fa; f(a) j f(a) 6= agbound(reZ:T) = bound(T)
An action occurring inT is said to befree if it is not

bound. We denote byfree(T) the set of free actions ofT .

We do not want to refine an actionr which occurs bound
in E; moreover, in order to avoid problems with the syn-
chronization, we require that�r does not occur inE. As far
as the processF which is intended to refiner is concerned,
we do not want that eitherr or �r occur inF otherwise we
would enter into an infinite loop of refinements. We also re-
quire that the free actions ofF are not bound inE, to avoid
they become bounded in the refined process and viceversa.

Definition 5.7 (Refinable actions)LetE;F be SPAD pro-
cesses with distinct constants definitions andr 2 L.
The action r is said to berefinable in E with F if
for all subtermE0 of E: (i) r 62 bound(E0) and �r 62bound(E0) [free(E0); (ii) r; �r 62 bound(F) [free(F);
(iii) (bound(E0)\ free(F))[(bound(F)\ free(E0)) = ;.

We introduce a syntactic and non-atomic notion of ac-
tion refinement by structural induction on the syntax of the
process to be refined.

Definition 5.8 (Vertical Refinement)LetE;E1; E2; F be
SPAD processes andr be an action refinable inE with F .
Therefinement ofr in E withF is the processRef (r; E; F)
inductively defined on the structure ofE as follows:1: Ref (r;0; F) � 02: Ref (r; Z; F) � Z3: Ref (r; r:E1; F) � �:F Y [Ref (r; E1; F)℄4: Ref (r; a:E1; F) � a:Ref (r; E1; F); if a 6= r5: Ref (r; E1[f ℄; F) � Ref (r; E1; F)[f ℄6: Ref (r; E1 n v; F) � Ref (r; E1; F) n v7: Ref (r; E1 +E2; F) � Ref (r; E1; F) +Ref (r; E2; F)8: Ref (r; E1jE2; F) � Ref (r; E1; F)jRef (r; E2; F)
where all the constant definitions of the formZi def= Ei have

to be replaced byZi def= Ref(r; Ei; F).
The above definition deserves some explanations, mainly

on items 3, 5, 8. In item 3 we consider a process of the
form r:E1 and we replace the refinable actionr by �:F Y
instead of the more intuitiveF Y . This choice allows us to
keep under control the non deterministic behaviour of the
process. In item 5 we consider a process of the formE1[f ℄

wheref is a given renaming. In the definition of refinable
actions we impose that the actions involved in the renam-
ing are not refinable. This guarantees that refinement and
renaming can commute, and the correctness of item 5. Fi-
nally, item 8 points out the fact that our refinement is not
atomic. Hence for instance ifE � r:0ja:0 andF � �a:b:0
we getRef(r; E; F) � �:�a:b:0ja:0 in which a and�a can
synchronize. On the contrary by atomic refinement this syn-
chronization would not be allowed.

We are interested in the definition of classes of processes
satisfying an instance ofWD(�l; 9 9 K) and preserving such
a property under vertical refinement.

Given a sequences = s1; s2; : : : ; sn of actions, we de-
note bys:E the processs1:s2: : : : sn:E.

Definition 5.9 (C(s)) Let WD(�l; 9 9 K) be an unwinding
condition compositional with respect to restriction and re-
naming. Lets 2 (L[f�g)� be a sequence of low and silent
actions such that ifE s! E0, thenE 9 9 KE0. The classC(s)
contains all processes defined by the following productions:T ::= 0 j Pi2I li:Ti +Pj2J (hj :Tj + s:(Tj nHD)) jT n v j T [f ℄ j Z
whereli 2 L [f�g for i 2 I , hj 2 H for j 2 J , andZ is

associated to a definition of the formZ def= T .

Theorem 5.10 Let E;F 2 C(s) be two SPAD processes.
Let r be an action not occurring ins.Ref(r; E; F) 2 WD(�l; 9 9 K):

We can apply the above result toDP NDC ,DP BNDC
andDCP BNDC using the sequences = � .

More interestingly, we can identify some situations in
which action refinement can be used to rectify a process
which is not in the classWD(�l; 9 9 K) in order to get a
process which is inWD(�l; 9 9 K). First we assume thatWD(�l; 9 9 K) is such that for each processF it holdsF 9 9 K F . Then we consider a processE which is not inWD(�l; 9 9 K) because there exists an actionk 2 H which
occurs inE and a processG0 reachable fromE such thatG0 k! G00 and for eachG000 such thatG0 �̂9 9 KG000 we haveG00 6�l G000 (i.e., this is the only point in which the unwind-
ing condition is violated andk does not occur elsewhere
in E). In this case we say thatE is not inWD(�l; 9 9 K)
because ofk. As an example consider the processE ��:(k:0 + l:0) + h:l:0 which is not inDP BNDC because
of the actionk. The violation of the unwinding condition
in correspondence of the actionk represents the fact thatk
causes an uncontrolled information flow. If we refinek us-
ing k:d:0, with d 2 D, we have that the flow is controlled
by the downgrader. Unfortunately, this is generally not suf-
ficient to get a process which belongs toWD(�l; 9 9 K). For
instance the processE � �:(k:0 + l:0) + h:l:0 would be

transformed into�:(�:k:d:0+ l:0)+h:l:0 which now is notDP BNDC because of the actionh. Hence, it could be nec-
essary to iterate the process of refinement over other high
level actions. However, we can identify cases in which we
can ensure that the downgrading ofk gives us a process be-
longing toWD(�l; 9 9 K).
Definition 5.11 Let WD(�l; 9 9 K) be an unwinding class
andE be a SPAD process.Low(E;�l; 9 9 K) is the setLow(E;�l; 9 9 K) = fE00; E000 j 9E0 2 Reah(E) such thatE0 h! E00 andE0 9 9 KE000 andE00 �l E000g:
Theorem 5.12 LetWD(�l; 9 9 K) be such that for each pro-
cessF it holdsF 9 9 KF and9 9 Kis preserved by the refine-
ments of the formRef(r; F; r:d:0), i.e., if F 9 9 KG thenRef(r; F; r:d:0) 9 9 KRef(r;G; r:d:0). Let E be a SPAD
process,k 2 H , d 2 D. If E is not in WD(�l; 9 9 K)
because ofk and k does not occur in the processes ofLow(E;�l; 9 9 K), thenRef(k;E; k:d:0) 2 WD(�l; 9 9 K).
Corollary 5.13 LetE be a SPAD process,k 2 H , d 2 D.� If E is not in DP NDC because ofk and k does

not occur in the processes ofLow(E;�lT ; �̂=)), thenRef(k;E; k:d:0) is inDP NDC .� If E is not in DSNDC because ofk and k does
not occur in the processes ofLow(E;�lT ;�), thenRef(k;E; k:d:0) is inDSNDC .� If E is not inDP BNDC because ofk andk does
not occur in the processes ofLow(E;�lB ; �̂=)), thenRef(k;E; k:d:0) is inDP BNDC .� If E is not in DSBNDC because ofk and k does
not occur in the processes ofLow(E;�lB ;�), thenRef(k;E; k:d:0) is inDSBNDC .

Example 5.14 Let us consider again the high level mem-
ory cell Nh on of Example 3.5. We already noticed thatNh on is not DP BNDC . In particular, its subprocessNh 0 is not DP BNDC because of offh. If we com-
puteRef(offh; Nh 0; offh:offd:0) we get the processSh 0
which is defined by the following equationsSh x def= rh x:Sh x+ wh 0:Sh 0 + wh 1:Sh 1+ wl 0:Sh 0 + wl 1:Sh 1 + �:offh:offd:0Sh 0 is DP BNDC . Now the processSh on defined as
onh:Sh 0 is not DP BNDC because of onh. By Corol-
lary 5.13 we get thatRef(onh; Sh on; onh:ond:0) isDP BNDC . Note that Ref(onh; Sh on; onh:ond:0) is
weakly bisimilar to the processP h on of Example 3.5:
they only differ on the initial� added by the refine-
ment of onh. 2

6. Decidability and Complexity

In this section we show how to decide whether a processE belongs or not to an unwinding classWD(�l; 9 9 K).
Let us assume that we have an algorithmAW which

decides whether a processF of the SPA language be-
longs toW(�l; 9 9 K) or not. Moreover, let Time(AW) and
Space(AW) be the time and space complexities ofAW . The
following theorem, which is an immediate consequence of
Theorem 3.7, allows us to exploit the algorithmAW also
to decide whether a processE of the SPAD language be-
longs to the classWD(�l; 9 9 K).
Theorem 6.1 Let WD(�l; 9 9 K) be an unwinding condi-
tion such that for each processF it holds F 9 9 K F 0
iff F n D 9 9 K F 0 n D. Let E be a SPAD process. Let~E = �E02Reah(E)�:E0 nD. It holdsE 2 WD(�l; 9 9 K) iff ~E 2 W(�l; 9 9 K):
Given a processE to decide whetherE 2 WD(�l; 9 9 K) or
not we need to:� compute~E;� computeAW on ~E.

As far as time and space complexities are concerned, we
have that the LTS associated to~E can be build in linear time
from the LTS associated toE without increasing its size. In
fact, to get the LTS associated to~E it is sufficient to: (i) con-
sider the LTS associated toE; (ii) add a new node named~E; (iii) for eachE0 2 Reah(E) add the edge~E �! E0;
(iv) delete each edgeE0 d! E00, with d 2 D. Hence, if the
LTS associated toE hasn nodes andm edges, the LTS as-
sociated to~E has at mostn + 1 nodes andm + n edges.
Then, we can decide ifE 2 WD(�l; 9 9 K) or not in time
Time(AW)+O(n+m) and space Space(AW)+O(n+m).

In particular, in the case ofDP BNDC andDSBNDC ,
we can exploit the polynomial algorithms forP BNDCand
SBNDCimplemented in theCoPS tool [16], getting the fol-
lowing complexity results.

Corollary 6.2 Let E be a SPAD process. It is possible to
decideE 2 DP BNDC andE 2 DSBNDC in timeO(n3) and spaceO(n2), wheren is the number of states
of the LTS associated toE.

7. Conclusion and Related Works

In this paper we present a general unwinding framework
for formalizing different noninterference properties of SPA
processes admitting downgrading, i.e., allowing informa-
tion to flow from a higher to a lower security level through
a downgrader. The framework is parametric with respect to
the observation equivalence used to discriminate between

different process behaviours. In particular we discuss in-
stances of the unwinding framework with trace equivalence
and weak bisimilarity.

Here we compare our approach with some related works.

Admissible Interference.In [15] Mullins introduced the se-
curity property namedAdmissible Interference(AI) as a
trace based generalization ofNDC [5] to deal with nondeter-
ministic processes permitting downgrading. Like in our ap-
proach, his model is a variant of CCS and thus we can easy
compare his definition with our unwinding-based ones.

The notion of AI is defined as follows. We denote byF=H (F hiding H) the process obtained by replacing all
the high level actions inF with � actions.

Definition 7.1 (AI) Let E be a SPAD process.E satisfies
AI if 8 E0 2 Reah(E); (E0 nD)=H �T E0 nHD :

We show thatDP NDC impliesAI.

Theorem 7.2 LetE be a SPAD process. IfE 2 DP NDC
thenE 2 AI .

However, the converse of Theorem 7.2 does not hold.

Example 7.3 Consider the processE � h:l1:0 + l1:0 +l2:0. E is AI (and alsoNDC) sinceE n H �T E=H (no-
tice that there are no downgrading actions). HoweverE is

neitherP NDC norDP NDC sinceE h! l1:0 but there is
no stateE0 reachable fromE through a possibly empty se-
quence of� actions and such thatE0 nH �T l1:0. 2

In [15] Mullins shows that, in the deterministics case,AI
implies the purging-based definitions of conditional nonin-
terference for deterministic systems proposed by Haigh and
Young in [10], by Rushby in [19], and by Pinsky in [17].
Thus also ourDP NDC property implies them.

In [11] Lafrance and Mullins propose a variant of the
notion of Admissible Interference by using weak bisimilar-
ity instead of trace equivalence. The new property is named
Bisimulation-based Non-deterministic Admissible Interfer-
ence(BNAI) and is defined as follows.

Definition 7.4 (BNAI) LetE be SPAD process.E is BNAI
if 8 E0 2 Reah(E); (E0 nD)=H �B E0 nHD :

We can prove thatDP BNDC is equivalent toBNAI.

Theorem 7.5 LetE be a SPAD process.E 2 DP BNDC
iff E 2 BNAI :
Robust Declassification.In [21], Zdancewic and Myers in-
troduce the notion ofrobust systemwhich contains some in-
tentional flows of confidential information obtained by de-
classification. This notion is parametric with respect to both
an equivalence relation and a class of active attacks. First
they define a parametric security propertySP(�) where�
is an equivalence relation. This property is satisfied by a
system if an observer with view� cannot learn anything

by watching the system run. Since, in this case, informa-
tion cannot be lost or destroyed, they say that the system
is secure with respect topassive attacks. A systemS is ro-
bustwith respect toSP(�) and a classB of active attacks
if for eachA 2 B, the composition ofS with A still satis-
fies the propertySP(�). Zdancewic and Myers prove that
when the classB of active attacks coincides with the sys-
tems satisfyingSP(�), then a systemS which is secure
with respect to passive attacks is also secure with respect to
the active attacks inB, i.e., it is robust with respect toB.

We can find similarities with our approach. In fact,
Theorems 2.10 and 3.9 show thatP NDC (P BNDC ,DP NDC , DP BNDC) processes are robust with respect
to�T (�B, �T , �B) and the class of active attacks of the
form� 2 EH composed through the parallel operator.

Intransitive Basic Security Predicates.In [13] Mantel pro-
poses a generic security model for information flow con-
trol of nondeterministic systems with two or more secu-
rity levels. He shows how to define basic security predi-
cates (BPSs) which can cope with intransitive flows. In par-
ticular he defines the security predicatesintransitive back-
wards strict deletion of confidential events(IBSD) andin-
transitive backwards strict insertion of confidential events
(IBSIA). These predicates are parametric with respect to a
set ofsecurity domainsD and anextension setXD, whereD 2 D, which possibly extends the view ofD. As far as
trace models are concerned, Mantel’s framework is more
general than our.

Partial Information Flow. In [20] the relationships between
various definitions of noninterference and notions of pro-
cess equivalence are analyzed and some generalizations to
handlepartial and conditional information flows are out-
lined. The authors provide a general definition of nonin-
terference and discuss how such a generalization could be
appropriate to deal with realistic practical situations, e.g.,
with policies that allow for automatic downgrading of cer-
tain statistical information from a database. Their definition
is parametric with respect to an equivalence process rela-
tion and a set of constraints describing the high level be-
haviours for which it is intended to restrict the flow of infor-
mation. The general definition of noninterference presented
in [20] deals with active attacks only. Moreover, the authors
neither provide an unwinding theorem nor discuss the ver-
ification problem for the properties that can be obtained as
instances of their general definition.

References

[1] M. Backes and B. Pfitzmann. Intransitive Non-Interference
for cryptographic purposes. InProc. of the IEEE Symposium
on Security and Privacy (SSP’03), pages 140–152. IEEE
Computer Society Press, 2003.

[2] A. Bossi, R. Focardi, D. Macedonio, C. Piazza, and
S. Rossi. Unwinding in Information Flow Security.
Electronic Notes in Theoretical Computer Science, 2004.
To appear. Available athttp://www.dsiunive.it/�srossi/entcs04.ps.

[3] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement
Operators and Information Flow Security. InProc. of the 1st
IEEE Int. Conference on Software Engineering and Formal
Methods (SEFM’03), pages 44–53. IEEE Computer Society
Press, 2003.

[4] A. Bossi, D. Macedonio, C. Piazza, and S. Rosssi. Compo-
sitional Action Refinement and Information Flow Security.
Technical Report CS-2003-13, Dipartimento di Informatica,
Università Ca’ Foscari di Venezia, Italy, 2003.

[5] R. Focardi and R. Gorrieri. Classification of Security Prop-
erties (Part I: Information Flow). In R. Focardi and R. Gor-
rieri, editors,Proc. of Foundations of Security Analysis and
Design (FOSAD’01), volume 2171 ofLNCS, pages 331–396.
Springer-Verlag, 2001.

[6] R. Focardi and S. Rossi. Information Flow Security in Dy-
namic Contexts. InProc. of the IEEE Computer Security
Foundations Workshop (CSFW’02), pages 307–319. IEEE
Computer Society Press, 2002.

[7] J. A. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. In Proc. of the IEEE Symposium on Security
and Privacy (SSP’82), pages 11–20. IEEE Computer Soci-
ety Press, 1982.

[8] J. A. Goguen and J. Meseguer. Unwinding and Inference
Control. InProc. of the IEEE Symposium on Security and
Privacy (SSP’84), pages 75–86. IEEE Computer Society
Press, 1984.

[9] R. Gorrieri and A. Rensink. Action Refinement. Technical
Report UBLCS-99-09, University of Bologna (Italy), 1999.

[10] J. T. Haigh and W. D. Young. Extending the noninterference
version of mls for sat.IEEE Transactions on Software Engi-
neering, 13(2):141–150, 1987.

[11] S. Lafrance and J. Mullins. Bisimulation-based Non-
deterministic Admissible Interference and its Application to
the Analysis of Cryptographic Protocols.Electronic Notes in
Theoretical Computer Science, 61:1–24, 2002.

[12] G. Lowe. Quantifying Information Flow. InProc.
of the IEEE Computer Security Foundations Workshop
(CSFW’02), pages 18–31. IEEE Computer Society Press,
2002.

[13] H. Mantel. Information Flow Control and Applications -
Bridging a Gap. InProc. of the nternational Symposium of
Formal Methods Europe (FME’01), LNCS, pages 153–172.
Springer-Verlag, 2001.

[14] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[15] J. Mullins. Nondeterministic Admissible Interference. Jour-
nal of Universal Computer Science, 11:1054–1070, 2000.

[16] C. Piazza, E. Pivato, and S. Rossi. Cops - Checker of Persis-
tent Security. InProc. of International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’04), LNCS. Springer-Verlag, 2004. To appear.

[17] S. Pinsky. Absorbing Covers and Intransitive Noninterfer-
ence. InProc. of the IEEE Symposium on Security and
Privacy (SSP’95), pages 102–113. IEEE Computer Society
Press, 1995.

[18] A. W. Roscoe and M. H. Goldsmith. What is intransitive non-
interference? InProc. of the IEEE Computer Security Foun-
dations Workshop (CSFW’99), pages 228–238. IEEE Com-
puter Society Press, 1999.

[19] J. Rushby. Noninterference, transitivity, and channel-control
security policies. Technical Report CSL-92-02, SRI Interna-
tional, December 1992.

[20] P. Ryan and S. Schneider. Process Algebra and Non-
Interference.Journal of Computer Security, 9(1/2):75–103,
2001.

[21] S. Zdancewic and A. C. Myers. Robust Declassification. In
Proc. of the IEEE Computer Security Foundations Workshop
(CSFW’01), pages 15–23. IEEE Computer Society Press,
2001.

A. Proofs

Proof of Theorem 2.10.The second item has been proved
in [6]. We prove the first item.

Let E be a process such that for eachF 2 Reah(E)
if F h! G, thenF �̂=) G0 with G n H �T G0 n H . We
have to prove that for each� 2 EH it holdsTr((Ej�) nH) = Tr(E nH). The inclusionTr((Ej�)nH) � Tr(E nH) trivially holds, hence we only have to proveTr((Ej�)nH) � Tr(E nH).

Let 2 Tr((Ej�) nH). There exists a trace0 includ-
ing � actions such that is obtained from0 by removing
the� actions. We proceed by induction on the number of� ’s
in 0. If 0 has no� actions, then = 0 is a trace ofE nH ,
sinceE and� never synchronize. Let0 be of the form(Ej�)nH 1! (E0j�0)nH �! (E00j�00)nH 2(E000j�000)nH
in which we point out the last occurrence of� . If � is not a
synchronization betweenE and� we immediately get the
thesis by inductive hypothesis on1. If � is a synchroniza-

tion betweenE and�, then we have thatE0 h! E00, henceE0 �̂=) F with E00 nH �T F nH . Hence, by inductive hy-
pothesis2 2 Tr(F nH) and12 2 Tr(E nH), which is
equivalent to 2 Tr(E nH). 2
Proof of Theorem 3.7.)) Let E 2 WD(�l; 9 9 K). We
have to prove that for eachE0 2 Reah(E), for eachE00 2 Reah(E0 n D) if E00 h! G, thenE00 9 9 KG0 withGnH � G0nH . From the fact thatE00 2 Reah(E0nD)we
have thatE00 � E000 nD with E000 2 Reah(E0) andG �G000 n D with E000 h! G000. Hence, sinceE0 2 Reah(E),
we getE000 2 Reah(E). From the hypothesis thatE 2WD(�l; 9 9 K), sinceE000 h! G000, we have thatE000 9 9 KK
withG000nHD � K nHD. HenceE00 � E000nD 9 9 KK nD

with G nH � G000 nHD � K nHD � (K nD) nH , i.e.,
the thesis.() LetE be such that for eachE0 2 Reah(E) it holdsE0 nD 2 W(�l; 9 9 K). We have to prove that for eachE0 2Reah(E) if E0 h! G, thenE0 9 9 KG0 with G n HD �G0 n HD . If E0 h! G, thenE0 n D h! G n D, hence by
hypothesis,E0 nD 9 9 KG0 nD with (G nD) nH � (G0 nD) nH . Hence,E0 9 9 KG0 with G n HD � G0 n HD , i.e.,
the thesis. 2
Proof of Theorem 3.9.As far as the first item is concerned,
if E 2 DP NDC by Corollary 3.8 we have that for eachE0 2 Reah(E) it holdsE0 nD 2 P NDC , hence by The-
orem 2.10E0 nD 2 NDC .

As far as the second item is concerned, ifE 2 DP NDC
by Corollary 3.8 we have that for eachE0 2 Reah(E) it
holdsE0 nD 2 P NDC , hence by Theorem 2.10E0 nD 2NDC . On the other hand, if8E0 2 Reah(E) it holds
thatE0 n D 2 BNDC , then8E00 2 Reah(E0) it holdsE00 nD 2 BNDC , which implies by using a characteriza-
tion of P BNDC given in [6], thatE0 n D 2 P BNDC ,
hence, by Corollary 3.8,E 2 DP BNDC . 2
Proof of Theorem 4.5.Let us consider the case ofD =DSNDC . Applying Corollary 3.8 we have to prove that for
eachE0jF 0 2 Reah(EjF) it holds that(E0jF 0) n D 2SNDC . SinceE andF cannot synchronize on downgrad-
ing actions(E0jF 0)nD is trace equivalent (and also weakly
bisimilar) toE0 n DjF 0 n D. Moreover,E0 2 Reah(E)
andF 0 2 Reah(F). From the hypothesis thatE;F 2DSNDC applying Corollary 3.8 we get that for eachE0 2Reah(E) and for eachF 0 2 Reah(F),E0nD andF 0nD
are inSNDC , hence, sinceSNDC is compositional with re-
spect to the parallel composition,E0nDjF 0nD is inSNDC .

The other cases are similar. 2
Proof of Theorem 5.10.Notice thatC(s) � WD(�l; 9 9 K),
hence if we proveRef(r; E; F) 2 C(s) we get the thesis.

In our proof we exploit the following claim, which can
be proved by structural induction.

Claim 1.If P; F 2 C(s), thenF Y [P ℄ 2 C(s).
We now prove thatRef(r; E; F) 2 C(s) proceeding by

structural induction onE and exploiting the cases of Defi-
nition 5.8.
The cases 1. and 2. are trivial.
Case 3. follows by inductive hypothesis and Claim 1.
Case 4. can occur only witha 2 L [f�g, hence it follows
by inductive hypothesis.
Cases 5. and 6. follow by inductive hypothesis.
Case 7. can occur only with sums of the forml:E1+h:E2+s:(E2 nHD). We can distinguish three subcases� r = l. We get the thesis by inductive hypothesis;

� r = h. We get thatRef(r; E; F) = l:Ref(r; E1; F)+�:F Y [Ref(r; E2; F)℄+s:(Ref(r; E2; F)nHD)which
is in C(s) by Claim 1 and inductive hypothesis;� r 6= h. We get thatRef(r; E; F) = l:Ref(r; E1; F)+h:Ref(r; E2; F) + s:(Ref(r; E2; F) n HD) which is
in C(s) by inductive hypothesis.

Case 8. never occurs becauseE 2 C(s) and the parallel op-
erator is not in the syntax ofC(s). 2
Proof of Theorem 5.12. We have that for
each h 6= k if E0 2 Reah(E) is such thatE0 h! G and E0 9 9 K G0 with G �l G0, thenRef(k;E0; k:d:0) 2 Reah(Ref(k;E; k:d:0) andRef(k;E0; k:d:0) h! Ref(k;G; k:d:0). Since k
does not occur in Low(E;�l; 9 9 K) we have thatRef(k;G; k:d:0) � G and Ref(k;G0; k:d:0) � G0
Moreover, since this refinement preserves9 9 Kwe get thatRef(k;E0; k:d:0) 9 9 K Ref(k;G0; k:d:0), hence the un-
winding condition onh 6= k is still satisfied.

As far ask is concerned we have that ifE0 2 Reah(E)
is such thatE0 9 9 K k!G, then Ref(k;E0; k:d:0) �!k:d:Ref(k;G; k:d:0) 9 9 K k!d:Ref(k;G; k:d:0). Sincek:d:Ref(k;G; k:d:0)nHD � 0 � d:Ref(k;G; k:d:0) andk:d:Ref(k;G; k:d:0) 9 9 K k:d:Ref(k;G; k:d:0) we have
that also the unwinding condition onk is satisfied. 2
Proof of Theorem 7.2.We prove thatE 2 DP NDC im-
pliesE 2 AI .) Let E 2 DP NDC , i.e., for allE0 2 Reah(E), ifE0 h! E00 with h 2 H thenE0 �̂=) E000 andE00 n HD �TE000 nHD . LetE0 2 Reah(E) and 2 Tr((E0 nD)=H).
Then there exists0 2 Tr(E0 n D) such that = 0=H
where0=H is obtained from by deleting all high level ac-
tions occurring in it. We show that 2 Tr(E0nHD). This is
proved by induction on the number of high level actions oc-
curring in 0. Indeed if0 does not contain any high level
action then = 0 and it trivially belongs toTr(E0 nHD).
Otherwise let0 = t1; h1; t2 with t1 2 L�, h 2 H andt2 2 At�. HenceE0 n D t1=) E00 n D h1! E000 n D andt2 2 Tr(E000 n D). By the induction hypothesist2=H 2Tr(E000 n HD). By the hypothesis thatE 2 DP NDC we

have thatE00 nD �̂=) ~E000 nD with E000 nHD �T ~E nHD.

HenceE0 nHD t1=) E00 nHD �̂=) ~E000 nHD with t2=H 2Tr(E000 n HD). Thus = 0=H = t1; t2=H 2 E0 n HD .
Moreover, if 2 Tr(E0 n HD) then it trivially holds that 2 Tr((E0 nD)=H). This proves that ifE 2 DP NDC
then for allE0 2 Reah(E), Tr((E0 nD)=H) = Tr(E0 nHD), i.e, (E0 nD)=H �T E0 nHD . 2
Proof of Theorem 7.5.We prove thatE 2 DP BNDC iff

E 2 BNAI .) LetE be a process such that for allE0 2 Reah(E),
if E0 h! E00 with h 2 H thenE0 �̂=) E000 andE00 nHD �E000 nHD . We show thatS = f((E0 nD)=H;E0 nHD) jE0 is reachable fromEg
is a weak bisimulation up to�B . Hence for allE0 reachable
fromE, (E0 nD)=H) �B E0 nHD , i.e.,E 2 BNAI.

To show thatS is weak bisimulation up to�B we have
to consider the following cases:� (E0 n D)=H a! (E00 n D)=H with a 2 L [f�g andE0 a! E00. HenceE0 n HD a! E00 nHD and, by defi-

nition of S, ((E00 nD)=H;E00 nHD) 2 S.� (E0 n D)=H �! (E00 n D)=H whereE0 h! E00 andh 2 H . By hypothesisE0 �̂=) E000 andE00 n HD �BE000 nHD . Hence,E0 nHD �̂=) E000 nHD with E000 nHD �B E00 nHD and((E00 nD)=H;E00 nHD) 2 S.� E0 nHD a! E00 nHD with a 2 L[f�g andE0 a! E00.
Then,(E0 nD)=H a! (E00 nD)=H and by definition
of S, ((E00 nD)=H;E00 nHD) 2 S. 2(Let E be BNAI . Let E0 2 Reah(E) such thatE0 h! E00 with h 2 H . Then(E0 nD)=H �! (E00 nD)=H .

Since, by definition ofBNAI, (E0 nD)=H �B E0 nHD for

all E0 2 Reah(E), we have thatE0 n HD �̂=) E000 nHD
and (E00 n D)=H �B E00 n HD �B E000 n HD . ThusE0 �̂=) E000 andE00 nHD �B E000 nHD . 2

