
Secure Contexts for Confidential Data∗

Annalisa Bossi, Damiano Macedonio, Carla Piazza, Sabina Rossi
Dipartimento di Informatica - Università Ca’ Foscari di Venezia

via Torino 155, 30172 Venezia, Italy
e-mail:{bossi,mace,piazza,srossi}@dsi.unive.it

Abstract

Information flow security in a multilevel system aims at
guaranteeing that no high level information is revealed to
low level users, even in the presence of any possible ma-
licious process. This requirement could be too demanding
when some knowledge about the environment (context) in
which the process is going to run is available. To deal with
these situations we introduce the notion ofsecure contexts
for a class of processes. This notion is parametric with re-
spect to both the observation equivalence and the operation
used to characterize the low level behavior of a process. We
mainly analyze the cases of bisimulation and trace equiva-
lence. We describe how to build secure contexts in these
cases and we show that two well-known security properties,
namedBNDC and NDC, are just special instances of our
general notion.

1. Introduction

The problem of protecting confidential data in a multi-
level system is one of the relevant issues in computer se-
curity. Information flow security aims at guaranteeing that
no high level (confidential) information is revealed to users
running at low levels [8, 14, 5, 17, 22, 20], even in the
presence of any possible malicious process. An early at-
tempt to formalize the absence of information flow was
the concept ofnoninterferenceproposed in the seminal pa-
per by Goguen and Meseguer [9], and further developed in
[5, 6, 3, 11, 18, 21, 10]. Intuitively, to establish that in-
formation does not flow from high to low it is sufficient to
establish that high behavior has no effect on what low level
users can observe, i.e., the low level view of the system is
independent of high behavior. A process which is secure
with respect to this notion is thus secure whatever the sur-
rounding high level environment is.

∗This work has been partially supported by MURST project “Modelli
formali per la sicurezza” and the EU project MyThS (IST-2001-32617).

Our work starts from the observation that such a require-
ment could be too demanding when some knowledge about
the environment (context) in which the process is going to
run is available. Thus, we face the problem of generalizing
the notion of noninterference to deal with specific classes
of contexts. In our approach a context can perform both
high and low level actions and can also incorporate possible
attackers.

As an example consider a process representing a client
of a bank using his cash card in an Automatic Teller Ma-
chine (ATM) to make a withdrawal from his account. When
the card is inserted in the ATM the code of the card is read,
then the client can write his PIN code, and if the PIN is cor-
rect he can ask for the cash. All the actions involved con-
cern the exchange of confidential (high level) information
between the client and the bank. We can formalize the pro-
cess representing the client in front of the ATM as a CCS-
like term, namedCLIENT, of the formCARD.PIN.CASH.0,
whereCARD and PIN denote the client’s output actions of
giving the card and the pin codes, whileCASH represents
the input action of receiving the cash. All these actions are
classified as high level actions. AcorrectATM should read
the codes, and if they are correct, it should give the cash
to the client. Hence, leaving out the details concerning the
checks of the codes, we represent an ATM as a context of
the formX |CARD.PIN.CASH.0 where the variable X will
be replaced byCLIENT when the client will interact with
the machine. Since all the data are protected, no (high) in-
formation is revealed to an external observer; hence we can
assume that the above ATM context is secure for the process
CLIENT.

Imagine now that a maintenance engineer puts a lap-
top inside the ATM. The laptop records all the card num-
bers and the PINs of the ATM’s users. We can also imag-
ine that once the confidential data have been captured the
laptop send them to the bank so that the client receives
the cash and does not suspect the fraud. ThenLAPTOP is
CARD.PIN.RECORD.CARD.PIN.0, whereRECORD is a non
protected (low) output action. The counterfeit context is
the parallel composition of the two components: the correct

ATM and theLAPTOP. Clearly, this context is not secure
for the processCLIENT. However, this does not mean that
we give up using cards and ATMs. We just want to be sure
to use them in secure contexts.

To deal with these situations we introduce the notion of
secure contexts for a class of processes. This notion is para-
metric with respect to both an observation equivalence rela-
tion and an operation used to characterize the low level view
of a process. In this paper we consider instances with weak
bisimulation and trace equivalence as observation equiva-
lence. We show how to build secure contexts and prove that
the security properties known asBNDCandNDC (see [5])
are just special instances of our general security notion.

The paper is organized as follows. In Section 2 we recall
the SPA language and its semantics. Section 3 introduces
our definition of secure contexts for a class of processes.
In Sections 4 and 5 we study two instances of our general
definition through weak bisimulation and trace equivalence,
respectively. Some conclusions are drawn Section 7.

2. Basic Notions

TheSecurity Process Algebra(SPA) [5] is a variation of
Milner’s CCS [16], where the set of visible actions is par-
titioned into high level actions and low level ones in order
to specify multilevel systems. SPA syntax is based on the
same elements as CCS, i.e.: a setL of visibleactions such
thatL = I ∪ O whereI = {a, b, . . .} is a set ofinput ac-
tions andO = {ā, b̄, . . .} is a set ofoutputactions; a special
action τ which models internal computations, not visible
outside the system; a complement function·̄ : L → L,
such that̄̄a = a, for all a ∈ L. Act = L ∪ {τ} is the set of
all actions. Function̄· is extended toAct by definingτ̄ = τ .
The set of visible actions is partitioned into two sets,H and
L, of high and low actions such thatH = H andL = L.
The syntax of SPAtermsis defined as follows:

T ::= 0 | Z | a.T | T + T | T |T | T \ v | T [f] | recZ.T

whereZ is a variable,a ∈ Act , v ⊆ L, f : Act → Act is
such thatf(ᾱ) = f(α), f(τ) = τ , f(H) ⊆ H ∪ {τ}, and
f(L) ⊆ L ∪ {τ}.

We apply the standard notions offreeandbound(occur-
rences of) variables in a SPA term. More precisely, all the
occurrences of the variableZ in recZ.T arebound; while
Z is free in a termT if there is an occurrence ofZ in T
which is not bound.

Definition 2.1 A SPA processis a SPA term without free
variables. We denote byE the set of all SPA processes,
ranged over byE, F, . . ., and byEH the set of all high level
processes, i.e., those constructed only using actions belong-
ing toH ∪ {τ}.

The operational semantics of SPA processes is given
in terms ofLabelled Transition Systems(LTS, for short).
In particular, the LTS(E ,Act ,→), whose states are pro-
cesses, is defined by structural induction as the least rela-
tion generated by the axioms and inference rules reported
in Figure 1, wherea is an action ofAct , while l belongs to
L.

Intuitively, 0 is the empty process that does nothing;a.E
is a process that can perform an actiona and then behaves as
E; E1 +E2 represents the nondeterministic choice between
the two processesE1 andE2; E1|E2 is the parallel compo-
sition ofE1 andE2, where executions are interleaved, pos-
sibly synchronized on complementary input/output actions,
producing the silent actionτ ; E \v is a processE prevented
from performing actions inv 1; E[f] is the processE whose
actions are renamedvia the relabelling functionf ; if in T
there is at most the free variableZ, thenrecZ.T [Z] is the
recursive process which can perform all the actions of the
process obtained by substitutingrecZ.T [Z] to the place-
holderZ in the contextT [Z].

For the definition of security properties it is also use-
ful the hiding operator,/, of CSP which can be defined as

a relabelling as follows: for a given setv ⊆ L, E/v
def
=

E[fv] wherefv(a) = a if a 6∈ v andfv(a) = τ if a ∈ v. In
practice,E/v turns all actions inv into internalτ ’s.

A SPA term with free variables can be seen as an envi-
ronment with holes (the free occurrences of its variables) in
which other SPA terms can be inserted. The result of this
substitution is still a SPA term, which could be a process.
For instance, in the termh.0|(l.X + τ.0) we can replace
the variableX with the process̄h.0 obtaining the process
h.0|(l.h̄.0 + τ.0); or we can replaceX by the terma.Y
obtaining the termh.0|(l.a.Y + τ.0). When we consider a
SPA term as an environment we call itcontext.

Definition 2.2 A SPA context, ranged over byC, D, . . ., is
a SPA term in which free variables may occur.

We can also consider a context as a derived SPAcon-
structor. In fact it can be used to build SPA terms from
sets of SPA terms. Its arity is determined by the number of
its free variables. For instanceX |X can be seen as a con-
structor of arity 1 which transforms any processE into the
parallel composition with itself,E|E.

Given a contextC, we use the notationC[Y1, . . . , Yn]
to stress the fact that we are interested only in the free
occurrences of the variablesY1, . . . , Yn in C. The term
C[T1, . . . , Tn] is obtained fromC[Y1, . . . , Yn] by replac-
ing all the free occurrences ofY1, . . . , Yn with the terms
T1, . . . , Tn, respectively. For instance, we can write
C[X] ≡ h.0|(l.X + τ.0) or D[X] ≡ (l.X + τ.0)|Y or
C′[X] ≡ Y |h.0. Hence, the notationC[h̄.0] stands for

1Note that in CCS the operator\ requires that the actions ofE \ v do
not belong tov ∪ v̄.

Prefix
−

a.E
a
→ E

Sum
E1

a
→ E′

1

E1 + E2
a
→ E′

1

E2
a
→ E′

2

E1 + E2
a
→ E′

2

Parallel
E1

a
→ E′

1

E1|E2
a
→ E′

1|E2

E2
a
→ E′

2

E1|E2
a
→ E1|E

′

2

E1
ℓ
→ E′

1 E2
ℓ̄
→ E′

2

E1|E2
τ
→ E′

1|E
′

2

Restriction
E

a
→ E′

E \ v
a
→ E′ \ v

if a 6∈ v

Relabelling
E

a
→ E′

E[f]
f(a)
→ E′[f]

Recursion
T [recZ.T [Z]]

a
→ E′

recZ.T [Z]
a
→ E′

Figure 1. The operational rules for SPA

h.0|(l.h̄.0 + τ.0), while D[h̄.0] ≡ (l.h̄.0 + τ.0)|Y and
C′[h̄.0] ≡ Y |h.0. Note that the notationC[Y1, . . . , Yn]
implies neither that all the variablesY1, . . . , Yn occur free
in the context nor that they include all the variables occur-
ring free in the context. Note also that ifW is a variable
not occurring inrecZ.C[Z] and we replace all the occur-
rences ofZ in recZ.C[Z] by W we obtain the process
recW.C[W] (α-conversion) which is semantically equiva-
lent torecZ.C[Z]. Nevertheless, the two termsrecZ.C[Z]
andrecW.C[W] represents two different contexts.

The concept ofobservation equivalenceis used to estab-
lish equalities among processes and it is based on the idea
that two systems have the same semantics if and only if they
cannot be distinguished by an external observer. This is
obtained by defining an equivalence relation overE equat-
ing two processes when they are indistinguishable. In this
paper we consider the relations namedweak bisimulation,
≈B, andtrace equivalence,≈T .

Let us first introduce the following auxiliary notations.
If t = a1 · · · an ∈ Act

∗ andE
a1→ · · ·

an→ E′, then we
write E

t
→ E′ and we say thatE′ is reachablefrom E.

We also writeE
t

=⇒ E′ if E(
τ
→)∗

a1→ (
τ
→)∗ · · · (

τ
→)∗

an→

(
τ
→)∗E′ where(

τ
→)∗ denotes a (possibly empty) sequence

of τ labelled transitions. Ift ∈ Act
∗, then t̂ ∈ L∗ is the

sequence gained by deleting all occurrences ofτ from t. As

a consequence,E
â

=⇒ E′ stands forE
a

=⇒ E′ if a ∈ L,
and forE(

τ
→)∗E′ if a = τ (note that

τ
=⇒ requires at least

oneτ labelled transition while
τ̂

=⇒ means zero or moreτ
labelled transitions).

The weak bisimulationrelation [16] equates two pro-
cesses if they are able to mutually simulate their behavior
step by step. Weak bisimulation does not care about inter-
nalτ actions.

Definition 2.3 [Weak Bisimulation] A binary relationR ⊆
E × E over processes is aweak bisimulationif (E, F) ∈ R
implies, for alla ∈ Act ,

• if E
a
→ E′, then there existsF ′ such thatF

â
=⇒ F ′

and(E′, F ′) ∈ R;

• if F
a
→ F ′, then there existsE′ such thatE

â
=⇒ E′

and(E′, F ′) ∈ R.

Two processesE, F ∈ E areweakly bisimilar, denoted by
E ≈B F , if there exists a weak bisimulationR containing
the pair(E, F).

The relation≈B is the largest weak bisimulation and it is
an equivalence relation.

The trace equivalencerelation equates two processes if
they have the same sets of traces, again, without considering
theτ actions.

Definition 2.4 [Trace Equivalence] For any processE ∈ E
the set of tracesTr(E) associated withE is defined by:

Tr(E) = {t ∈ L∗ | ∃E′ E
t

=⇒ E′}. Two processesE, F ∈
E are trace equivalent, denoted byE ≈T F , if Tr(E) =
Tr(F).

Trace equivalence is less demanding than weak bisim-
ulation, hence if two processes are weakly bisimilar, then
they are also trace equivalent.

Following [16] we extend binary relations on processes
to contexts as follows.

Definition 2.5 [Relations on Contexts] LetR be a binary
relation over processes, i.e., a subset ofE × E . Let C and
D be two contexts and{Y1, . . . , Yn} be a set of variables
which include all the free variables ofC andD. We say
thatC R D if C[E1, . . . , En] R D[E1, . . . , En] for all set
of processes{E1, . . . , En}.

In the case of weak bisimulation, applying the above defini-
tion we have that two contexts are weakly bisimilar if all the
processes obtained by instantiating their variables are pair-
wise bisimilar. For instance, using our notation, the contexts
C[X] ≡ a.X + τ.Y andD[X] ≡ a.τ.X + τ.Y are weakly
bisimilar since for allE, F ∈ E it holds a.E + τ.F ≈B

a.τ.E + τ.F . Notice that not all the free variables ofC and
D were explicit in the notationC[X] andD[X]. However,
Definition 2.5 requires the instantiation of all their free vari-
ables.

3. Secure Contexts

In this section we introduce our notion ofsecure contexts
for a class of processes. This notion is parametric with re-
spect to an operation· l used to characterize the low level
behavior,El, of a processE, and an observation equiva-
lence∼ used to equate two processes. We denote by∼l the
relation∼ on the low level views of processes, i.e.,E ∼l F
stands forEl ∼ Fl.

Definition 3.1 [Secure Contexts for a Class of Processes]
Let ∼ and· l be an observation equivalence relation and an
operation on processes, respectively. LetC be a class of
contexts,P be a class of processes, andX be a variable.
The classC is secure for the classP with respect to the
variableX if for all C[X] ∈ C and for allE ∈ P ,

C[E] ∼l C[El].

In this definition the variableX is used to determine the
“holes” in C which are intended to be filled in byE. Recall
thatX might not occur free inC. In this caseC is trivially
secure (by reflexivity of∼). Moreover, inC there can be
other free variables different fromX . In this case we have to
apply Definition 2.5 and instantiate the other free variables
in all the possible ways.

Example 3.2 Let ∼ and · l be an observation equivalence
relation and an operation on processes, respectively. Let
P = {E} andC = {l.X + l.Y + h.Y }, with l ∈ L and
h ∈ H . To prove thatC is secure forP with respect to
the variableX we have to prove that for allF ∈ E it holds
l.E + l.F + h.F ∼l l.El + l.F + h.F . Similarly, to prove
that C is secure forP with respect to the variableY we
have to prove that for allF ∈ E it holdsl.F + l.E+h.E ∼l

l.F + l.El +h.El. The classC is trivially secure forP with
respect to the variableZ, since for allF, G ∈ E it holds that
l.F + l.G + h.G ∼l l.F + l.G + h.G. 2

In the rest of this paper when we say thatC is secure forP
we are implicitly referring to the variableX .

The intended meaning of our security definition is that
a low level observer cannot distinguish the interactions be-
tween a processE ∈ P and a contextC ∈ C from the
interactions between the low level viewEl of E andC. If,
accordingly with our intuition,El represents the low level
behavior ofE then our definition is clearly in the spirit of
thenoninterferenceschema proposed in [9].

Let us analyze the definition in the case in which only
one process and one context are involved. The definition
can be read from two points of view: security for the process
and security for the context. On the one hand, if a context
C is secure for a processE, thenE can safely interact with
C (security for the process), sinceC is not able to reveal
to the low level users any high level information contained
in E. In fact, it is revealed only the information that would
be revealed by the interaction withEl. On the other hand,
if a contextC is secure for a processE, thenC can safely
interact withE (security for the context). In fact,E is able
to reveal the same information which could be revealed by
El that cannot interact with the high level actions ofC. In
the introduction we gave a first example fitting with the first
situation. Here we add two more examples to explain the
two points of view.

Example 3.3 [Security for the Processes] Suppose that
Wholesaler ltdis a wholesale company which does not sell
its products directly to the final users but only to the shop-
keepers. Thus the price of its products can be seen as a con-
fidential data that only theWholesaler’s customers (shop-
keepers) are allowed to know. On the other hand the com-
pany advertises its products both to shopkeepers (high level)
and to potential (low level) users. Consider a Java appletE
downloadable from the site ofWholesalerltd which should
allow the shopkeepers to get confidential data like prices
and the rest of the world to get a product list with generic
information about the products. The applet opens a window
with two buttons: the first button allows to read the prod-
uct list, while the second one allows to read the price list,
provided a password is inserted. LetPWD SHOPKEEPERbe
the high level action representing the fact thatE is waiting

for a password from a shopkeeper before showing the price
list. We assume that this is the only protection for the con-
fidential data in E. The appletE can be represented by the
following SPA process,

PWD SHOPKEEPER.PRICES+ PRODUCTS

Wholesalerdoes not want the applet to be executed on a
machine (context) which reveals some high level informa-
tion (e.g., the price list) to non authorized users. Let us
consider two possible contexts. LetC1 be the machine of
the high level user in which the password has been stored
(in a cookie). ThenC1 can be represented by a term of the
form

X |PWD SHOPKEEPER.0.

In this case high level information can be revealed: when
a low level user interacts withC1[E], he (she) can read the
price list. Hence,C1 cannot be considered secure forE.
Another more involved context is, for instance, a machine
C2 shared between high and low level users such that only
high level users (shopkeepers) can read the price list, while
low level ones can read the product list:

PWD HIGH.(X |PWD SHOPKEEPER.0) + PWD LOW.X.

In this case the flexibility of the context is obtained by split-
ting C2 into two non-deterministic components: the first
one manages the interaction with high level users and has
in memory the shopkeeper’s password; the second one in-
teracts with low level users and does not provide any pass-
word. Note that if a high level user interacts withC2[E] by
inserting the passwordPWD HIGH, the PRICEScomponent
becomes accessible to low level observers. This can be seen
as the possibility for the high level user todowngradethe
level of the information stored in the price-list. Intuitively,
the processE described here does not satisfy information
flow security properties such as noninterference [17]. How-
ever, whenever downgrading is a high level user decision, it
is reasonable to assume that the contextC2 is secure forE.

2

Example 3.4 [Security for the Contexts]Mr Earnerhas on
his own machineC some files containing the information
about his investments. He would like to check whether they
are profitable and, if they are not, to have some suggestions
about how to change them. He installed on his machine a
program which is able to check on the stock market through
an Internet connection, reads his investments files and per-
forms some computations to determine whether the invest-
ments are profitable or not. If the investments are going
bad, the program checks again on the stock market, for bet-
ter opportunities. The second check on the stock market is
recommended since it allows to use the last quotations for
computing suggestions (it is preferable not to use the cached

stock market’s quotations for this operation). ObviouslyMr
Earnerdoes not want that someone knows if his investments
are good or not. The machine ofMr Earnercan be in one
of the following states:

X |GOOD.0 or X |BAD.SUGGESTIONS.0

which we assume to correctly represent the reality of his
investments. In the first caseMr Earner investments are
good and this fact can be revealed through the high level
output GOOD. In the second caseMr Earner investments
are bad, hence after the high level output his machine is
ready to have in input some suggestions through the high
level input actionSUGGESTIONS. Mr Earner wants both
contexts be secure with respect to his investment program.
Let us assume thatMr Earnerinvestments are good, i.e., we
consider the first context2. LetE1 be the following program

CHECK.(GOOD.0 + BAD .CHECK.SUGGESTIONS.0),

where the only low level action is the inputCHECK. By
observing thatE1 has not checked a second time on the
stock marked, a low level observer could be able to deduce
that Mr Earner’s investments are good. Hence, in both
cases the context representingMr Earner’s machine is
not secure with respect toE1. However, it is secure with
respect to the programE2 of the form

CHECK.(GOOD.CHECK.0 +
BAD .CHECK.SUGGESTIONS.0 + CHECK.0)

which always performs a second check. Notice, that this
behavior recalls the case of military radio transmissions.In
order to avoid that someone knows when some information
has been transmitted, everyn instants a message is sent.
Only one of the messages contains the real information.

Finally, if the market is “stable” and the elaboration of
the information inMr Earner’s file is “fast”, the following
programE3 can be used

CHECK.(GOOD.0 + BAD.SUGGESTIONS.0).

It performs the low level input only once before analyzing
the situation of the investments and gives its suggestions us-
ing the cached data. Also in this case,Mr Earner’s machine
is secure with respect to this investment programE3. 2

When the classC has only one elementC we say thatC
is secure forP . Similarly, in the case in whichP has only
one elementE we say that the classC is secure for the pro-
cessE. If a context is secure for a classP of processes, then
it is secure also for all the subclasses ofP . Analogously, if
a class of contextsC is secure for a processE, then all the
subclasses ofC are secure forE. In the general case we
obtain the following result.

2All the considerations which follow hold also for the secondcontext.

Proposition 3.5 Let C1 ⊆ C2 be two classes of contexts,
P1 ⊆ P2 be two classes of processes, andX be a variable.
If C2 is secure forP2 with respect toX , thenC1 is secure
for P1 with respect toX .

Definition 3.1 introduces a general security notion. To
analyze it more concretely it is necessary to instantiate the
observation equivalence∼ and the operation· l defining the
low level view of processes. A reasonable requirement to
get useful instances is that of using a decidable equivalence
and a computable operation.

In the next two sections we consider two instances of our
framework. We study the properties of these instances and
their connections with some security notions coming from
the literature.

4. First Instance: Weak Bisimulation and Re-
striction

We analyze the properties of our security definition by
instantiating the observation equivalence∼ and the opera-
tion · l as follows:∼ is ≈B (weak bisimulation) and· l is
· \ H (restriction on high level actions). Using such an in-
stance, a class of contextsC is secure for a class of processes
P with respect to a variableX if for all C[X] ∈ C and for
all E ∈ P ,

C[E] \ H ≈B C[E \ H] \ H.

In the rest of this section we refer to this instance of our
security property.

Example 4.1 Consider again Example 3.3 where con-
fidential data are protected only by the password
PWD SHOPKEEPER. Assume thatPRODUCTSand PRICES

show the list of products and of prices to any (low or high)
user asking for them. In SPA this behavior is obtained by
creating two output actions for both the product and the
price list, one for the low level users and the other for the
high level ones.

PRODUCTS= PROD LIST H.0 + PROD LIST L.0
PRICES= PRICE LIST H.0 + PRICE LIST L.0.

C1[E] \ H ≡ τ.PRICE LIST L.0 + PROD LIST L.0 is not
weakly bisimilar toC1[E \ H] \ H ≡ PROD LIST L.0.
Indeed, a low level user interacting withC1[E] can read
the price list, thus leaking confidential data. On the other
hand, bothC2[E] \ H andC2[E \ H] \ H are bisimilar to
PWD LOW.PROD LIST L.0, according to the intuition that
C2 is secure forE. 2

Example 4.2 In Example 3.4 we said that both the contexts
representingMr Earner’s machine are secure with respect

to the second programE2. Indeed,E2 never reveals to low
level users the situation ofMr Earner’s investments, since
a second check on the marked is performed in any case.
For instance, using the first context of Example 3.4 we ob-
tain thatC[E2] \ H ≡ CHECK.(τ.CHECK.0 + CHECK.0) is
weakly bisimilar toC[E2 \ H] \ H ≡ CHECK.CHECK.0,
hence the security property holds.

The third programE3 of Example 3.4 satisfies that
C[E3] \ H ≈B C[E3 \ H] \ H for both the contexts, as
it can be easily checked. 2

Using this first instance we find an interesting connec-
tion between our security definition and the security pro-
perty known asBNDCand proposed by Focardi and Gorri-
eri in [4]. The security propertyBNDC is based on the idea
of checking the system against all high level potential in-
teractions, representing every possible high level malicious
program. In particular, a processE is BNDC if for every
high level processΠ a low level user cannot distinguishE
from (E|Π), i.e., if Π cannot interfere with the low level
execution ofE.

Definition 4.3 [BNDC] Let E ∈ E . E ∈ BNDC if for all
Π ∈ EH ,

E \ H ≈B (E|Π) \ H.

The following lemma states that the set of contexts of the
form X |Π with Π ∈ EH characterizes the class ofBNDC
processes.

Lemma 4.4 Let E ∈ E . E ∈ BNDC iff C[E] \ H ≈B

C[E \ H] \ H for all contextsC[X] ≡ X |Π with Π ∈ EH .

PROOF. See Appendix. 2

Example 4.5 The processE in Example 3.3 is not aBNDC
process. In fact, the contextX |PWD SHOPKEEPER.0 is a
context of the formX |Π with Π ∈ EH and it is not secure
for E, hence by Lemma 4.4 we obtain thatE is notBNDC.
However, as shown in Example 4.1, there are complex con-
texts in whichE can be safely executed.

Both processesE2 andE3 of Example 3.4 can be proved
to beBNDCprocess. 2

In Subsection 4.1 we identify two classes of contexts
which are secure for all the processes. Then, in Subsec-
tion 4.2 we concentrate on classes of processes character-
ized by some security notions (basically we will consider
subclasses ofBNDC) and analyze whether there exist larger
classes of secure contexts for them.

4.1. ≈B Instance: Secure Contexts for a generic
classP

Next theorem provides a compositionality result for se-
cure contexts with respect to any class of processes.

Theorem 4.6 Let P be a class of processes. LetC be the
class of contexts containing allF ∈ E ; all variables; all
contexts of the form

∑
li∈L li.Ci +

∑
hj∈H hj .Dj , with the

Ci’s secure forP with respect toX ; all contextsC \ v and
C[f] with C secure forP with respect toX . ThenC is
secure forP with respect toX .

PROOF. See Appendix. 2

Notice that it does not hold that ifC andD are secure
for P , thenC|D is secure forP . This is a consequence of
the fact that we do not know anything about the classP .

Example 4.7 Consider the classP = {E} whereE ≡
h.l.0 + h̄.0. The contextX is secure forP (see Theo-
rem 4.6), but the contextX |X is not secure forP . 2

Observe that Theorem 4.6 does not provide a decidabi-
lity result. For instance, if we know thatC is secure for
P , then we can deduce thatC \ v is secure forP , but, in
general, we cannot use Theorem 4.6 to prove thatC ∈ C
and thus it is secure forP .

Hereafter we characterize a decidable class of contexts
which are secure for all the processes (i.e., for a generic
classP). Obviously we want the class to be as large as
possible. In order to obtain the decidability of the class we
require a compositionality structure, i.e., contexts are build
only using sub-contexts which belong to the class. In order
to ensure security we do not use the parallel composition
when the context is not a closed term (see Example 4.7).

Definition 4.8 [The ClassCs] Let Cs be the class of con-
texts which contains all the SPA processes, all the variables,
and is closed with respect to the following constructors:∑

i∈I ai.Yi (with ai ∈ Act), Y \ v, Y [f], recZ.Y .

Notice that ifC[Y], D ∈ Cs, then we haveC[D] ∈ Cs.
The classCs is decidable, in fact it is easy to define a

proof system whose proofs correspond exactly to the con-
structions of the contexts inCs.

Example 4.9 The contextsX , Y and Z belong to Cs.
Hence, by using the constructora.Y1 +b.Y2+c.Y2, the con-
texta.X + b.Y + c.Z belongs toCs, and then, by using the
recY.W constructor, the contextrecY.(a.X + b.Y + c.Z)
is in Cs. 2

All the contexts inCs are secure for all the processes, as
it is stated by the next theorem. The following lemmas are
used in its proof.

Lemma 4.10 The relation≈B is a congruence in the class
Cs with respect to its constructors.

PROOF. See Appendix. 2

Lemma 4.11 LetP be a class of processes andC[X] ∈ Cs

be secure forP with respect toX . The contextrecY.C[X]
is secure forP with respect toX .

PROOF. See Appendix. 2

Theorem 4.12 Let P be a class of processes andX be a
variable. IfC ∈ Cs, thenC is secure forP with respect to
X .

PROOF. The proof follows by induction on the structure of
the contextC.

• C ∈ E . We have already proved in Theorem 4.6, that
C is secure forP .

• C ≡ Y . Again, this has been proved in Theorem 4.6.

• C ≡
∑

i∈I ai.Ci. By induction on theCi’s and by
Lemma 4.10 we have the thesis.

• C ≡ C1 \ v. By induction onC1 and applying
Lemma 4.10 we obtain the thesis.

• C ≡ C1[f]. Again, by induction onC1 and
Lemma 4.10 we get the thesis.

• C ≡ recY.C1. By induction onC1 and Lemma 4.11
we have the thesis.

2

Example 4.13 LetC be a machine shared between one low
level user and one high level user. When one of the two
users is logged, the machine cannot be used by the other
one. The logged user can execute his program or a new
program which has been downloaded from the web. The
programs of both the users always terminate and at the end
of their executions the other user can take the control. Let
PWD HIGH be high level action representing the input of
the high level user password. Moreover, letCALL PROG H

be the high level call to the program andEX PROG H its
execution. Finally, letCALL WEB H be the high level call
to the program downloaded from the web. All the low level
actions are similarly defined. Hence,C has the form

recY.(PWD HIGH.(CALL PROG H.EX PROG H.Y
+ CALL WEB H.X)

+ PWD LOW.(CALL PROG L.EX PROG L.Y
+ CALL WEB L.X))

SinceC belongs toCs, C is secure for the program coming
from the web with respect toX . 2

As shown in Example 4.7, without assumptions on the
classP the contexts built using the parallel operator can-
not be considered secure. However, as seen in the previous
examples most contexts involve the parallel operator, since
it is at the core of the exchange of information between pro-
cesses and contexts. For this reason in the next subsection
we concentrate on classes of processes for which we prove
that some contexts involving the parallel operator are se-
cure.

4.2.≈B Instance: Secure Contexts for sub-classes
of BNDC

As stated in Lemma 4.4 some particular contexts built
using the parallel operator are secure for the classBNDC.
Unfortunately, the decidability ofBNDC is still an open
problem, and for this reason many sufficient conditions for
BNDC have been introduced and studied in the literature
(see [5, 7, 1]). In particular, in [1] three of these sufficient
conditions have been considered and it has been shown that
they can be parametrically characterized with respect to a
suitable bisimulation relation. In virtue of Proposition 3.5,
all the contexts which are secure for the largest of these
three classes, that is the one namedP BNDC, are secure
also for the other two classes.P BNDC is nothing but the
persistent version ofBNDC. The persistence ofP BNDC
has been proved to be fundamental to deal with dynamic
contexts (see [7]).

Definition 4.14 [P BNDC] Let E ∈ E . E ∈ P BNDC if
E′ ∈ BNDC for all E′ reachable fromE.

In order to obtain that the parallel compositionC|D of
secure contexts is still a secure context we need to be able to
exchange the parallel operator with the restriction one, i.e.,
knowing thatC[E]\H ≈B C[E\H]\H andD[E]\H ≈B

D[E \H]\H we want to obtain that(C[E]|D[E])\H ≈B

(C[E\H]|D[E\H])\H . Such property holds forP BNDC
processes as shown by the following lemma.

Lemma 4.15 Let E, F, G, K ∈ P BNDC . If E \ H ≈B

F \H andG\H ≈B K\H , then(E|G)\H ≈B (F |K)\H .

PROOF. See Appendix. 2

The previous lemma suggests that if we restrict to con-
texts mappingP BNDC processes intoP BNDC processes
we obtain that the parallel composition of secure contexts is
secure. In this way we obtain the crucial result on composi-
tionality which was missed in the previous section.

The following definition will be used also in the next sec-
tion.

Definition 4.16 [P-contexts] LetP be a class of processes
andC[X, Y1, . . . , Yn] be a context whose free variables are
in {X, Y1, . . . , Yn}. C[X, Y1, . . . , Yn] is said to be aP-
context with respect toX if for all E ∈ P and for all
F1, . . . , Fn ∈ E it holds thatC[E, F1, . . . , Fn] ∈ P .

Definition 4.17 [P-secure contexts] LetP be a class of
processes. A contextC[X] is said to beP-secure with re-
spect toX if it is a P-context with respect toX and it is
secure forP with respect toX .

Theorem 4.18 Let C and D be two contexts which are
P BNDC -secure with respect toX . The contextC|D is
P BNDC -secure with respect toX .

PROOF. The fact thatC|D is aP BNDC -context follows
from the fact that if two processes areP BNDC , then their
parallel composition isP BNDC .

We prove that C|D is secure for P BNDC . If
E ∈ P BNDC , then by hypothesis we have
C[E]\H ≈B C[E\H]\H andD[E]\H ≈B D[E\H]\H .
Moreover, sinceE \ H is alwaysP BNDC we have that
C[E], C[E \ H], D[E], D[E \ H] areP BNDC . Hence,
by applying Lemma 4.15 to the four processes we get the
thesis. 2

Notice that we can apply the theorem more than once,
thus obtaining contexts which involve more parallel opera-
tors mixed with other operators.

From Proposition 3.5 we have that the contexts which
can be proved to be secure using Theorem 4.18 are secure
also for the two subclasses ofP BNDC namedSBNDC

(see [5]) andCP BNDC (see [1]), respectively.

Example 4.19 Consider the programsE2 andE3 of Exam-
ple 3.4. They areP BNDC , hence by applying Theo-
rem 4.18 we immediately get that the two contexts of Exam-
ple 3.4 are secure for these processes. 2

Example 4.20 Let END ∈ L be an action andE be a
P BNDC process in which neitherEND norEND occur. Let
PEND be a class ofP BNDC processes whose termination is
announced by the execution of anEND action. Consider the
contextC defined as

(X |END.E) \ {END}.

When in C we replace the variableX with a processF
taken fromPEND we obtain thatF is executed and thenE is
executed, i.e., we obtain a context which behaves like a se-
quential operator. From Theorem 4.18 and Proposition 3.5,
we have thatX |END.E is secure forPEND. Hence, from The-
orem 4.6, we obtain thatC is secure forPEND. 2

Theorem 4.18 does not provide a decidability result. In
fact, to check that a context is aP BNDC -context, in gene-
ral, it is necessary to check that an infinite number of pro-
cesses are inP BNDC . The following definition chara-
cterizes a decidable class of contexts which areP BNDC -
contexts.

Definition 4.21 [The ClassCp] Let Cp be the class of con-
texts which contains all theP BNDC processes, the vari-
ableX , Y \H andY/H for every variableY , and is closed
with respect to the following constructors:Y |Z, Y \ v,
Y [f],

∑
i∈I li.Zi +

∑
j∈J (hj .Yj + τ.Yj), whereli ∈ L

andhj ∈ H.

Example 4.22 The contextsX andW \ H belong toCp.
Hence, by using the constructorl.Z1 + h.Y1 + τ.Y1, the
contextl.(W \ H) + h.X + τ.X belongs toCp. 2

Theorem 4.23 If C[X] ∈ Cp then C[X] is P BNDC -
secure with respect toX .

PROOF. First we prove that all the contexts inCp are
P BNDC -contexts. This is immediate by induction on
the structure of the context. In particular, the case of the
non deterministic choice can be proved using the unwind-
ing characterization ofP BNDCpresented in [2], while the
case of the parallel operator is a consequence of the fact that
the parallel composition ofP BNDCprocesses isP BNDC
(see [7]).

Now we prove that all the contexts inCp are secure for
P BNDC . This is immediate by induction on the structure
of the contexts. The basic steps are trivial. All inductive
steps follow by Theorem 4.6 except the parallel case, which
follows from Lemma 4.15. 2

5. Second Instance: Trace Equivalence and Re-
striction

Sometimes weak bisimulation is too demanding since in
some cases processes which are not weakly bisimilar can be
considered equivalent.

Example 5.1 Consider again the process of Example 3.3.
Wholesalerltd could imagine that people usually set cook-
ies. Hence, it could decide to change the applet in the fol-
lowing way: if the password is inserted, then the price list
is given, but as an encrypted file. The high level user has
to use another program to decrypt the file and this program
does not allow to store the decryption key. In this case the
price list is given in output only through a high level action
and the processE becomes

PWD SHOPKEEPER.PRICE LIST H.0
+ (PROD LIST H.0 + PROD LIST L.0).

If we consider the context C1, that is
X |PWD SHOPKEEPER.0, we have C1[E] \ H ≡
τ.0 + PROD LIST L.0 is not weakly bisimilar to
C1[E \ H] \ H ≡ PROD LIST L.0. However, the
low level user cannot read the price list using this context.
He can only infer whether a high level user has used the
applet to read the price list. Since everybody knows that
there exists a price list (and thus its existence is not a
secret), in this case the use of bisimulation seems too
restrictive. Trace equivalence could be the right choice.

2

In this section we consider the following instance of our
security definition:∼ is ≈T (trace equivalence) and· l is
·\H (restriction on high level actions). In this case a class of
contextsC is secure for a class of processesP with respect
to X if for all C[X] ∈ C and for allE ∈ P ,

C[E] \ H ≈T C[E \ H] \ H.

In the rest of this section we refer to this instance of our
security property.

Example 5.2 Consider the contextC1 and the processE
of Example 5.1. Using the above instance of our security
notion,C1 is secure forE with respect toX . 2

Let us consider the security property known asNDC (see
[5]) which is defined similarly toBNDC, but using trace
equivalence instead of weak bisimulation.

Definition 5.3 [NDC] Let E ∈ E . E ∈ NDC if for all
Π ∈ EH ,

E \ H ≈T (E|Π) \ H.

The NDC security property is decidable as it immedi-
ately follows from the following characterization, whose
proof can be found in [5].

Lemma 5.4 Let E ∈ E . E ∈ NDC iff E/H ≈T E \ H.

As in the case ofBNDC, it is possible to prove that all
the contexts of the formX |Π with Π ∈ EH are secure for
NDC processes.

Lemma 5.5 Let E ∈ E . E ∈ NDC iff C[E] \ H ≈T

C[E \ H] \ H for all contextsC[X] ≡ X |Π with Π ∈ EH .

PROOF. See Appendix. 2

In the next subsection we study contexts which are se-
cure, using this second instance, for all the processes. Then
in Subsection 5.2 we concentrate on the contexts secure for
the class ofNDC processes.

5.1. ≈T Instance: Secure Contexts for a generic
classP

Since trace equivalence is less demanding than weak
bisimulation we immediately obtain that the contexts which
were secure in the previous section are secure also in this
section.

Theorem 5.6 Let C be a class of contexts andP be a class
of processes. IfC[E]\H ≈B C[E\H]\H for all C[X] ∈ C
and for allE ∈ P , thenC[E] \H ≈T C[E \H] \H for all
C[X] ∈ C and for allE ∈ P .

PROOF. Immediate consequence of the fact that if
E ≈B F thenE ≈T F , for all E, F ∈ E . 2

This means that the class of contexts of Theorem 4.6 and
the classCs are secure for a generic classP of processes
also with the second instance of our definition. Next theo-
rem shows that we can enlarge the class of secure contexts
for anyP .

Theorem 5.7 Let P be a class of processes andX be a
variable. A context of the form

∑
i∈I Ci +

∑
hj∈H hj .Dj

is secure forP with respect toX if Ci is secure forP with
respect toX for all i ∈ I.

PROOF. See Appendix. 2

Notice that, also in this case it does not hold that ifC and
D are secure forP , thenC|D is secure forP . The contexts
and the process presented in Example 4.7 witness this fact.

5.2. ≈T Instance: Secure Contexts forNDC pro-
cesses

Here we rediscover the analogous of the results proved in
Subsection 4.2 forP BNDCprocesses, in the case ofNDC
processes. In particular, the following lemma is the corre-
spondent of Lemma 4.15.

Lemma 5.8 Let E, F, G, K ∈ NDC . If E \ H ≈T F \ H
andG \ H ≈T K \ H , then(E|G) \ H ≈T (F |K) \ H .

PROOF. See Appendix. 2

This allows us to obtain the following result which states
that contexts obtained using the parallel operator are secure
for NDC processes when the two contexts which are put
in parallel are secure and mapNDC processes intoNDC
processes.

Definition 5.9 A contextC[X] is said to beNDC -secure
with respect toX if it is a NDC -context with respect toX
and it is secure forNDC with respect toX .

Theorem 5.10 Let C and D be two contexts which are
NDC -secure with respect toX . The contextC|D is NDC -
secure with respect toX .

PROOF. The fact thatC|D is aNDC -context follows from
the fact that if two processes areNDC , then their parallel
composition isNDC .

We prove thatC|D is secure forNDC . If E ∈ NDC , then
by hypothesis we haveC[E] \ H ≈T C[E \ H] \ H and
D[E] \H ≈T D[E \H] \H . Moreover, sinceE \H is al-
waysNDC we have thatC[E], C[E \H], D[E], D[E \H]
areNDC . Hence, by applying Lemma 5.8 to these four
processes we get the thesis. 2

Theorem 5.10 does not provide a decidability result. In
the following definition we characterize a decidable class
of NDC -contexts, which is the analogous of the classCp of
Definition 4.21.

Definition 5.11 [The ClassCn] Let Cn be the class of con-
texts which contains all theNDC processes, the variable
X , Y \H andY/H for every variableY , and is closed with
respect to the following constructors:l.Y with l ∈ L, Y |Z,
Y \ v, Y [f], Y + Z, h.Y + τ.Y with h ∈ H.

Theorem 5.12 If C[X] ∈ Cn thenC[X] is NDC -secure
with respect toX .

PROOF. First we prove that all the contexts inCn are
NDC -contexts. This is immediate by induction on the
structure of the context. In particular, we use the fact
that trace equivalence is a congruence with respect to non
deterministic choice, the fact that ifE, F ∈ NDC then
E|F, E \ H ∈ NDC (see [4]).

Now we prove that all the contexts inCn are secure for
NDC . This is immediate by induction on the structure
of the context. The basic steps are trivial. As weak
bisimulation implies trace equivalence, all the inductive
steps follow by by Theorem 4.6 except cases of parallel
and nondeterministic choice. The parallel step follows by
Lemma 5.8. Finally, letC[X] and D[X] be secure for
NDC , i.e. Tr(C[E] \ H) = Tr(C[E \ H] \ H) and
Tr(D[E]\H) = Tr(D[E\H]\H) for all E ∈ NDC , then
Tr((C[E]+D[E])\H) = Tr((C[E]\H)+(D[E]\H)) =
Tr(C[E] \ H) ∪ Tr(D[E] \ H) = Tr(C[E \ H] \ H) ∪
Tr(D[E \ H] \ H) = Tr(C[E \ H] + D[E \ H]) for all
E ∈ NDC , so we conclude thatC[X]+D[X] is secure for
for NDC . 2

6. Related Works

Since the seminal work by Goguen and Meseguer [9],
noninterference plays a central role in the formalization of

the notion of confidentiality. Nevertheless, many authors
notice that it is too demanding when dealing with practical
applications. In [18], Ryan and Schneider notice that no real
policy ever calls for total absence of information flow over
any channel, and that in any case this would not be achiev-
able. Thus, they point out the need of investigating gener-
alizations of the notion of noninterference to allow for par-
tial or conditional flows and introduce a general definition
of noninterference. They also discuss how such a general-
ization could be appropriate to deal with realistic practical
situations, e.g., with policies that allow for automatic down-
grading of certain statistical information from a database.
Our definition follows the spirit of [18] and generalizes the
formalization presented in that paper by allowing the use
of more structured contexts and not considering only trace-
based equivalences.

In [12], Martinelli observes that security properties can
be naturally described as properties of open systems, i.e.,
systems which may have unspecified components. These
may be used to represent a hostile intruder whose behavior
cannot be predicted or a malicious system component. The
verification mechanism proposed in [12] consists of check-
ing that, for any instance of the unknown component, the
resulting system satisfies a property expressed in a formula
of a suitable temporal logic. In order to make decidable
the verification problem, Martinelli does not consider con-
structs for modelling recursion.

Secure contexts are also studied by Sabelfeld and Mantel
in [19] where they propose a timing-sensitive security def-
inition for programs in a simple multi-threaded language.
Sabelfeld and Mantel give a syntactic characterization of a
class of contexts in their language which preserve security,
i.e., they are secure whenever one substitutes holes with se-
cure programs. This, in a sense, corresponds to our general
definition ofP-secure contexts. In particular, their defini-
tion of secure contexts is based on a “hook-up” (composi-
tionality) property [13] of their notion of security. That is
contexts just reflect the compositionality property of their
security notion. Actually the compositionality of security
properties is a fundamental issue in the incremental defi-
nition of secure systems (see [15, 23, 21]). In this work
we point out a strong relation between the compositionality
properties of a classP of processes and the composition-
ality properties ofP-secure contexts (see Theorem 4.18).
Moreover, we can use our definition of secure contexts to
identify new classes of secure processes.

7. Conclusions

We presented a generalization of the notion of noninter-
ference which is more flexible than the one introduced by
Goguen and Meseguer and its subsequent versions. The
flexibility is a consequence of the fact that our notion is

parametric with respect to a class of contexts and thus not
limited to contexts of the formX |Π, with Π ∈ EH .

On the one hand our notion can be used to restrict the set
of possible attackers: e.g., when it is not reasonable to as-
sume that an attacker has the ability to perform any high
level action. This seems reasonable in practical applica-
tions: for instance, when we assume that no all high level
passwords can be guessed.

On the other hand our notion allows us to enlarge the
set of possible attackers, since SPA operators can be freely
combined in the context construction.

Moreover, the possibility of using low level actions in
building contexts is useful when we reverse the point of
view, i.e., when we are interested in the security of the con-
texts with respect to a class of processes.

We studied two instances of our general definition with
weak bisimulation and trace equivalence. We characterized
decidable classes of secure contexts forP BNDCandNDC
processes.

An interesting future issue could be the reformulation of
our security property in richer languages (e.g.,π-calculus).

Acknowledgements

We would like to thank Francesco Dalla Libera for the help-
ful discussions and the anonymous reviewers for their com-
ments and suggestions.

References

[1] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Bisimulation
and Unwinding for Verifying Possibilistic Security Proper-
ties. In L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopad-
hyay, editors,Proc. of Int. Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’03), volume
2575 ofLNCS, pages 223–237. Springer-Verlag, 2003.

[2] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. A Proof Sys-
tem for Information Flow Security. In M. Leuschel, ed-
itor, Logic Based Program Development and Transforma-
tion, volume 2664 ofLNCS. Springer-Verlag, 2003. To ap-
pear.

[3] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Com-
munication Interference in Mobile Boxed Ambients. In
M. Agrawal and A. Seth, editors,Proc. of Int. Conference on
Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’02), volume 2556 ofLNCS, pages
71–84. Springer-Verlag, 2002.

[4] R. Focardi and R. Gorrieri. A Classification of Security
Properties for Process Algebras.Journal of Computer Se-
curity, 3(1):5–33, 1994/1995.

[5] R. Focardi and R. Gorrieri. Classification of Security Proper-
ties (Part I: Information Flow). In R. Focardi and R. Gorrieri,
editors,Foundations of Security Analysis and Design, vol-
ume 2171 ofLNCS, pages 331–396. Springer-Verlag, 2001.

[6] R. Focardi, R. Gorrieri, and F. Martinelli. Non Inter-
ference for the Analysis of Cryptographic Protocols. In
U. Montanari, J. D. P. Rolim, and E. Welzl, editors,Proc.
of Int. Colloquium on Automata, Languages and Program-
ming (ICALP’00), volume 1853 ofLNCS, pages 744–755.
Springer-Verlag, 2000.

[7] R. Focardi and S. Rossi. Information Flow Security in Dy-
namic Contexts. InProc. of the IEEE Computer Security
Foundations Workshop (CSFW’02), pages 307–319. IEEE
Computer Society Press, 2002.

[8] S. N. Foley. A Universal Theory of Information Flow.
In Proc. of the IEEE Symposium on Security and Privacy,
pages 116–122. IEEE Computer Society Press, 1987.

[9] J. A. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. InProc. of the IEEE Symposium on Security
and Privacy, pages 11–20. IEEE Computer Society Press,
1982.

[10] M. Hennessy and J. Riely. Information Flow vs. Resource
Access in the Asynchronous Pi-calculus.ACM Transac-
tions on Programming Languages and Systems (TOPLAS),
24(5):566–591, 2002.

[11] H. Mantel. Possibilistic Definitions of Security - An As-
sembly Kit -. InProc. of the 13th IEEE Computer Security
Foundations Workshop (CSFW’00), pages 185–199. IEEE
Computer Society Press, 2000.

[12] F. Martinelli. Analysis of Security Protocols asopenSys-
tems. Theoretical Computer Science, 290(1):1057–1106,
2003.

[13] D. McCullough. Specifications for Multi-Level Security and
a Hook-Up Property. InProc. of the IEEE Symposium on Se-
curity and Privacy, pages 161–166. IEEE Computer Society
Press, 1987.

[14] J. McLean. Security Models and Information Flow. InProc.
of the IEEE Symposium on Security and Privacy, pages 180–
187. IEEE Computer Society Press, 1990.

[15] J. McLean. A General Theory of Composition for a Class
of “Possibilistic” Security Properties.IEEE Transactions on
Software Engineering, 22(1):53–67, 1996.

[16] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[17] C. O’Halloran. A Calculus of Information Flow. InProc. of
the European Symposium on Research in Security and Pri-
vacy, pages 180–187. AFCET, 1990.

[18] P. Ryan and S. Schneider. Process Algebra and Non-
Interference.Journal of Computer Security, 9(1/2):75–103,
2001.

[19] A. Sabelfeld and H. Mantel. Static Confidentiality En-
forcement for Distributed Programs. In M. Hermenegildo
and G. Puebla, editors,Proceedings of the 9th International
Static Analysis Symposium, Madrid, Spain, September 17-
20, number 2477 in LNCS, pages 376–394. Springer-Verlag,
2002.

[20] A. Sabelfeld and A. C. Myers. Language-Based
Information-Flow Security.IEEE Journal on Selected Ar-
eas in Communication, 21(1):5–19, 2003.

[21] A. Sabelfeld and D. Sands. Probabilistic Noninterference
for Multi-threaded Programs. InProc. of the IEEE Com-
puter Security Foundations Workshop, pages 200–215. IEEE
Computer Society Press, 2000.

[22] G. Smith and D. M. Volpano. Secure Information Flow in
a Multi-threaded Imperative Language. InProc. of ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’98), pages 355–364. ACM Press,
1998.

[23] A. Zakinthinos and E. S. Lee. A General Theory of Secu-
rity Properties. InProc. of the IEEE Symposium on Security
and Privacy, pages 74–102. IEEE Computer Society Press,
1997.

A. Proofs

Proof of Lemma 4.4. (⇒) If E ∈ BNDC , then(E|Π) \
H ≈B E \ H . Moreover,E \ H is always inBNDC and
E \ H \ H ≈B E \ H , hence(E \ H |Π) ≈B E \ H .
So by transitivity of≈B, we obtain that(E|Π) \ H ≈B

(E \ H |Π) \ H .
(⇐) SinceE \H is always inBNDC andE \H \H ≈B

E \H , we obtain(E|Π)\H ≈B (E \H |Π)\H ≈B E \H .
2

Proof of Theorem 4.6.
- SinceF \ H ≈B F \ H for eachF ∈ E , F is secure for
P .
- SinceE \H ≈B E \H \H for all E ∈ E any variableY
is secure forP .
- Let C[X] ≡

∑
li∈L li.Ci +

∑
hj∈H hj .Dj, with Ci secure

for P for all i. We prove thatC[E] \ H ≈B C[E \ H] \ H

for all E ∈ P . If C[E]\H
a
→ C′, thena ∈ L. Hence, there

existsi such thata = li andC′ ≡ Ci[E] \ H . So we have
thatC[E \ H] \ H

a
→ Ci[E \ H] \ H , and sinceCi[X] is

secure forP it holds thatCi[E] \ H ≈B Ci[E \ H] \ H .
Similarly, if C[E \ H] \ H

a
→ C′, then there existsi such

thata = li andC′ ≡ Ci[E \ H] \ H . Hence, sinceCi[X]

is secure forP we obtain thatC[E] \H
a
→ Ci[E] \H with

Ci[E] \ H ≈B C[E \ H] \ H .
- Let E ∈ P . FromC[E] \H ≈B C[E \H] \H we obtain
C[E]\H \v ≈B C[E \H]\H \v, henceC[E]\v \H ≈B

C[E \ H] \ v \ H .
- Let E ∈ P . We prove thatC[E][f]\H ≈B C[E \H][f]\
H , wheref maps high actions inH∪{τ} and low actions in
L∪ {τ}. If C[E][f] \H

a
→ C′, thenC′ ≡ C′′[f] and there

existsb such thatf(b) = a andC[E] \ H
b
→ C′′. Hence,

C[E \ H] \ H
b̂
⇒ C′′′ with C′′ ≈B C′′′. So we obtain that

C[E \ H][f] \ H
â
⇒ C′′′[f] with C′′[f] ≈B C′′′[f]. 2

Proof of Lemma 4.10. The only non trivial case is the
“Recursion”. GivenC, D ∈ Cs with C ≈B D we have
to prove thatrecY.C ≈B recY.D. Without loss of gen-
erality we can assume thatC[Y] and D[Y] have at most
the single free variableY . The general case follows from
Definition 2.5. In fact, suppose thatC[Y, Y1 . . . Yn] ≈B

D[Y, Y1 . . . Yn], then for any choice ofE1 . . . En ∈ E
we haveC[Y, E1 . . . En] ≈B D[Y, E1 . . . En], and thus
recY.C[Y, E1 . . . En] ≈B recY.D[Y, E1 . . . En]; therefore
recY.C[Y, Y1 . . . Yn] ≈B recY.D[Y, Y1 . . . Yn].

Let us define the relationS ⊆ Cs × Cs as follows:

S = { (G[recY.C[Y]], G[recY.D[Y]]) |
C, D, G ∈ Cs, C ≈B D,
andG contains at most one variable}.

Note that, since we assumed thatC andD have at most the

single free variableY , the variables that occur bound inG
do not occur free inC andD.

It will be enough to show thatS is a weak bisimulation
up to≈B. From this it followsrecY.C[Y] ≈B recY.D[Y],
by takingG ≡ X .

We prove that ifG[recY.C[Y]]
a

−→ P then there ex-

ist Q, Q′ ∈ Cs with (P, Q′) ∈ S andG[recY.D[Y]]
â

=⇒
Q ≈B Q′.

The converse follows by the symmetry ofS.
We prove the claim by induction on the depthd of the

inference used to obtainG[recY.C[Y]]
a

−→ P .
Base: d = 0.

If G[recY.C[Y]]
a

−→ P with an inference of depth0, then
the rule “Prefix” has been applied, andG[X] ≡ a.G′[X],
so P ≡ G′[recY.C[Y]], with G′ ∈ Cs. Hence, also
G[recY.D[Y]] ≡ a.G′[recY.D[Y]]

a
−→ G′[recY.D[Y]]

and we have that(G′[recY.C[Y]], G′[recY.D[Y]]) ∈ S, as
required.

Induction step. We proceed by cases on the structure of
the contextG:

- G ∈ E . We haveG[recY.C[Y]] ≡ G[recY.D[Y]] ≡
G, hence we immediately obtain the thesis.

- G ≡ X . Then recY.C[Y]
a

−→ P has been
deduced by applying the “Recursion” rule at the last
step. SoC[recY.C[Y]]

a
−→ P with a shorter inference.

Hence, by induction there existQ, Q′ ∈ Cs such that

C[recY.D[Y]]
â

=⇒ Q ≈B Q′ with (P, Q′) ∈ S. But also

C[Y] ≈B D[Y] and thusD[recY.D[Y]]
â

=⇒ Q′′ ≈B Q.
Since,D[recY.D[Y]] ≈B recY.D[Y], we have that it holds

recY.D[Y]
â

=⇒ Q′′′ with Q′′′ ≈B Q′′ ≈B Q ≈B Q′.

- G ≡
∑

i ai.Gi. Then
∑

i ai.Gi[recY.C[Y]]
a
→ P

by applying the “Sum” in the last step. So, there exists
i such thatai.Gi[recY.C[Y]]

a
→ P . Hence, it must be

P ≡ Gi[recY.C[Y]], with Gi ∈ Cs. By applying the

same rules,G[recY.D[Y]]
â

=⇒ Q ≡ Gi[recY.D[Y]], and
(P, Q) ∈ S.

- G ≡ G1 \ v. ThenG1[recY.C[Y]]\
a
→ P by apply-

ing the rule “Restriction” in the last step. So,P ≡ P ′ \ v,
a /∈ v andG1[recY.C[Y]]

a
→ P ′ by a shorter inference.

By induction onG1 ∈ Cs, there existQ, Q′ ∈ Cs such

that G1[recY.D[Y]]
â

=⇒ Q ≈B Q′ with (E′, Q′) ∈ S.

Hence, we concludeG1[recY.D[Y]] \ v
â

=⇒ Q \ v, with
Q \ v ≈B Q′ \ v and(P, Q′ \ v) ∈ S by construction of
S. In fact, (P ′, Q′) ∈ S implies that there exists a con-
text H [X], with only a free variableX , such thatP ′ ≡
H [recY.C[Y]] and Q′ ≡ H [recY.D[Y]]. Hence,P ≡
P ′ \v ≡ H [recY.C[Y]]\v andQ′\v ≡ H [recY.D[Y]]\v.

- G ≡ G1[f]. ThenG1[recY.C[Y]][f]
a
→ P by apply-

ing the rule “Relabelling” in the last step. So,P ≡ P ′[f],

a = f(a′), andG1[recY.C[Y]]
a′

→ P ′ by a shorter infer-

ence. By induction there existQ, Q′ ∈ Cs such that it

holdsG1[recY.D[Y]]
â′

=⇒ Q ≈B Q′ with (P ′, Q′) ∈ S

Hence, we concludeG1[recY.D[Y]][f]
f̂(a′)
=⇒ Q[f], with

Q[f] ≈B Q′[f] and(P, Q′[f]) ∈ S by construction.
- G ≡ recZ.G1[X, Z]. Then we have

that recZ.G1[recY.C[Y], Z]
a
→ P by apply-

ing the rule “Recursion” in the last step. So,
G1[recY.C[Y], recZ.G1[recY.C[Y], Z]]

a
→ P with a

shorter inference. Hence, by induction there existQ, Q′ ∈

Cs such thatG1[recY.D[Y], recZ.G1[recY.D[Y], Z]]
â

=⇒
Q ≈B Q′ with (P, Q′) ∈ S.
Since G1[recY.D[Y], recZ.G1[recY.D[Y], Z]] ≈B

recZ.G1[recY.D[Y], Z] we can conclude that

G1[recY.D[Y], recZ.G1[recY.D[Y], Z]]
â

=⇒ Q′′ ≈B

Q ≈B Q′. 2

The next Lemma is used in the proof of Lemma 4.11.

Lemma A.1 Let C ∈ Cs. ThenrecY.(C \ H) \ H ≈B

(recY.C) \ H.

PROOF. Without loss of generality we can assume that only
the variableY occurs free in the contextC. The general
case follows by Definition 2.5. LetS be defined as

{(G[(recY.(C\H))]\H, G[recY.C]\H) |G[X], C ∈ Cs}.

We prove thatS is a strong bisimulation. From this the
result follows by consideringG[X] ≡ X .

Note that, sinceC has at most the single free variableY ,
the variables that occur bound inG do not occur free inC.

To prove thatS is a strong bisimulation we prove:

(1) if G[recY.(C \ H)] \ H
a
→ P then there existsQ such

that(P, Q) ∈ S, andG[recY.C] \ H
a
→ Q

(2) if G[recY.C] \ H
a
→ Q then there existsP such that

(P, Q) ∈ S andG[recY.(C \ H)] \ H
a
→ P

for any pair(G[recY.(C \ H)] \ H, G[recY.C] \ H) in S.

The proof proceeds by induction on the depthd of the
inference used to proveG[recY.(C \ H)] \ H

a
→ P or

G[recY.C] \ H
a
→ Q.

Base: d = 1.
(1) If G[recY.(C \ H)] \ H

a
→ P with an inference of

depth 1, then the rules “Restriction” and “Prefix” have
been applied. Hence, we haveG[X] ≡ a.G′[X] and
P ≡ G′[recY.(C \ H)] \ H . By applying the same rules to
G[recY.C] \ H we obtain thatG[recY.C] \ H

a
→ Q with

Q ≡ G′[recY.C] \ H . SinceG ∈ Cs, it holds thatG′ ∈ Cs,

hence(P, Q) ∈ S.
(2) Similar to the previous case.

Induction step. We proceed by cases on the structure of the
contextG[X].

- G[X] ∈ E . Trivial.

- G[X] ≡ X .

(1) Let (recY.(C \ H)) \ H
a
→ P . ThenP ≡ P ′ \ H

andC[recY.(C \ H)] \ H
a
→ P ′ by a shorter inference.

This implies thatP ′ is free from high level action, i.e.P ≡
P ′ \ H ≡ P ′. Hence, by inductive hypothesis, there exists
Q such that(P, Q) ∈ S, andC[(recY.C)] \ H

a
→ Q. So,

(P, Q) ∈ S and(recY.C) \ H
a
→ Q.

(2) Let (recY.C) \ H
a
→ Q. Then Q ≡ Q′ \ H and

C[recY.C] \ H
a
→ Q by a shorter inference. Hence, by

inductive hypothesis, there existsP such that(P, Q) ∈ S

and C[recY.(C \ H)] \ H
a
→ P . So, (P, Q) ∈ S and

(recY.(C \ H)) \ H
a
→ P .

- G[X] ≡
∑

i∈I ai.Gi[X].

(1) Let G[recY.(C[Y] \ H)] \ H
a
→ P . Then∃i such

that a ≡ ai, P ≡ Gi[recY.(C \ H)] \ H . Hence,
G[recY.C] \ H

a
→ Q with Q ≡ Gi[recY.C] \ H . From

this, sinceGi[X] ∈ Cs, we immediately get(P, Q) ∈ S.

(2) Let G[recY.C]) \ H
a
→ Q. Then∃i such thata ≡ ai,

Q ≡ Gi[recY.C] \ H . Hence,G[recY.(C \ H)] \ H
a
→ P

with P ≡ Gi[recY.(C \H)]\H . From this, sinceGi[X] ∈
Cs, we immediately get(P, Q) ∈ S.

- G[X] ≡ G1[X] \ v. Trivial.

- G[X] ≡ G1[X][f]. Trivial.

- G[X] ≡ recZ.G1[X, Z].

(1) Let G[recY.(C[Y] \ H)] \ H
a
→ P . In this

case recZ.G1[recY.(C \ H), Z] \ H
a
→ P and

G1[recY.(C \ H), recZ.G1[recY.(C \ H), Z]] \ H
a
→

P by a shorter inference. By inductive hypothesis
G1[recY.C, recZ.G1[recY.C, Z]] \ H

a
→ Q for someQ

such that(P, Q) ∈ S. Hence, we obtain(P, Q) ∈ S and
recZ.G1[recY.C, Z]] \H

a
→ Q, i.e.,G[recY.C] \H

a
→ Q.

(2) LetG[recY.C] \H
a
→ Q that isrecZ.G1[recY.C, Z]] \

H
a
→ Q. Then,G1[recY.C, recZ.G1[recY.C, Z]] \ H

a
→

Q, by a shorter inference. By inductive hypothesis
G1[recY.(C \ H), recZ.G1[recY.(C \ H), Z]] \ H

a
→ P

for some P such that (P, Q) ∈ S. Therefore,
recZ.G1[recY.(C \ H), Z] \ H

a
→ P . 2

Proof of Lemma 4.11. Our hypothesis is thatC[E]\H ≈B

C[E\H]\H and we have to prove that(recY.C[E])\H ≈B

(recY.C[E \ H]) \ H.

From the hypothesis and Lemma 4.10 we have that
recY.(C[E] \ H) ≈B recY.(C[E \ H] \ H).

By applying\H to both members we obtain
recY.(C[E] \ H) \ H ≈B recY.(C[E \ H] \ H) \ H.

Notice that ifC[X] ∈ Cs, then alsoC[E] andC[E \H] are
in Cs. Hence, we can apply Lemma A.1 to both members
and get

recY.(C[E]) \ H ≈B recY.(C[E \ H]) \ H,
i.e. our thesis. 2

Proof of Lemma 4.15. Consider the binary relationS =

{((E|G) \ H, (F |K) \ H) | E, F, G, K ∈ P BNDC

andE \ H ≈B F \ H, G \ H ≈B K \ H}.

It is easy to prove thatS is a weak bisimulation. The
only non-trivial case is the synchronization. Assume

that (E|G) \ H
τ
→ (E′|G′) \ H with E

h
→ E′ and

G
h̄
→ G′. Then, sinceE, G ∈ P BNDC , we have

E
τ̂
⇒ E′′ with E′ \ H ≈B E′′ \ H and G

τ̂
⇒ G′′

with G′ \ H ≈B G′′ \ H . Hence,E \ H
τ̂
⇒ E′′ \ H and

G\H
τ̂
⇒ G′′\H . By hypothesis we obtainF \H

τ̂
⇒ F ′\H

with F ′ \ H ≈B E′′ \ H andK \ H
τ̂
⇒ K ′ \ H with

K ′ \ H ≈B G′′ \ H . Hence,(F |K) \ H
τ̂
⇒ (F ′|K ′) \ H

with E′, G′, F ′, K ′ ∈ P BNDC , E′ \ H ≈B F ′ \ H , and
G′ \ H ≈B K ′ \ H , i.e. ((E′|G′) \ H, (F ′|K ′) \ H) ∈ S.

2

Proof of Lemma 5.5. (⇒) If E ∈ NDC , then we have
(E|Π) \H ≈T E \H . Moreover,E \H is always inNDC

andE \ H \ H ≈T E \ H , hence(E \ H |Π) ≈T E \ H .
So by transitivity of≈T , we obtain that(E|Pi) \ H ≈T

(E \ H |Π) \ H .
(⇐) SinceE \H is always inNDC andE \H \H ≈T

E \H , we obtain(E|Π)\H ≈T (E \H |Π)\H ≈T E \H .
2

Proof of Theorem 5.7. Let E be a process inP . From the
fact that all theCi are secure forP we obtain that for all
i ∈ I it holdsCi[E]\H ≈T Ci[E\H]\H . Hence, since≈T

is a congruence with respect to the non deterministic choice
operator,

∑
i∈I(Ci[E] \ H) ≈T

∑
i∈I(Ci[E \ H] \ H).

So, we can commute the restrictions with the sum and
get (

∑
i∈I Ci[E]) \ H ≈T (

∑
i∈I Ci[E \ H]) \ H .

It trivially holds that (
∑

hj∈H hj .Dj [E]) \ H ≈T

0 ≈T (
∑

hj∈H hj .Dj [E \ H]) \ H . Hence, again
since ≈T is a congruence with respect to the non
deterministic choice and the restriction operator
commutes with the non deterministic choice we ob-
tain (

∑
i∈I Ci[E] +

∑
hj∈H hj .Dj [E]) \ H ≈T

(
∑

i∈I Ci[E \ H] +
∑

hj∈H hj .Dj[E \ H]) \ H , i.e.

our thesis. 2

Proof of Lemma 5.8. We recall the following properties
whose proofs are in [4]:

(1) if E, G ∈ NDC , thenE|G ∈ NDC ;

(2) P ∈ NDC iff P \ H ≈T P/H ;

(3) (E|G)/H ≈T E/H |G/H ;

(4) if E′ ≈T F ′ andG′ ≈T K ′, thenE′|G′ ≈T F ′|K ′.

Hence we obtain

(E|G) \ H ≈T by (1) and (2)
(E|G)/H ≈T by (3)
(E/H |G/H) ≈T by (2) and (4)
(F/H |K/H) ≈T by (3)
(F |K)/H ≈T by (1) and (2)
(F |K) \ H.

2

