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a logi spei�ation together with a ontrol mehanism for exeuting it. In thislight, one of the inspiring ideas of the logi programming paradigm is to askthe programmer only for the logi spei�ation and leave the ontrol part to theinterpreter.As an example of this delarative style, in Prolog, queries (alls) an of-ten be used in di�erent manners. The well-known prediate append reportedbelow, for example, an be used either to onatenate two lists or to split alist into two parts in a nondeterministi way: the all append([a,b℄,[,d℄,X)will sueed by unifying the variable X to the list [a,b,,d℄, while the allappend(X1,X2,[a,b,,d℄) will split the list [a,b,,d℄ into X1 and X2.Nevertheless, as one an expet, if in a logi program the ontrol omponentwas totally absent, programs would be hopelessly ineÆient, if not divergent. Tosee how the ontrol omponent omes bak in the piture one has to look into theunderneath resolution proess. The exeution of a logi program with respetto a given query onsists in building and exploring a proof tree to validate thequery. The ontrol lies thus in the way the proof tree is built (for a query theremay exist di�erent proof trees) and is traversed. Prolog employs for instanea left-to-right seletion rule together with a top-down lause seletion method.These two omponents determine the shape of the proof tree, whih is thentraversed depth-�rst.A programmer is always aware of this methodology, and writes her programsaording to it. We are onvined that most pratial Prolog programs woulddiverge if used in ombination with another seletion rule.Dynami Seletion Rules While Prolog's rule has proven to be extremelyeÆient and e�etive, for many appliation a �xed seletion rule is too limitedto be pratial. As an example, onsider the program APPEND and the programIN ORDER whih onstruts the list of the nodes of a binary tree by means of anin-order transversal% append(Xs,Ys,Zs)  Zs is the result of onatenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄)  append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List)  List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs)  in order(Left,Ls),in order(Right,Rs), append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ:= read tree(Tree), in order(Tree,List), write list(List).(we assume that the prediates read tree and write list are de�ned elsewherein the program). If read tree annot read the whole tree at one { say, itreeives the input from a stream { it would be nie to be able to run in orderand write list on the available input. This an only be ahieved if we depart2



from Prolog's left-to-right seletion rule, whih would all in order only whenread tree had �nished reading the input.However, dropping Prolog's seletion rules poses the problem of nontermi-nation and of eÆieny. In the above program, the omputation of the queryQ would immediately diverge when adopting any �xed seletion rule di�erentfrom Prolog's. The omputation would instead result in an enormous waste ofresoures when using fair or random seletion rules. What we would need here isto interleave the exeution of the three \proesses" in the query, in a ontrolledmanner. This an be ahieved using a dynami seletion rule, i.e., a seletionrule whih employs a runtime mehanism whih determines whih atoms mightbe seleted. For instane, in the ase of the above example, a orret omputa-tion an be ahieved by means of the following delay delarations:delay in order(T, ) until nonvar(T).delay append(Ls, , ) until nonvar(Ls).delay write list(Ls, ) until nonvar(Ls).The semantis of these delay delarations is rather straightforward: they for-bid the seletion of an atom of the form in order(s,t) (resp. append(s,t,u) orwrite list(s,t)) unless s is a non-variable term. We an say that these state-ments avoid that prediates in order, append and write list be seleted \tooearly". Notie that with these delarations IN ORDER enjoys a parallel exeutionby means of interleaving.The use of a non-�xed seletion rule in ombination with the above delaydelarations is thus an example of a dynami seletion rule. Dynami seletionrules have proven to be useful in a number of appliations; among other things,they allow one to model o-routining [2, 3℄ and parallel exeutions [4℄. A dy-nami seletion rule provides the programmer with a exible ontrol over theomputation whih an be used to improve the eÆieny of programs, preventrun-time errors and enfore termination [5, 3℄.Dynami seletion rules are usually implemented by means of a mehanismpreventing the seletion of those atoms whih are not suÆiently instantiated.To this end, di�erent languages use di�erent onstruts. In GHC [6℄ programsare augmented with guards in order to ontrol the seletion of atoms dynami-ally. Moded at GHC [7℄ uses an extra ondition on the input positions, whihis extremely similar to the onept of input-onsuming derivation step we referto in the sequel: The resolution of an atom with a de�nition might not instanti-ate the input arguments of the resolved atom. On the other hand, G�odel [2℄ andElipse [8℄ use delay delarations like the above ones, and SICStus Prolog [9℄employs blok delarations (whih are stritly less expressive than delay dela-rations). Both delay and blok delarations hek the partial instantiation ofsome arguments of alls.Limitations of the Approah The adoption of a ontrol mehanism suh asdelay delarations omes at a prie: Many delarative properties that have beenproven for logi and pure Prolog programs do not apply any longer. In parti-ular, the well-known equivalene between the model-theoreti and operational3



semantis (see [10, 11℄) does not hold. For example, the query append(X,Y,Z)with the above delay delaration does not sueed: the atom append(X,Y,Z)does not satisfy its delay delaration (sine the �rst argument is a variable) andthen it annot be seleted (and resolved). In this ase we say that the queryappend(X,Y,Z) deadloks1 and this is in ontrast with the fat that (in�nitelymany) instanes of append(X,Y,Z) are ontained in the least Herbrand modelof APPEND. This is learly a heavy loss, sine the equivalene between delarativeand operational semantis is one of the strong points of the logi programmingparadigm.Contributions of the Paper In this paper we address the problem of pro-viding a model-theoreti semantis for programs using a dynami seletion rule.In order to do so, we need a \delarative" way of modeling them, and for this werestrit our attention to input-onsuming programs [12℄. The de�nition of input-onsuming program employs the onept of mode: We assume that programsare moded, that is, that the positions of eah atom are partitioned into inputand output ones. Then, input-onsuming derivation steps are preisely those inwhih the input arguments of the seleted atom will not be instantiated by theuni�ation with the lause's head.For example, when the program APPEND reported above is used for onate-nating two lists, we assume that the �rst two arguments �ll in input positionswhile the third argument �lls in an output position.In [13℄ we showed that, assuming the above moding, for queries of the formappend(s; t;X) (with X being a variable disjoint from s and t), the delay dela-ration delay append(Ls, , ) until nonvar(Ls). guarantees preisely that ifan atom is seletable and resolvable, then it is so via an input-onsuming deriva-tion step; onversely, in every input-onsuming derivation step the resolved atomalways satis�es the given delay delaration, thus it would have been seletableby any mehanism implementing delay delarations. This reasoning applies fora large lass of queries and is atually not a oinidene: As shown by Smausin [14℄ for blok delarations and further disussed by the authors in [13℄, onean argue that in most situations delay delarations are employed preisely forensuring that the derivation is input-onsuming. Thus, we are interested inproviding a model-theoreti semantis for input-onsuming programs. Clearly,many of the diÆulties one has in doing this for programs with delay dela-rations apply to input-onsuming programs as well. Intuitively speaking, theruial problem originates in the fat that input-onsuming derivations maydeadlok2, i.e., reah a stadium in whih no atom is resolvable (e.g., the queryappend(X,Y,Z)). Beause of this, a delarative semantis for logi programs isgenerally not orret for input-onsuming programs.In this paper we show that, if a program is well- and niely-moded, then, forniely-moded queries the operational semantis provided by the input-onsuming1A deadlok ours when the urrent query ontains no atom whih an be seleted forresolution.2As we will disuss later, this notion of deadlok di�ers, in some way, from the usual one,whih is given in the ase of programs employing delay delarations.4



resolution rule is orret and omplete wrt. the S-semantis [15℄ for logi pro-grams. The S-semantis is a denotational semantis whih { for programs with-out delay delarations { orretly denotes the set of the omputed answer substi-tutions assoiated with the most general atomi queries, i.e., queries of the formp(x1; : : : ; xn) where x1; : : : ; xn are distint variables. Moreover, the S-semantisis ompositional and an be also viewed as a model-theoreti semantis, and itorresponds to the least �xpoint of a ontinuous operator. Summarizing, weshow that the S-semantis of a program is ompositional, orret and fullyabstrat also for input-onsuming programs, provided that the programs on-sidered are well- and niely-moded, and that the queries are niely-moded.This paper is organized as follows. The next setion ontains the prelim-inary notations and de�nitions. In Setion 3 we disuss the relation betweeninput-onsuming derivations and programs using delay delarations. Setion 4ontains the main results and some examples. In Setion 5 we show how thesemantis for input-onsuming derivations we present an be used for reasoningabout deadlok of programs using delay delarations. Finally, Setion 6 on-ludes the paper. Some proofs are reported in the Appendix.A preliminary, shorter version of this paper has appeared in [16℄.2 PreliminariesIn this paper we onsider de�nite logi programs and assume the reader is famil-iar with the terminology and the basi results of the semantis of de�nite logiprograms (see, for instane, [17, 11, 18℄). Here we adopt the notation of [11℄ inthe fat that we use boldfae haraters to denote sequenes of objets; thereforet denotes a sequene of terms while B is a query (notie that { following [11℄ {queries are simply onjuntions of atoms, possibly empty). We denote atoms byA;B;H; : : : ; queries by Q;A;B;C; : : : ; lauses by ; d; : : : ; and programs by P .The empty query is denoted by �.2.1 Substitutions and DerivationsFor any syntati objet o, we denote by Var(o) the set of variables ourring ino. We also say that o is linear if every variable ours in it at most one. Givena substitution � and a syntati objet E, we denote by �jE the restrition of� to the variables in Var(E), i.e., �jE(X) = �(X) if X 2 Var(E), otherwise�jE(X) = X . If � = fx1=t1; : : : ; xn=tng we say that fx1; : : : ; xng is its do-main (denoted by Dom(�)) and that Var(ft1; : : : ; tng) is its range (denotedby Ran(�)) Notie that Var(�) = Dom(�) [ Ran(�). If ft1; : : : ; tng onsists ofvariables then � is alled a pure variable substitution. If, in addition, t1; : : : ; tn isa permutation of x1; : : : ; xn then we say that � is a renaming. The ompositionof substitutions is denoted by juxtaposition (x�� = (x�)�). We say that a termt is an instane of t0 i� for some �, t = t0�, further t is alled a variant of t0,written t � t0, i� t and t0 are instanes of eah other. A substitution � is a5



uni�er of terms t and t0 i� t� = t0�. A most general uni�er (mgu, in short) of tand t0 is unique, up to renaming; we denote it by mgu(t; t0). An mgu � of termst and t0 is alled relevant i� Var(�) � Var(t) [ Var(t0). The de�nitions aboveare extended to other syntati objets in the obvious way.Computations are sequenes of derivation steps. The non-empty query Q :=A; B;C and a lause  := H  B (renamed apart wrt. Q) yield the resolvent(A;B;C)�, provided that � = mgu(B;H). A derivation step is denoted byA; B;C �=)P; (A;B;C)�: is alled its input lause, and B is alled the seleted atom of q. A derivationis obtained by iterating derivation steps. A maximal sequeneÆ := Q0 �1=)P;1 Q1 �2=)P;2 � � �Qn �n+1=)P;n+1 Qn+1 � � �of derivation steps is alled a SLD-derivation of P [fQ0g provided that for eve-ry step an appropriate renaming of the input lause is used, so that to satisfythe standardization apart ondition: The input lause employed at eah step isvariable disjoint from the initial query Q0 and from the substitutions and theinput lauses used at earlier steps. If the program P is lear from the ontext orwe are not interested in the spei� input lauses or mgu's used, then we dropthe referene to them. A SLD-derivation in whih at eah step the leftmostatom is resolved is alled a LD-derivation.Derivations an be �nite or in�nite. If Æ := Q0 �1=)P;1 � � � �n=)P;n Qn is a�nite pre�x of a derivation, also denoted Æ := Q0 ��! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation of P [fQ0g. If Æ is maximal and ends with theempty query then the restrition of � to the variables of Q is alled its omputedanswer substitution (.a.s., for short). The length of a (partial) derivation Æ,denoted by len(Æ), is the number of derivation steps in Æ.We reall the notion of similar SLD-derivations.De�nition 2.1 (Similar Derivations) We say that two SLD-derivations Æand Æ0 are alled similar (Æ � Æ0) if (i) their initial queries are variants of eahother; (ii) they have the same length; (iii) for every derivation step, atoms inthe same positions are seleted and the input lauses employed are variants ofeah other.The following results hold.Lemma 2.2 Let Æ := Q1 ��!Q2 be a partial SLD-derivation of P[fQ1g and Q01be a variant of Q1. Then, there exists a partial SLD-derivation Æ0 := Q01 �0�!Q02of P [ fQ01g suh that Æ and Æ0 are similar.Lemma 2.3 Consider two similar partial SLD-derivationsQ ��!Q0 andQ �0�!Q00.Then Q� and Q�0 are variants of eah other.6



2.2 Input-Consuming DerivationsAmode is a funtion that labels as input or output the positions of eah prediatein order to indiate how the arguments of a prediate should be used.De�nition 2.4 (Mode) Consider an n-ary prediate symbol p. By a mode forp we mean a funtion mp from f1; : : : ; ng to fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) positionof p (with respet to mp). We assume that eah prediate symbol has a uniquemode assoiated to it; multiple modes may be obtained by simply renaming theprediates. If Q is a query, we denote by In(Q) (resp. Out(Q)) the sequene ofterms �lling in the input (resp. output) positions of prediates in Q. Moreover,when writing an atom as p(s; t), we are indiating with s the sequene of terms�lling in the input positions of p and with t the sequene of terms �lling in theoutput positions of p.The notion of input-onsuming derivation was introdued by Smaus in [12℄and is de�ned as follows.De�nition 2.5 (Input-Consuming)� A derivation step A; B;C �=) (A;B;C)� is alled input-onsuming i�In(B)� = In(B).� A derivation is alled input-onsuming i� all its derivation steps are input-onsuming.Thus, a derivation step is input-onsuming if the orresponding mgu doesnot a�et the input positions of the seleted atom.Example 2.6 Consider the following program REVERSE using an aumulator.reverse(Xs,Ys)  reverse a(Xs,Ys,[ ℄).reverse a([ ℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs)  reverse a(Xs,Ys,[X|Zs℄).When used for reversing a list, the natural mode for this relation symbol ismode reverse(In,Out).mode reverse a(In,Out,In).Consider now the query reverse([X1,X2℄,Zs). The following derivation start-ing in reverse([X1,X2℄,Zs) is input-onsuming (as usual, � denotes the emptyquery).reverse([X1,X2℄,Zs) =) reverse a([X1,X2℄,Zs,[ ℄) =)=) reverse a([X2℄,Zs,[X1℄) =)=) reverse a([ ℄,Zs,[X2,X1℄) =) �7



The following result states that also when onsidering input-onsuming deriva-tions, it is not restritive to assume that all mgu's used in a derivation arerelevant.Lemma 2.7 Let p(s; t) and p(u;v) be two atoms. If there exists an mgu � ofp(s; t) and p(u;v) suh that s� = s then there exists a relevant mgu # of p(s; t)and p(u;v) suh that s# = s.Proof. Sine p(s; t) and p(u;v) are uni�able, there exists a relevant mgu �relof them (see [11℄, Theorem 2.16). Now, �rel is a renaming of �. Thus s�rel is avariant of s. Then there exists a renaming � suh that Dom(�) � Var(s; t;u;v)and s�rel� = s. Now, take # = �rel�.From now on, we assume that all mgu's used in the input-onsuming deriva-tion steps are relevant.2.3 The S-semantisThe aim of the S-semantis approah (see [19℄) is modeling the observable beha-viors for a variety of logi languages. The observable we onsider here is theomputed answer substitutions. The semantis is de�ned as follows:S(P ) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distint variables andp(x1; : : : ; xn) ��!P � is a SLD-derivationg:This semantis enjoys all the valuable properties of the least Herbrand model.Tehnially, the ruial di�erene is that in this setting an interpretation mightontain non-ground atoms. To present the main results on the S-semantis weneed to introdue two further onepts: Let P be a program, and I be a set ofatoms.� The immediate onsequene operator for the S-semantis is de�ned as:TSP (I) = f H� j 9 H  B 2 P9 C 2 I; renamed apart3 wrt. H;B� = mgu(B;C) g:� I is alled an S-model of P if TSP (I) � I .Falashi et al. [15℄ showed that TSP is ontinuous on the lattie of term inter-pretations, that is sets of possibly non-ground atoms, with the subset-ordering.They proved the following:� S(P ) = least S-model of P = TSP " !.3Here and in the sequel, when we write \C 2 I, renamed apart wrt. some expression e",we naturally mean that I ontains a set of atoms C01; : : : ; C0n, and that C is a renaming ofC01; : : : ; C0n suh that C shares no variable with e and that two distint atoms of C share novariables with eah other. 8



Therefore, the S-semantis enjoys a delarative interpretation and a bottom-up onstrution, just like the Herbrand one. In addition, we have that theS-semantis reets the observable behavior in terms of omputed answer sub-stitutions, as shown by the following well-known result.Theorem 2.8 [15℄ Let P be a program, A be a query, and � be a substitution.The following statements are equivalent.� There exists a SLD-derivation A #�!P�, where A# � A�.� There existsA0 2 S(P ) (renamed apart wrt. A), suh that � = mgu(A;A0)and A� � A�.Example 2.9 Let us see this semantis applied to the programs APPEND andREVERSE so far enountered.� S(APPEND) = f append([℄,X,X),append([X1℄,X,[X1|X℄),append([X1,X2℄,X,[X1,X2|X℄), : : : g.� S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a([℄,X,X),reverse a([X1℄,X,[X1|X℄),reverse a([X1,X2℄,X,[X2,X1|X℄), : : : g.2.4 Well- and Niely-Moded ProgramsClearly, also in presene of modes, the S-semantis does not reet the opera-tional behavior of input-onsuming programs (and thus of programs employingdelay delarations). In fat, if we onsider the extension of APPEND obtained byadding the following lause to itq  append(X,Y,Z).we have that q belongs to the semantis but the query q will not sueed (sinethe atom append(X,Y,Z) is not resolvable via an input-onsuming derivationstep). In order to guarantee that the semantis is fully abstrat (wrt. the om-puted answer substitutions) we need to restrit the lass of allowed programsand queries. To this end we introdue the onepts of well-moded and of niely-moded programs.The onept of well-moded program is due to Dembinski and Maluszyn-ski [20℄.
9



De�nition 2.10 (Well-Moded)� A query p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for all i 2 [1; n℄Var(si) � i�1[j=1Var(tj):� A lause p(t0; sn+1)  p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for alli 2 [1; n+ 1℄ Var(si) � i�1[j=0Var(tj):� A program is well-moded if all of its lauses are well-moded.Thus a query is well-moded if every variable ourring in an input positionof an atom ours in an output position of an earlier atom in the query. A lauseis well-moded if (1) every variable ourring in an input position of a body atomours either in an input position of the head, or in an output position of anearlier body atom; (2) every variable ourring in an output position of the headours in an input position of the head, or in an output position of a body atom.The onept of niely-moded programs was �rst introdued by Chadha andPlaisted [21℄.De�nition 2.11 (Niely-Moded)� A query p1(s1; t1); : : : ; pn(sn; tn) is alled niely-moded if t1; : : : ; tn is alinear sequene of terms and for all i 2 [1; n℄Var(si) \ n[j=iVar(tj) = ;:� A lause p(s0; t0)  p1(s1; t1); : : : ; pn(sn; tn) is niely-moded if its bodyis niely-moded and Var(s0) \ n[j=1Var(tj) = ;:� A program P is niely-moded if all of its lauses are niely-moded.Note that an atomi query p(s; t) is niely-moded if and only if t is linear andVar(s) \ Var(t) = ;.Example 2.12 Programs APPEND and REVERSE are both well- and niely-moded.Furthermore, onsider the following program PALINDROMEpalindrome(Xs)  reverse(Xs,Xs).mode palindrome(In). 10



together with the program REVERSE with the modes reverse(In,Out) of Exam-ple 2.6. This program is well-moded but not niely-moded (sine Xs ours bothin an input and in an output position of the same body atom). However, sinethe program REVERSE is used here for heking whether a list is a palindrome, itsnatural modes are reverse(In,In) and reverse a(In,In,In). With thesemodes, the program PALINDROME is both well-moded and niely-moded.3 Input-Consuming vs. Delay DelarationsThere is a main di�erene between the onept of delay delaration and the oneof input-onsuming derivation: While in the �rst ase only the atom seletabilityis ontrolled, in the seond one both the atom and the lause seletability area�eted. In fat, in presene of delay delarations, if an atom is seletablethen it an be resolved with respet to any program lause (provided it uni�eswith its head); on the ontrary, in an input-onsuming derivation, if an atom isseletable then it is input-onsuming resolvable with respet to some, but notneessarily all, program lauses, i.e, only a restrited lass of lauses an be usedfor resolution.Example 3.1 Consider the following piee of program where the prediategenerate generates a list formed by the onstant a and variables, arbitrarilymixed.generate-selet  generate(Xs), selet(Xs).generate([a|Xs℄)  generate(Xs).generate([ |Xs℄)  generate(Xs).generate([ ℄).mode generate(Out).mode selet(In).Then, suppose we would like to de�ne the prediate selet, used in thebody of generate-selet, with the following behavior: It non-deterministiallyhooses to all the program first-hoie or the program seond-hoie, if thegenerated list starts with the onstant a; it deterministially alls the programseond-hoie, if the �rst element of the list is a variable, and fails on theempty list.We an obtain this behavior with an input-onsuming program, de�ned asfollows.selet([a|Xs℄)  first-hoie.selet([X|Xs℄)  seond-hoie.In fat, for input-onsuming derivations the �rst lause is seleted only if the�rst element of the list is not a variable. Note that we annot obtain suh abehavior by means of delay delarations.11



Also the onept of deadlok has to be understood in two di�erent ways. Forprograms using delay delarations a deadlok situation ours when no atom ina query satis�es the delay delarations (i.e., no atom is seletable), while forinput-onsuming derivations a deadlok ours when no atom in a query isresolvable via an input-onsuming derivation step and the derivation does notfail, i.e., there is some atom in the query whih uni�es with a lause head butthe uni�ation is not input-onsuming.Example 3.2 Consider again the prediate selet de�ned above.� The query selet(X) uni�es with both lause heads but it is not resolv-able via an input-onsuming derivation step. This is a deadlok situationfor input-onsuming programs.� Consider now the delay delarationdelay selet([X| ℄) until nonvar(X).With this delay delaration the query selet([X jXs℄) is not seletableand so it immediately deadloks. However, there is an input-onsumingderivation obtained by unifying the query with the head of the seondlause.In spite of these di�erenes, we believe that in the majority of pratialsituations there is a strit relation between programs using delay delarationsand input-onsuming derivations.Example 3.3 Consider again the program REVERSE of Example 2.6 for revers-ing a listreverse(Xs,Ys)  reverse a(Xs,Ys,[ ℄).reverse a([ ℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs)  reverse a(Xs,Ys,[X|Zs℄).with modesmode reverse(In,Out).mode reverse a(In,Out,In).A natural delay delaration for this program isdelay reverse(X, ) until nonvar(X).delay reverse a(X, , ) until nonvar(X).One an easily get onvined that, for queries of the form reverse(t;X), wheret is any term and X any variable disjoint from t, the above delay delarationsguarantee preisely that the resulting derivations are input-onsuming. Fur-thermore, for the same lass of queries it holds that in any input-onsumingderivation the seleted atom satis�es the above delay delarations.12



The relation between programs using delay delarations and input-onsumingderivations is studied by Smaus in his PhD thesis [14℄. More preisely, Smausproves a result that relates blok delarations and input-onsuming derivations.A blok delaration is a speial ase of delay delaration and it is used to delarethat ertain arguments of an atom must be non-variable when the atom is se-leted for resolution. In Chapter 7 of [14℄, Smaus shows that blok delarationsan be used to ensure that derivations are input-onsuming.In fore of this result and of pratial experiene, in the introdution wehave stated the laim that in most \usual" moded programs using them, delaydelarations are employed preisely for ensuring the input-onsumedness of thederivations. As we have already mentioned, this thesis is also substantiated bythe fat that the onept of input-onsuming resolution is very similar to theseletion mehanism employed in moded at GHC [7℄, and by the arguments in[14℄. Nevertheless, sine this laim is of ruial importane for the relevane ofour results, now that we have formalized the notion of input-onsuming deriva-tion we an add another argument sustaining it.Generally, delay delarations are employed to guarantee that the interpreterwill not use an \inappropriate" lause for resolving an atom (the other, perhapsless prominent, use of delay delarations is to ensure absene of runtime errors,but we do not address this issue in this paper). In pratie, delay delarationsprevent the seletion of an atom until a ertain degree of instantiation is reahed.This degree of instantiation ensures that the atom is uni�able only with theheads of the \appropriate" lauses. In presene of modes, we an reasonablyassume that this degree of instantiation is the one of the input positions, whihare the ones arrying the information.Now, take an atom p(s; t) that it is resolvable with a lause  by means ofan input-onsuming derivation step. Then, for every instane s0 of s, we havethat the atom p(s0; t) is also resolvable with  by means of an input-onsumingderivation step. In other words, no further instantiation of the input positionsof p(s; t) an rule out  as a possible lause for resolving it. Thus  must be oneof the \appropriate" lauses for resolving p(s; t) and we an say that p(s; t) is\suÆiently instantiated' in its input positions to be resolved with . On theother hand, following the same reasoning, if p(s; t) is resolvable with  but notvia an input-onsuming derivation step, then there exists an instane s0 of s,suh that p(s0; t) is not resolvable with . In this ase we an say that p(s; t) isnot instantiated enough to know whether  is one of the \appropriate" lausesfor resolving it.4 Semantis of Input-Consuming ProgramsIn this setion we are going to make the link between input-onsuming programs,well- and niely-moded programs and the S-semantis: We show that the S-semantis of a program is ompositional, orret and fully abstrat also forinput-onsuming programs, provided that the programs are well- and niely-moded and that only niely-moded queries are onsidered.13



We start by demonstrating some important features of well-moded programs.For this, we need additional notations: First, the following notion of renamingfor a term t from [11℄ will be used.De�nition 4.1 A substitution � := fx1=y1; : : : ; xn=yng is alled a renamingfor a term t if Dom(�) � Var(t), y1; : : : ; yn are distint variables, and (Var(t)�fx1; : : : ; xng) \ fy1; : : : ; yng = ;. (Note that fx1; : : : ; xn; y1; : : : ; yng is a set ofdistint variables and � does not introdue variables whih our in t but arenot in the domain of �).Observe that terms s and t are variants i� there exists a renaming � for ssuh that t = s�. Then, we need the following.Notation 4.2 Let Q := p1(s1; t1); : : : ; pn(sn; tn). We de�neVIn�(Q) := n[i=1fxj x 2 Var(si) and x 62 i�1[j=1Var(tj)g:Thus, VIn�(Q) denotes the set of variables ourring in an input position of anatom of Q but not ourring in an output position of an earlier atom. Note alsothat if Q is well-moded then VIn�(Q) = ;.Now we an state the following tehnial result onerning well-moded pro-grams. The proof is in the Appendix.Lemma 4.3 Let P be a well-moded program, Q be a query and Æ := Q ��! Q0be a partial LD-derivation of P [ fQg. If �jVIn�(Q) is a renaming for Q then Æis similar to an input-onsuming partial (LD-) derivation.We an now prove our �rst result onerning well-moded programs. Basi-ally, it states the orretness of the S-semantis for well-moded, input-onsumingprograms. It an be regarded as \one half" of the main result we are going topropose.Proposition 4.4 Let P be a well-moded program, A be an atomi query and� be a substitution.� If there exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0)suh that(i) In(A)� � In(A),(ii) A� � A�,� then there exists an input-onsuming (LD-) derivation Æ := A #�!P�, suhthat A# � A�.
14



Proof. Let A0 2 S(P ) (renamed apart wrt. A) and � be a substitution suhthat the hypotheses are satis�ed. By Theorem 2.8, there exists a suessfulSLD-derivation of P [fAg with .a.s. #0 suh that A#0 � A�. By the SwithingLemma [11℄, there exists a suessful LD-derivation Æ0 of P [fAg with .a.s. #0.From the hypotheses, it follows that #0jIn(A) is a renaming for A. By Lemma 4.3,there exists an input-onsuming suessful derivation Æ := A #�!P� of P [ fAgsuh that Æ and Æ0 are similar. The assertion follows from Lemma 2.3.Unfortunately, the reverse impliation of Proposition 4.4 does not hold ingeneral. However, it holds for a partiular lass of programs and queries: theniely-moded ones. To prove that, we need to reall some properties of niely-moded programs from [13℄.Lemma 4.5 Let the program P and the query Q be niely moded. Let Æ :=Q ��! Q0 be a partial input-onsuming derivation of P [ fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.Note that if Q is niely-moded then x 2 Var(Q) and x 62 Var(Out(Q)) i�x 2 VIn�(Q). Now, we an prove that the S-semantis is fully abstrat forinput-onsuming, niely-moded programs and queries. This an be regarded asthe ounterpart of Proposition 4.4.Proposition 4.6 Let P be a niely-moded program, A be a niely-modedatomi query and � be a substitution.� If there exists an input-onsuming SLD-derivation Æ := A #�!P�, suhthat A# � A�,� then there exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0)suh that(i) In(A)� � In(A),(ii) A� � A�.Proof. By Theorem 2.8, there exist A0 2 S(P ) (renamed apart wrt. A) anda substitution � suh that � = mgu(A;A0) and (ii) holds. Sine Æ is an input-onsuming derivation, it follows by Lemma 4.5 that #jIn(A) is a renaming for A.Hene (i) follows by the hypotheses and (ii).We now put together the piees provided in the previous setions and extendthe results to arbitrary (non-atomi) queries. The following simple result allowsus to generalize results onerning atomi queries.Lemma 4.7 Let the program P be well- and niely-moded and the query Q beniely-moded. Then, there exists a well- and niely-moded program P 0 and aniely-moded atomi query A suh that the following statements are equivalent.15



� There exists an input-onsuming suessful derivation Æ of P [ fQg with.a.s. �.� There exists an input-onsuming suessful derivation Æ0 of P 0 [ fAg with.a.s. �.Proof. Let new be a prediate symbol not ourring in P . Let x be a se-quene of distint variables ontaining preisely VIn�(Q) and y be a sequeneof distint variables ontaining preisely Var(Out(Q)). Consider now the atomA := new(x;y), the lause  := A  Q, and the programP 0 = P [ fg:By onstrution, In(A) = VIn�(Q) and Var(Out(A)) = Var(Out(Q)). It isstraightforward to hek that, by the niely-modedness of Q, both A and  areniely-moded.Moreover, by onstrution, eah variable of  ourring in an input positionof a body atom but not ourring in an output position of an earlier atom be-longs to VIn�(Q), i.e., ours in an input position of the head, and eah variableourring in an output position of a body atom also ours in an output positionof the head. Thus,  is well-moded. The thesis follows easily.We are now ready for the main result of this paper, whih asserts thatthe delarative semantis S(P ) is ompositional and fully abstrat for input-onsuming programs, provided that programs are well- and niely-moded andthat queries are niely-moded.Theorem 4.8 Let P be a well- and niely-moded program, A be a niely-moded query and � be a substitution. The following statements are equivalent.(i) There exists an input-onsuming derivationA #�!P�, suh thatA# � A�.(ii) There exists A0 2 S(P ) (renamed apart wrt. A), and � = mgu(A;A0)suh that(a) �jVIn�(A) is a renaming for A,(b) A� � A�.Proof. It follows immediately from Propositions 4.4, 4.6 and Lemma 4.7.Note that in ase of an atomi query A := A, we might substitute ondition(a) above with the somewhat more attrative ondition(a0) In(A)� � In(A).Note also that, given a well- and niely-moded program P , the above The-orem 4.8 allows us to identify the subset Si(P ) of S(P ), de�ned bySi(P ) = f A0 2 S(P ) j 9A niely-moded an renamed apart wrt. A09� = mgu(A;A0)In(A)� � In(A)g;16



whih fully haraterizes the behavior of P on niely-moded queries. Therefore,given two well- and niely-moded programs P1 and P2, they ompute the sameanswer substitutions for any niely-moded query i� Si(P1) = Si(P2).Let us immediately see some examples. The �rst example demonstrates thatthe syntati restritions used in Theorem 4.8 are neessary.Example 4.9 Consider the following program.p(X,Y)  equal lists(X,Y), list of zeroes(Y).equal lists([ ℄,[ ℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list of zeroes([ ℄).list of zeroes([0|T℄) list of zeroes(T).mode p(In,Out).mode equal lists(In,Out).mode list of zeroes(Out).Note that the �rst lause is not niely-moded sine the sequene of terms �llingin the output positions of the body atoms is not linear. The S-semantis ofthis program restrited to the prediate p ontains all and only all the atomsof the form p(list ; list) where list is a list ontaining only zeroes. Consider nowthe atomi query A := p([X1℄; Y). There exists an input-onsuming derivationstarting in it, namely,p([X1℄; Y) �1=) equal lists([X1℄; Y); list of zeroes(Y) �2=)�2=) equal lists([ ℄; T0); list of zeroes([X1jT0℄) �3=)�3=) list of zeroes([X1℄) �4=) list of zeroes([ ℄) �5=) �with �1=fX=[X1℄g, �2=fH=X1; T=[ ℄; Y=[X1jT0℄g, �3=fT0=[ ℄g, �4=fX1=0; T1=[ ℄g,�5 = �. The omputed answer substitution is � = fX1=0; Y=[0℄g. Nevertheless,there does not exist any atom A0 2 S(P ) (renamed apart wrt. A) suh that Aand A0 unify with a most general uni�er � suh that �jIn(A) is a renaming forA. This is lear from the fat that the atoms belonging to S(P ) are all ground.This shows that if the program is well-moded but not niely-moded then theimpliation (i) ) (ii) in Theorem 4.8 does not hold.Consider now the following program.p(X)  list(Y), equal lists(X,Y).equal lists([ ℄, [ ℄).equal lists([H|T℄,[H|T'℄)  equal lists(T,T').list([ ℄).list([H|T℄) list(T).mode p(In). 17



mode equal lists(In, In).mode list(Out)This program is niely-moded, but not well-moded: In the last lause the vari-able H ourring in the output position of the head does our neither in an out-put position of the body nor in an input position of the head. The S-semantisof this program restrited to the prediate p ontains all and only all the atomsof the form p(list) where list is any list ontaining only distint variables. It iseasy to see that there does not exist any input-onsuming derivation for a queryp(list) with list being a ground list. Indeed, onsider the exeution of the atomA = p([0℄). A all equal lists([0℄,[H℄) is reahed. However, it does not ex-ist any input-onsuming derivation for the atomi query equal lists([0℄,[H℄)with its arguments �lling in both the input positions. Nevertheless, there existsan atom A0 2 S(P ) (renamed apart wrt. A), e.g., A0 = p([X1℄), suh that Aand A0 unify with a most general uni�er � suh that �jIn(A) is a renaming forA (obvious, sine A is ground).This shows that if the program is niely-moded but not well-moded then theimpliation (ii) ) (i) in Theorem 4.8 does not hold.The next example reports two appliations of Theorem 4.8.Example 4.10 Consider the program APPEND of the introdution with themoding append(In,In,Out).� append([X,b℄,Y,Z) has an input-onsuming suessful derivation.In partiular, it has an input-onsuming derivation with .a.s. fZ=[X; bjY℄g.This an be onluded by just looking at S(APPEND), from the fat thatA = append([X1,X2℄,X3,[X1,X2|X3℄)2 S(P ).Note that append([X,b℄,Y,Z) is - in its input position - an instane of A.� append(Y,[X,b℄,Z) has no input-onsuming suessful derivations.This is beause there is no A 2 S(P ) suh that append(Y; [X; b℄; Z) is aninstane of A in the input position. This atually implies that { in preseneof delay delarations { append(Y,[X,b℄,Z)will eventually either deadlokor run into an in�nite derivation; we are going to talk more about this inthe next Setion.Note that the results we have provided hold also in the ase that programs arepermutation well- and niely-moded and queries are permutation niely-moded[22℄, that is programs whih would be well- and niely-moded after a permu-tation of the atoms in the bodies and queries whih would be niely-modedthrough a permutation of their atoms.5 An Appliation: Reasoning about DeadlokIn this setion we onsider again programs employing delay delarations.18



An important onsequene of Theorem 4.8 is that when the delay dela-rations imply that the derivations are input-onsuming (modulo �), then onean determine from the model-theoreti semantis whether a query is bound todeadlok or not.Let us �rst establish some simple notation. In this setion we assume thatprograms are augmented with delay delarations, and we say that a derivationrespets the delay delarations if and only if every seleted atom satis�es theorresponding delay delaration. As we have already stated in the introdution,we say that a derivation deadloks if its last query ontains no seletable atom,i.e., no atom whih satis�es the orresponding delay delarations.Notation 5.1 Let P be a program and A be a query.� We say that P [ fAg is input-onsuming orret i� every SLD-derivationof P [ fAg whih respets the delay delarations is similar to an input-onsuming derivation.� We say that P [ fAg is input-onsuming omplete i� every input-onsumingderivation of P [ fAg respets the delay delarations.� We say that P [ fAg is bound to deadlok if(i) every SLD-derivation of P [ fAg whih respets the delay delara-tions either fails or deadloks, and(ii) there exists at least one non-failing SLD-derivation of P [ fAg.Example 5.2 Consider the program REVERSE of Example 3.3reverse(Xs,Ys)  reverse a(Xs,Ys,[ ℄).reverse a([ ℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs)  reverse a(Xs,Ys,[X|Zs℄).with modesmode reverse(In,Out).mode reverse a(In,Out,In).and delay delarationsdelay reverse(X, ) until nonvar(X).delay reverse a(X, , ) until nonvar(X).REVERSE[ freverse(s,Z)g is input-onsuming orret and omplete pro-vided that Z is a variable disjoint from term s.Example 5.3 Consider now the program APPEND augmented with its delaydelaration of the introdution.� APPEND[ fappend(s,t,Z)g is input-onsuming orret and omplete pro-vided that Z is a variable disjoint from the possibly non-ground terms sand t. 19



� APPEND[ fappend([X,b℄,Y,Z)g has an input-onsuming suessful deriva-tion (see Example 4.10) and is input-onsuming omplete. Then, we anstate that APPEND[ fappend([X,b℄,Y,Z)g is not bound to deadlok.Consider now the niely-moded query append(X,Y,Z). Sine S(APPEND) on-tains instanes of it, by Theorem 2.8, append(X,Y,Z) has at least one suess-ful SLD-derivation. Thus, it does not fail. On the other hand, every atom inS(APPEND) is { in its input positions { a proper instane of append(X,Y,Z). Thusby Theorem 4.8, append(X,Y,Z) has no input-onsuming suessful derivations.Therefore, sine APPEND[ fappend(Y,X,Z)g is input-onsuming orret, we anstate that append(X,Y,Z) either has an in�nite input-onsuming derivation orit is bound to deadlok. This fat an be niely ombined with the fat thatAPPEND is input terminating [13℄, i.e., all its input-onsuming derivations start-ing in a niely-moded query are �nite. In [13℄ we provided onditions whihguaranteed that a program is input terminating; these onditions easily allowone to show that APPEND is input-terminating. Beause of this, we an onludethat� APPEND[ fappend(Y,X,Z)g is bound to deadlok.By simply formalizing this reasoning, we obtain the following result.Theorem 5.4 Let P be a well- and niely-moded program, and A be niely-moded query. If1. 9 B 2 S(P ), suh that A uni�es with B,2. 8 B 2 S(P ), if � = mgu(A;B) then �jVIn�(A) is not a renaming for A,3. P [ fAg is input-onsuming-orret,then A either has an in�nite SLD-derivation respeting the delay delarationsor it is bound to deadlok.If in addition P is input-terminating then A is bound to deadlok.Proof. By 1. and Theorem 2.8, there exists at least one suessful SLD-derivation of P [ fAg. By 2. and Theorem 4.8 there is no suessful input-onsuming derivation of P [ fAg. Thus, by 3., there is no suessful SLD-derivation of P [ fAg whih respets the delay delarations. Hene, A eitherhas an in�nite SLD-derivation respeting the delay delarations or it is boundto deadlok.Moreover, if P is input-terminating then there annot exist an in�nite SLD-derivation respeting the delay delarations for P [ fAg; hene A must bebound to deadlok.Let us see more examples.Example 5.5 Let us ontinue to disuss the program APPEND above. UsingTheorem 5.4, we an state that 20



� APPEND[ fappend(Y,[X,b℄,Z)g either has an in�nite derivation or it isbound to deadlok.Sine APPEND is input terminating [13℄, we an also say that� APPEND[ fappend(Y,[X,b℄,Z)g is bound to deadlok.Example 5.6 Let us now onsider program 15.3 from [23℄: QUICKSORT using aform of di�erene-lists.% quiksort(Xs,Ys)  Ys is an ordered permutation of Xs.quiksort(Xs,Ys)  quiksort dl(Xs,Ys,[℄).quiksort dl([X|Xs℄,Ys,Zs)  partition(Xs,X,Littles,Bigs),quiksort dl(Littles,Ys,[X|Ys1℄), % atom a1quiksort dl(Bigs,Ys1,Zs). % atom a2quiksort dl([℄,Xs,Xs).partition([X|Xs℄,Y,[X|Ls℄,Bs)  X =< Y,partition(Xs,Y,Ls,Bs).partition([X|Xs℄,Y,Ls,[X|Bs℄)  X > Y,partition(Xs,Y,Ls,Bs).partition([℄,Y,[℄,[℄).with the modesmode quiksort(In, Out).mode quiksort dl(In, Out, In).mode partition(In, In, Out, Out).mode =<(In, In).mode >(In, In).This program is permutation well- and niely-moded (it beomes well-modedby permuting atoms a1 and a2 in the body of the seond lause). When usedin ombination with dynami sheduling, the standard delay delarations for itare the following ones:delay quiksort(Xs, ) until nonvar(Xs)delay quiksort dl(Xs, , ) until nonvar(Xs)delay partition(Xs, , , ) until nonvar(Xs)delay =<(X,Y) until ground(X) and ground(Y)delay >(X,Y) until ground(X) and ground(Y)While the �rst three delarations are meant to avoid nontermination and toinrease eÆieny, the last two are needed to avoid runtime errors: in fat om-parison prediates have to be alled with both arguments ground, otherwise anexeption ours. One an naturally assume that the semantis of the built-ins > and =< is given by the set of ground atoms f>(a,b) j a larger than bgtogether with f=<(a,b) j a smaller or equal than bg. The fat that this seman-tis is ground and that both arguments of both prediates are input reets that21



these prediates have to be alled with ground arguments. Under these assump-tions, the S-semantis of the program restrited to the prediates quiksortand quiksort dl, ontains all and only all the atoms of the form� quiksort(s,t), where s is a ground list and t is an ordered permutationof s;� quiksort dl(s,t,u), where s is a ground list and t is an ordered per-mutation of s with u appended to t.Observe that, if the terms �lling in the input positions of an atom are variabledisjoint from those �lling in the output positions of the same atom, then theinput annot beome instantiated as a \side e�et" of the instantiation of theoutput. Hene, we an prove that� if s and t are variable disjoint terms then QUICKSORT[ fquiksort(s; t)gis input-onsuming orret;� if t is variable disjoint from s and u then QUICKSORT[ fquiksort dl(s; t; u)gis input-onsuming orret.By applying Theorem 4.8 it follows that� the query quiksort(s,t) is not bound to deadlok provided that s is alist of ground terms;� quiksort dl(s,X,t) is not bound to deadlok provided that s is a listof ground terms and X is a variable disjoint from t.One might wonder why in order to talk about deadlok we went bak toprograms using delay delarations. The ruial point here lies in the di�er-ene between resolvability - via an input-onsuming derivation step - (used ininput-onsuming programs) and seletability (used in programs using delay de-larations). When resolvability does not redue to seletability, we annot talkabout (the usual de�nition of) deadloking derivation.Consider the following program, where all atom positions are moded as input.p(X)  q(a).p(a).q(b).There are no delay delarations with respet to whih this program is input-onsuming omplete. In fat, there are two input-onsuming derivations startingin p(X): one fails while the other one deadloks. This does not orrespond tothe usual notion of deadlok: an atom annot simultaneously be seletable anddeadloked. 22



6 Conluding RemarksWe have shown that { under some syntati restritions { the S-semantis re-ets the operational semantis also when programs are input-onsuming. TheS-semantis is a denotational semantis whih enjoys a model-theoretial read-ing.The relevane of the results is due to the fat that input-onsuming programsoften allow to model the behavior of programs employing delay delarations;hene for a large number of programs employing dynami sheduling there existsa delarative semantis whih is equivalent to the operational one.A related work is the one of Apt and Luitjes [5℄. The ruial di�erenebetween this approah and our is that in [5℄ onditions whih ensure that thequeries are deadlok-free are employed. Under these irumstanes the equiv-alene between the operational and the Herbrand semantis follows. On theother hand, the lass of queries we onsider here (the niely-moded ones) in-ludes many whih would \deadlok" (e.g., append(X,Y,Z)). In many aseswe apture this behavior by using Theorem 4.8 whih an tell us if a query is\suÆiently instantiated" to yield a suess or if it is bound to deadlok.Conerning the restritiveness of the syntati onepts we use here (well-and niely-moded programs and queries) we want to mention that [24, 13℄ bothontain mini-surveys of programs indiating whether they are well- and niely-moded or not. From them, it appears that most \usual" programs satisfy bothde�nitions.
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A AppendixIn this appendix we report the proof of Lemma 4.3. Let us �rst introdue somepreliminaries.De�nition A.1 Let � = fx1=y1; : : : ; xn=yng be a renaming for a term t. Wede�ne  � as the pure variable 1-1 substitution fy1=x1; : : : ; yn=xng.Observe that:� The substitution fx1=y1; : : : ; xn=yn; y1=x1; : : : ; yn=xng is a renaming.� If � is a renaming for a term t then  � is a renaming for the term t�.� (� � )jDom(�) = �.The following properties hold.Lemma A.2 Let Q be a query.(i) If Q is an atomi query then VIn�(Q) = Var(In(Q)).(ii) For any pre�x Q0 of Q, VIn�(Q0) � VIn�(Q).(iii) For any substitution �, VIn�(Q�) � Var(VIn�(Q)�).(iv) For any substitution �, Var(Out(Q�)) = Var(Out(Q)�).We an now prove Lemma 4.3.Lemma 4.3 Let P be a well-moded program, Q be a query and Æ := Q ��! Q0be a partial LD-derivation of P [ fQg. If �jVIn�(Q) is a renaming for Q then Æis similar to an input-onsuming partial (LD-) derivation.Proof. We �rst state the following fats.Claim 1 Let � be a substitution, S be a set of variables and t be a term suhthat �jS is a renaming for t. Suppose that � := �1�2. Then, �1jS is a renamingfor t.Claim 2 Let � be a substitution, S be a set of variables and t be a term suhthat �jS is a renaming for t. Suppose that � := �1�2. Let S0 = fx 2 Sj x 62Dom(�1)g. Then, �2jRan(�1jS)[S0 is a renaming for t�1.The proof proeeds by indution on len(Æ).Base Case. Let len(Æ) = 0. In this ase Q = Q0 and the result followstrivially.Indution step. Let len(Æ) > 0. Suppose that Q := p(s; t);C andÆ := p(s; t);C �1=) (B;C)�1 �2�! Q024



where p(s; t) is the seleted atom of Q,  := p(u;v)  B is the input lauseused in the �rst derivation step, �1 is a relevant mgu of p(s; t) and p(u;v) and� = �1�2.By the Lemma's hypotheses and Claim 1, it follows that �1jVIn�(Q) is a re-naming for Q. Observe thatVar(s) = Var(In(p(s; t)))= VIn�(p(s; t)) by Lemma A.2 (i)� VIn�(Q) by Lemma A.2 (ii):By relevane of �1, �1jVIn�(Q) = �1js. Let �1js = fx1=y1; : : : ; xn=yng. Notethat fx1; : : : ; xn; y1; : : : ; yng is a set of distint variables. Consider the renaming� = fx1=y1; : : : ; xn=yn; y1=x1; : : : ; yn=xng. Sine Var(�) � Var(�1), the substi-tution �1� is a relevant mgu of p(s; t) and p(u;v) (see [11℄, Lemma 2.23).It is easy to see that �1� = �1( ��1js). Let �01 = �1( ��1js). We have that s�01 =s�1( ��1js) = s. Therefore,(1) p(s; t);C �01=) (B;C)�01is an input-onsuming LD-derivation step.Sine �1js is a renaming for Q and, by standardization apart, Var(B) \Var(Q) = ;, we have that �1js is a renaming for (B;C). Hene, ( �1)jS where Sis the set of variables fxj x 2 Var((B;C)�1) and x 2 Ran(�1js)g, is a renamingfor (B;C)�1. Now observe that (B;C)�01 = (B;C)�1( ��1js) = (B;C)�1( �1)jS .Therefore, (B;C)�01 is a variant of (B;C)�1. By Lemma 2.2, there exists apartial LD-derivation (B;C)�01 �02�! Q00 similar to (B;C)�1 �2�! Q0. It followsthat(2) p(s; t);C �01=) (B;C)�01 �02�! Q00is an LD-derivation of P [ fQg that is similar to Æ.Let �0 = �01�02. By Lemma 2.3, Q� and Q�0 are variants of eah other.Consider now the set S0 = VIn�((B;C)�01). We prove that �02jS0 is a renam-ing for (B;C)�01. Let x 2 S0. There are two ases.(a) x 2 VIn�(B�01). By Lemma A.2 (iii), VIn�(B�01) � Var(VIn�(B)�01).Then, there exists z 2 VIn�(B) suh that x 2 Var(z�01). By well-modednessof  := p(u;v)  B, z 2 Var(u). Sine u�01 = s�01, we have that there existsy 2 Var(s), i.e., y 2 VIn�(Q), suh that x 2 Var(y�01).(b) x 2 VIn�(C�01) and x 62 Var(Out(B�01)). We distinguish two ases.(b1) x 2 Var(t�01). From the fat that t�01 = v�01, we have that x 2 Var(v�01),i.e., there exists z 2 Var(v) suh that x 2 Var(z�01). Sine z ours in an output25



position of the head of  := p(u;v)  B and  is well-moded, we have thateither z 2 Var(Out(B)) or z 2 Var(u). Let us distinguish these two ases.(b11) z 2 Var(Out(B)). In this ase x 2 Var(z�01) � Var(Out(B�01)). How-ever, this ontradits the hypothesis that x 62 Var(Out(B�01)).(b12) z 2 Var(u). In this ase, sine u�01 = s�01, we have that x 2 Var(s�01).Hene, there exists y 2 Var(s), i.e., y 2 VIn�(Q), suh that x 2 Var(y�01).(b2) x 62 Var(t�01). By Lemma A.2 (iii), VIn�(C�01) � Var(VIn�(C)�01).Thus, there exists y 2 VIn�(C) suh that x 2 Var(y�01). Note that y 62 Var(t),otherwise we would have x 2 Var(t�01) ontraditing the hypothesis. Hene,y 2 VIn�(Q).We have proved that(3) for all x 2 S0, there exists y 2 VIn�(Q) suh that x 2 Var(y�01).From the fat that Q� and Q�0 are variants of eah other and �jVIn�(Q) is arenaming for Q, it follows that also �0jVIn�(Q) is a renaming for Q.Let S00 = fx 2 VIn�(Q)j x 62 Dom(�01)g. By Claim 2, �02jRan(�01jVIn�(Q))[S00 is arenaming for Q�01. By (3), S0 � Ran(�01jVIn�(Q))[S00. Hene, by standardizationapart, �02jS0 is a renaming for (B;C)�01. By the indution hypothesis, there existsa partial LD-derivation(4) (B;C)�01 �002�! Q000whih is similar to (B;C)�01 �02�! Q00 and it is input-onsuming.Hene, by (1), (2) and (4),Æ0 := p(s; t);C �01=) (B;C)�01 �002�! Q000is an input-onsuming partial LD-derivation of P [ fQg suh that Æ and Æ0 aresimilar.
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