
Semantis of Input-Consuming Logi ProgramsAnnalisa Bossi1, Sandro Etalle2, and Sabina Rossi11 Dipartimento di Informatia, Universit�a di Venezia, Italyfbossi,srossig�dsi.unive.it2 Universiteit Maastriht, The Netherlandsetalle�s.unimaas.nlAbstrat. Input-onsuming programs are logi programs with an ad-ditional restrition on the seletability (atually, on the resolvability)of atoms. This lass of programs arguably allows to model logi pro-grams employing a dynami seletion rule and onstruts suh as delaydelarations: as shown also in [5℄, a large number of them are atuallyinput-onsuming.In this paper we show that { under some syntati restritions { theS-semantis of a program is orret and fully abstrat also for input-onsuming programs. This allows us to onlude that for a large lassof programs employing delay delarations there exists a model-theoretisemantis whih is equivalent to the operational one.Keywords: logi programming, dynami sheduling, semantis.1 IntrodutionMost implementations of logi programming languages allow the possibility ofemploying a dynami seletion rule: a seletion rule whih is not bound to the�xed left-to-right order of PROLOG. While this allows for more exibility, it aneasily yield to nontermination or to an ineÆient omputation. For instane, ifwe onsider the standard program APPENDapp([℄,Ys,Ys).app([H|Xs℄,Ys,[H|Zs℄) app(Xs,Ys,Zs).we have that the query q1: app([1,2℄,[3,4℄,Xs), app(Xs,[5,6℄,Ys).mighteasily loop in�nitely (one just has to keep resolving the rightmost atom togetherwith the seond lause). To avoid this, most implementations use onstruts suhas delay delarations. In the ase of APPEND when used for onatenating twolists the natural delay delaration isd1: delay app(Xs, ,) until nonvar(Xs).This statement forbids the seletion of an atom of the form app(s,t,u) unless sis a non-variable term, whih is preisely what we need in order to run the queryq1 without overhead. Delay delarations, advoated by van Emden and de Lu-ena [16℄ and introdued expliitly in logi programming by Naish [13℄, providethe programmer with a better ontrol over the omputation and allow one to

improve the eÆieny of programs (wrt unrestrited seletion rule), to preventrun-time errors, to enfore termination and to express some degree of synhro-nization among di�erent proesses (i.e., atoms) in a program, whih allows tomodel parallelism (oroutining).This extra ontrol omes at a prie: Many ruial results of logi programmingdo not hold in this extended setting. In partiular, the equivalene between thedelarative and operational semantis does not apply any longer. For instane,while the Herbrand semantis of APPEND is non-empty, the query app(X,Y,Z)has no suessful derivation, as the omputation starting in it deadloks1.In this paper we address the problem of providing a model-theoreti seman-tis to programs using dynami sheduling. In order to do so, we need a delar-ative way of modeling onstrut suh as delay delarations: for this we restritour attention to input-onsuming programs. The de�nition of input-onsumingprogram employs the onept of mode: We assume that programs are moded,that is, that the positions of eah atom are partitioned into input and outputones. Then, input-onsuming derivation steps are preisely those in whih theinput arguments of the seleted atom will not be instantiated by the uni�a-tion with the lause's head. For example, the standard mode for the programAPPEND when used for onatenating two lists is app(In,In,Out). Notie thatin this ase, for queries of the form app(ts,us,X) (X is variable disjoint fromts and us, whih an be any possibly non-ground terms) the delay delarationd1 guarantees preisely that if an atom is seletable and resolvable, then it isso via an input-onsuming derivation step; onversely, in every input-onsumingderivation the resolved atom satis�es the d1, thus it would have been seletablealso in presene of the delay delaration. This reasoning applies for a large lassof queries (among whih q1), and is atually not a oinidene: In the sequelwe argue that in most situations delay delarations are employed preisely forensuring that the derivation is input-onsuming (modulo renaming, i.e. modulo�, as explained later). Beause of this, we are interested in providing a model-theoreti semantis for input-onsuming programs. Clearly, most diÆulties onehas in doing this for programs with delay delarations apply to input-onsumingprograms as well. Intuitively speaking, the ruial problem here lies in the fatthat omputations may deadlok: i.e., reah a state in whih no atom is resolv-able (e.g., the query app(X,Y,Z)). Beause of this the operational semantis isorret but not omplete wrt the delarative one.We prove that, if a program is well- and niely-moded, then, for niely-modedqueries the operational semantis provided by the input-onsuming resolutionrule is orret and omplete wrt the S-semantis [11℄ for logi programs. TheS-semantis is a denotational semantis whih { for programs without delay de-larations { intuitively orresponds to the set of answer substitutions to the mostgeneral atomi queries, i.e., queries of the form p(x1; : : : ; xn) where x1; : : : ; xnare distint variables. Moreover, the S-semantis is ompositional, it enjoys a1 A deadlok ours when the urrent query ontains no atom whih an be seletedfor resolution.

model-theoreti reading, and it orresponds to the least �xpoint of a ontinuousoperator.Summarizing, we show that the S-semantis of a program is ompositional,orret and fully abstrat also for input-onsuming programs, provided that theprograms onsidered are well- and niely-moded, and that the queries are niely-moded. It is important to notie that the queries we are onsidering don't haveto be well-moded. Beause of this, they might also deadlok. For instane, thequery app(X,Y,Z) is niely-moded, thus our results are appliable to it. One ofthe interesting aspets of the results we will present is that in some situationsone an determine, purely from the delarative semantis of a program, that aquery does (or does not) yield to deadlok.This paper is organized as follows. The next setion ontains the preliminarynotations and de�nitions. In the one whih follows we introdue the S-semantistogether with the key onepts of moded and of input-onsuming program. Se-tion 4 ontains the main results, and some examples of their appliations. Setion5 onludes the paper. Some proofs are omitted for spae reasons, and an befound in [7℄.2 PreliminariesThe reader is assumed to be familiar with the terminology and the basi resultsof the semantis of logi programs [1, 2, 12℄. Here we adopt the notation of [2℄ inthe fat that we use boldfae haraters to denote sequenes of objets; thereforet denotes a sequene of terms while B is a query (notie that { following [2℄ {queries are simply onjuntions of atoms, possibly empty). We denote atoms byA;B;H; : : : ; queries by Q;A;B;C; : : : ; lauses by ; d; : : : ; and programs by P .For any syntati objet o, we denote by Var(o) the set of variables ourringin o. We also say that o is linear if every variable ours in it at most one.Given a substitution � = fx1=t1; :::; xn=tng we say that fx1; : : : ; xng is its domain(denoted by Dom(�)) and that Var(ft1; :::; tng) is its range (denoted by Ran(�)).Further, we denote by Var(�) = Dom(�) [Ran(�). If ft1; :::; tng onsists ofvariables then � is alled a pure variable substitution. If, in addition, t1; :::; tn isa permutation of x1; :::; xn then we say that � is a renaming. The ompositionof substitutions is denoted by juxtaposition (��(X) = �(�(X))). We say that aterm t is an instane of t0 i� for some �, t = t0�, further t is alled a variant oft0, written t � t0 i� t and t0 are instanes of eah other. A substitution � is auni�er of terms t and t0 i� t� = t0�. We denote by mgu(t; t0) any most generaluni�er (mgu, in short) of t and t0. An mgu � of terms t and t0 is alled relevant i�Var(�) � Var(t)[Var (t0). The de�nitions above are extended to other syntatiobjets in the obvious way.Computations are sequenes of derivation steps. The non-empty query q :A; B;C and a lause : H B (renamed apart wrt q) yield the resolvent(A;B;C)�, provided that � = mgu(B;H). A derivation step is denoted byA; B;C �=)P; (A;B;C)�. is alled its input lause, and B is alled theseleted atom of q. A derivation is obtained by iterating derivation steps. A

maximal sequene Æ := Q0 �1=)P;1 Q1 �2=)P;2 � � �Qn �n+1=)P;n+1 Qn+1 � � � ofderivation steps is alled an SLD derivation of P [fQ0g provided that for everystep the standardization apart ondition holds, i.e., the input lause employed ateah step is variable disjoint from the initial query Q0 and from the substitutionsand the input lauses used at earlier steps. If the program P is lear from theontext and the lauses 1; : : : ; n+1; : : : are irrelevant, then we drop the refereneto them. An SLD derivation in whih at eah step the leftmost atom is resolvedis alled a LD derivation. Derivations an be �nite or in�nite. If Æ := Q0 �1=)P;1� � � �n=)P;n Qn is a �nite pre�x of a derivation, also denoted Æ := Q0 ��! Qn with� = �1 � � � �n, we say that Æ is a partial derivation of P [fQ0g. If Æ is maximaland ends with the empty query then the restrition of � to the variables of Qis alled its omputed answer substitution (.a.s., for short). The length of a(partial) derivation Æ, denoted by len(Æ), is the number of derivation steps in Æ.We reall the notion of similar SLD derivations and some related properties.De�nition 1 (Similar Derivations). We say that two SLD derivations Æ andÆ0 are similar (Æ � Æ0) if (i) their initial queries are variants of eah other; (ii)they have the same length; (iii) for every derivation step, atoms in the samepositions are seleted and the input lauses employed are variants of eah other.Lemma 2. Let Æ := Q1 ��!Q2 be a partial SLD derivation of P [fQ1g and Q01be a variant of Q1. Then, there exists a partial SLD derivation Æ0 := Q01 �0�!Q02of P [fQ01g suh that Æ and Æ0 are similar.Lemma 3. Consider two similar partial SLD derivations Q ��!Q0 and Q �0�!Q00.Then Q� and Q�0 are variants of eah other.3 Basi De�nitionsIn this setion we introdue the basi de�nitions we need: The ones of input-onsuming derivations and of the S-semantis. Then we introdue the oneptsof well- and niely-moded programs.Input-Consuming Derivations We start by realling the notion of mode,whih is a funtion that labels as input or output the positions of eah prediatein order to indiate how the arguments of a prediate should be used.De�nition 4 (Mode). Consider an n-ary prediate symbol p. By a mode forp we mean a funtion mp from f1; : : : ; ng to fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) positionof p (with respet to mp). We assume that eah prediate symbol has a uniquemode assoiated to it; multiple modes may be obtained by simply renaming theprediates. We denote by In(Q) (resp. Out(Q)) the sequene of terms �llingin the input (resp. output) positions of Q. Moreover, when writing an atom asp(s; t), we are indiating with s the sequene of terms �lling in its input positions

and with t the sequene of terms �lling in its output positions. The notion ofinput-onsuming derivation was introdued in [14℄ and is de�ned as follows.De�nition 5 (Input-Consuming).{ A derivation step A; B;C �=) (A;B;C)� is alled input-onsuming i�In(B)� = In(B).{ A derivation is alled input-onsuming i� all its derivation steps are input-onsuming.Thus, a derivation step is input onsuming if the orresponding mgu doesnot a�et the input positions of the seleted atom. Clearly, beause of this ad-ditional restrition, there exist queries in whih no atom is resolvable via aninput-onsuming derivation step. In this ase we say that the query suspends.Example 6. Consider the following program REVERSE using an aumulator.reverse(Xs,Ys) reverse a(Xs,Ys,[℄).reverse a([℄,Ys,Ys).reverse a([X|Xs℄,Ys,Zs) reverse a(Xs,Ys,[X|Zs℄).When used for reversing a list, the natural mode for this program is2 the follow-ing one: reverse(In,Out), reverse a(In,Out,In). Consider now the queryreverse([X1,X2℄,Zs). The following derivation is input-onsuming.reverse([X1,X2℄,Zs)) reverse a([X1,X2℄,Zs,[℄))) reverse a([X2℄,Zs,[X1℄)) reverse a([℄,Zs,[X2,X1℄)) �As usual,� denotes the empty query. Notie also that a natural delay delarationfor this program would bedelay reverse(X,) until nonvar(X).delay reverse a(X, ,) until nonvar(X).Now, it is easy to see that for queries of the form reverse(t,X), where t isany term and X any variable disjoint from t, the above delay delarations guar-antee preisely that the resulting derivations are input-onsuming (modulo �).Furthermore, for the same lass of queries it holds that in any input-onsumingderivation the seleted atom satis�es the above delay delarations. utDelay delarations vs. input-onsuming derivations As suggested in theabove example, and stated in the introdution, we believe that the onept ofinput-onsuming program allows one to model programs employing delay de-larations in a nie way: we laim that in most programs delay delarations areused to enfore that the derivations are input-onsuming (modulo �). We haveaddressed this topi already in [5℄. We now borrow a ouple of arguments fromit, and extend them.2 The other possible modes are reverse(Out,In) (whih is symmetri and equivalentto the above one) and reverse(In,In) whih might be used for heking if a list isa palindrome.

Generally, delay delarations are employed to guarantee that the interpreterwill not use an \inappropriate" lause for resolving an atom (the other, perhapsless prominent use of delay delarations is to ensure absene of runtime errors, wedon't address this issue in this paper). In fat, if the interpreter always seletedthe appropriate lause, by the independene from the seletion rule one wouldnot have to worry about the order of the seletion of the atoms in the query.In pratie, delay delarations prevent the seletion of an atom until a ertaindegree of instantiation is reahed. This degree of instantiation ensures that theatom is uni�able only with the heads of the \appropriate" lauses. In presene ofmodes, we an reasonably assume that this degree of instantiation is the one ofthe input positions. Now, take an atom p(s; t), that it is resolvable with a lause by means of an input-onsuming derivation step. Then, for every instane s0of s, we have that the atom p(s0; t) is as well resolvable with by means ofan input-onsuming derivation step. Thus, no further instantiation of the inputpositions of p(s; t) an rule out as a possible lause for resolving it, and mustthen be one of the \appropriate" lauses for resolving p(s; t) and we an say thatp(s; t) is \suÆiently instantiated" in its input positions to be resolved with .On the other hand, following the same reasoning, if p(s; t) is resolvable with but not via an input-onsuming derivation step, then there exists an instanes0 of s, suh that p(s0; t) is not resolvable with . In this ase we an say thatp(s; t) is not instantiated enough to know whether is one of the \appropriate"lauses for resolving it.We onlude this setion with a result stating that also when onsideringinput-onsuming derivations, it is not restritive to assume that all mgu's usedin a derivation are relevant. The proof an be found in [7℄.Lemma 7. Let p(s; t) and p(u;v) be two atoms. If there exists an mgu � ofp(s; t) and p(u;v) suh that s� = s then there exists a relevant mgu # of p(s; t)and p(u;v) suh that s# = s.From now on, we assume that all mgu's used in the input-onsuming deriva-tion steps are relevant.The S-semantis The aim of the S-semantis approah (see [8℄) is modelingthe observable behaviors for a variety of logi languages. The observable weonsider here is the omputed answer substitutions. The semantis is de�ned asfollows:S(P) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distint variables andp(x1; : : : ; xn) ��!P � is an SLD derivationg:This semantis enjoys all the valuable properties of the least Herbrand model.Tehnially, the ruial di�erene is that in this setting an interpretation mightontain non-ground atoms. To present the main results on the S-semantis weneed to introdue two further onepts: Let P be a program, and I be a set ofatoms. The immediate onsequene operator for the S-semantis is de�ned as:TSP (I) = f H� j 9 H B 2 P9 C 2 I; renamed apart3 wrt H;B� = mgu(B;C) g:

Moreover, a set of atoms I is alled an S-model of P if TSP (I) � I . Falashi etal. [11℄ showed that TSP is ontinuous on the lattie of term interpretations, thatis sets of possibly non-ground atoms, with the subset-ordering. They proved thefollowing:{ S(P) = least S-model of P = TSP " !.Therefore, the S-semantis enjoys a delarative interpretation and a bottom-up onstrution, just like the Herbrand one. In addition, we have that the S-semantis reets the observable behavior in terms of omputed answer substi-tutions, as shown by the following well-known result.Theorem 8. [11℄ Let P be a program, A be a query, and � be a substitution.The following statements are equivalent.{ There exists an SLD derivation A #�!P�, where A# � A�.{ There exists A0 2 S(P) (renamed apart wrt A), suh that � = mgu(A;A0)and A� � A�.Let us see this semantis applied to the programs so far enountered.S(APPEND) = f app([℄,X,X),app([X1℄,X,[X1|X℄),app([X1,X2℄,X,[X1,X2|X℄), : : : g.S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a([℄,X,X),reverse a([X1℄,X,[X1|X℄),reverse a([X1,X2℄,X,[X2,X1|X℄), : : : g.Well and Niely-Moded Programs Even in presene of modes, the S-semantis does not reet the operational behavior of input-onsuming programs(and thus of programs employing delay delarations). In fat, if we extend APPENDby adding to it the lause q app(X,Y,Z). we have that q belongs to the se-mantis but the query q will not sueed (it suspends). In order to guaranteethat the semantis is fully abstrat (wrt the omputed answer substitutions)we need to restrit the lass of allowed programs and queries. To this end weintrodue the onepts of well-moded [10℄ and of niely-moded programs.De�nition 9 (Well-Moded).{ A query p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for all i 2 [1; n℄Var(si) � i�1[j=1Var(tj):3 Here and in the sequel, when we write \C 2 I, renamed apart wrt some expressione", we naturally mean that I ontains a set of atoms C01; : : : ; C0n, and that C is arenaming of C01; : : : ; C0n suh that C shares no variable with e and that two distintatoms of C share no variables with eah other.

{ A lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for alli 2 [1; n+ 1℄ Var(si) � i�1[j=0Var(tj):{ A program is well-moded if all of its lauses are well-moded.Thus a query is well-moded if every variable ourring in an input positionof an atom ours in an output position of an earlier atom in the query. A lauseis well-moded if (1) every variable ourring in an input position of a body atomours either in an input position of the head, or in an output position of anearlier body atom; (2) every variable ourring in an output position of the headours in an input position of the head, or in an output position of a body atom.The onept of niely-moded programs was �rst introdued by Chadha andPlaisted [9℄.De�nition 10 (Niely-Moded).{ A query p1(s1; t1); : : : ; pn(sn; tn) is alled niely-moded if t1; : : : ; tn is alinear sequene of terms and for all i 2 [1; n℄Var(si) \ n[j=iVar(tj) = ;:{ A lause p(s0; t0) p1(s1; t1); : : : ; pn(sn; tn) is niely-moded if its body isniely-moded and Var(s0) \ n[j=1Var(tj) = ;:{ A program P is niely-moded if all of its lauses are niely-moded.Note that an atomi query p(s; t) is niely-moded if and only if t is linear andVar(s) \ Var(t) = ;.Example 11. Programs APPEND and REVERSE are both well- and niely-moded.Furthermore, Consider now the following program PALINDROMEpalindrome(Xs) reverse(Xs,Xs).Together with REVERSE. With the mode palindrome(In), this program is well-moded but not niely-moded (Xs ours both in an input and in an outputposition of the same body atom). Nevertheless, it beomes both well-modedand niely-moded if the adopted modes of REVERSE are the following ones:reverse(In,In), reverse a(In,In,In). ut

4 Semantis of Input-Consuming ProgramsIn this setion we are going to make the link between input-onsuming program-s, well- and niely-moded programs and the S-semantis: We show that theS-semantis of a program is ompositional, orret and fully abstrat also forinput-onsuming programs, provided that the programs are well- and niely-moded and that only niely-moded queries are onsidered.Properties of Well-Moded Programs We start by demonstrating some im-portant features of well-moded programs. For this, we need additional notations:First, the following notion of renaming for a term t from [2℄ will be used.De�nition 12. A substitution � := fx1=y1; : : : ; xn=yng is alled a renaming fora term t if Dom(�) � Var(t), y1; : : : ; yn are di�erent variables, and (Var(t) �fx1; : : : ; xng)\ fy1; : : : ; yng = ; (� does not introdue variables whih our in tbut are not in the domain of �).Observe that terms s and t are variants i� there exists a renaming � for s suhthat t = s�. Then, we need the following: Let Q := p1(s1; t1); : : : ; pn(sn; tn). Wede�ne{ VIn�(Q) = Sni=1fxj x 2 Var(si) and x 62 Si�1j=1 Var(tj)gThus, VIn�(Q) denotes the set of variables ourring in an input position of anatom of Q but not ourring in an output position of an earlier atom. Note alsothat if Q is well-moded then VIn�(Q) = ;.We now need the following tehnial result onerning well-moded programs.Beause of lak of spae, the proof is omitted, and an be found in [7℄.Lemma 13. Let P be a well-moded program, Q be a query and Æ := Q ��! Q0be a partial LD derivation of P [fQg. If �jVIn�(Q) is a renaming for Q then Æis similar to an input-onsuming partial (LD) derivation.We an now prove our ruial result onerning well-moded programs. Basi-ally, it states the orretness of the S-semantis for well-moded, input-onsumingprograms. This an be regarded as \one half" of the main result we are going topropose.Proposition 14. Let P be a well-moded program, A be an atomi query and �be a substitution.{ If there exists A0 2 S(P) (renamed apart wrt A), and � = mgu(A;A0) suhthat(i) In(A)� � In(A),(ii) A� � A�,{ then there exists an input-onsuming (LD) derivation Æ := A #�!P�, suhthat A# � A�.

Proof. Let A0 2 S(P) (renamed apart wrt A) and � be suh that the hypothesisare satis�ed. By Theorem 8, there exists a suessful SLD derivation of P [fAgwith .a.s. #0 suh that A#0 � A�. By the Swithing Lemma [2℄, there exists asuessful LD derivation Æ0 of P [fAg with .a.s. #0. From the hypothesis, itfollows that #0jIn(A) is a renaming for A. By Lemma 13, there exists an input-onsuming derivation A #�!P� similar to Æ0. The thesis follows by Lemma 3. utProperties of Niely-Moded Programs Now, we need to establish someproperties of niely-moded programs. First, we reall the following from [5, 6℄.Lemma 15. Let the program P and the query Q be niely moded. Let Æ :=Q ��! Q0 be a partial input-onsuming derivation of P [fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.Note that if Q is niely-moded then x 2 Var(Q) and x 62 Var(Out(Q))i� x 2 VIn�(Q). Now, we an prove that the S-semantis is fully abstrat forinput-onsuming, niely-moded programs and queries. This an be regarded asthe ounterpart of Proposition 14.Proposition 16. Let P be a niely-moded program, A be a niely-moded atomiquery and � be a substitution.{ If there exists an input-onsuming SLD derivation Æ := A #�!P�, suh thatA# � A�,{ then there exists A0 2 S(P) (renamed apart wrt A), and � = mgu(A;A0)suh that(i) In(A)� � In(A),(ii) A� � A�.Proof. By Theorem 8, there exist A0 2 S(P) (renamed apart wrt A) and asubstitution � suh that � = mgu(A;A0) and (ii) holds. Sine Æ is an input-onsuming derivation, by Lemma 15, it follows that #jIn(A) is a renaming for A.Hene (i) follows by the hypothesis and (ii). utSemantis of Input-Consuming Derivations We now put together theabove propositions and extend them ompositionally to arbitrary (non-atomi)queries. For this, we need the the following simple result.Lemma 17. Let the program P be well and niely-moded and the query Q beniely-moded. Then, there exists a well- and niely-moded program P 0 and aniely-moded atomi query A suh that the following statements are equivalent.{ There exists an input-onsuming suessful derivation Æ of P [fQg with.a.s. �.{ There exists an input-onsuming suessful derivation Æ0 of P 0 [fAg with.a.s. �.

Proof. (sketh). This is done in a straightforward way by letting P 0 be the pro-gram P [f : new(x;y) Qg where x = VIn�(Q), y = Var(Out(Q)), new isa fresh prediate symbol and A = new(x;y). utWe are now ready for the main result of this paper, whih asserts thatthe delarative semantis S(P) is ompositional and fully abstrat for input-onsuming programs, provided that programs are well- and niely-moded andthat queries are niely-moded.Theorem 18. Let P be a well- and niely-moded program, A be a niely-modedquery and � be a substitution. The following statements are equivalent.(i) There exists an input-onsuming derivation A #�!P�, suh that A# � A�.(ii) There exists A0 2 S(P) (renamed apart wrt A), and � = mgu(A;A0) suhthat(a) �jVIn�(A) is a renaming for A,(b) A� � A�.Proof. It follows immediately from Propositions 14, 16 and Lemma 17. utNote that in ase of an atomi query A := A, we might substitute ondition(a) above with the somewhat more attrative ondition (a') In(A)� � In(A).Let us immediately see some examples.Example 19.{ app([X,b℄,Y,Z) has an input-onsuming suessful derivation, with .a.s.� � fZ=[X; bjY℄g. This an be onluded by just looking at S(APPEND), fromthe fat that A = app([X1,X2℄,X3,[X1,X2|X3℄) 2 S(P). Notie thatapp([X,b℄,Y,Z) is { in its input position { an instane of A.{ app(Y,[X,b℄,Z) has no input-onsuming suessful derivations. This is be-ause there is no A 2 S(P) suh that In(app(Y; [X; b℄; Z) is an instane of Ain the input position. This atually implies that in presene of delay delara-tions app(Y,[X,b℄,Z) will eventually either deadlok or run into an in�nitederivation; we are going to talk more about this in the next setion. utNote that Theorem 18 holds also in the ase that programs are permutationwell- and niely-moded and queries are permutation niely-moded [15℄, i.e., pro-grams whih would be well- and niely-moded after a permutation of the atomsin the bodies and queries whih would be niely-moded through a permutationof their atoms.Deadlok We now onsider again programs employing delay delarations. Animportant onsequene of Theorem 18 is that when the delay delarations implythat the derivations are input-onsuming (modulo �), then one an determinefrom the model-theoreti semantis whether a query is bound to deadlok or not.Let us establish some simple notation. In this setion we assume that programsare augmented with delay delarations, and we say that a derivation respets thedelay delarations i� every seleted atom satis�es the delay delarations.

Notation 20. Let P be a program and A be a query.{ We say that P [fAg is input-onsuming orret i� every SLD derivationof P [fAg whih respets the delay delarations is similar to an input-onsuming derivation.{ We say that P [fAg is input-onsuming omplete i� every input-onsumingderivation of P [fAg respets the delay delarations.{ We say that P [fAg is bound to deadlok if(i) every SLD derivation of P [fAg whih respets the delay delarationseither fails or deadloks4, and(ii) there exists at least one non-failing SLD derivation of P [fAg whihrespets the delay delarations. utFor example, onsider the program REVERSE (inluding delay delarations).{ REVERSE[reverse(s,Z) is input-onsuming orret and omplete providedthat Z is a variable disjoint from s.Consider now the program APPEND augmented with the delay delaration d1 ofthe introdution.{ APPEND[app(s,t,Z) is input-onsuming orret and omplete providedthat Z is a variable disjoint from the possibly non-ground terms s and t.{ Now, following up on Example 19, sine APPEND[app([X,b℄,Y,Z) is input-onsuming omplete, we an state that APPEND[app([X,b℄,Y,Z) is notbound to deadlok.In order to say something about the other query of Example 19 (app(Y,[X,b℄,Z))we need a further reasoning: Consider for the moment the niely-moded queryapp(X,Y,Z). Sine S(APPEND) ontains instanes of it, by Theorem 8, app(X,Y,Z)has at least one suessful SLD derivation. Thus, it does not fail. On the otherhand, every atom in S(APPEND) is in its input positions a proper instane ofapp(X,Y,Z). Thus by Theorem 18, app(X,Y,Z) has no input-onsuming su-essful derivations. Therefore, sine APPEND[app(X,Y,Z) is input-onsumingorret, we an state that app(X,Y,Z) either has an in�nite input-onsumingderivation or it is bound to deadlok. This fat an be niely ombined with thefat that APPEND is input-terminating [5℄: i.e., all its input-onsuming derivationsstarting in a niely-moded query are �nite. In [5℄ we provided onditions whihguaranteed that a program is input-terminating; these onditions easily allowone to show that APPEND in input-terminating. Beause of this, we an onludethat the query app(X,Y,Z) is bound to deadlok.By simply formalizing this reasoning, we obtain the following.Theorem 21. Let P be a well- and niely-moded program, and A be niely-moded atomi query. If4 A derivation deadloks if its last query ontains no seletable atom, i.e., no atomwhih satis�es the delay delarations

1. 9 B 2 S(P), suh that A uni�es with B,2. 8 B 2 S(P), if A uni�es with B, then In(A) is not an instane of In(B),3. P [fAg is input-onsuming-orret,then A either has an in�nite SLD derivation respeting the delay delarations orit is bound to deadlok.If in addition P is input-terminating then A is bound to deadlok.This result an be immediately generalized to non-atomi queries, as done forour main result. Let us see more examples:{ APPEND[app(Y,[X,b℄,Z) either has an in�nite derivation or it is bound todeadlok.{ Sine APPEND is input terminating, we have that APPEND[app(Y,[X,b℄,Z)is bound to deadlok.One might wonder why in order to talk about deadlok we went bak toprograms using delay delarations. The ruial point here lies in the di�erenebetween resolvability - via an input-onsuming derivation step - (used in input-onsuming programs) and seletability (used in programs using delay delara-tions). When resolvability does not redue to seletability, we annot talk about(the usual de�nition of) deadloking derivation. Consider the following program,where all atom's positions are moded as input.p(X) q(a). p(a). q(b).The derivation starting in p(X) does not sueed, does not fail, but it also doesnot deadlok in the usual sense: in fat, p(X) an be resolved with the �rstlause, whih however yields to failure. We an say that eah input-onsumingSLD tree starting in p(X) is inomplete, as it ontains a branh whih annot befollowed. In the moment that the program is input-onsuming orret, we anrefer to the usual de�nition of deadloking derivation.Counterexamples The following examples demonstrate that the syntatirestritions used in Theorem 18 are neessary. Consider the following program.p(X,Y) equal lists(X,Y), list of zeroes(Y).equal lists([℄,[℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list of zeroes([℄).list of zeroes([0|T℄) list of zeroes(T).With the modes: p(In,Out), equal lists(In,Out), list of zeroes(Out). The�rst lause is not niely-moded beause of the double ourrene of Y in thebody's output positions. Here, there exists a suessful input-onsuming deriva-tion starting in p([X1℄; Y), and produing the .a.s. fX1=0; Y=[X1℄g. Nevertheless,there exists no orresponding A0 2 S(P) (in fat, S(P)jp ontains all and onlyall the atoms of the form p(list0; list0) where list0 is a list ontaining onlyzeroes). This shows that if the program is well-moded but not niely-modedthen the impliation (i)) (ii) in Theorem 18 does not hold. Now onsider thefollowing program:

p(X) list(Y), equal lists(X,Y).equal lists([℄, [℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list([℄).list([HH|T℄) list(T).With the modes p(In), equal lists(In, In), list(Out). This program isniely-moded, but not well-moded: The variable HH in the output position of thehead ours neither in an output position of the body nor in an input positionof the head. It is easy to hek that there does not exist any suessful input-onsuming derivation for the query p([a℄); at the same time, p([X1℄) 2 S(P).Thus, if the program is niely-moded but not well-moded then the impliation(ii)) (i) in Theorem 18 does not hold.5 Conluding RemarksWe have shown that { under some syntati restritions { the S-semantis re-ets the operational semantis also when programs are input-onsuming. The S-semantis is a denotational semantis whih enjoys a model-theoretial reading.The relevane of the results is due to the fat that input-onsuming programsoften allow to model the behavior of programs employing delay delarations;hene for a large part of programs employing dynami sheduling there exists adelarative semantis whih is equivalent to the operational one.As related work we want to mention Apt and Luitjes [3℄. The ruial di�erenewith it is that in [3℄ onditions whih ensure that the queries are deadlok-free areemployed. Under these irumstanes the equivalene between the operationaland the Herbrand semantis follows. On the other hand, the lass of queries weonsider here (the niely-moded ones) inludes many whih would \deadlok"(e.g., app(X,Y,Z)): Theorem 18 proves that in many ases one an tell by thedelarative semantis for instane if a query is \suÆiently instantiated" to yielda suess or if it is bound to deadlok.Conerning the restritiveness of the syntati onepts we use here (well-and niely-moded programs and niely-moded queries) we want to mention that[4, 5℄ both ontain mini-surveys of programs with the indiation whether theyare well- and niely-moded or not. From them, it appears that most \usual"programs satisfy both de�nitions. It is important to stress that under this re-strition one might still want to employ a dynami seletion rule. Consider forinstane a query of the form read tokens(X), modify(X,Y), write tokens(Y),where the modes are read tokens(Out), modify(In,Out), write tokens(Out).If read tokens annot read the input stream all at one, it makes sense thatmodify and write tokens be alled in order to proess and display the tokensthat are available, even if read tokens has not �nished reading the input. Thisan be done by using dynami sheduling, using either delay delarations or aninput-onsuming resolution rule in order to avoid nontermination and ineÆien-ies.

Referenes[1℄ K. R. Apt. Introdution to Logi Programming. In J. van Leeuwen, editor, Hand-book of Theoretial Computer Siene, volume B: Formal Models and Semantis,pages 495{574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.[2℄ K. R. Apt. From Logi Programming to Prolog. Prentie Hall, 1997.[3℄ K. R. Apt and I. Luitjes. Veri�ation of logi programs with delay delara-tions. In A. Borzyszkowski and S. Sokolowski, editors, Proeedings of the FourthInternational Conferene on Algebrai Methodology and Software Tehnology,(AMAST'95), Leture Notes in Computer Siene, Berlin, 1995. Springer-Verlag.[4℄ K. R. Apt and A. Pellegrini. On the our-hek free Prolog programs. ACMToplas, 16(3):687{726, 1994.[5℄ A. Bossi, S. Etalle, and S. Rossi. Properties of input-onsumingderivations. Eletroni Notes in Theoretial Computer Siene, 30(1),1999. http://www.elsevier.nl/loate/ents, temporarily available athttp://www.s.unimaas.nl/�etalle/papers/index.htm.[6℄ A. Bossi, S. Etalle, and S. Rossi. Properties of input-onsuming derivations.Tehnial Report CS 99-06, Universiteit Maastriht, 1999.[7℄ A. Bossi, S. Etalle, and S. Rossi. Semantis of input-onsuming programs. Teh-nial Report CS 00-01, Universiteit Maastriht, 2000.[8℄ Annalisa Bossi, Maurizio Gabrielli, Giorgio Levi, and Maurizio Martelli. The S-semantis approah: Theory and appliations. The Journal of Logi Programming,19 & 20:149{198, May 1994.[9℄ R. Chadha and D.A. Plaisted. Corretness of uni�ation without our hek inProlog. Tehnial report, Department of Computer Siene, University of NorthCarolina, Chapel Hill, N.C., 1991.[10℄ P. Dembinski and J. Maluszynski. AND-parallelism with intelligent baktrakingfor annotated logi programs. In Proeedings of the International Symposium onLogi Programming, pages 29{38, Boston, 1985.[11℄ M. Falashi, G. Levi, M. Martelli, and C. Palamidessi. Delarative modelingof the operational behavior of logi languages. Theoretial Computer Siene,69(3):289{318, 1989.[12℄ J. W. Lloyd. Foundations of Logi Programming. Symboli Computation { Arti-�ial Intelligene. Springer-Verlag, Berlin, 1987. Seond edition.[13℄ L. Naish. An introdution to mu-prolog. Tehnial Report 82/2, The Universityof Melbourne, 1982.[14℄ J. G. Smaus. Proving termination of input-onsuming logi programs. In D. DeShreye, editor, 16th International Conferene on Logi Programming. MIT press,1999.[15℄ J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi programs withblok delarations running in several modes. In C. Palamidessi, editor, Proeed-ings of the 10th Symposium on Programming Language Implementations and LogiProgramming, LNCS. Springer-Verlag, 1998.[16℄ M.H. van Emden and G.J. de Luena. Prediate logi as a language for parallelprogramming. In K.L. Clark and S.-A. T�arnlund, editors, Logi Programming,London, 1982. Aademi Press.

