
Static vs Dynamic Typing
for Access Control in Pi-Calculus?

Michele Bugliesi, Damiano Macedonio, and Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari, Venice
{michele,mace,srossi}@dsi.unive.it

Abstract. Traditional static typing systems for the pi-calculus are built around
capability types that control the read/write access rights on channels and describe
the type of their payload. While static typing has proved adequate for reason-
ing on process behavior in typed contexts, dynamic techniques have often been
advocated as more effective for access control in distributed/untyped contexts.
We study the relationships between the two approaches – static versus dynamic
– by contrasting two versions of the asynchronous pi-calculus. The former, P,
comes with an entirely standard static typing system. The latter, P@, combines
static and dynamic typing: a static type system associates channels with flat types
that only express read/write capabilities and disregard the payload type; a dy-
namically typed synchronization complements the static type system to guarantee
type soundness.
We show that P@ can be encoded into P in a fully abstract manner, preserving
the respective behavioral equivalences of the two calculi. Besides yielding an
interesting expressivity result, the encoding also sheds light on the effectiveness
of dynamic typing as a mechanism for access control.

1 Introduction

Static typing systems have long been established as an effective device to control the
interaction among processes in the pi-calculus and related calculi [7, 8, 12, 13]. In these
systems the communication channels are viewed as resources, and their types define
the capabilities needed to use them. Thus, for instance rw〈S ; T 〉 is the type of a channel
where one can output at type T and input at type S (provided that T is a subtype of S).
The nested structure of the types makes it possible to control the way that capabilities
are delivered and made available. To illustrate, a process knowing the name (or channel)
a at the type rw〈r〈S 〉; rw〈S ; S 〉〉 may output on a a full-fledged channel (with payload
type S) and be guaranteed that any (well-typed) process inputing on a will only be
reading on the channel received. This form of type-based control yields powerful tech-
niques to reason on the behavior of processes in typed contexts: in fact, by putting
enough structure on the types of the shared channels, one may gain strong control on
the interaction of a process with any typed context. Unfortunately, these techniques do
not scale well, if they scale at all, to general, potentially untyped, contexts.

? Work partially supported by M.I.U.R (Italian Ministry of Education, University and Research)
under contract n. 2005015785.

To address this shortcoming, [2] introduces a variant of the (asynchronous) pi-
calculus, named P@, in which the ability to control the use of channels relies on
a combination of static and dynamic typing. The types of channels are still formed
around capabilities, but in P@ they only exhibit the “top-level” read/write capabili-
ties, disregarding the types of the values transmitted. Given this simple type structure,
the type system is much less effective in providing control on the use of channels. To
compensate for that, P@ includes a new form of output construct, noted a〈v@B〉, that
relies on a type coercion to enforce the delivery of v at type B. A static typing system
guarantees that v may indeed be assigned the coercion type B, while a mechanism of
dynamically typed synchronization guarantees that v is received only at supertypes of
B, so as to guarantee the type soundness of each exchange.

As argued in [2], the new typing system succeeds in its goal to provide reasoning
methods for typed processes in arbitrary contexts. Indeed, [3] shows that the processes
of P@ may be implemented as low-level principals of a cryptographic process cal-
culus based on the applied pi-calculus [1], while preserving their behavioral invariants.
The present paper complements the work in [2, 3] by investigating how the combination
of static and dynamic typing in P@ impacts on the ability to control the behavior of
processes with respect to traditional systems relying solely on static typing, as in P.

In particular, we show that there exists a sub-type preserving encoding of P@
into P which is fully abstract, i.e., preserves the dynamically typed equivalences of
P@ in all P contexts. The encoding is interesting in two respects. First, it yields a
non-trivial, and in some respects surprising, expressivity result connecting dynamic vs.
static typing. Secondly, it establishes a connection between P and the fully abstract
implementation developed in [3]. In particular, it allows us to isolate the fragment of
P for which the implementation of [3] is fully abstract.

Plan of the paper. Section 2 reviews the two calculi involved in the encoding.
Sections 3 and 4 detail the encodings and outline the proof of full abstraction. Section 5
concludes with final remarks. We include an appendix with more details on the proofs,
for the benefit of the referees only.

2 Static and Dynamic Typing in the Pi-Calculus

We presuppose two countable sets of names and variables, ranged over by a, b, . . . , n,m
and x, y, . . . , respectively; u, v range collectively over names and variables whenever
the distinction does not matter; ũ, T̃ , Ã denote (possibly empty) tuples of values, and
static and dynamic types, respectively; the notation ṽ@Ã is a shorthand for the tuple
v1@A1, . . . , vn@An; a corresponding convention applies to ṽ : Ã. Syntactically, P and
P@ differ only in the form of the communication primitives, and in the structure of
the types. The productions are as follows:

P − Static Typing
Processses P,Q ::= 0 | P|Q | (νn :S)P | ! P | [u=v]P; Q | u〈ṽ〉 | u(x̃).P

Types S ,T ::= > | r〈T̃ 〉 | w〈T̃ 〉 | rw〈S̃ ; T̃ 〉 | X | µX.T

P@ − Dynamic Typing
Processses P,Q ::= 0 | P|Q | (νn : A)P | ! P | [u=v]P; Q | u〈ṽ@Ã〉 | u(x̃@B̃).P

Types A, B ::= > | r | w | rw

2

Table 1 Typing and subtyping rules

Subtyping in P (we write S <: T if ∅ ` S <: T).

Σ ` Ũw <: T̃w <: T̃r

Σ ` rw〈T̃r; T̃w〉 <: w〈Ũw〉

Σ ` Ũw <: T̃w <: T̃r <: Ũr

Σ ` rw〈T̃r; T̃w〉 <: rw〈Ũr; Ũw〉

Σ ` T̃w <: T̃r <: Ũr

Σ ` rw〈T̃r; T̃w〉 <: r〈Ũr〉

Σ, µX.T1 <: T2 ` T1 {µX.T1/X } <: T2

Σ ` T1 <: T2

Σ,T1 <: µX.T2 ` T1 <: T2 {µX.T2/X }

Σ ` T1 <: T2

Typing of communication in P and P@

(P-)

Γ ` u : r〈T̃ 〉 Γ, 〈x̃ : T̃ 〉 ` P

Γ ` u(x̃).P

(P-)

Γ ` u : w〈T̃ 〉 Γ ` ṽ : T̃

Γ ` u〈ṽ〉

(P@-)

Γ ` u : r Γ, 〈x̃ : Ã〉 ` P

Γ ` u(x̃@Ã).P

(P@-)

Γ ` u : w Γ ` ṽ : B̃

Γ ` u〈ṽ@B̃〉

P is a standard version of the asynchronous pi-calculus with matching, denoted by the
construct [u= v]P; Q, and recursive capability types á la [7, 8]1. We use the shorthand
rw〈T̃ 〉 to mean rw〈T̃ ; T̃ 〉. P@ replaces the input and output forms from P with new
constructs that make explicit the types at which values should be exchanged. As antici-
pated, the types are reduced to the simplest structure that only exhibits the capabilities
associated with names.

Typing and Subtyping. In both calculi, the subtype relations <: are partially complete
pre-orders with a meet operator u and top type >. In P the subtype relation is defined
as in [7, 8], with the standard extensions needed to handle the presence of recursive
types, cf. Table 1. In P@ subtyping is generated by the axioms rw <: {r,w} <: >. Type
environments, ranged over by Γ, Γ′ . . ., are finite mappings from names and variables to
types. We write Γ ` P to mean that P is well typed in Γ. The type environment Γ, 〈u : T 〉
is Γ, u : T if u < dom(Γ); otherwise it is the type environment Γ′ such that Γ′(v) = Γ(v)
for v , u and Γ′(u) = Γ(u) u T if Γ(u) u T is defined. Subtyping is extended to type
environments as expected: Γ <: Γ′ whenever dom(Γ) = dom(Γ′) and for all v ∈ dom(Γ)
it holds Γ(v) <: Γ′(v).
Operational Semantics. The dynamics of P is expressed by the usual labeled tran-
sition system of the asynchronous pi-calculus. On the other hand, in order to express
the dynamics for P@, the input/output labels of pi-calculus are extended with a type
capability in order to force the synchronization at the desired type. In Table 2 we report
the rules for synchronizations: the remaining rules are standard, and common to the

1 In fact, in [7, 8] the types are not recursive; however, as far as we see, the generalization is
harmless for the results relevant to our present endeavor.

3

Table 2 Labeled Transitions

(P-)

a(x̃).P
a(ṽ)
−→ P {ṽ/x̃ }

(P-)

a〈ṽ〉
a〈ṽ〉
−→ 0

(P-)

P
(c̃:T̃)a〈ṽ〉
−→ P′ b ∈ {ṽ} \ {a, c̃}

(νb :S)P
(b:S ·c̃:T̃)a〈ṽ〉
−→ P′

(P-)

P
(c̃:T̃)a〈ṽ〉
−→ P′ Q

a(ṽ)
−→ Q′ c̃ ∩ fn(Q) = ∅

P |Q
τ
−→ (νc̃ : T̃)(P′ |Q′)

(P@-)

a(x̃@Ã).P
a(ṽ@Ã)
−→ P {ṽ/x̃ }

(P@-)

a〈ṽ@Ã〉
a〈ṽ@Ã〉
−→ 0

(P@-)

P
(c̃:C̃)a〈Ã@ṽ〉
−→ P′ b ∈ {ṽ} \ {a, c̃}

(νb : B)P
(b:B·c̃:C̃)a〈ṽ@Ã〉
−→ P′

(P@-)

P
(c̃:C̃)a〈ṽ@Ã〉
−→ P′ Q

a(ṽ@B̃)
−→ Q′ Ã <: B̃ c̃ ∩ fn(Q) = ∅

P |Q
τ
−→ (νc̃ :C̃)(P′ |Q′)

two calculi, we omit them for the lack of space. Notice how in P@ the labels carry
extra information about the types at which names are exchanged. More interestingly,
however, these rules show the fundamentally different nature of the interaction with the
context: in P the context acquires the names emitted at the read type of the transmis-
sion channel, while in P@ the type B̃ is decided by the process. In addition, processes
of both calculi may synchronize with a τ transition when exhibiting complementary la-
bels that, in the case of P@, are required to agree on the type of the values exchanged,
as in a(ṽ@Ã) and a〈ṽ@Ã〉.
The notion of observational equivalence is based on the usual notion of reduction barbed
congruence and is mediated by the type capabilities that the contexts possess on the
names shared with the processes. It relies on the notion of configuration: a configuration
is a pair of the form I B P, where I represents what contexts know of the names shared
with P: remarkably, P may know those names at more precise types than I, as I B P
is a well-defined configuration only if there exists Γ <: I such that Γ ` P.

Definition 1 (Type-indexed Relation). A type-indexed relation R is a family of binary
relations between processes indexed by type environments. We writeI |= P R Q to mean
(i) that P and Q are related by R and (ii) that I B P and I B Q are configurations.

Definition 2 (Contextuality). A type-indexed relation R is contextual when:

1. I, a : A |= P R Q implies I |= (νa : A)P R (νa : A)Q

4

2. I |= P R Q implies I, a : A |= P R Q for a < dom(I)
3. I |= P R Q and I ` R imply I |= P |R R Q |R

The definition of barbs is based on the actual capability of the context I to see
barbs. The notation Ir(a) ↓ indicates that I (hence the context) has a read capability on
the name a, i.e., I(a) <: r, only in that case the output action performed by the process
is observable by the context. Moreover we denote by =⇒ the reflexive and transitive
closure of

τ
−→.

Definition 3 (Barbs). Given a configuration I B P, we say that

1. I B P↓a if and only if Ir(a) ↓ and P
(c̃:C̃)a〈ṽ@Ã〉
−→ .

2. I B P⇓a if and only if P =⇒ P′ and I B P′ ↓a.

The definition above is given for P@; the corresponding definition for P is just as
expected.

Definition 4 (Typed Behavioral Congruence). Typed behavioral congruence is the
largest symmetric, contextual and type-indexed relation R such that I |= P R Q implies

1. if I |= P↓a then I |= Q⇓a

2. if Q
τ
−→ Q then there exists Q′ such that Q =⇒ Q′ and I |= P′ R Q′.

The typed behavioral congruence is denoted as ≈ in P and as ≈@ in P@.

3 A correct encoding

We define our encoding in terms of two related, but independent mappings, for type en-
vironments and processes, respectively. The encoding of processes maps typing judge-
ments in P@ to processes of P: indeed, in our first formulation of the encoding,
we define it directly by induction on the structure of processes, as the syntax of P@
contains enough information to guide the generation of target code. In the final formu-
lation, however, it is technically more convenient to refer to typing judgements to ease
the definition. The encoding of type environments, in turn, maps the capabilities (types)
of the observing P@ contexts into the corresponding capabilities of P contexts. This
allows us to establish our full abstraction theorem in terms of the type-indexed relations
of behavioral congruences in the two calculi.

In this and the next sections we give the encoding for the monadic fragment of P@.
In Section 5, we briefly discuss how the approach can be generalized to the polyadic
calculus.

First attempt. We start with a relatively simple approach, which almost work, but
not quite. The idea is to represent each name n in P@ as a 4-tuple of names n =
(nrw, nr, nw, n>), where each component of the tuple corresponds to one of the four types
at which a synchronization may take place on n. Thus, an P@ synchronization on n
at, say, the type w, will correspond in P to a synchronization on nw. Clearly, this idea
must be applied systematically, hence exchanging a name in P@ will correspond to

5

Table 3 Encoding functions (with Q = u(x̃).P)

Rl 〈Q〉 def
= u(x̃).Tl 〈Q〉

Tl 〈Q〉 def
= l(z).[z=t]Cl 〈Q〉 ⊕ Ul 〈Q〉 ; Al 〈Q〉 z fresh

Ul 〈Q〉 def
= l〈t〉 |u〈x̃〉

Cl 〈Q〉 def
= l〈f〉 |P

Al 〈Q〉 def
= l〈f〉 |u〈x̃〉

R1 ⊕ R2
def
= (νi : rw〈 〉)(i〈 〉 | i().R1 | i().R2) i fresh

exchanging a tuple in P. Thus the output u〈v@A〉 is translated into the output uA〈v〉
that emits the 4-tuple of names that represent v. The input prefix requires a little more
care, as in P@ the process u(x@A).P may synchronize with any output on u at a
type B <: A. In fact, given the translation of the output construct we just outlined, it is
easily seen that the behavior of the input form u(x@A).P corresponds precisely to the
input guarded choice2 ΣB<:AuB(x).P. Combining these intuitions with the encoding of
guarded choice from [10] yields the following definition.

〈| u〈v@A〉 |〉 def
= uA〈v〉

〈| u(x@A).P |〉 def
= (νl : rw〈>〉)

(
l〈t〉 |
∏

B<:A !Rl

〈
uB(x).〈| P |〉

〉)
〈| (ν n)P |〉 def

= (ν n)〈| P |〉
〈| [u=v]P; Q |〉 def

= [u>=v>]〈| P |〉; 〈|Q |〉

Just as in [10], the encoding of input runs a mutual exclusion protocol, installing a
local lock on a parallel composition of its branches. The protocol is implemented by
the processes in Table 3, which we inherit, essentially unchanged, from [10] (as in that
case, ⊕ denotes internal choice).The branches Rl 〈−〉 concurrently try to test the lock
after reading messages from the environment. Every branch can ‘black out’ and return
to its initial state after it has taken the lock, just by resending the message. Just one
branch will proceed with its continuation and thereby commit the input. Every other
branch will then be forced to resend its message and abort its continuation.

Unfortunately, the re-sending of messages is problematic for type preservation. To
see why, notice that a P@ process may have just the read capability on a channel in
order to perform an input, while its encoding must also be granted a write capability
in order to run the mutual exclusion protocol. The typing failure would not arise if
we dropped the type r, and worked with just three types: indeed, for this fragment of
P@ the encoding we just illustrated may be shown to be type-preserving and fully
abstract. For a more general solution, we need to move the responsability of running
the mutual exclusion protocol from the (encoding of the) input process to some other
process possessing the required capabilities. We discuss how that can be accomplished
below.

2 For uniformity with the notation adopted for names, we write x to note a quadruple of variables
used to store name representations.

6

Table 4 A correct encoding of processes

Channel Servers

C(n) def
=
∏

A∈{rw,r,w,>} !nr@A(h).C(n, A, h)
C(n, A, h) def

= (νl : rw〈>〉)
(

l〈t〉 |
∏

B<:A !Rl

〈
nw@B(z).h〈z〉

〉)
Clients

{| 0 |} def
= 0

{| u〈v@A〉 |} def
= uw@A〈v〉

{| u(x@A).P |} def
= (νh : rw〈TA〉)

(
ur@A〈h〉 |h(x).{| P |}

)
where the name h is fresh

{| P |Q |} def
= {| P |} | {|Q |}

{| (νa : A)P |} def
= (νa :S) ({| P |} |C(a))

{| [u=v]P; Q |} def
= [ur@r=vr@r]{| P |}; {|Q |}

{| !P |} def
= ! {| P |}

Complete Systems

{|P|}I def
= {| P |} |

∏
a∈dom(I)C(a)

Fixing the typing problem The solution is inspired by [3] and based on represent-
ing channels as processes that serve the input and output requests by a client willing
to synchronize: given a name n, we write C(n) for the server associated with n.
Each exchange on n in the source calculus corresponds to running two separate pro-
tocols. For input, a client willing to input on n at type, say A, sends a read request
(in the form of a private name) on the name nr@A. In the write protocol, a process
willing to output on n and type B <: A sends its output on nw@B. Collectively, each
name n from P@ is thus translated into the 8-tuple n = (nR, nW), where the com-
ponents nR = nr@rw, nr@r, nr@w, nr@> are the names employed in the input protocol
to communicate the input requests at the corresponding types, while the components
nW = nw@rw, nw@r, nw@w, nw@> serve the same purpose for the output protocol. Thus,
for instance, the output n〈v@rw〉 corresponds to the output nw@rw〈v〉 and synchronizes
only with nw@rw(x). The input n(x@rw).P, in turn, sends a request nr@rw〈l〉, where l is a
private channel on which the client waits for C(n) to reply back a (tuple of) value(s).
The server C(n) is granted read and write access to all the names nW and nR, so that
it may safely run the mutual exclusion protocol that mimics the synchronizations in the
source calculus. Indeed, C(n) is the only process with read capabilities on nW and
nR while clients will, at their best, have write capabilities on these names: as a result,
no client may interfere with the protocols that other clients run with the channel server.

The definitions in Table 4 formalize these intuitions: each P@ process corre-
sponds, via the encoding, to a set of clients of the protocols described above: the relevant
clauses are those for the input and output forms, while the remaining cases are defined
homomorphically. Two remarks are in order, however. For the case of matching, it is
enough to compare just one of the components of the tuple representing the source-level
names, as long as the components are chosen consistently. For the case of restriction,
notice that creating a new name corresponds to allocating a channel server associated
to the name, so that the translated processes may synchronize via the name created,

7

Table 5 Encoding of types.

Client types
Trw

def
= (R,W) Tr

def
= (R,>) Tw

def
= (>,W) T>

def
= (>,>)

R def
= (Tr@rw,Tr@r,Tr@rw,Tr@>) W def

= (Tw@rw,Tw@r,Tw@rw,Tw@>)

Tr@rw
def
= w〈w〈R,W〉〉 Tw@rw

def
= w〈R,W〉

Tr@r
def
= w〈w〈R,>〉〉 Tw@r

def
= w〈R,>〉

Tr@w
def
= w〈w〈>,W〉〉 Tw@w

def
= w〈>,W〉

Tr@>
def
= w〈w〈>,>〉〉 Tw@>

def
= w〈>,>〉

Server types
S def
= (RS,WS)

RS
def
= (Sr@rw,Sr@r,Sr@w,Sr@>) WS

def
= (Sw@rw,Sw@r,Sw@w,Sw@>)

Sr@rw
def
= rw〈w〈R,W〉〉 Sw@rw

def
= rw〈R,W〉

Sr@r
def
= rw〈w〈R,>〉〉 Sw@r

def
= rw〈R,>〉

Sr@w
def
= rw〈w〈>,W〉〉 Sw@w

def
= rw〈>,W〉

Sr@>
def
= rw〈w〈>,>〉〉 Sw@>

def
= rw〈>,>〉

Type Environments
{| ∅ |}

def
= t : >, f : > {|Γ, v : A |} def

= {|Γ |}, (v) : TA

using the server. In fact, to mimic all the synchronizations of the source processes, we
must allocate channels for all the free names that occur in the source process and that
the source process may share with the environment. That is accomplished by the final
clause in the definition of the encoding.

Having moved the resposability of running the mutual exclusion protocol from the
input clients to the channel server solves the typing problem of our initial attempt. Table
5, details the encoding of types. Typewise, a read capability on n in P@ corresponds
in P to a write capability on all the names in nR, while a write capability on n corre-
sponds to a write capability on the names nW. With each type A in P@ we associate a
corresponding tuple of types TA, as in Trw = (R,W) or Tw = (>,W) where R andW are
the client types associated to the names employed in the read/write protocols (according
to the convention that nr@A : Tr@A and nw@A : Tw@A) and > is the representation of the
top type in P@. Notice that clients are only granted write capabilities on the channels
involved in the protocols, while the channel servers know the same names at the lower
types RS andWS which grant them full access to those names.

Based on these definition, we may now prove that the encoding preserves the ex-
pected properties about typing:

Theorem 1 (Typing and subtyping preservation). For all types A, B in P@, A <: B
implies TA <: TB in P. Furthermore, whenever Γ ` P in P@, then there exists
Γ′ <: {|Γ |} such thatΓ′ ` {|P|}Γ in P.

Also, we can show that the encoding is sound, in the sense made precise below.

Theorem 2 (Soundness). Let Γ <: I and Γ′ <: I be two type environments such that
Γ ` P and Γ′ ` Q in P@. Then {| I |} |= {|P|}Γ ≈ {|Q|}Γ′ implies I |= P ≈@ Q.

8

The converse direction of Theorem 2 does not hold. The problem is that the properties
of the communication protocols are based on certain invariants that are verified by the
names and the channel servers allocated by the encoding, but may fail for the names cre-
ated dynamically by the context. Below, we show that this failure breaks full abstraction
(i.e., the converse of Theorem 2).

Failure of full abstraction. Take the following two P@ processes

P def
= a(x@rw).x(y@rw).x〈y@rw〉

Q def
= a(x@rw).0

As shown in [2], one has I |= n(y@rw).n〈y@rw〉 ≈@ 0 for all I such that n : rw ∈
I. From this, one easily derives a : w |= P ≈@ Q. Now take the encoding of the
two processes (we omit the type for readability, as they are irrelevant to the present
purposes):

{| P |} = (νh)(ar@rw〈h〉 |h(x).(νk)(xr@rw〈k〉 |k(y).xw@rw〈y〉))

{|Q |} = (νh)(ar@rw〈h〉 |h(x).0)

We show that the equivalence we just established for P and Q does not carry over
to their encodings. In particular, let I = a : w, so that {| I |} = a : Tw, and assume
a : Tw |= {| P |}I ≈ {|Q |}I. Let also S be the server type defined in Table 5. Then, by
contextuality, one would have:

a : Tw, b : S |= {| P |}I |aw@rw〈b〉 ≈ {|Q |}I |aw@rw〈b〉

On the other hand, this equivalence is easily disproved. In fact, on the one hand we
have:

{| P |}I |aw@rw〈b〉 =⇒≈ (νk)(br@rw〈k〉 |k(y).bw@rw〈y〉)

with
a : Tw, b : S B (νk)(br@rw〈k〉 |k(y).bw@rw〈y〉)↓br@rw

because b : S implies that br@rw : rw〈w〈Trw〉〉, hence the context has visibility of the
output action by the process. On the other hand, clearly,

a : Tw, b : S B {|Q |}I |aw@rw〈b〉 6⇓br@rw

as Q never attempts to output on b, and correspondingly its encoding makes no requests
on any of the components in b. Thus, it follows that a : Tw 6|= {| P |}I ≈ {|Q |}I as we
anticipated.

4 A fully abstract encoding

To recover full abstraction, we need to protect the clients generated by the encoding
from direct interactions on context-generated names such as the one illustrated above.
To accomplish that, we adopt a solution inspired by [3], which relies on a proxy service

9

Table 6 Fully Abstract Encoding of P@ into P.

Proxy

P def
= (νt :TBL[>,S]) (S(t) | TABLE(t, []))

S(t) def
=
∏

A ! pA(h, z).(νr : rw〈>,S〉)
(
LOOKUP(z, t, r) |r(x, y)[x=t]h〈y〉; (h〈y〉 |C(y))

)
Clients

([0])Γ def
= 0

([u〈v@A〉])Γ def
= LΓ (u, x)  xw@A〈v〉

([u(y@A).P])Γ def
= LΓ (u, x)  (νh : rw〈TA〉)

(
xr@A〈h〉 |h(y).([P])Γ,y:A

)
with h fresh

([P |Q])Γ def
= ([P])Γ | ([Q])Γ

([(νa : A)P])Γ def
= (νa :TA)([P])Γ,a:A

([[u=v]P; Q])Γ def
= [ur@r=vr@r]([P])Γ,〈u:Γ(u)〉,〈v:Γ(v)〉; ([Q])Γ

([! P])Γ def
= ! ([P])Γ

Complete Systems

([P])∗Γ
def
= ([P])Γ | P

to filter the interactions between channel servers, clients and the context. The proxy
introduces a separation between client names, used by the context and the translated
processes to communicate, and the corresponding proxy names, generated within the
system and associated with system generated channels which are employed in the actual
protocols for communication.

The proxy server is a process, noted P, that maintains an association map be-
tween client and server names in order to preserve the expected interactions among
clients. The read and write protocols follow the same rationale as in the previous en-
coding, with the difference that in the new version of the encoding a client must obtain
the access to the system channel with a request to P before being able to start the
input/output protocols. The interaction between clients and P is now as follows:
the client presents a name to the proxy, and the proxy replies with the corresponding
server name. When the proxy server receives a client name for the first time, it maps it
to a fresh proxy name, and allocates a channel server for the new proxy name.

The definition of the proxy server is reported in Table 6. S is a process al-
ways ready to serve client requests along the four channels pA, one for each A ∈
{rw, r,w,>}. These channels are known to the clients and to the context at the type
pA : w〈w〈TA〉,TA〉, while the S is granted full access rights on them. After re-
ceiving an input on pA, the S starts a search on the association table and replies
with the requested system name. If the client name was not known to the proxy, a fresh
proxy name is created, the association table extended with the new pair, and a channel
server for the newly created proxy name allocated. We omit most of the largely obvious
details of the implementation of the association table, and describe it in terms of the
following macros.

– TABLE(t,T) is a process parameterized over a structure T representing the table,
and t : TBL[>,S] is the reference to the table, i.e., a name providing access to the
table’s entries. We organize T as a list of pairs that maps channel names to server

10

names: we write (n, k) ∈ T when n is associated to the tuple k, and n ∈ dom(T) to
say that there exists k with (n, k) ∈ T . Initially, the list T is empty (cf. Table 6).

– LOOKUP(n, t, r) is a process employed by the proxy to access the table referenced
to by t : TBL[>,S]. Here, n : > is the name (the client name) to be looked up
in the table, and r : w〈>,S〉 is the reply channel where to report back the result
of the search. The result, in turn, comes as a pair that comprises the proxy names
associated together with a boolean flag that says whether a new entry was created
in the table as a result of the search. Thus, LOOKUP(n, t, r) replies on r the pair (x, k)
where k is the tuple associated with n, and x is t iff k was created freshly for n. This
information is used by the remaining component of the proxy to allocate a new
channel server for newly created proxy names, and to forward the proxy names to
the requesting clients.

Operationally, we define the behavior of the macro processes by means of the following
two ad-hoc internal reductions:

(T-L-F)
(n, k) ∈ T

LOOKUP(n, t, r) | TABLE(t,T)
τ
−→ r〈t, k〉 | TABLE(t,T)

(T-L-NF)
n < dom(T), k fresh in T

LOOKUP(n, t, r) | TABLE(t,T)
τ
−→ (νk :S)

(
r〈f, k〉 | TABLE(t, [(n, k) :: T])

)
On the client side, the interaction with the proxy server requires a new initializa-

tion step to link the name available to the client with the corresponding proxy name
associated with it. This init step is accomplished as follows:

LΓ (u, x)  P def
= (νh : rw〈TA〉)(pA〈h, ur@r〉 |h(x).P) with A = Γ(u)

To link the client name u (in fact, the component names in u) with a corresponding
proxy name, the client selects the first component in u on the proxy channel dedicated
to serve the link requests, and waits for the proxy to reply on the channel h. Notice
that the definition of the link process is parameterized on the context Γ, which helps
recover the type that then guides the selection of the appropriate channel pA used in the
interaction with the proxy. To make this parametrization meaningful, the new encoding
is given by induction on typing judgements. The other important difference with respect
to the original definition in Table 4 is that the case of restriction is now defined purely
homomorphically, as the allocation of the channel server is delegated to the proxy. For
the same reason, the encoding of complete system does not need to allocate any channel
for the free names shared with the context. It does, instead, require the presence of the
proxy server to filter the synchronizations between clients.

Typewise, there are only few differences with respect to the original definitions
in Table 5. Indeed, the exact same types work with the new translation of clients,

11

while a two remarks are in order for the types employed in the definition of the proxy.
First, the channels pA are made available to the clients (and the context) at the types
w〈w〈TA〉,TA〉, with A ∈ {rw, r,w,>}, that only grant write access. Correspondingly, we
have a new encoding of type environments:

([Γ]) def
= {|Γ |} ∪ {pA : w〈w〈TA〉,TA〉}A∈{rw,r,w,>}

with {|Γ |} as in Table 5. Lower types, preciselythe types rw〈w〈TA〉,TA〉, are instead
available for type checking the proxy definition.

As for the type TBL[>,S] employed in the definition of the TABLE macro, > and S
are the types of the entries in the table, while we assume the following ad-hoc typing
rules for the LOOKUP and TABLE macro processes:

(T-L)
Γ ` t : TBL[>,S], n : >, r : rw〈>,S〉

Γ ` LOOKUP(n, t, r)

(T-T)
Γ ` t : TBL[>,S], n1 : >, k1 : S, . . . nl : >, kl : S

Γ ` TABLE(t, [(n1, k1) :: · · · (nl, kl)])

Based on these definitions, we can show that the encoding has the desired properties of
type and subtype preservation.

Theorem 3 (Typing and subtyping preservation). For all types A, B in P@, A <: B
implies TA <: TB in P. Furthermore, whenever Γ ` P in P@, then there exists
Γ′ <: ([Γ]) such thatΓ′ ` ([P])∗Γ in P.

Furthermore, the presence of the proxy now makes the encoding fully abstract.

Theorem 4 (Full Abstraction). Let Γ <: I and Γ′ <: I be two type environments such
that Γ ` P and Γ′ ` Q. Then I |= P ≈@ Q if and only if ([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ .

Below we outline the full abstraction proof. However, before doing that, it is instruc-
tive to look at how the new encoding solves the problem with the example discussed in
Section 3. In that case, the encodings of the two processes

P def
= a(x@rw).x(y@rw).x〈y@rw〉

Q def
= a(x@rw).0

can be distinguished by any context that sends a fresh name on a and retains full access
to the components of that name, because any such context may observe the read request
made by the encoding of P.

The presence of the proxy solves the problem as now the encoding of P makes its
request not on the name received by the context, but rather on the proxy name that is
associated with the context name. Thus, if b is the name send over the channel a, we
have:

([P])Γ |aw@rw〈b〉 =⇒≈ LΓ (b, x)  (νk)(xr@rw〈k〉 |k(y).xw@rw〈y〉)

where now

a : Tw, b : S B LΓ (b, x)  (νk)(xr@rw〈k〉 |k(y).xw@rw〈y〉) 6⇓br@rw

as the context has no read access on the components of the proxy name x associated
with b.

12

Proof of Theorem 4 (outline). The proof is difficult and rather elaborate, especially
in the “if” direction (soundness), which as usual requires the following properties of
operational correspondence:

– If P =⇒ P′ then ([P])∗Γ =⇒ K with ([I]) |= K ≈ ([P′])∗Γ.
– If ([P])∗Γ =⇒ K then there exists P′ such that P =⇒ P′ and ([I]) |= K ≈ ([P′])∗Γ.

The “reflection” direction, stated by the second item above, is subtle, because our en-
coding is not “prompt” [10]. Note, in fact, that it takes several steps for the encoding
of a process to be ready for the commit action that corresponds to the P@ synchro-
nization on the channel. As it turns out, however, these steps are not observable and
can be factored out in the proof by resorting to a suitable notion of (term-indexed) ad-
ministrative equivalence, noted ≈A and included in ≈. The definition of ≈A draws on a
classification for the reductions of the translated processes into commitment steps, cor-
responding to synchronizations in the P@ processes, and administrative reductions,
corresponding to the steps that precede and follow the commitment steps. Then two
processes are equated by ≈A only if they are behaviorally equivalent and, in addition,
they can simulate each other’s commitment transitions in a ‘strong’ way. The relation
≈A can be used to prove the following variant of operational correspondence:

Lemma 1 (Operational Correspondence). Let I B P be a configuration in P@ and
Γ <: I such that Γ ` P. Then:

1. If P
τ
−→ P′ then ([P])∗Γ =⇒ H with ([I]) |= H ≈A ([P′])∗Γ.

2. If ([I]) |= H ≈A ([P])∗Γ and H
τ
−→ K, then either ([I]) |= H ≈A K or there exists P′

such that P
τ
−→ P′ and ([I]) |= K ≈A ([P′])∗Γ.

Proof. (Sketch). The first item (i.e., the “preservation” direction) follows routinely. For
the second item, the first case occurs when the move from H is an administrative step,
while the second corresponds to the case when H is finally prompt to commit on a
synchronization reduction that reflects a source-level synchronization. ut

The proof of soundness requires a further preliminary lemma:

Lemma 2 (Barb Correspondence). Let I B P a configuration in P@ and Γ <: I
such that Γ ` P. Then there exists I′, h ∈ dom(I′) and C[·] such that

1. If I B P↓a then ([I]),I′ B C[([P])∗Γ]⇓h
2. If ([I]),I′ B C[([P])∗Γ]⇓h then I B P↓a.

Proof. Choose I′ = h : rw〈T>〉 and C[−] = LΓ (a, x)  xr@A〈h〉 | − ut

Relying on Lemmas 1 and 2 have:

Theorem 5 (Soundness). Let Γ <: I and Γ′ <: I be such that Γ ` P and Γ′ ` Q. Then
([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ implies I |= P ≈@ Q.

Proof. Let R be the type indexed relation defined as follows: I |= P R Q whenever
([I]) |= ([P])∗Γ ≈@ ([Q])∗Γ′ . Show that R is barb preserving, reduction closed and con-
textual. ut

13

In the “only if” direction (completeness), the proof follows, more directly, by coinduc-
tion. However, the definition of the candidate relation requires some care, as we need to
keep track of the states reached by the P components as a result of the interactions
with its clients. Let then ET [−] be a context representing that state, for an arbitrary list
T . We have:

ET [−] def
= − |

∏
(n,k) ∈T

C(k) | (νt :TBL[>,S]) (S(t) | TABLE(t,T))

so that ET [([P])Γ] = ([P])∗Γ at the initial state in when T = []. Then we have:

Theorem 6 (Completeness). Let Γ <: I and Γ′ <: I be two type environments such
that Γ ` P and Γ′ ` Q. Then I |= P ≈@ Q implies ([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ .

Proof. (Sketch). Let R be the type indexed relation such that

([I]), a1 : T1, . . . an : Tn |= C[ET [([P])Γ]] R C[ET [([Q])Γ′]]

whenever (i) I |= P ≈@ Q, (ii) Γ <: I and Γ ` P, (iii) Γ′ <: I and Γ′ ` Q (iv)
ai < dom(([I])), and (v) C[−] is an evaluation context that binds the k in T and such
that ([I]), a1 : T1, . . . an : Tn ` C[−]. The proof follows by showing that R satisfies
the requirements of Definition 7. The most difficult part is the proof that R is reduction
closed, as the processes reached by C[ET [([P])Γ]] after an arbitrary number of reduc-
tions will, in general, have the form C′[ET ′ [K]] with K a derivative of ([P′])Γ, for
some P′, rather than ([P′])Γ as required by R. We rely on an up-to technique to factor
out the administrative steps required to close the relation on two terms with the required
format. ut

5 Conclusions

We have given a fully abstract encoding of P@ into P. In its present form, the en-
coding only applies to the monadic fragment of P@, and requires the presence of
recursive types in P. In fact, the same technique would work for the polyadic calcu-
lus, as long as we can count on a finite bound on the maximal arity. In that case, every
P@ channel may be associated to different tuples of names, one for each possible ar-
ity. Similarly, we could do without recursive types in P, as in the original formulation
of [7, 8] by assuming a finite bound on the number of cascading re-transmission via
other names. In fact, the dynamic types of P@ allow any channel to communicate its
own name: in the general case, this requires (or at least it appears to require) types with
arbitrarily deep nesting, viz, recursive types.

The encoding is interesting as it shows how the dynamically typed synchronization
of P@ may be simulated by a combination of untyped synchronizations on suitably
designed channels, and it allows us to identify precisely the subclass of the static types
of P that correspond to the dynamic types of P@. On the one hand, the recursive
structure of the static types that emerges from the encoding shows that the dynamic
types of P@ offer limited access control mechanisms, as they only provide ways to
control the use of the top-level capabilities associated with names. On the other hand,

14

it is precisely because of its limited expressive power, that the dynamic typing system
may be used effectively in arbitrary, untyped contexts, as shown by their secure imple-
mentation described in [3].

Types and advanced techniques for behavioral observation are emerging as pow-
erful tools for the analysis of distributed computations and open systems. Types have
been employed to describe resources and their usage [4–6, 9, 11] and typed equational
theories have been studied to characterize the observational properties of processes [2,
7, 8, 13]. In particular, the type systems introduced in [4, 5], for Ambient calculus, and
in [6], for KLAIM calculus, guarantee the delivery of resources at the expected type
by resorting to type coercion on outputs. As in P@, the soundness of these systems
is given by a combination of static and dynamic typing. Thus, as future work we are
considering Ambient calculus and KLAIM calculus in order to extend the results we
obtained here.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc. of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 104–115. ACM press, 2001.

2. M. Bugliesi and M. Giunti. Typed processes in untyped contexts. In Proc. of the International
Symposium on Trustworthy Global Computing (TGC), volume 3705 of LNCS, pages 19–32.
Springer, 2005.

3. M. Bugliesi and M. Giunti. Secure implementations of typed channel abstractions. In Proc. of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 251–262. ACM press, 2007.

4. M. Coppo, F. Cozzi, M. Dezani-Ciancaglini, E. Giovannetti, and R. Pugliese. A mobility
calculus with local and dependent types. In Processes, Terms and Cycles, volume 3838 of
LNCS. Springer, 2005.

5. M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, and R. Pugliese. Dynamic and local
typing for mobile ambients. In Proc. of International Conference on Theoretical Computer
Science (IFIP TCS), pages 577–590. Kluwer, 2004.

6. D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges ac-
quisition. In Proc. of International Colloquium on Automata, Languages and Programming
(ICALP), volume 2719 of LNCS, pages 119–132. Springer, 2003.

7. M. Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.
8. M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence

of subtyping. Mathematical Structures in Computer Science, 14(5):651–684, 2004.
9. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information

and Computation, 173(1):82–120, 2002.
10. U. Nestmann and B C. Pierce. Decoding choice encodings. Information and Computation,

163(1):1–59, 2000.
11. R. De Nicola, G. L. Ferrari, R. Pugliese, and B. Venneri. Types for access control. Theoretical

Computer Science, 240(1):215–254, 2000.
12. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical

Structures in Computer Science, 6(5):409–453, 1996.
13. B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus. Jour-

nal of the ACM, 47(3):531–584, 2000.

15

— Technical Appendix (for benefit of referees only) —

A Typing and transition Rules

Table 7 Typing rules for P.

Environments
(-)

` �

(-)
Γ ` � Γ↓ u : T

Γ, u : T ` �
Capabilities
(-)
Γ, u : T, Γ′ ` � T <: T ′

Γ, u : T, Γ′ ` u : T ′

(-)
Γ ` u : T Γ ` u : T ′

Γ ` u : (T u T ′)

(-)
Γ ` ui : Ti (i = 1, . . . , n)

Γ ` (u1, . . . , un) : (T1, . . . ,Tn)
Procesees
(-)
Γ ` �

Γ ` 0

(-)
Γ ` P Γ ` Q

Γ ` P |Q

(-)

Γ ` u : r〈T̃ 〉 Γ, 〈x̃ : T̃ 〉 ` P

Γ ` u(x̃).P
(-)
Γ ` P

Γ `! P

(-)
Γ, a : T ` P

Γ ` (νa :T)P

(-)

Γ ` u : w〈T̃ 〉 Γ ` ṽ : T̃

Γ ` u〈ṽ〉
(-)
Γ ` u1 : T1, u2 : T2 Γ ` Q Γ, 〈u1 : T1〉, 〈u2 : T2〉 ` � Γ, 〈u1 : T1〉, 〈u2 : T2〉 ` P

Γ ` [u1=u2]P; Q

Table 8 Subtyping Rules for P.

Σ ` T <: T

Σ ` T1 <: T ′1 · · · T ′n <: T ′n

Σ ` (T1, . . . ,Tn) <: (T ′1, . . . ,T
′
n) Σ ` T <: >

Σ ` Ũw <: T̃w

Σ ` w〈T̃w〉 <: w〈Ũw〉

Σ ` Ũw <: T̃w T̃w <: T̃r T̃r <: Ũr

Σ ` rw〈T̃r; T̃w〉 <: rw〈Ũr; Ũw〉

Σ ` T̃r <: Ũr

Σ ` r〈T̃r〉 <: r〈Ũr〉

Σ ` T̃w <: T̃r

Σ ` rw〈T̃r; T̃w〉 <: w〈T̃w〉

Σ ` T̃w <: T̃r

Σ ` rw〈T̃r; T̃w〉 <: r〈T̃r〉

Σ, µX.T1 <: T2 ` T1 {µX.T1/X } <: T2

Σ ` T1 <: T2

Σ,T1 <: µX.T2 ` T1 <: T2 {µX.T2/X }

Σ ` T1 <: T2

Judgments are enriched by a subtyping environment of the form Σ = {S <: S ′, . . .}.
We say that S <: T if ∅ ` S <: T

16

Table 9 Operational Semantics for P.

(-)

a(x̃).P
a(ṽ)
−→ P {ṽ/x̃ }

(-)

a〈ṽ〉
a〈ṽ〉
−→ 0

(-)

P
(c̃:C̃)a〈ṽ〉
−→ P′ b ∈ {ṽ} \ {a, c̃}

(νb : B)P
(b:B·c̃:C̃)a〈ṽ〉
−→ P′

(-)

P
µ
−→ P′ bn(µ) ∩ fn(Q) = ∅

P |Q
µ
−→ P′ |Q

(-)

P
(c̃:C̃)a〈ṽ〉
−→ P′ Q

a(ṽ)
−→ Q′ c̃ ∩ fn(Q) = ∅

P |Q
τ
−→ (νc̃ :C̃)(P′ |Q′)

(-)

P
a(ṽ)
−→ P′ Q

(c̃:C̃)a〈ṽ〉
−→ Q′ c̃ ∩ fn(P) = ∅

P |Q
τ
−→ (νc̃ :C̃)(P′ |Q′)

(-)

P
µ
−→ P′ b < n(µ)

(νb :T)P
µ
−→ (νb :T)P′

(-)

P
µ
−→ P′

! P
µ
−→ P′ |! P

(-)

P
µ
−→ P′

[u=u]P; Q
µ
−→ P′

(-)

Q
µ
−→ Q′ u , v

[u=v]P; Q
µ
−→ Q′

Table 10 Typing rules for P@.

Environments
(-)

` �

(-)
Γ ` � Γ↓ u : A

Γ, u : A ` �
Capabilities
(-)
Γ, u : A, Γ′ ` � A <: A′

Γ, u : A, Γ′ ` u : A′

(-)
Γ ` u : A Γ ` u : A′

Γ ` u : (A u A′)

(-)
Γ ` ui : Ai (i = 1, . . . , n)

Γ ` (u1, . . . , un) : (A1, . . . , An)
Procesees
(-)
Γ ` �

Γ ` 0

(-)
Γ ` P Γ ` Q

Γ ` P |Q

(-)

Γ ` u : r Γ, 〈x̃ : Ã〉 ` P

Γ ` u(x̃@Ã).P
(-)
Γ ` P

Γ `! P

(-)
Γ, a : A ` P

Γ ` (νa : A)P

(-)

Γ ` u : w Γ ` ṽ : B̃

Γ ` u〈ṽ@B̃〉
(-)
Γ ` u1 : A1, u2 : A2 Γ ` Q Γ, 〈u1 : A1〉, 〈u2 : A2〉 ` � Γ, 〈u1 : A1〉, 〈u2 : A2〉 ` P

Γ ` [u1=u2]P; Q

17

Table 11 Subtyping Rules for P@.

A <: A rw <: r rw <: w A <: >

A1 <: A′1 · · · A′n <: A′n

(A1, . . . , An) <: (A′1, . . . , A
′
n)

Table 12 Operational Semantics for P@.

(-)

a(x̃@Ã).P
a(ṽ@Ã)
−→ P {ṽ/x̃ }

(-)

a〈ṽ@Ã〉
a〈ṽ@Ã〉
−→ 0

(-)

P
(c̃:C̃)a〈Ã@ṽ〉
−→ P′ b ∈ {ṽ} \ {a, c̃}

(νb : B)P
(b:B·c̃:C̃)a〈ṽ@Ã〉
−→ P′

(-)

P
α
−→ P′ bn(α) ∩ fn(Q) = ∅

P |Q
α
−→ P′ |Q

(-)

P
(c̃:C̃)a〈ṽ@Ã〉
−→ P′ Q

a(ṽ@B̃)
−→ Q′ Ã <: B̃ c̃ ∩ fn(Q) = ∅

P |Q
τ
−→ (νc̃ :C̃)(P′ |Q′)

(-)

P
a(ṽ@Ã)
−→ P′ Q

(c̃:C̃)a〈ṽ@B̃〉
−→ Q′ B̃ <: Ã c̃ ∩ fn(P) = ∅

P |Q
τ
−→ (νc̃ :C̃)(P′ |Q′)

(-)

P
α
−→ P′ b < n(α)

(νb :T)P
α
−→ (νb :T)P′

(-)

P
α
−→ P′

! P
α
−→ P′ |! P

(-)

P
α
−→ P′

[u=u]P; Q
α
−→ P′

(-)

Q
α
−→ Q′ u , v

[u=v]P; Q
α
−→ Q′

B Typing Preservation

The aim of this section is to prove that the encodings of Sections 3 and 4 preserve P@
typing and subtyping. To do that, we need some auxiliary results. Firs of all we specify
the type > as expected: > def

= (>,>,>,>). Then a direct consequence of the definition
is that the subtyping lattice of P@ is preserved by the recursive types of Table 5, as
stated by the following lemma.

Lemma 3 (Subtyping Preservation). Trw <: {Tr,Tw} <: T>.

Proof. Apply the definition. Note in particular that w〈w〈T 〉〉 is covariant in T . ut

18

Corollary 1. If Γ <: Γ′ in P@, then {|Γ |} <: {|Γ′ |} in P.

Table 5 introduces also the server types Sr@A and Sw@s, which are still based on the
tuples R andW but provide both read and write capabilities on nr@A and nw@A. A first
consequence of the definition is listed in the following lemma.

Lemma 4. Sr@A <: Tr@A and Sw@A <: Tw@A for every type A in P@.

Server types provide an auxiliary encoding for type environments, which is useful for
type preservation. The auxiliary encoding is based on the type S def

= (RS,WS), where

RS
def
= (Sr@rw,Sr@r,Sr@w,Sr@>) WS

def
= (Sw@rw,Sw@r,Sw@w,Sw@>).

Clearly RS <: R andWS <:W. Then S <: Trw and thus by Lemma 3:

S <: T for every T ∈ {Trw,Tr,Tw,T>}. (1)

B.1 Encoding {| − |}Γ

Here we prove the type preservation for the encoding {| − |}Γ defined in Table 4. We need
the auxiliary encoding {| |}S defined as

{| ∅ |}S
def
= t : >, f : >

{|Γ, v : A |}S def
= {|Γ |}, v : S

The observation (1) implies the following fact.

Fact 7 If Γ is a typing environment in P@, then {|Γ |}S <: {|Γ |}.

As we anticipated, {|Γ |}S is a good typing environment to type-check channel managers.
This will be clear from Corollary 2.

Lemma 5. If Γ is a typing environment in P@, then {|Γ |}, 〈a : S〉 ` C(a) in P for
every a ∈ dom(Γ).

Proof. Let a ∈ dom(Γ) and consider C(a) def
=
∏

A ! ur@A(h).C(u, A, h). In order
to prove that {|Γ |}, 〈a : S〉 ` C(a), we show that

{|Γ |}, 〈a : S〉 ` ur@A(h).C(u, A, h)

for every type A in P@. The proof follows a common pattern for every type.
For instance, let A = w and check that {|Γ |}, 〈a : S〉 ` ur@w(h).C(u,w, h).

Essentially this amounts to derive

1. {|Γ |}, h : w〈>,W〉, l : rw〈>〉, 〈a : S〉 ` Rl

〈
uw@w(z).h〈z〉

〉
,

2. {|Γ |}, h : w〈>,W〉, l : rw〈>〉, 〈a : S〉 ` Rl

〈
uw@rw(z).h〈z〉

〉
.

19

Consider item 1. Let ∆1 = {|Γ |}S, h : w〈>,W〉, l : rw〈>〉, (zR, zW) : (>,W), 〈a : S〉.
Since ∆1 ` uw@w : rw〈>,W〉 <: w〈>,W〉 and ∆1 ` h : w〈>,W〉, the rules of Ta-
ble 7 derive ∆1 ` Tl

〈
uw@w(z).h〈z〉

〉
. Moreover ∆1 ` uw@w : rw〈>,W〉 <: r〈>,W〉,

hence item 1 follows by (-). Item 2 is analogous. Let ∆2 = {|Γ |}S, h : w〈>,W〉, l :
rw〈>〉, (zR, zW) : (R,W), 〈a : S〉. Since ∆2 ` uw@rw : rw〈R,W〉 <: w〈R,W〉 and ∆2 `

h : w〈>,W〉 <: w〈R,W〉, the rules of Table 7 derive ∆2 ` Tl
〈
uw@rw(z).h〈z〉

〉
.More-

over ∆2 ` uw@rw : rw〈R,W〉 <: r〈R,W〉, hence item 2 follows by (-). Now, items
1 and 2 imply {|Γ |}, h : w〈R,W〉, 〈a : S〉 ` C(u,w, h) by (-), (-) and
(-). Then, since {|Γ |}, h : w〈R,W〉, 〈a : S〉 ` ur@w : rw〈w〈R,W〉〉 <: r〈w〈R,W〉〉,
an application of the rule (-) concludes that {|Γ |}, 〈a : S〉 ` ur@w(h).C(u,w, h).

As already said, the typing judgement {|Γ |}, 〈a : S〉 ` ur@A(h).C(u, A, h) can be
derived in a similar way also when A is rw, r, or >. Thus {|Γ |}, 〈a : S〉 ` C(a) follows
by (-) and (-). ut

Corollary 2. For every Γ in P@ it holds {|Γ |}S ` MΓ in P.

On the other hand, client types are enough to type the encoding of P@ processes..

Lemma 6. If Γ ` P in P@, then {|Γ |} ` {| P |} in P.

Proof. First check that Γ ` � implies {|Γ |} ` �. Then, thanks to Lemma 3, show that
Γ ` v : A implies {|Γ |} ` v : TA. Finally prove the lemma by induction on the derivation
of Γ ` P in P@. The interesting cases are the inductive steps for (-), (-)
and (-).

When (-) is the last rule of the type derivation then

Γ ` u : r Γ, 〈x : A〉 ` P

Γ ` u(x@A).P

Assume for instance that A = w. The induction hypotheses say that (i) {|Γ |} ` u : Tr,
hence {|Γ |} ` ur@w : w〈w〈Tw〉〉; and (ii) {|Γ |}, 〈{| x : w |}〉 ` {| P |}, namely {|Γ |}, 〈x : Tw〉 `

{| P |}. Now the typing rules for P (in Table 7), (-) and (-) in particular, allow
the derivation of the typing judgment {|Γ |} ` (νh : rw〈Tw〉)

(
ur@w〈h〉 |h(x).{| P |}

)
, that is

{|Γ |} ` {| P |}. The cases A = rw, r,> are similar.
When (-) is the last rule of the type derivation

Γ ` u : w Γ ` v : A

Γ ` u〈v@A〉

then (i) {|Γ |} ` u : TA, hence {|Γ |} ` uw@A : w〈TA〉; and (ii) {|Γ |} ` (vR, vW) : TA. Hence
{|Γ |} ` uw@A〈v〉, by (-), and so {|Γ |} ` {| u〈v@A〉 |}.

When (-) is the last rule of the type derivation then

Γ, a : A ` P

Γ ` (νa : A)P

The induction hypothesis says that {|Γ, a : A |} ` {| P |} in P, that is {|Γ |}, a : TA ` {| P |},
hence {|Γ |}, a : S ` {| P |}. Moreover {|Γ |}, a : S ` C(a) by Lemma 5, then {|Γ |}, a : S `
{| P |} |C(a) by (-). Finally {|Γ |} ` {| (νa : A)P |} by (-). ut

20

Theorem 1 (Typing and subtyping preservation) For all types A, B in P@, A <: B
implies TA <: TB in P. Furthermore, whenever Γ ` P in P@, then there exists
Γ′ <: {|Γ |} such thatΓ′ ` {|P|}Γ in P.

Proof. The first part of the theorem is given by Lemma 3. For the second part, let Γ ` P
in P@. Lemma 6 says that {|Γ |} ` {| P |} in P, hence {|Γ |}S ` {| P |} by Fact 7. Moreover
{|Γ |}S ` MΓ by Corollary 2. Thus {|Γ |}S ` {|P|}Γ by (-). The thesis of the
theorem is obtained with Γ′ = {|Γ |}S. ut

Finally, the encoding is well defined as it actually maps configurations into configura-
tions.

Corollary 3. If I B P is a configuration in P@, with Γ <: I such that Γ ` P, then
{| I |} B {|P|}Γ is a configuration in P.

Proof. Let I B P be a configuration, with Γ <: I such that Γ ` P in P@. Theorem 1
says that there exists Γ′ <: {|Γ |} such that Γ′ ` {|P|}Γ in P. Lemma 3 says that {|Γ |} <:
{| I |}, hence Γ′ <: {| I |}. Thus {| I |} B {|P|}Γ is a configuration in P. ut

B.2 Encoding ([−])∗
Γ

Here we prove the type preservation for the encoding ([−])∗Γ defined in Table 6. Essen-
tially, the proof is a consequence of the type preservation of the encoding {| − |}Γ given
in Section B.1. As explained in Section 4, the encoding of typing contexts ([−]) extends
{| − |} with the four types that describe the behavior of the proxy channels pA, with
A = rw, r,w,>:

([Γ]) def
= {|Γ |} ∪ {pA : w〈w〈TA〉,TA〉}A∈{rw,r,w,>}.

Again, this definition preserve subtyping.

Lemma 7. If Γ <: Γ′ in P@, then ([Γ]) <: ([Γ′]) in P.

Moreover, the definition ensures that the encoding of P@ processes as clients (see
Table 6) is well typed.

Lemma 8. If Γ ` P in P@, then ([Γ]) ` ([P])∗Γ in P.

Proof. First observe that the definition LΓ (a, x)  P def
= (νh : rw〈TA〉)(pA〈h, ar@r〉 |

h(x).P),with A = Γ(a), ensures that the type of the tuple received on the private channel
h is exactly the one which {|Γ |} assigns to a. Then follow the proof of Lemma 6. ut

Corollary 4. If Γ2 <: Γ1 and Γ1 ` P in P@, then ([Γ2]) ` ([P])∗Γ1
in P.

As done in Section B.1, in order to show that the proxy manager is well typed, we
need to resort to auxiliary types. Contrarily to Section B.1, we do not have to provide
full capabilities on the tuples m, n that correspond to the channels m, n in P@. It is
sufficient to provide the server with read capability on the channels pA used by clients
for their requests. The management of the private association table will then guarantee
the server read capabilities on the proxy channels. The auxiliary encoding is defined as
follows:

([Γ])rw
def
= {|Γ |} ∪ {pA : rw〈w〈TA〉,TA〉}A∈{rw,r,w,>}.

21

Since we omit the implementation of the association table, we assume the two ad-
hoc typing rules (T-L) and (T-T) for LOOKUP and TABLE that are GIVEN in
Section 4. With these assumptions it is straight to prove the following lemma.

Lemma 9. For every Γ in P@ it holds ([Γ])rw ` P in P.

Theorem 3 (Typing and subtyping preservation) For all types A, B in P@, A <: B
implies TA <: TB in P. Furthermore, whenever Γ ` P in P@, then there exists
Γ′ <: ([Γ]) such thatΓ′ ` ([P])∗Γ in P.

Proof. The first part of the theorem is given by Lemma 3. For the second part, take Γ′
def
= ([Γ])rw. Clearly Γ′ <: ([Γ]). Moreover Γ′ ` ([P])∗Γ by Lemma 8 and Γ′ ` P by
Lemma 9. Then conclude Γ′ ` ([P])∗Γ by (-). ut

Again, the encoding is well defined.

Corollary 5. If I B P is a configuration in P@, with Γ <: I such that Γ ` P, then
([I]) B ([P])∗Γ is a configuration in P.

Proof. Let I B P be a configuration, with Γ <: I such that Γ ` P in P@. Theorem 3
says that there exists Γ′ <: ([Γ]) such that Γ′ ` ([P])∗Γ in P. Lemma 3 says that
([Γ]) <: ([I]), hence Γ′ <: ([I]). Thus ([I]) B ([P])∗Γ is a configuration in P. ut

C Soundness and Completeness

The aim of this section is to present the main results that prove soundness and com-
pleteness of the encoding defined in Section 4. We do not consider the encoding given
in Section 3 as it can be proved to be sound just by following the reasoning that leads
to Theorem 5. In particular Theorem 2 is proved just by considering the administrative
reductions which appear in Table 14 and which do not involve the proxy server.

The guideline of the whole line of argument is the proof of full abstraction in [3]3

The proof is based on a new type of behavioral equivalence: the administrative equiv-
alence. This equivalence is defined on particular kind of reductions, called adminis-
trative. Essentially, an administrative reduction represents the synchronization between
the client process and the proxy server that happens in the encodings.

First we need some auxiliary notations. We let the functions ρ, σ range over re-
naming functions. With Pρ we mean the name substitution applied to the names of the
process P. Then we can introduce the idea of derivative processes.

Definition 5 (Derivative process). We say that an P process H is a ([])Γ-derivative
if there exist an P process K, an P@ process P such that Γ ` P and two renaming
functions ρ and σ such that H = Kσ and ([P])∗Γ =⇒ Kρ.

3 The proofs of the results presented in [3] are fully reported in: “M. Giunti. Secure Imple-
mentations of Typed Channel Abstractions. PhD Thesis TD-2007-1, Informatics Department,
University Ca Foscari of Venice, 2007”.

22

Just for the formal Definition 6, in order to identify the administrative reductions,
we resort to a two sorted set of names: ‘standard’ noted by m, n . . . and ‘signed’ noted
by h,m, . . . In the encoding, signed names are those sent on the channels ur@A, i.e., the
channels used for the private communication between a process willing for an input
on (the encoding of) channel u and the channel manager. Formally, the encoding of an
input becomes:

([u(y@A).P])Γ def
= LΓ (u, x)  (νh : rw〈TA〉)

(
xr@A〈h〉 |h(y).([P])Γ,y:A

)
We call administrative every internal communication of the encodings that is not a syn-
chronization along a signed channel.

Definition 6 (Administrative Reduction). We say that P
τ
−→ P′ is an I-administra-

tive reduction, noted P
AI
−→ P′, when I B P↓a iff I B P′ ↓a and P = C[H], P′ = C[H′]

with H,H′ ([])Γ-derivatives such that H
τ
−→ H′ is a synchronization on a standard

channel.

Thanks to the characterization provided by Lemma 15, we will use a single sorted set
of names and abandon the idea of signed channels.

We define
AI
=⇒ to be the reflexive and transitive closure of

AI
−→. Moreover we mark

as
τI
−→ a τ-transition which is not I-administrative.

Definition 7 (Administrative Equivalence). The administrative equivalence ≈A is the
largest symmetric, contextual and term indexed relation R such that I |= PRQ implies

1. if I B P↓a, then I B Q↓a

2. if P
AI
−→ P′, then Q

AI
=⇒ Q′ for some Q′ such that I |= P′RQ′

3. if P
τI
−→ P′, then Q

AI
=⇒

τI
−→

AI
=⇒ Q′ for some Q′ such that I |= P′RQ′

It is easy to see that the above definition implies the following property, useful to prove
that the administrative equivalence is indeed an equivalence relation.

Lemma 10. Given I |= P ≈A Q then:

– if P
AI
=⇒ P′ then Q

AI
=⇒ Q′ for some Q′ such that I |= P′ ≈A Q′

– if P
AI
=⇒

τI
−→

AI
=⇒ P′ then Q

AI
=⇒

τI
−→

AI
=⇒ Q′ for some Q′ such that I |= P′ ≈A Q′

Lemma 11. The relation ≈A is an equivalence over P processes.

Proof. Reflexivity can be checked by showing that the identity relation Id satisfies the
properties required by Definition 7. Symmetry holds by definition. Finally, Lemma 11
is useful to show that ≈A≈A satisfies Definition 7 and thus to prove transitivity. ut

An important observation is that ≈A is finer than ≈.

Lemma 12. If I |= P ≈A Q then I |= P ≈ Q.

23

Proof. We show that the relation ≈A satisfies the properties of Definition 4. The contex-
tuality of ≈A is a consequence of Definition 7. To see that ≈A preserves barbs, assume
that I |= P ≈A Q and I B P ↓a, then I B Q ↓a by Definition 7, and thus I B Q ⇓a.
To see that ≈A is reduction closed, assume that I |= P ≈A Q and P

τ
−→ P′. In case

P
AI
−→ P′, then there exists Q′ such that I |= P′ ≈A Q′ and Q

AI
=⇒ Q′, hence Q =⇒ Q′.

In case P
τI
−→ P′, then there exists Q′ such that I |= P′ ≈A Q′ and Q

AI
=⇒

τI
−→

AI
=⇒ Q′,

hence Q =⇒ Q′. ut

The next definition will be useful to discard administrative reductions when proving
that a relation is included in the administrative equivalence. We will use this technique
in the proof of Theorem 6 (completeness).

Definition 8 (Behavioral Equivalence up to Administrative Equivalence). A type-
indexed relation R is a behavioral equivalence up to administrative equivalence if it is
symmetric, contextual up to ≈A and such that I |= P R Q implies

1. if I B P↓a, then I B P⇓a

2. if P
AI
=⇒ P′, then Q

AI
=⇒ Q′ for some Q′ such that I |= P′ ≈A R≈A Q′

3. if P
AI
=⇒

τI
−→

AI
=⇒ P′, then Q =⇒ Q′ for some Q′ such that I |= P′ ≈A R≈A Q′

Next lemma says that a behavioral equivalence up to administrative equivalence is finer
than the behavioral equivalence ≈. For its proof we refer to [3].

Lemma 13. If R is a behavioral equivalence up to administrative equivalence, then
I |= P R Q then I |= P ≈A Q.

The usual congruence of pi-calculus, denoted by ≡, will simplify the proofs in the
following of the paper. Basically, it identifies processes with the same internal structure,
and it is defined as the smallest congruence that is closed under α-conversion and that
satisfies the following axioms:

P |Q ≡ Q |P P | (νa :T)Q ≡ (νa :T)(P |Q) ! (P |Q) ≡ ! P |! Q
P |0 ≡ P (νa :T)0 ≡ 0 ! P ≡ ! P |P

[a=a]P; Q ≡ P [a=b]P; Q ≡ P (if a , b) !! P ≡ ! P
(νa1 :T1)(νa2 :T2)P ≡ (νa2 :T2)(νa1 :T1)P

It is easy to see that congruence is sound with respect the operational semantics
given in Table 9. In fact, if P ≡ Q and P

α
−→ P′ then there exists Q′ such that Q

α
−→ Q′

and P′ ≡ Q′.As expected, congruence is finer that ≈A, as stated by the following lemma,
whose proof is fairly standard.

Lemma 14. If P ≡ Q then I |= P ≈A Q for every I.

It is straightforward to see how the congruence relation provides a characterization
of administrative reductions. The details are outlined in tables 13 and 14. In particular,
Table 13 depicts the administrative reductions due to the interaction with the proxy
server, and Table 14 depicts the administrative reductions due to the interaction with
the channel manager. We can use a single sorted set of names, as all the reduction that
are not listed in the tables are not administrative. Thus we will not refer to standard or
signed names.

24

Table 13 Administrative Reductions – Interaction Client/Proxy Server.

Case 1:
H ≡ LΓ (a, x)  P | S(t)
H′ ≡ (νh : rw〈TA〉) (h(x).P | Rt(ar@r, h)) | S(t)

Case 2(a):
H ≡ (νh : rw〈TA〉)

(
h(x).P | Rt(a, h)

)
| TABLE(t,T)

H′ ≡ (νh : rw〈TA〉)(
h(x).P | (νr : rw〈>,S〉)

(
r〈t, k〉 | r(x, y)[x=t]h〈y〉; (h〈y〉 |C(y))

))
| TABLE(t,T)

Case 2(b):
H ≡ (νh : rw〈TA〉)

(
h(x).P | Rt(a, h)

)
| TABLE(t,T)

H′ ≡ (νh : rw〈TA〉) (νk :S)(
h(x).P || (νr : rw〈>,S〉)

(
r〈f, k〉 | r(x, y)[x=t]h〈y〉; (h〈y〉 |C(y))

)
| TABLE(t, (a, k) :: T)

)
Case 3(a):
H ≡ (νh : rw〈TA〉)

(
h(x).P | (νr : rw〈>,S〉)

(
r〈t, k〉 | r(x, y)[x=t]h〈y〉; (h〈y〉 |C(y))

))
H′ ≡ (νh : rw〈TA〉)

(
h(x).P | [t=t]h〈k〉; (h〈k〉 |C(k))

)
Case 3(b):
H ≡ (νh : rw〈TA〉)

(
h(x).P | (νr : rw〈>,S〉)

(
r〈f, k〉 | r(x, y)[x=t]h〈y〉; (h〈y〉 |C(y))

))
H′ ≡ (νh : rw〈TA〉)

(
h(x).P | [f=t]h〈k〉; (h〈k〉 |C(k))

)
Case 4(a):
H ≡ (νh : rw〈TA〉)

(
h(x).P | [t=t]h〈k〉; (h〈k〉 |C(k))

)
H′ ≡ P

{
k/x
}

Case 4(b):
H ≡ (νh : rw〈TA〉)

(
h(x).P | [f=t]h〈k〉; (h〈k〉 |C(k))

)
H′ ≡ P

{
k/x
}
| C(k)

With Rt(a, h) def
= (νr : rw〈>,S〉)

(
LOOKUP(a, t, r) |r(x, y)[x=t]h〈y〉; (h〈y〉 |C(y))

)

Lemma 15 (Administrative Reduction – Characterization). The reduction P
τ
−→ P′

is I-administrative when I B P↓a iff I B P′ ↓a and P = C[H], P′ = C[H′] with H,H′

satisfying one of the eight cases depicted in tables 13 and 14.

C.1 Closure Properties of Administrative Equivalence

The key property of administrative reductions is that they are closed under administra-
tive equivalence, as stated by Lemma 17. The notion of non-overlapping transitions and
Lemma 16 are useful to prove Lemma 17.

Definition 9 (Non-overlapping reductions). The reductions P
τ
−→ Q and P

τ
−→ R are

non-overlapping if there are C[], P′ and P′′ such that P ≡ C[P′ | P′′], Q ≡ C[Q′ | P′′]
with P′

τ
−→ Q′, and R ≡ C[P′ |R′′] with P′′

τ
−→ R′′.

25

Table 14 Administrative Reductions – Interaction Client/Channel Manager.

Case 5:
H ≡ (νh : rw〈TA〉)(ur@A〈h〉 |h(x).Q) | !ur@A(h).C(u, A, h)
H′ ≡ (νh : rw〈TA〉)(h(x).Q |C(u, A, h)) | !ur@A(h).C(u, A, h)

Case 6:
H ≡ uw@B〈v〉 | (νh : rw〈TA〉)

(
h(x).Q | (νl : rw〈>〉)

(
l〈t〉 |RA〈h, l〉

))
H′ ≡ (νh : rw〈TA〉)

(
h(x).Q | Q′ |

| (νl : rw〈>〉)
(

l〈n〉 | RA〈h, l〉 | l(z).[z=t](l〈f〉 |h〈v〉) ⊕ (l〈t〉 |uw@B〈v〉); (l〈t〉 |uw@B〈v〉)
))

Case 7:
H ≡ (νh : rw〈TA〉)

(
h(x).Q |

| (νl : rw〈>〉)
(

l〈n〉 | Q′ | RA〈h, l〉 | l(z).[z=t](l〈f〉 |h〈v〉) ⊕ (l〈t〉 |uw@B〈v〉); (l〈t〉 |uw@B〈v〉)
))

H′ ≡ (νh : rw〈TA〉)
(

h(x).Q |
| (νl : rw〈>〉)

(
Q′ | RA〈h, l〉 | [n=t](l〈f〉 |h〈v〉) ⊕ (l〈t〉 |uw@B〈v〉); (l〈t〉 |uw@B〈v〉)

))
Case 8(a):
H ≡ (νh : rw〈TA〉)

(
h(x).Q |

| (νl : rw〈>〉)
(
Q′ | RA〈h, l〉 | [t=t](l〈f〉 |h〈v〉) ⊕ (l〈t〉 |uw@B〈v〉); (l〈t〉 |uw@B〈v〉)

))
H′ ≡ (νh : rw〈TA〉)

(
h(x).Q | (νl : rw〈>〉)

(
Q′ | RA〈h, l〉 | l〈f〉 | h〈v〉 | (νi : rw〈 〉)i().(l〈t〉 |uw@B〈v〉)

))
Case 8(b):
H ≡ (νh : rw〈TA〉)

(
h(x).Q |

| (νl : rw〈>〉)
(
Q′ | RA〈h, l〉 | [t=t](l〈f〉 |h〈v〉) ⊕ (l〈t〉 |uw@B〈v〉); (l〈t〉 |uw@B〈v〉)

))
H′ ≡ (νh : rw〈TA〉)

(
h(x).Q | (νl : rw〈>〉)

(
Q′ | RA〈h, l〉 | l〈t〉 | uw@B〈v〉 | (νi : rw〈 〉)i().(l〈f〉 |h〈v〉)

))
Case 8(c):
H ≡ (νh : rw〈TA〉)

(
h(x).Q |

| (νl : rw〈>〉)
(
Q′ | RA〈h, l〉 | [f=t](l〈f〉 |h〈v〉) ⊕ (l〈t〉 |uw@B〈v〉); (l〈t〉 |uw@B〈v〉)

))
H′ ≡ (νh : rw〈TA〉)

(
h(x).Q | (νl : rw〈>〉)

(
Q′ | RA〈h, l〉 | l〈t〉 | uw@B〈v〉

))
With RA〈h, l〉 def

=
∏

C<:A !uw@C(z).Tl〈uw@C(z).h〈z〉〉.

Lemma 16. If P
τ
−→ Q and P

τ
−→ R are two non-overlapping transitions, then there

exists a process H such that Q
τ
−→ H and R

τ
−→ H.

Proof. The definition says that there are C[], P′ and P′′ such that P ≡ C[P′ | P′′],
Q ≡ C[Q′ | P′′] with P′

τ
−→ Q′, and R ≡ C[P′ | R′′] with P′′

τ
−→ R′′. Then let H be

C[Q′ |R′′] and check that Q
τ
−→ H and R

τ
−→ H. ut

Lemma 17. If P
AI
−→ P′ then I |= P ≈A P′.

Proof. We take the type indexed relation R def
= (R1 ∪ R2∪ ≡), where I |= C[P]R1C[Q]

and I |= C[Q]R2C[P] whenever P
AI
−→ Q and C[−] is an evaluating context defined as

26

C[−] def
= (νb̃ : T̃)(− | R), with I ` R. Then we show that R is symmetric, barb preserving,

reduction closed and contextual.
Symmetry. It holds by definition
Barb Preservation. Assume that I |= C[P] R1 C[Q]. If I B C[]↓a then I B C[P]↓a if
and only if I B C[Q] ↓a. Otherwise I B P ↓a if and only if I B Q ↓a by Definition 6,
and again I B C[P]↓a if and only if I B C[Q]↓a. The case for R2 is analogous and the
case for ≡ follows from Lemma 14.
Reduction Closure. The relation R1 is the only significative one. Then we assume that

I |= C[P] R1 C[Q], meaning that P
AI
−→ Q. We need to prove that (a) if C[P]

AI
−→ H

then C[Q]
AI
=⇒ K with H R K, and that (b) if C[P]

τI
−→ H then C[Q]

AI
=⇒

τI
−→

AI
=⇒ K

with H R K. The two cases are essentially treated in a similar way, and they rely on
Lemma 16 as administrative reductions are in general non-overlapping. In the following
we discuss two significative cases

In case C[P]
AI
−→ H and this reduction has been generated by item 5 in Table 14. If

the administrative reduction P
AI
−→ Q has been inferred from the items 1–4 of Table 13

or 6–8 of Table 14, then the reductions C[P]
AI
−→ C[Q] and C[P]

AI
−→ H are non

overlapping, hence we conclude that there exists K such that C[Q]
AI
−→≡ K and H

AI
−→≡

K by Lemma 16. On the other hand, if the administrative reduction P
AI
−→ Q has been

inferred from the item 5 of Table 14, then it must be a synchronization on a channel

ur@A. Also C[P]
AI
−→ H is a synchronization on a channel u′r@A′ . Now, if u , u′ and

A , A′, then the two transitions are non-overlapping. We conclude as above. If u = u′

and A = A′ then we have two possibilities. On the one hand, if H = C[Q] then we

conclude that C[Q]
AI
=⇒ H. On the other hand, if there are two synchronizations on two

different outputs on ur@A it must be the case that

C[P] ≡ C′[(νh : rw〈TA〉)(ur@A〈h〉 |h(x).Q1)
(νk : rw〈TA〉)(ur@A〈k〉 |k(x).Q2) |!ur@A(h).C(u, A, h)].

Then it is easy to see that C[P]
AI
−→ H

AI
−→ K1 and C[Q]

AI
−→ K2 with

C[Q] ≡ C′[(νh : rw〈TA〉)(h(x).Q1 |C(u, A, h)) |
(νk : rw〈TA〉)(ur@A〈k〉 |k(x).Q2) |!ur@A(h).C(u, A, h)]

H ≡ C′[(νk : rw〈TA〉)(k(x).Q2 |C(u, A, k)) |
(νh : rw〈TA〉)(ur@A〈h〉 |h(x).Q1) |!ur@A(h).C(u, A, h)]

K1 ≡ K2 ≡ C′[(νh : rw〈TA〉)(h(x).Q1 |C(u, A, h)) |
(νk : rw〈TA〉)(k(x).Q2 |C(u, A, k)) |!ur@A(h).C(u, A, h)].

In case C[P]
AI
−→ H according to item 6 in Table 14. If the administrative reduction

P
AI
−→ Q has been inferred from the items 1–4 of Table 13 and 5, 7, 8 of Table 14 then we

conclude as done above thanks to Lemma 16. On the other hand if the administrative
reduction P

AI
−→ Q has been inferred from the item 6 of Table 14, then it must be a

synchronization on a channel uw@A. Also C[P]
AI
−→ H is a synchronization on a channel

27

u′w@A. Again, if H = C[Q] then we conclude that C[Q]
AI
=⇒ H. Moreover if they are

non-overlapping synchronisations then we conclude as above. The only overlapping
case is when u = u′ and

C[P] ≡ C′[(νñ : T̃)(uw@B1〈v1〉 |Q
′
1) |

(νñ : T̃)(uw@B2〈v2〉 |Q
′
2) |

(νh : rw〈TA〉)(h(x).Q | (νl : rw〈>〉)(l〈t〉 |RA〈h, l〉))]
C[Q] ≡ C′[(νñ : T̃)(uw@B1〈v1〉 |Q

′
1) |

(νñ : T̃)(uw@B2〈v2〉 |Q
′
2) |

(νh : rw〈TA〉)(h(x).Q | (νl : rw〈>〉)(l〈t〉 |RA〈h, l〉))]

Now we can conclude as done above for the previous case thanks to the presence of the
replicated input channel

∏
C<:A !uw@C(z).Tl〈uw@C(z).h〈z〉〉 in RA〈h, l〉.

Contextuality. It is a direct consequence of the definition of R1 and R2, as we have
introduced the evaluating context C[−]. ut

The result of Lemma 17 can be extended to an arbitrary number of administrative
reductions.

Corollary 6. If P
AI
=⇒ Q then I |= P ≈A Q.

Proof. Extend Lemma 17 by induction on the number of reductions P
AI
=⇒ Q. ut

C.2 Operational Correspondence

Soundness relies on a operational correspondence between the source process P and its
encoding ([P])∗Γ. The ‘preservation’ direction (Lemma 18) is fairly standard, whereas
the ‘reflection’ (Lemma 21) direction needs more care as the encoding is not ‘prompt’
(see [10]): in fact, the encoding takes several steps to commit a synchronization of the
source process. In this section we show that those steps have the following properties:
each reduction leading to a commit (i) does not preclude any other reduction and (ii) it
is administrative, thus not visible to the context.

Lemma 18 (Operational Preservation). Let I B P a configuration in P@ and Γ <:

I such that Γ ` P. If P
τ
−→ P′ then ([P])∗Γ

AJ
=⇒

τJ
−→ K, with J = ([I]) and J |= K ≈A

([P′])∗Γ.

Proof. By induction on the derivation of P
τ
−→ P′ in P@, we see that there exists a

reduction ([P])∗Γ
AJ
=⇒ H which follows the steps in (the same order of) Table 13 and Ta-

ble 14 with H
τJ
−→ K ≡ (νk :S)

(
([P′])Γ | (νt :TBL[>,S])(S(t) | TABLE(t, [(n, k)]))

)
and J |= K ≈A ([P′])∗Γ as the association table does not influence the behavior of the
encoded process. ut

For the reverse direction of the operational correspondence we introduce an aux-

iliary notion. Consider the reductions P
AI
=⇒ P′

τI
−→ Q, we say that the sequence

AI
=⇒

is canonical, and we denote it as P
dAeI
=⇒ P′ if it includes just the administrative steps

required to enable the non administrative synchronization in P′. More formally,

28

Definition 10 (Canonical sequence). The sequence P
dAeI
=⇒ P′ of administrative actions

is canonical when P′
τI
−→ Q with a synchronization between two input/output actions

on a channel n and P
dAeI
=⇒ P′

τI
−→ Q has the minimum length among all the reductions

P
AI
=⇒ P′′

τI
−→ Q in which P′′

τI
−→ Q is a synchronization between the same input/output

actions on n.

We can then prove a preparatory lemma.

Lemma 19. Let I B P a configuration in P@ and Γ <: I such that Γ ` P. Define

J = ([I]). If ([P])∗Γ
AJ
=⇒ H

τJ
−→ K, then there exists H′ such that ([P])∗Γ

dAeJ
=⇒ H′

τJ
−→ K′

with K ≈A K′.

Proof. Let ([P])∗Γ
AJ
=⇒ H

τJ
−→ K then in

AJ
=⇒ there is a synchronization on a channel

pA that start the communication protocol that leads (exactly) to the desired commit-
ting action

τI
−→. Then take this synchronization on pA as the first action and build the

canonical reduction by following the steps 1–7, 8(a) of Tables 13 and 14. Thus obtain

([P])∗Γ
dAeJ
=⇒ H′

τJ
−→ K′. Now, all the administrative steps in ([P])∗Γ

AJ
=⇒ H that are not in

([P])∗Γ
dAeJ
=⇒ H′ can be performed starting by K′. Hence ([P])∗Γ

dAeJ
=⇒ H′

τJ
−→ K′

AI
=⇒ K,

and so I |= K′ ≈A K thanks to Lemma 17. ut

This results can be extended to general P processes, just by considering the derivative
processes.

Corollary 7. Let J B H a configuration in P. If H
AJ
=⇒ Y

τJ
−→ K, then there exists H′

such that H
dAeJ
=⇒ H′

τJ
−→ K′ with K ≈A K′.

Thanks to the canonical administrative reductions, we have a correspondence between
the actions of the encoding and its source process.

Lemma 20. Let I B P a configuration in P@ and Γ <: I such that Γ ` P. Define

J = ([I]). If ([P])∗Γ
dAeJ
=⇒ H

τJ
−→ K then there exists P′ such that P

τ
−→ P′ and J |=

K ≈A ([P′])∗Γ.

Proof. Assume that ([P])∗Γ
dAeJ
=⇒ H

τJ
−→ K. Thanks to canonical reduction ([P])∗Γ

dAeJ
=⇒ H,

we can infer the shape of P and in turn the shape of H. In fact, this reduction mimics
a single synchronization in P (see Lemma 19). Thus P ≡ C[a〈b@B〉 | a(x@B′).Q]
with B <: B′. Consequently H is ready to reduce, via a non administrative reduction,
to (νk : S)

(
([C[Q {b/a }]])Γ | (νt :TBL[>,S])(S(t) | TABLE(t, [(n, k)]))

)
≡ K. Now

let P′ be C[Q {b/a }]. Then conclude that P
τ
−→ P′ and J |= K ≈A ([P′])∗Γ as the

association table does not influence the behavior of the encoded process. ut

Lemma 21 (Operational Reflection). Let I B P a configuration in P@ and Γ <: I
such that Γ ` P. Define J = ([I]). Assume that J |= H ≈A ([P])∗Γ and H

τ
−→ K. Then

either J |= H ≈A K or there exists P′ such that P
τ
−→ P′ and J |= K ≈A ([P′])∗Γ.

29

Proof. Assume that J |= H ≈A ([P])∗Γ and H
τ
−→ K. If H

AI
−→ K then we apply

Lemma 17 and we conclude that J |= H ≈A K. Otherwise, it is the case that H
τI
−→ K

and, since J |= H ≈A ([P])∗Γ, there exist Y,Z such that ([P])∗Γ
AJ
=⇒

τJ
−→ Y

AJ
=⇒ Z and

J |= Z ≈A K. Then, by Lemma 19, there exists X such that ([P])∗Γ
dAeJ
=⇒

τJ
−→ X with

J |= X ≈A Y and hence J |= X ≈A Z by Corollary 6. Now, By Lemma 20, there exists
P′ such that P

τ
−→ P′ and J |= ([P′])∗Γ ≈A X. Then J |= ([P′])∗Γ ≈A X ≈A Z ≈A K and

conclude the thesis by transitivity. ut

Lemma 1 (Operational Correspondence). Let I B P be a configuration in P@ and
Γ <: I such that Γ ` P. Define J = ([I]). The following hold:

1. If P
τ
−→ P′ then ([P])∗Γ

AJ
=⇒

τJ
−→ H with J |= H ≈A ([P′])∗Γ.

2. If ([I]) |= H ≈A ([P])∗Γ and H
τ
−→ K, then either ([I]) |= H ≈A K or there exists P′

such that P
τ
−→ P′ and ([I]) |= K ≈A ([P′])∗Γ.

Proof. The operational preservation in item 1 is given by Lemma 18. The operational
reflection in item 2 is given by Lemma 21. ut

Item 2 of the previous lemma can be extended to an unbounded number of reductions,
as said by the following corollary.

Corollary 8. Let I B P a configuration in P@ and Γ <: I such that Γ ` P. If
([P])∗Γ =⇒ H then there exists P′ such that P =⇒ P′ and ([I]) |= H ≈A ([P′])∗Γ.

Theorem 5 (Soundness). Let Γ <: I and Γ′ <: I be such that Γ ` P and Γ′ ` Q. Then
([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ implies I |= P ≈@ Q.

Proof. We consider the type indexed relation R defined as

I |= P R Q if and only if ([I]) |= ([P])∗Γ1
≈ ([Q])∗Γ2

(2)

for some Γ1, Γ2 <: I such that Γ1 ` P and Γ2 ` Q. Then we show that R is symmetric,
reduction closed, barb preserving and contextual.
Symmetry. It holds by definition
Reduction closure. We use the operational correspondence of Lemma 1 and its Corol-
lary 8. Assume that I |= P R Q and let P

τ
−→ Q. Define J def

= ([I]). Item 1 of Lemma 1

says that there exists H in P such that ([P])∗Γ1

AJ
=⇒

τJ
−→ H and J |= H ≈A ([P′])∗Γ1

. As
≈A is finer than ≈ we have J |= H ≈ ([P′])∗Γ1

. Due to the definition in (2) we deduce
that there exists K such that J |= K ≈ H and ([Q])∗Γ2

=⇒ K. Now, Corollary 8 says that
there exists Q′ such that Q =⇒ Q′ and J |= ([Q′])∗Γ2

≈A K. Again, as ≈A⊆≈, it holds
J |= ([Q′])∗Γ2

≈ K and thus J |= ([Q′])∗Γ2
≈ ([P′])∗Γ2

by transitivity.
Then we found Q′ such that Q =⇒ Q′ and ([I]) |= ([Q′])∗Γ2

≈ ([P′])∗Γ2
. This means

that I |= P′ R Q′, hence R is reduction closed.
Barb Preservation. It is obtained directly by observing that for every configuration
I B P and Γ <: I such that Γ ` P we have

I B P↓a if and only if there exists A such that
([I]), h : rw〈TA〉 B LΓ (a, x)  xr@A〈h〉 | ([P])∗Γ ⇓h

30

Contextuality. Essentially this is a consequence of the contextuality of ≈A . We need
to prove the three requirements of Definition 2. Consider for instance item 1. Assume
that I, a : A |= P R Q. Let Γ1 ` P and Γ2 ` Q, with Γ1, Γ2 <: I, a : A. We have to
prove that I |= (νa : A)P R (νa : A)Q. By the definition in (2) we have ([I, a : A]) |=
([P])∗Γ1

≈ ([Q])∗Γ2
and then ([I]) |= (νa :TA)([P])∗Γ1

≈ (νa :TA)([Q])∗Γ2
by contextuality

of ≈. Thanks to the axioms of structural congruence and the definition of the encoding
we have (νa :TA)([P])∗Γ1

≡ ([(νa : A)P])∗
Γ′1

with Γ′1 = Γ1 \{a} and (νa :TA)([Q])∗Γ2
≡ ([(νa :

A)Q])∗
Γ′2

with Γ′1 = Γ1 \ {a}. Then we conclude ([I]) |= ([(νa : A)P])∗
Γ′1
≈ ([(νa : A)Q])∗

Γ′2
with Γ′1, Γ

′
2 <: I, hence I |= (νa : A)P R (νa : A)Q. The other items are analogous. ut

Theorem 6 (Completeness). Let Γ <: I and Γ′ <: I be such that Γ ` P and Γ′ ` Q.
Then I |= P ≈@ Q implies ([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ .

Proof. We recall that ([P])∗Γ is ([P])Γ | (νt :TBL[>,S])(S(t) |TABLE(t,T)) with the
listT empty. The encoding represents the initial configuration without pre-synchroniza-
tion between the client ([P])Γ and the proxy server. Due to the communication protocol,
the proxy server will fulfill the requesters from the client by generating new entries in
T along with the respective channel managers. The system will then evolve to con-
figurations of the form (νk1 : S) . . . (νkp : S)(Q1 | Q2) where Q1 is a derivative of the
original process ([P])Γ, which can be typed as ([Γ]), k1 : Trw, . . . kp : Trw ` Q1, and Q2
represents the state of the system server/table:

Q2 =
∏

i=1...p

C(ki) | (νt :TBL[>,S])
(

S(t) | TABLE(t, (n1, k1) :: . . . :: (np, kp))
)

In order to account this fact, we introduce the process En1...np

k1...kp
which represents the state

of an arbitrary list T = (n1, k1) :: . . . :: (np, kp) and it is defined as

En1...np

k1...kp

def
=

∏
i=1...p

C(ki) | (νt :TBL[>,S])
(
S(t) |TABLE(t, (n1, k1) :: . . . :: (np, kp))

)
.

Observe that En1...np

k1...kp
| ([P])Γ ≡ ([P])∗Γ when p = 0. Thus the candidate relation R can be

defined as:

J |= C
[

([P])Γ | E
n1...np

k1...kp

]
R C

[
([Q])Γ′ | E

n1...np

k1...kp

]
whenever

1. I |= P ≈@ Q for some typing context I in P@ ;
2. Γ, Γ′ <: I with Γ ` P and Γ′ ` Q ;
3. J = ([I]), a1 : T1, . . . an : Tn with ai < dom(([I])) ;
4. C[−] = (νb̃ : T̃)(νk1 :S) . . . (νkp :S)(− | R) with

(a) dom(J) ∩ {b̃} = ∅
(b) n1 . . . np ∈ dom(J) ∪ {b̃}
(c) J , b̃ : T̃ , k1 : Trw, . . . kp : Trw ` R .

31

If we prove that R is a behavioral equivalence up to administrative equivalence (see
Definition 8), then R⊆≈ by Lemma 13. Hence I |= P ≈@ Q implies ([I]) |= ([P])∗Γ ≈
([Q])∗Γ′ by defining the context C[−] to be empty. So we conclude the completeness of
the encoding.

Next we show that R barb preserving, reduction closed and contextual in the sense
of Definition 8. We use the following conventions: J is the typing context ([I]), a1 :
T1, . . . an : Tn, and C[−] is the evaluating context. We let H = C[([P])Γ | E

n1...np

k1...kp
] and

K = C[([Q])Γ′ |E
n1...np

k1...kp
].

Barb Preservation. Assume that H R K and J B H ↓a then J B C[− |En1...np

k1...kp
] ↓a as

J B ([P])Γ does not exhibit barbs, thus we conclude that J B K ↓a .

Reduction closure. Assume that J |= H R K. We check the cases 2 (with H
AJ
=⇒ H′)

and 3 (with H
AJ
=⇒

τJ
−→

AJ
=⇒ H′) of Definition 8.

Assume H
AJ
=⇒ H′. Then J |= H ≈A H′ by Corollary 6, hence we conclude J |=

H′ ≈A H R K.

Otherwise, assume H
AJ
=⇒ Y

τJ
−→ Y ′

AJ
=⇒ H′. Then it is sufficient to find K′ such

that K =⇒ K′ and J |= Y ′ ≈A R≈A K′. The required result J |= H′ ≈A R≈A K′ is
again a consequence of Corollary 6, as ≈A is closed under administrative reductions and
transitive.

Consider H
AJ
=⇒ Y

τJ
−→ Y ′. Then Corollary 7 says that there exists X′ such that

H
dAeJ
=⇒ X

τJ
−→ X′ with J |= Y ′ ≈A X′. Now we have three possibilities: (i) the reduction

is exclusively made by the context C[−], (ii) the reduction is exclusively made by the
encoded process ([P])Γ interacting with En1...np

k1...kp
or (iii) the reduction is generated by the

interaction between the encoded process ([P])Γ and the full context.
(i) In case the reduction is generated by the context; H =⇒ X′ with X′ = C′[([P])Γ]

and so K =⇒ K′ with K′ = C′[([Q])Γ′]. Hence X′ R K′ according to the definition. We
conclude that K =⇒ K′ with J |= Y ′ ≈A X′ R K′.

(ii) In case the reduction is generated by the process ([P])Γ interacting with the
proxy server and the channel manager; the reduction corresponds to a synchronization
on a single channel n for the original process P. There are two sub-cases depending on
n appearing in the association table or not. Here we assume that n is in the association
table, the other case is analogous. To ease the notation, given C[−] = (νb̃ : T̃)(νk1 :
S) . . . (νkp : S)(− | R) define C′[−] = (νb̃ : T̃)(− | R), then C[−] = C′[(νk1 : S) . . . (νkp :
S)(−)]. Since n is in the association table, then X′ ≡ C′[Z] with

(νk1 :S) . . . (νkp :S) (([P])Γ | E
n1...np

k1...kp
)

AJ
=⇒

τJ
−→ Z

As for Lemma 20, due to the presence of the last non administrative transition, the
original process P must perform a τ action. Thus P

τ
−→ P′ and J |= (νk1 : S) . . . (νkp :

S) (([P′])Γ | En1...np

k1...kp
) ≈A Z. Since I |= P ≈@ Q, there exists Q′ such that Q =⇒ Q′

and I |= P′ ≈@ Q′. As for Lemma 18, we have that (νk1 : S) . . . (νkp : S) (([Q])Γ |
En1...np

k1...kp
) =⇒ (νk1 : S) . . . (νkp : S) (([Q′])Γ | En1...np

k1...kp
). Now we define K′ to be C′[(νk1 :

32

S) . . . (νkp : S) (([Q′])Γ | En1...np

k1...kp
)] and we conclude that K =⇒ K′ with J |= K′ =

C[([Q′])Γ] R C[([P′])Γ] ≈A C′[Z] ≡ X′ ≈A Y ′ as required.
(iii) If the reduction is generated by the interaction between the encoded process

([P])Γ and the full context, it means that P performs either an input or an output in
P@. In this case, the reasoning is analogous to item (ii), we just need to consider the
contextuality of the behavioral equivalence that forces the encoding to mime the action
on the P side, and the typing of the process R that cannot read on server channels.
Contextuality. It follows straightforwardly from the definition of R, thanks to the eval-
uating contexts C[−]. ut

Theorem 4 (Full Abstraction). Let Γ <: I and Γ′ <: I be two type environments such
that Γ ` P and Γ′ ` Q. Then I |= P ≈@ Q if and only if ([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ .

Proof. The ‘if’ direction is given by Theorem 5. The ‘only if’ direction is given by
Theorem 6. ut

33

