
Transforming proesses to hek and ensureInformation Flow Seurity?Annalisa Bossi, Riardo Foardi, Carla Piazza, and Sabina RossiDipartimento di Informatia, Universit�a Ca' Fosari di Veneziafbossi,foardi,piazza,srossig�dsi.unive.itAbstrat. Persistent BNDC (P BNDC for short) is an information-ow seurity property for proesses in dynami ontexts, i.e., ontextsthat an be reon�gured at runtime. We propose a method for transform-ing an arbitrary proess into a proess satisfying P BNDC and show thatthe transformation preserves the \low level" observational semantis fora large lass of proesses. We also study how to eÆiently verify P BNDCby exploiting a haraterization of it through a suitable notion of weakbisimulation up to high level ations. We de�ne a seond transforma-tion over proesses whih allows us to redue the problem of hekingP BNDC to the problem of testing a weak bisimulation between two pro-esses. This approah is partiularly appealing as it allows us to performthe P BNDC hek using already existing tools at a low time omplexity.1 IntrodutionSystems are beoming more and more omplex, and the seurity ommunityhas to fae this by taking into aount new threats and potentially dangeroussituations. A signi�ant example is the introdution of proess mobility amongdi�erent arhitetures and systems. A mobile proess moving on the networkollets information about the environments it rosses, and suh informationan inuene it. A system or an appliation exeuting in a \seure way" insideone environment ould �nd itself in a \inseure state" when moving to a di�erentenvironment. In this setting, one an abstratly think that the environment isdynamially reon�gured at run-time, hanging in unpreditable ways.A number of formal de�nitions of seurity properties (see, for instane, [1,3, 5, 7, 13{15, 17, 20{22℄) has been proposed in the literature. Persistent BNDC(P BNDC, for short), proposed in [10℄, is a seurity property whih is suitable toanalyze proesses in ompletely dynami hostile environments, i.e., environmentswhih an be dynamially reon�gured at run-time, hanging in unpreditableways. The notion of P BNDC is based on the idea of Non-Interferene [11, 19,22℄ (formalized as BNDC [7℄) and requires that every state whih is reahable bythe system still satis�es a basi Non-Interferene property. If this holds, one is? This work has been partially supported by the MURST projet \Modelli formali perla siurezza" and the EU Contrat IST-2001-32617 \Models and Types for Seurityin Mobile Distributed Systems" (MyThS).



assured that even if the environment hanges during the exeution no maliiousattaker will be able to ompromise the system, as every possible reahable stateis guaranteed to be seure. In [10℄ it is proved that the P BNDC property isequivalent to an already proposed seurity property alled SBSNNI and studiedin [7℄. In partiular, the property SBSNNI is ompared with di�erent propertiesin the taxonomy of Non-Interferene properties [11℄. From the analysis presentedin [7℄ two important problems emerge: how to verify the P BNDC property andhow to onstrut P BNDC proesses. The �rst problem has been onsidered in[10℄ where it has been shown to be deidable, and in [9℄ where eÆieny issueshave also been takled. To the best of our knowledge the seond problem hasnot been analyzed yet. In [7℄ there are many examples of proesses whih are notP BNDC but an be modi�ed in order to obtain a P BNDC proess. Howevereah single example is treated in a di�erent way by applying eah time an \adho" re-de�nition.Our purpose here is to �nd a general method for retifying non P BNDCproesses. It turns out that the method we suggest an be used both to retifyand to eÆiently verify the P BNDC property. We automatially transform aproess E into a P BNDC proess E� and identify a large lass of proesses forwhih the transformation preserves the low level observational semantis, i.e., forthe low level user E and E� are not distinguishable. This transformation an beused to onstrut \seure" proesses from a �rst possibly \inseure" de�nition.Moreover, this also allows us to give an alternative haraterization of P BNDCthrough a suitable notion of weak bisimulation up to high level ations [10℄.More preisely, we obtain that a proess E is P BNDC if and only if E and E�are weak bisimilar up to high level ations. The problem of verifying whethera proess is P BNDC is then redued to the problem of heking whether Eand E� are weak bisimilar up to high level ations. We show that this probleman be further simpli�ed reduing it to the problem of heking the more usualnotion of weak bisimulation between two proesses. In partiular we de�ne aseond transformation over proesses suh that the problem of heking whethera proess is P BNDC is redued to the problem of testing a weak bisimulationrelation. This approah seems to be partiularly appealing as it allows us toperform the P BNDC hek using already existing tools at a low time omplexity.The paper is organized as follows. In Setion 2 we present some basi notionson the SPA language, we introdue the P BNDC property and we reall itsharaterization in terms of weak bisimulation up to high level ations. In Setion3 we de�ne our �rst transformation and prove its main properties. In Setion 4 weintrodue a seond transformation and show how to use both our transformationsto hek P BNDC. In Setion 5 we illustrate the usefulness of our transformationson a simple example. Finally, in Setion 6 we draw some onlusions.2 Basi NotionsIn this setion we report from [7℄ the syntax and semantis of the Seurity Pro-ess Algebra together with the de�nition of the Non-Interferene property alled2



BNDC. We then report from [10℄ the de�nition of Persistent BNDC togetherwith the main result that we will exploit for the veri�ation of suh a property.The SPA Language. The Seurity Proess Algebra (SPA, for short) [7℄ is avariation of Milner's CCS [16℄, where the set of visible ations is partitionedinto high level ations and low level ones in order to speify multilevel systems.SPA syntax is based on the same elements as CCS that is: a set L of visibleations suh that L = I [ O where I = fa; b; : : :g is a set of input ations andO = f�a;�b; : : :g is a set of output ations; a speial ation � whih models internalomputations, i.e., not visible outside the system; a omplementation funtion�� : L ! L, suh that ��a = a, for all a 2 L, and �� = � ; At = L [ f�g is the setof all ations. The set of visible ations is partitioned into two sets, H and L,of high and low ations suh that H = H and L = L. The syntax of SPA terms(or proesses) is de�ned as follows:E ::= 0 j a:E j E +E j EjE j Env j E[f ℄ j Zwhere a 2 At , v � L, f : At ! At is suh that f(��) = f(�) and f(�) = � ,and Z is a onstant that must be assoiated with a de�nition Z def= E.Intuitively, 0 is the empty proess that does nothing; a:E is a proess thatan perform an ation a and then behaves as E; E1 + E2 represents the non-deterministi hoie between the two proesses E1 and E2; E1jE2 is the pa-rallel omposition of E1 and E2, where exeutions are interleaved, possibly syn-hronized on omplementary input/output ations, produing an internal a-tion � ; E n v is a proess E prevented from performing ations in v; E[f ℄ isthe proess E whose ations are renamed via the relabelling funtion f . Forthe de�nition of seurity properties it is also useful the hiding operator, =, ofCSP whih an be de�ned as a relabelling as follows: for a given set v � L,E=v def= E[fv ℄ where fv(x) = x if x 62 v and fv(x) = � if x 2 v. In pratie, E=vturns all ations in v into internal � 's.Given a �xed language L we denote by E the set of all SPA proesses and byEH the set of all high level proesses, i.e., those onstruted on H [ f�g.The operational semantis of SPA agents is given in terms of Labelled Tran-sition Systems. A Labelled Transition System (LTS) is a triple (S;A;!) whereS is a set of states, A is a set of labels (ations), !� S � A � S is a setof labelled transitions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2)means that the system an move from the state S1 to the state S2 through theation a. The operational semantis of SPA is the LTS (E ;At ;!), where thestates are the terms of the algebra and the transition relation !� E �At � Eis de�ned by strutural indution as the least relation generated by the infer-ene rules reported in Fig. 1. The operational semantis for an agent E is thesubpart of the SPA LTS reahable from the initial state and we refer to it asLTS (E) = (SE ;At ;!). A proess E is said to be �nite-state if SE is �nite.In [16℄ it is shown that a �nite-state proess E an always be de�ned througha system S of equations of the formEj = a1:E1 + : : :+ an:En;3



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 a! E01 E2 �a! E02Parallel a 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restrition if a 62 vEnv a! E0nvE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0Constant if A def= EA a! E0Fig. 1. The operational rules for SPAsuh that E1; : : : ; En 2 SE and there is one equation in S for eah Ej 2 SE .The onept of observation equivalene between two proesses is based onthe idea that two systems have the same semantis if and only if they annot bedistinguished by an external observer. This is obtained by de�ning an equiva-lene relation over E . In the following, we report the de�nition of an observationequivalene alled weak bisimulation [16℄. Intuitively, weak bisimulation equatestwo proesses if they are able to mutually simulate their behavior step by step.Weak bisimulation does not are about internal � ations. So, when F simulatesan ation of E, it an also exeute some � ations before or after that ation.We will use the following auxiliary notations. If t = a1 � � � an 2 At� andE a1! � � � an! E0, then we write E t! E0. We also write E t=) E0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a (possibly empty) sequene of �labelled transitions. If t 2 At�, then t̂ 2 L� is the sequene gained by deletingall ourrenes of � from t. As a onsequene, E â=) E0 stands for E a=) E0 ifa 2 L, and for E( �!)�E0 if a = � (note that �=) requires at least one � labelledtransition while �̂=) means zero or more � labelled transitions).De�nition 1 (Weak Bisimulation). A binary relation R � E�E over agentsis a weak bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F â=) F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E â=) E0 and (E0; F 0) 2 R.4



Two agents E;F 2 E are weakly bisimilar, denoted by E � F , if there exists aweak bisimulation R ontaining the pair (E;F ).� is the largest weak bisimulation and an equivalene relation (see [16℄).Seurity Properties. In this setion, we reall from [10℄ the Persistent BNDC(P BNDC, for short) seurity property and its haraterization in terms of weakbisimulation up to high level ations. We start by realling the de�nition ofBisimulation-based Non Deduibility on Compositions (BNDC, for short) [7℄.The BNDC seurity property aims at guaranteeing that no information ow fromthe high to the low level is possible, even in the presene of maliious proesses.The main motivation is to protet a system also from internal attaks, whihould be performed by the so alled Trojan Horse programs, i.e., programs thatpretend/appear to be honest but inorporate some maliious ode.Property BNDC is based on the idea of heking the system against allhigh level potential interations, representing every possible high level maliiousprogram. In partiular, a system E is BNDC if for every high level proess � alow level user annot distinguish E from (Ej�), i.e., if � annot interfere [11℄with the low level exeution of the system E.De�nition 2 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; EnH � (Ej�)nH:In [10℄ it is shown that the BNDC property is not strong enough to analysesystems in dynami exeution environments. To deal with these situations, in[10℄ it has been introdued the seurity property named P BNDC. Intuitively, asystem E is P BNDC if it never reahes inseure states.De�nition 3 (Persistent BNDC). Let E 2 E.E 2 P BNDC i� 8 E0 reahable from E; E0 2 BNDC :We give a simple example of a P BNDC proess. A more expressive examplean be found in [10℄.Example 1. Consider the proess E1 = l:h:j:0 + l:(�:j:0 + �:0) where l; j 2 Land h 2 H . E1 an be proved to be BNDC . Indeed, the ausality betweenh and j in the �rst branh of the proess is \hidden" by the seond branhl:(�:j:0 + �:0), whih may simulate all the possible interations with a highlevel proess. Suppose now that E1 is moved in the middle of a omputation.This might happen when it �nd itself in the state h:j:0 (after the �rst l isexeuted). Now it is lear that this proess is not seure, as a diret ausalitybetween h and j is present. In partiular h:j:0 is not BNDC and this givesevidene that E1 is not P BNDC. The proess may be \repaired" as follows:E2 = l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E2 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.5



In [10℄ it has been proven that the property P BNDC is equivalent to theseurity property SBSNNI [6, 7℄, whih is automatially hekable over �nite-state proesses.However, this property still requires a universal quanti�ation over all thepossible states that are reahable from the initial proess E. In [10℄ it has beenshown that this an be avoided, by inluding the requirement of \being seurein every state" diretly inside the bisimulation equivalene notion.In partiular, an observation equivalene, named weak bisimulation up to H ,is de�ned in suh a way that ations from H may be ignored, i.e., they maybe mathed with zero or more � ations. This bisimulation notion is based ona suitable transition relation â=)nH whih does not take are of both internalations and ations from H .De�nition 4. Let E;E0 2 E and a 2 At. We de�ne the transition relationâ=)nH as follows:E â=)nH E0 = (E â=) E0 if a 62 HE a=) E0 or E �̂=) E0 if a 2 HNote that the relation â=)nH is a generalization of the relation â=) used in thede�nition of weak bisimulation [16℄. In fat, if H = ;, then for all a 2 At ,E â=)nH E0 oinides with E â=) E0.The onept of weak bisimulation up to H is de�ned as follows.De�nition 5 (Weak Bisimulation up to H). A binary relation R � E � Eover agents is a weak bisimulation up toH if (E;F ) 2 R implies, for all a 2 At,(1) if E a! E0, then there exists F 0 suh that F â=)nH F 0 and (E0; F 0) 2 R;(2) if F a! F 0, then there exists E0 suh that E â=)nH E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar up toH, written E �nH F , if (E;F ) 2R for some weak bisimulation R up to H.The relation�nH is the largest weak bisimulation up toH and it is an equivalenerelation.In [10℄ it has been proved that P BNDC an be haraterized in terms of�nH as follows.Theorem 1. Let E 2 E. Then, E 2 P BNDC i� E �nH EnH:3 De�ning P BNDC ProessesIn this setion we de�ne a transformation on proesses whih maps an arbitraryproess into a P BNDC one. Moreover, we show that a proess is P BNDC i�it is weak bisimilar up to H to its transformed version. In order to prove thisseond result we exploit some basi properties of weak bisimulation up to Hwhih are introdued in Setion 3.1. 6



3.1 Basi Properties of �nHWe start by proving some properties of the relation �nH . Atually the relation�nH enjoys the majority of the properties of the standard weak bisimulation.First of all �nH is oarser than �.Lemma 1. If E � F , then E �nH F .Proof. Let S = f(E;F ) j E � Fg: The binary relation S is a weak bisimulationup to H sine for all proesses E it holds that if E â=) E0, then E â=)nH E0. utThe relation �nH is ompositional with respet to the restrition on highlevel ations, as stated by the following lemma.Lemma 2. If E �nH F , then EnH �nH F nH.Proof. Let S = f(EnH;F nH) j E �nH Fg. It is easy to prove that S is a weakbisimulation up to H . utThe P BNDC lass of proesses is losed with respet to the equivalenerelation of �nH .Lemma 3. Let E;F 2 E. If E �nH F and F 2 P BNDC, then E 2 P BNDC.Proof. If E �nH F , then we obtainE �nH F�nH F nH by Theorem 1�nH EnH by Lemma 2Hene, sine E �nH EnH , by Theorem 1 we obtain that E is P BNDC. utBy Lemma 1 and Lemma 3 it immediately follows that if E � F and F 2P BNDC , then E 2 P BNDC .Another useful property of P BNDC proesses is that restrition and hidingwith respet to high level ations yield weakly bisimilar proesses.Lemma 4. If E 2 P BNDC , then EnH � E=H.Proof. This is a onsequene of the fat that P BNDC is equivalent to theSBSNNI property [10℄ and SBSNNI implies that EnH � E=H [6, 7℄. ut3.2 The � ompletion of a proessNow we are ready to de�ne our �rst transformation over �nite-state proesseswhih maps a proess E into a P BNDC proess E� .De�nition 6 (� ompletion of E). Let E 2 E be one of the proesses de�nedby a system of equations S. The � ompletion of E is the proess E� de�ned bythe system S� , where: 7



{ if F = 0 is in S, then F � = 0 is in S� ;{ if F =Pi2I li:Fi +Pj2J hj :Fj is in S, with li 2 L [ f�g and hj 2 H, thenF � =Pi2I li:F �i +Pj2J hj :F �j +Pj2J �:F �j is in S� .In pratie, the LTS assoiated to E� an be obtained from the LTS of E bysimply adding a � edge whenever there is a transition with a label in H .Example 2. Consider the proess E de�ned by the following system S:�E = h:F + l1:0F = l2:EUsing the above de�nition we obtain the proess E� de�ned by�E� = h:F � + �:F � + l1:0F � = l2:E�The two LTS's for E and E� are depited in Fig. 2. Di�erent edges betweenthe same nodes are represented in a ompat way with a single ar labeled by asequene of ations separated by ommas.
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21 llFig. 2. The LTS's representing E and E�The following lemma formalizes the relations between E and E� , whih areat the basis of all the results in this setion.Lemma 5. Let E 2 E.1. if E� a! E0 with a 6= � , then there exists E1 suh that E0 = E�1 and E a! E1;2. if E� �! E0, then there exists E1 suh that E0 = E�1 and E k! E1 withk 2 H [ f�g;3. if E a! E1 with a 2 H [ L [ f�g, then E� a! E�1 ;4. if E� h! E0 with h 2 H, then E� �! E0.Proof. It immediately follows by De�nition 6. utThe di�erene between E and E� is that whenever E an perform a highation, E� an silently simulate the same redution, thus hiding the high levelations to the low level user. We prove that E� so de�ned is P BNDC .Theorem 2. For any proess E 2 E, E� 2 P BNDC.8



Proof. Let S = f(E� ; E� nH) j E 2 Eg. It is easy to prove that S is a weakbisimulation up to H . The result follows by Theorem 1. utThe following lemma shows that E and E� behave in the same way if wehide the high level ations.Lemma 6. For any proess E 2 E it holds that E=H � E�=H.Proof. Let S = f(E=H;E�=H) j E 2 Eg. By Lemma 5, it is easy to prove thatS is a weak bisimulation. utThe previous result is not suÆient to guarantee that the transformationpreserves the semantis of the proess, at least from the low level user pointof view. In fat, what the low level user an observe are the restritions EnHand E�nH . The following theorem identi�es the lass of proesses for whih thetransformation preserves the low level semantis.Theorem 3. Let E 2 E. EnH � E� nH i� EnH � E=H.Proof. If EnH � E� nH , thenEnH � E� nH by hypothesis� E�=H by Theorem 2 and Lemma 4� E=H by Lemma 6:If EnH � E=H , thenEnH � E=H by hypothesis� E�=H by Lemma 6� E� nH by Theorem 2 and Lemma 4: utThe proesses satisfying EnH � E=H are studied in [7℄ and form the lassof BSNNI proesses. In [7℄ it is also shown that the lass of P BNDC proesses(there alled SBSNNI ) is properly inluded in the lass of BSNNI proesses.In a ertain sense we have the feeling that E� is a straight ompletion of Ein order to obtain a P BNDC proess, and that if E is P BNDC then E mustbe not too far from (in strong onnetion with) E� . In the rest of this setion westudy whih is this onnetion. First, we show that P BNDC properly inludesthe lass of proesses whih are weakly bisimilar to their � ompletion and it isproperly inluded in the lass of proesses whose H restrition is weak bisimilarto the restrition of their ompletion.Proposition 1. Let E 2 E. The following properties hold:(1) if E � E� then E 2 P BNDC ;(2) if E 2 P BNDC then EnH � E� nH.Proof. (1) By Theorem 2 we have that E� is P BNDC, hene by Lemma 3 wehave the thesis. (2) This is a orollary of Theorem 3 and of Lemma 4. ut9



Note that E 2 P BNDC does not imply E � E� . As an example onsider theproess E = h:0 whih is P BNDC but it is not weak bisimilar to E� = h:0+�:0.Moreover, EnH � E�nH does not imply E 2 P BNDC . This is a onsequene ofthe fat that, by Theorem 3, EnH � E�nH is equivalent to the BSNNI propertywhih, as already said, is weaker than P BNDC (see [7℄).The following theorem shows that if we use the relation �nH instead of � weobtain the desired haraterization of P BNDC proesses.Theorem 4. Let E 2 E. Then, E 2 P BNDC i� E �nH E� .Proof. ()) E �nH EnH by Theorem 1�nH E=H by Lemma 4�nH E�=H by Lemma 6�nH E� nH by Lemma 4�nH E� by Theorem 1:(() By Theorem 2, we have that E� 2 P BNDC , hene, by Lemma 3, weobtain the thesis. ut4 Cheking P BNDCBy Theorem 4, it follows that in order to hek whether a proess E is P BNDCwe an equivalently hek whether E �nH E� . The �rst question should bewhether this test is deidable or not; then it is neessary to study the omplexityof a deision algorithm. Instead of de�ning an ad ho algorithm we prefer here toprove that it is possible to redue the test of weak bisimilarity up to H to a testof weak bisimilarity1. Hene, we de�ne a seond transformation over proesseswhih maps a proess E into a proess EH in suh a way that E �nH F i�EH � FH . Sine the transformation an be performed in linear time we obtainthat the test of weak bisimilarity up to H is in the same omplexity lass of thetest of weak bisimilarity.De�nition 7. Let E 2 E be one of the proesses de�ned by a system of equationsS. EH is the proess de�ned by the system SH , where:{ if F = 0 is in S, then FH =Ph2H h:FH is in SH ;{ if F =Pi2I ai:Fi+Pj2J �:Fj is in S, with ai 6= � , then FH =Pi2I ai:FHi +Pj2J �:FHj +Pj2J;h2H h:FHj +Ph2H h:FH is in SH .The LTS assoiated to EH an be obtained from the LTS of E by adding allthe possible H transitions to any � transition and all the possible H self-loops.1 Note that weak bisimilarity is usually tested through strong bisimilation on trans-formed proesses (see [4℄). 10



Example 3. Let H = fh1; h2g and onsider the proess E de�ned by the follow-ing system �E = �:FF = h1:EWe have that EH is proess de�ned by the following system�EH = �:FH + h1:FH + h2:FH + h1:EH + h2:EHFH = h1:EH + h1:FH + h2:FH
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1hFig. 3. The LTS's assoiated to E and EHSimilarly to Lemma 5 in the previous setion, the following lemma formalizesthe relations between E and EH . Its proof follows by De�nitions 4 and 7.Lemma 7. Let E 2 E.(1) if EH a! E0 with a 62 H, then there exists E1 suh that E0 = EH1 andE a! E1;(2) if EH h! E0 with h 2 H then there exists E1 suh that E0 = EH1 and E k! E1with k 2 fhg [ f�g;(3) if EH �! E0 then EH h! E0 for all h 2 H;(4) if E a! E1 then EH a! EH1 for any ation a;(5) if E �! E1 then EH h! EH1 for all h 2 H;(6) if E â=)nH E1 then EH â=) EH1 for any ation a;(7) if E �̂=)nH E1 then EH ĥ=) EH1 for all h 2 H;(8) if EH â=) EH1 then E â=)nH E1 for any ation a.We are now ready to prove the main result of this setion whih shows thatwe an redue the test of �nH to a test of �.Theorem 5. Let E;F 2 E. Then, E �nH F i� EH � FH .Proof. ()) Let S = f(EH ; FH) j E �nH Fg: By Lemma 7, it is easy to provethat S is a weak bisimulation. (() Let S = f(E;F ) jEH � FHg: By Lemma 7,it is easy to prove that S is a weak bisimulation up to H . utThe results presented so far show that the � ompletion of a proess E is aP BNDC proess whih an be used both to hek whether E is P BNDC andin ase it is not to retify it. Moreover, both the onstrution of E� and theP BNDC test performed using E� have a low time omplexity, as stated by thefollowing result. 11



Theorem 6. Let T (n1; n2;m1;m2) be the time omplexity of an algorithm totest F1 � F2 where n1;2 is the number of nodes in LTS(F1;2) and m1;2 is thenumber of edges in LTS(F1;2). It is possible to hek if E 2 P BNDC in timeT (n; n;mH ;m�H)+O(n+m� ), where n is the number of nodes in LTS(E), mHis the number of edges in LTS(EH), m� is the number of edges in LTS(E�),and m�H is the number of edges in LTS((E�)H ).Proof. This is an immediate onsequene of the following fats:{ LTS(EH) and LTS(E�) have the same number of nodes of LTS(E);{ LTS(EH) an be omputed through a visit of LTS(E);{ LTS(E�) an be omputed through a visit of LTS(E);{ LTS((E� )H) an be omputed through a visit of LTS(E�);{ the number of edges in LTS(E�) is greater than the number of edges inLTS(E), hene O(n+m)+O(n+m� ) = O(n+m� ), where m is the numberof edges in LTS(E). utNotie that if m is the number of edges in LTS(E), then m� � m+mH , wheremH is the number of edges in LTS(E) labelled with a high ation. Moreover,mH � m+H �m� , where m� is the number of edges in LTS(E) labelled witha � ation. Hene, m�H � m + +H � (m� +mH). However, in order to hekEH � (E� )H it is not really neessary to expliitly ompute EH and (E� )H ,sine it is suÆient to build a simple interfae for the bisimulation algorithmwhih reinterprets the labels of the transitions. More preisely, for instane, theset of proesses whih an evolve into EH with a h ation is equal to the unionof the set of proesses whih an evolve into E with a � or a h ation.5 An ExampleIn this setion we illustrate through an example how the � ompletion an beused to retify a proess whih is neither P BNDC nor BSNNI .Note that, as the system is not BSNNI , then it is neither BNDC , i.e., it isinseure even with respet to non-dynami environments. Moreover, the fat thatthe system is not BSNNI implies (by Theorem 3) that the low level semantis isnot preserved by the � ompletion. However, we will see that the way low levelsemantis is hanged is very reasonable and only a�ets some deadlok statesaused by high level ativity.Consider the proessC desribed through a value-passing extension of SPA byC = in(x):out(x):CC is a hannel whih may aept a value x at the left-hand port, labelled in.When it holds a value, it may deliver it at the right-hand port, labelled out. Ifthe domain of x is f0; 1g, then the hannel C an be translated into SPA in astandard way by following [16℄ as:C = in0:out0:C + in1:out1:C12



Let us assume that C is used as ommuniation hannel from low to high level.This an be expressed as in0; in1 2 L and out0; out1 2 H .Note that suh a hannel should be seure as it provides a \legal" informationow from low to high. However, we show that this is not the ase. If we omputeC� we obtain C� = in0:(out0:C� + �:C� ) + in1:(out1:C� + �:C� )Moreover, CH and (C� )H are respetivelyCH = in0:out0:CH + in1:out1:CH + out0:CH + out1:CH(C� )H = in0:(out0:(C� )H + �:(C� )H + out1:(C� )H)+in1:(out1:(C� )H + �:(C� )H + out0:(C� )H)+out0:(C� )H + out1:(C� )HIt is immediate to see that they are not weak bisimilar, sine (C� )H ansilently reset itself after every input ation, while CH must always exeute theorresponding output. Hene C is not P BNDC . Intuitively, a high level useran inde�nitely blok the proess C after eah low level input by just refusing toaept the orresponding output (remind that ommuniation is synhronous).The potential high level deadloks ould be exploited to transmit informationas shown, e.g., in [7℄.Now, by Theorem 2 we an replae C by C� thus obtaining a P BNDCproess. Intuitively C� is P BNDC as the presene of \resetting" � transitionsavoids the high level deadloks mentioned above.These � 's basially makes the hannel a lossy one, as high level outputs maybe non-deterministially lost. However, note that non-determinism is used toabstrat away implementation details. For example, suh � 's ould orrespond,at implementation time, to time-outs for the high output ations, i.e., events thatempty the hannel and allow a new low level input, whenever high outputs arenot aepted within a ertain amount of time. In this respet, it would be quiteinteresting to rephrase our theory to models enrihed with time or probabilityas [2, 12, 8℄, in order to study how the � ompletion instantiate to more onretesettings. Even if the resulting proess behaves di�erently from the low level pointof view (C is not BSNNI ), we think that C� an be reasonably proposed as aseure retifying of C.Indeed, note that the only di�erene, from a low level perspetive, is theabsene in C� n H of deadlok states after the low level input ations. Suhstates of C nH are exatly the ause of potential information ows in proessC, as they provide a ausality between high level ativity (i.e., aepting or nothigh outputs) and low level one.In general when we de�ne E� from a given proess E and we add a � transi-tion relative to a high level output, this an always be seen as the insertion of atime-out. While in the ase we add a � transition relative to a high level inputthis orresponds to generating a non-deterministi high input. This latter aseis learly less reasonable. Hene, our transformation seems to be appropriate for13



�xing ows related to high level outputs. A retifying strategy ould be to addonly the � transitions relative to the outputs and hek whether this is suÆientto have a P BNDC proess.6 ConlusionsIn the reent years, issues onerning seurity have reeived an inreasing at-tention due to the augmented possibilities of interonnetions and informationexhanges. A number of formal de�nitions of seurity properties has been pro-posed in the literature.In this paper we onsider the seurity property P BNDC based on the ideaof Non-Interferene [11, 19, 22℄ whih has been deeply studied in [10℄ and showedto be suitable to guarantee seurity in a dynamially reon�gurable ontext. Wepresent a method to automatially onstrut a P BNDC proess by a trans-formational approah. We show that the transformation preserves the low levelobservational semantis of BSNNI proesses. Moreover we illustrate on an exam-ple how the transformation produes reasonable orretions also for non BSNNIproesses where a modi�ation of the low level semantis is neessary in order toensure seurity. We show that our transformation an be used also to eÆientlyhek the P BNDC property, exploiting existing tools for bisimulation.We are presently trying to apply our tehniques to more signi�ant exam-ples in order to establish their e�etiveness in produing seure systems frominseure ones. Moreover, it would be interesting to have a measure of what se-urity damage would be in ase P BNDC does not hold. In [18℄, it is proposed away of lassifying information ow properties depending on whih kind of han-nels from high to low level are implementable from systems that do not satisfysuh properties. For example, obtaining a \perfet" hannel represents a damageworse than, e.g., obtaining a noisy one. It ould be interesting to measure thestrenghtness of P BNDC with respet to this kind of lassi�ation.Referenes1. M. Abadi. Serey by Typing in Seurity Protools. Journal of the ACM,46(5):749{786, 1999.2. A. Aldini. Probabilisti information ow in a proess algebra. In Pro. of the 12thInternational Conferene on Conurreny Theory (CONCUR'01), pages 152{168.Springer LNCS 2154, August 2001.3. C. Bodei, P. Degano, R. Foardi, and C. Priami. Primitives for Authentiation inProess Algebras. Theoretial Computer Siene, 2001. To appear.4. T. Bolognesi and S. A. Smolka. Fundamental results for the veri�ation of obser-vational equivalene: A survey. In H. Rudin and C. H. West, editors, Proo. of Int'lConferene on Protool Spei�ation, Testing and Veri�ation (PSTV'87), pages165{179. North-Holland, 1987.5. N. A. Durgin, J. C. Mithell, and D. Pavlovi. A Compositional Logi for Pro-tool Corretness. In Pro. of of the 14th IEEE Computer Seurity FoundationsWorkshop. IEEE Computer Soiety Press, 2001.14
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