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Abstract

We study information flow security in the setting of mobile agents. We propose a sufficient
condition to security named Persistent BNDC. A process is Persistent BNDC when every
of its reachable states satisfies a basic Non-Interference property called BNDC. By impos-
ing that security persists during process execution, one is guaranteed that every potential
migration is performed in a stable, secure state. We define a suitable bisimulation-based
equivalence relation among processes, that allows us to express the new property as a
single equivalence check, thus avoiding the universal quantifications over all the reachable
states (required by Persistent BNDC ) and over all the possible hostile environments (im-
plicit in the basic Non-Interference property BNDC ). We prove that Persistent BNDC is
a sufficient condition to the security of mobile agents by (i) giving a sound and complete
characterization of Persistent BNDC in terms of dynamic contexts, i.e., execution con-
texts that can non-deterministically change at run-time, abstractly modelling arbitrary
migrations; (ii) showing that Persistent BNDC implies information flow security when
agent mobility is explicitly expressed in the calculus.

1 Introduction

The protection of relevant data from undesired accesses is a typical security issue
concerning both systems and networks. It can be seen as a problem of control-
ling how information flows among different entities. For example, protecting the
confidentiality of information corresponds to guaranteeing that it never flows to
unauthorized users; protecting the integrity, instead, can be seen as a problem of
avoiding information flow from unauthorized users to the (container of the) data.
Unfortunately, even when direct access to data is forbidden by access control poli-
cies or by cryptography, it might be the case that subtle, indirect, information
flows are still possible. These unwanted flows can be based, e.g., on some observ-
able system side-effects (giving rise to the so called covert channels [55, 37]), or on
some weakness in cryptographic algorithms and protocols.

Motivated by this need of controlling information flow as a whole (both direct
and indirect), Goguen and Meseguer introduced the notion of Non-Interference

⋆ This work is a revised and extended version of [20], and it has been partially supported by the
MIUR project “Abstract Interpretation: Design and Applications” (AIDA).



[22]. Non-Interference formalizes the absence of information flow within determin-
istic systems. Given a system in which confidential (i.e., high level) and public
(i.e., low level) information may coexist, Non-Interference requires that confiden-
tial inputs never affect the outputs on the public interface of the system, i.e., never
interfere with the low level users. If such a property holds, one can conclude that
no information flow is ever possible from high to low level.

Starting from Sutherland [54], many definitions extending the concept of Non-
Interference to non-deterministic systems have been proposed in the literature.
They are developed in different settings such as programming languages [4, 49–51],
trace models [21, 27, 31–36, 56], process calculi [10, 17, 25, 30, 46–48], probabilistic
models [2, 13], timed models [19, 23], cryptographic protocols [1, 5, 18].

The specific formalization of Non-Interference we consider is Bisimulation-based
Non-Deducibility on Compositions (BNDC, for short), which has been studied in
[15, 17]. Intuitively, BNDC requires that the low level view of a system E is not
affected by any (possibly malicious) high level process Π. In a process algebraic
style, the definition has the following form:

∀Π ∈ EH , E \ H ≈ (E|Π) \ H.

The formula above can be read as “the low level view of E is behaviourally equiva-
lent to E composed with any possible high level process Π”. Indeed, as we will see,
restriction \H has the effect of forbidding any high level action and EH represents
the set of processes that only use high level actions, also called high level processes.

We start by the consideration that BNDC is not persistent, i.e., is not preserved
during system execution. It might happen that a BNDC -secure system, after some
execution steps, reaches a state which is not BNDC -secure.

Persistence is an important feature when processes may move in the middle of
their computation. In fact, it is important to ensure that migration does not hap-
pen inside a critical section. In particular, since non-persistent properties are not
preserved during computation, it might be the case that a secure (e.g. BNDC ) pro-
cess decides to migrate after reaching an insecure (i.e., non-BNDC ) state. From
the point of view of the new host, the incoming process is insecure and, conse-
quently, it should not be executed. In other words, BNDC does not guarantee
that processes always migrate in stable, secure, states.

To overcome this problem, we make BNDC persistent by requiring that every
state which is reachable by the secure process still satisfies BNDC, i.e.,

∀E′ reachable from E, E′ is BNDC.

The property we obtain, called Persistent BNDC (P BNDC, for short), is of course
persistent, but is also quite difficult to check in its naive form above. As a matter
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of fact, it contains a double universal quantification: the first over all the reachable
states and the second over all the possibly malicious high level processes (required
by the nested BNDC check).

The first interesting result that we prove is that P BNDC may be equivalently
defined as a simple Non-Interference check with a different underlying equivalence
notion between processes, i.e., by adopting a different discriminating power on
processes. This simpler characterization of P BNDC has the following form:

E \ H ≈\H E

where ≈\H is a behavioural equivalence between processes that may ignore high
level actions, i.e., it admits to consider high level actions as they were internal
invisible transitions.

The second contribution is to show that P BNDC implies Non-Interference for
mobile agents. This is done in two steps:

(i) we give a new, sound and complete, characterization of P BNDC in terms of
dynamic contexts, i.e., contexts that can arbitrarily change at run-time. Since,
from the point of view of agents, a migration causes a change of the surround-
ing execution environment, we obtain that P BNDC guarantees security even
when agents non-deterministically migrate in every possible way during their
executions. However, this is proved at a very high level of abstraction, mod-
elling migrations as context changes not controlled by agents;

(ii) we thus consider a more concrete model, inspired from Dpi-calculus [26], and
obtained by adding explicit process mobility to the language. We formally prove
that P BNDC implies the natural extension of Non-Interference in this new
concrete model of mobile agents. At the same time, we show that BNDC, in
its original form, is not enough to guarantee that a migrating process is secure.
As a matter of fact, BNDC does not guarantee that processes always migrate
in stable, secure states, being it a non-persistent property.
These results turn out to be useful also on the verification side, since the
automated check of BNDC, and of its generalization to mobility, is still an open
problem even for finite-state systems. P BNDC, instead, provides a sufficient
condition to guarantee the security of mobile agents, which can be checked in
polynomial time on the number of states (see, e.g., [44]).

The paper is organized as follows. In Section 2 we define the Security Process
Algebra (SPA) language and recall the notion of weak bisimulation over SPA terms
and the security property BNDC. In Section 3, we introduce the persistent variant
of BNDC called P BNDC, and we characterize it through a new definition of
weak bisimulation up to high level actions. We also prove some compositionality
results of P BNDC, and show that P BNDC is equivalent to the SBSNNI property
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proposed in [15, 17]. In Section 4 we show that persistence is suitable to deal with
migrating processes by introducing a notion of dynamic high contexts (Section 4.1)
and by extending the SPA language with primitives for mobility (Section 4.2). In
Section 5, we apply P BNDC to reason on a simple example process with migration
primitives. Finally, in Section 6, we briefly discuss how P BNDC can be efficiently
verified and we draw some concluding remarks.

2 Basic Notions

In this section we briefly introduce the Security Process Algebra (SPA) language
that we will use to specify and analyze security properties over concurrent systems.
Moreover, we recall the security property for SPA processes named Bisimulation-
based Non-Deducibility on Compositions (BNDC, for short) [17].

2.1 The SPA language

Syntax. The SPA language [17] is a slight extension of Milner’s CCS [38], where
the set of visible actions is partitioned into high level actions and low level ones in
order to specify multilevel systems. SPA syntax is based on the same elements as
CCS that is: a set L of visible actions such that L = I∪O where I = {a, b, . . .} is a
set of input actions and O = {ā, b̄, . . .} is a set of output actions; a complementation
function ·̄ : L → L, such that ¯̄a = a, for all a ∈ L; a special action τ which models
internal computations, i.e., not visible outside the system. Act = L∪{τ} is the set
of all actions. Function ·̄ is extended to Act by defining τ̄ = τ . In order to obtain
a partition of the visible actions into two levels we consider two sets, H and L,
of high and low level actions which are closed with respect to ·̄, i.e., H = H and
L = L; moreover they are disjoint and form a covering of L, i.e., H ∩ L = ∅ and
H ∪ L = L.

The syntax of SPA terms (or processes) is defined as follows:

E ::= 0 | a.E | E + E | E|E | E \ v | E[f ] | Z

where a ∈ Act , v ⊆ L, f : Act → Act is such that f(ᾱ) = f(α) and f(τ) = τ .

Moreover Z is a constant that must be associated with a definition 1 Z
def
= E.

Intuitively, 0 is the empty process that does nothing; a.E is a process that can
perform an action a and then behaves as E; E1+E2 represents the non determinis-
tic choice between the two processes E1 and E2; E1|E2 is the parallel composition
of E1 and E2, where the executions of the two processes are interleaved, possibly

1 Notice that, for automatic checks over SPA terms it is necessary to add a condition of guard-

edness on constants. This avoids infinite constant substitution loops.
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synchronized on complementary input/output actions, producing an internal ac-
tion τ ; E \ v is a process E prevented from performing actions in v; E[f ] is the
process E whose actions are renamed via the relabelling function f .

To deal with security properties, we will also use the hiding operator / of
CSP, which can be defined as a relabelling as follows: for a given set v ⊆ L,

E/v
def
= E[fv] where fv(x) = x if x 6∈ v and fv(x) = τ if x ∈ v. In practice, E/v

turns all actions in v into internal τ ’s.

Operational Semantics. Let E be the set of SPA terms, ranged over by E and
F . Let L(E) denote the sort of E, i.e., the set of the (possibly executable) actions
occurring syntactically in E. The sets of high level processes and low level ones are

defined as EH
def
= {E ∈ E | L(E) ⊆ H ∪{τ}} and EL

def
= {E ∈ E | L(E) ⊆ L∪{τ}},

respectively. Note that EH ∪ EL ⊂ E , i.e., there exist systems that execute both
high and low level actions allowing communications between the two levels.

The operational semantics of SPA processes is given in terms of Labelled Tran-
sition Systems. A Labelled Transition System (LTS) is a triple (S,A,→) where S
is a set of states, A is a set of labels (actions), →⊆ S × A × S is a set of labelled
transitions. The notation (S1, a, S2) ∈→ (or equivalently S1

a
→ S2) means that

the system can move from the state S1 to the state S2 through the action a. An
LTS is finite if it has a finite number of states and transitions. The operational
semantics of SPA is the LTS (E ,Act ,→), where the states are the terms of the
algebra and the transition relation →⊆ E × Act × E is defined by structural in-
duction as the least relation generated by the axioms and inference rules reported
in Figure 1. The operational semantics for a process E is the subpart of the SPA
LTS reachable from the initial state E. To denote that two processes E1 and E2

have two isomorphic LTSs, meaning that they behave exactly in the same way, we
write E1 ≡ E2.

Observational Equivalence. The concept of observation equivalence between
two processes is based on the idea that two systems have the same semantics if
and only if they cannot be distinguished by an external observer. This is obtained
by defining an equivalence relation over states/terms of the SPA LTS, equating
two processes when they are indistinguishable. In this way the semantics of a term
becomes an equivalence class of terms. In the literature there are various equiva-
lences of this kind. In this paper we consider weak bisimulation equivalence, an
observation equivalence which allows one to observe the nondeterministic structure
of the LTSs and focus only on the observable actions.

The general notion of bisimulation [38] consists of a mutual step-by-step simu-
lation, i.e., given two processes E and F , when E executes a certain action moving
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Prefix
−

a.E
a
→ E

Sum
E1

a
→ E′

1

E1 + E2
a
→ E′

1

E2
a
→ E′

2

E1 + E2
a
→ E′

2

Parallel
E1

a
→ E′

1

E1|E2
a
→ E′

1|E2

E2
a
→ E′

2

E1|E2
a
→ E1|E

′
2

E1
a
→ E′

1 E2
ā
→ E′

2

E1|E2
τ
→ E′

1|E
′
2

a ∈ L

Restriction
E

a
→ E′

E \ v
a
→ E′ \ v

if a 6∈ v

Relabelling
E

a
→ E′

E[f ]
f(a)
→ E′[f ]

Constant
E

a
→ E′

A
a
→ E′

if A
def
= E

Figure 1. The operational rules for SPA

to E′ then F must be able to simulate this single step by executing the same action
and moving to a term F ′ which is again bisimilar to E′, and vice-versa. A weak
bisimulation is a bisimulation in which internal τ actions may be ignored, i.e.,
when F simulates an observable action of E, it can also execute some τ actions
before or after that action; moreover τ actions may be simulated by a possibly
empty sequence of τ ’s.

We use the following notations. If t = a1 · · · an ∈ Act∗, then we write E
t
→ E′

if E
a1→ · · ·

an→ E′. We say that E′ is reachable from E when there exists t ∈ Act∗

such that E
t
→ E′. If a ∈ Act , then we write E

a
=⇒ E′ for E(

τ
→)∗

a
→ (

τ
→)∗E′ where

(
τ
→)∗ denotes a (possibly empty) sequence of τ labelled transitions. We also write

E
â

=⇒ E′ for E
a

=⇒ E′ if a ∈ L, and for E(
τ
→)∗E′ if a = τ (note that

τ
=⇒ requires

at least one τ labelled transition while
τ̂

=⇒ corresponds to (
τ
→)∗ and means zero

or more τ labelled transitions).

The notion of weak bisimulation is defined as follows.
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Definition 1 (Weak Bisimulation). A binary relation S ⊆ E×E over processes
is a weak bisimulation if (E,F ) ∈ S implies, for all a ∈ Act,

– whenever E
a
→ E′, then there exists F ′ such that F

â
=⇒ F ′ and (E′, F ′) ∈ S;

– whenever F
a
→ F ′, then there exists E′ such that E

â
=⇒ E′ and (E′, F ′) ∈ S.

Two processes E,F ∈ E are observation equivalent, denoted by E ≈ F , if there
exists a weak bisimulation S containing the pair (E,F ).

In [38] it is proved that ≈ is the largest weak bisimulation and it is an equivalence
relation.

2.2 The Security Property BNDC

The security property named Bisimulation-based Non-Deducibility on Composi-
tions (BNDC, for short) [17] tries to capture every possible information flow from
a classified (high) level of confidentiality to an untrusted (low) one. A strong re-
quirement of this definition is that no information flow should be possible even
in the presence of malicious processes that run at the classified level. The main
motivation is to protect a system also from internal attacks, which could be per-
formed by the so called Trojan Horse programs, i.e., programs that appear honest
but hide some malicious code inside them. These programs might be for example
downloaded from the network or sent by e-mail, and executed by a high level user
at the classified level.

The definition of BNDC is based on the basic idea of Non-Interference [22]:
“No information flow is possible from high to low if what is done at the high level
cannot interfere in any way with the low level”.

More precisely, the notion of BNDC consists of checking the system against all
high level potential interactions, representing every possible high level malicious
program. A system E is BNDC if for every high level process Π a low level user
cannot distinguish E from E|Π. In other words, a system E is BNDC if what
a low level user sees of the system is not modified by composing any high level
process Π with E.

The formal definition of BNDC is as follows.

Definition 2 (BNDC). [17] Let E ∈ E.

E ∈ BNDC if ∀ Π ∈ EH , E/H ≈ (E|Π) \ H.

The next proposition provides an equivalent characterization of BNDC which does
not involve the hiding operator (see Lemma 2 in [17]).

Proposition 1. [17] Let E ∈ E. E ∈ BNDC iff ∀ Π ∈ EH , E \ H ≈ (E|Π) \ H.
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Figure 2. The BNDC property

The idea of BNDC is depicted if Figure 2. Let us show how BNDC works through
some simple examples.

Example 1. The simplest case of flawed process is E1
def
= h.l̄.0, where h is high

and l is low. The process E1 accepts the high level input h and, only after such an
input is received, it gives l̄ as output. We clearly have a direct causality between
the high level input h and the low level output l̄. As a consequence, a low level user
knows that h has been performed by just observing the output l̄. This system is

not BNDC. It is sufficient to consider Π
def
= h̄.0 and observe that (E1|Π)\H ≈ l̄.0

while E1 \ H ≈ 0. Thus, E1 \ H 6≈ (E1|Π) \ H.

E1 can be made secure by letting l̄ be also executed independently from h as

in E′
1

def
= h.l̄.0 + l̄.0. It is easy to prove that E′

1 is BNDC. 2

The next example aims at showing that BNDC is also able to detect partial infor-
mation flows due to the possibility for a high level malicious process to block or
unblock a system.

Example 2. Consider process E2
def
= l1.h.l̄2.0+ l1.l̄2.0, in which the high level input

h is performed in between two low level actions l1 and l̄2. Similarly to the previous
example, branch l1.l̄2.0 aims at breaking the direct causality between h and l̄2, in
fact, l̄2 may be executed even without h has been previously performed. However,

consider the same process Π
def
= h̄.0 as before. We have that (E2|Π) \H ≈ l1.l̄2.0,

but E2 \ H ≈ l1.0 + l1.l̄2.0 6≈ (E2|Π) \ H, showing that E2 is not BNDC.
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Figure 3. The process E3

Let us discuss why this system is considered insecure: notice that E2 \ H may
(nondeterministically) block after the l1 input while (E2|Π) \ H always executes
l̄2. The problem is that E2 nondeterministically chooses between the two possible
branches when getting l1 as input. After this choice is made, it may behave either
like h.l̄2.0, in which the execution of l̄2 depends on h, or like l̄2.0, in which l̄2 is
always performed. A low level user observing a deadlock after l1 will know that h
has not been executed, thus having (partial) information about high level activity.

Process E2 may be “repaired” and made BNDC, in different ways:

(i) by including the possibility of choosing to execute l̄2 also in the second branch

of the process, thus completely masking high level activity. Process E3
def
=

l1.h.l̄2.0 + l1.(τ.l̄2.0 + τ.0) can be proved to be BNDC (see Appendix A);
(ii) by choosing to perform l̄2 or not after l1 has been performed as in process

E4
def
= l1.(h.l̄2.0+ l̄2.0). After l1 this system becomes the same as E′

1 of previous
example which can be easily proved to be BNDC ; based on this observation it
is also easy to prove that E4 is BNDC. 2

3 Persistent BNDC

As discussed in the introduction, persistence is a way of strengthening security. In
particular, when processes are allowed to move in the middle of their computation
it seems reasonable to assume that if each state reachable from the initial process is
secure then no malicious attacker will be able to compromise the system whatever
are the environments visited by the system.

We first formalize the notion of persistence.
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Figure 4. The P BNDC property

Definition 3. A property P ⊆ E is persistent if

∀E,E′ ∈ E , E ∈ P and E′ reachable from E imply E′ ∈ P.

We now study the natural persistent extension of BNDC. The security property we
obtain is named Persistent BNDC (P BNDC, for short). The idea is that a system
E is P BNDC if for every high level process Π and for every state E′ reachable
from E a low level user cannot distinguish E′ from E′|Π (see Figure 4). This is
equivalent to say that E is P BNDC if for every state E′ reachable from E, E′ is
BNDC.

Formally P BNDC is defined as follows.

Definition 4 (Persistent BNDC). Let E ∈ E. E ∈ P BNDC if

∀ E′ reachable from E, E′ ∈ BNDC .

The next example shows that BNDC is not persistent. As a consequence, P BNDC
is strictly stronger than BNDC, i.e., P BNDC ⊂ BNDC.

Example 3. We consider again the two BNDC processes of Example 2:

E3
def
= l1.h.l̄2.0 + l1.(τ.l̄2.0 + τ.0)

E4
def
= l1.(h.l̄2.0 + l̄2.0)
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Interestingly, we have that only E4 is also P BNDC. Intuitively, the reason why E3

is not P BNDC is related to how causality between high and low is hidden to make
the process BNDC. In E3 the second branch aims at simulating all the low level
activity a high level user can achieve by playing with action h in the first branch.
This simulation is only effective if we consider the process from the very beginning,
since, after the non-deterministic choice only one of the branches remains active.
In particular, suppose that E3 reaches the state h.l̄2.0 after executing the first l1.
It is clear that this state is not secure, as a direct causality between h and l̄2 is
present (as in process E1 of example 1). In particular h.l̄2.0 is not BNDC and so
E3 is not P BNDC.

Process E4 is, instead, P BNDC as formally shown in Example 4 of Section
3.2. Intuitively, persistence is achieved by postponing the nondeterministic choice:
after executing l1 the process remains in a secure state, still having a choice to
execute l1 independently of h. 2

3.1 P BNDC and High Contexts

We introduce a novel bisimulation-based equivalence relation, named ≈hc, that
allows us to give a first characterization of P BNDC with no quantification over
all the reachable states. In particular, we show that E ∈ P BNDC if and only if E
and E \ H are not distinguishable with respect to ≈hc. Intuitively, two processes
are ≈hc-equivalent if they can simulate each other in any possible high context,
i.e., in every context of the form ( | Π) \ H where Π ∈ EH .

Let us first formally introduce the notion of high context.

Definition 5 (High context). A high context C[ ] denotes a term of the form
( | Π) \ H where Π ∈ EH , which can be regarded as a mapping from E to E that
associates with each process E ∈ E the process C[E] ≡ (E|Π) \ H.

Observe that for any high context C[ ] and process E, all the processes reach-
able from C[E] have the form C ′[E′] with C ′[ ] being a high context too.

We now introduce the concept of weak bisimulation on high contexts: the idea is
that, given two processes E and F , when a high context C[ ] filled with E executes
a certain action moving E to E′ then the same context filled with F is able to
simulate this step moving F to F ′ so that E′ and F ′ are again weakly bisimilar on
high contexts, and vice-versa. This must be true for every possible high context
C[ ]. It is important to note that the quantification over all possible high contexts
is re-iterated for E′ and F ′.

We use the following notations. If t ∈ Act∗ and C[ ] is a high context, then we

write E
t
→C E′ if there exists a high context C ′[ ] such that C[E]

t
→ C ′[E′], and

we write E
t

=⇒C E′ if there exists a high context C ′[ ] such that C[E]
t

=⇒ C ′[E′].
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Therefore, E
â

=⇒C E′ stands for C[E]
a

=⇒ C ′[E′] if a ∈ L, while it stands for
C[E](

τ
→)∗C ′[E′] if a = τ .

The notion of weak bisimulation on high contexts is defined as follows.

Definition 6 (Weak Bisimulation on high contexts). A binary relation S ⊆
E×E over processes is a weak bisimulation on high contexts if (E,F ) ∈ S implies,
for all high contexts C[ ] and for all a ∈ Act,

– whenever E
a
→C E′, then there exists F ′ such that F

â
=⇒C F ′ and (E′, F ′) ∈ S;

– whenever F
a
→C F ′, then there exists E′ such that E

â
=⇒C E′ and (E′, F ′) ∈ S.

We say that two processes E,F ∈ E are weakly bisimilar on high contexts, written
E ≈hc F , if (E,F ) ∈ S for some weak bisimulation on high contexts S.

From the above definition we may equivalently define ≈hc as follows:

≈hc =
⋃

{S : S is a weak bisimulation on high contexts}.

It is easy to prove that

– relation ≈hc is the largest weak bisimulation on high contexts
– relation ≈hc is an equivalence relation.

The next Theorem gives a characterization of P BNDC processes in terms of ≈hc.
To prove it we use the following lemma.

Lemma 1. Let E ∈ E such that E ≈hc E \ H. Then for all E′ reachable from E
there exists E′′ \ H reachable from E \ H such that E′ ≈hc E′′ \ H.

Proof. Let E ≈hc E\H and E′ be reachable from E. The proof follows by induction
on the length l of the path which leads from E to E′.

– Base. Let l = 0. In this case we can choose E′′ equal to E; then E ≡ E′ ≡ E′′

and we know that E ≈hc E \ H.
– Inductive step. Let l > 0. Let F be reachable from E with a path of length

l− 1 and F
a
→ E′. By inductive hypothesis, there exists F ′ such that F ′ \H is

reachable from E \ H and F ≈hc F ′ \ H. We distinguish two cases.
Case 1. Let a 6∈ H. In this case, for any high context C[ ], F

a
→C E′. The fact

that F ≈hc F ′\H implies that there exists E′′\H such that F ′\H
â

=⇒C E′′\H
and E′ ≈hc E′′ \ H. Since E′′ \ H is reachable from E \ H we have the thesis.
Case 2. Let a ∈ H. Consider the high context C[ ] ≡ ( |ā.0) \H. In this case,
C[F ] ≡ (F |ā.0) \H)

τ
→ (E′|0) \H), i.e., F

τ
→C E′. The fact that F ≈hc F ′ \H

implies that there exists E′′\H such that F ′\H
τ̂

=⇒C E′′\H and E′ ≈hc E′′\H.
Since E′′ \ H is reachable from E \ H we have the thesis. 2
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We prove that a process E is P BNDC if and only if E and E \ H are indistin-
guishable with respect to the weak bisimulation on high contexts, i.e., whatever
high context C[ ] we consider, an observer cannot distinguish between C[E] and
C[E \H]. Since P BNDC is persistent, this property holds also for every state E′

reachable from E. This is consistent with the fact that, in the definition of ≈hc, the
universal quantification on high level contexts is applied at each derivation step.

Theorem 1. Let E ∈ E. Then, E ∈ P BNDC iff E \ H ≈hc E.

Proof. We first show that E \ H ≈hc E implies E ∈ P BNDC . In order to do it
we prove that

S = {(E1 \ H, (E2|Π) \ H) | Π ∈ EH and E1 \ H ≈hc E2}

is a weak bisimulation. This is sufficient to say that E ∈ P BNDC . In fact, by
Lemma 1, for every state E′ reachable from E there exists a state E′′\H reachable
from E \H such that E′′ \H ≈hc E′. Hence, by definition of S, we have that for all
Π ∈ EH , (E′′ \ H, (E′|Π) \ H) ∈ S. Since S is a weak bisimulation, we have that
for all Π ∈ EH , E′′ \ H ≈ (E′|Π) \ H and, in particular, E′′ \ H ≈ E′ \ H. Since
≈ is an equivalence relation, by symmetry and transitivity, we have that for every
E′ reachable from E and for all Π ∈ EH , E′ \H ≈ (E′|Π)\H, i.e., E ∈ P BNDC .

The fact that S is a weak bisimulation follows from the following four cases.
Let (E1 \ H, (E2|Π) \ H) ∈ S.

Case 1. E1 \ H
a
→ E′

1 \ H with a 6∈ H. Thus, for all contexts C[ ], E1 \ H
a
→C

E′
1 \ H. By the hypothesis that E1 \ H ≈hc E2, for all contexts C[ ] there exists

E′
2 such that E2

â
=⇒C E′

2 and E′
1 \ H ≈hc E′

2. Hence there exists E′
2 such that

(E2|Π) \ H
â

=⇒ (E′
2|Π

′) \ H and, by definition of S, (E′
1 \ H, (E′

2|Π
′) \ H) ∈ S.

Case 2. (E2|Π) \ H
a
→ (E′

2|Π) \ H where also E2 \ H
a
→ E′

2 \ H and a 6∈ H.

Let C[ ] be the context ( |0) \ H. Hence E2
a
→C E′

2. By the hypothesis that

E1 \H ≈hc E2, there exists E′
1 such that E1 \H

â
=⇒C E′

1 \H and E′
1 \H ≈hc E′

2.
Since C[E1 \ H] can only perform actions of E1 \ H or τ actions, we have that

E1 \ H
â

=⇒ E′
1 \ H and, by definition of S, (E′

1 \ H, (E′
2|Π) \ H) ∈ S.

Case 3. (E2|Π)\H
τ
→ (E2|Π

′)\H with Π
τ
→ Π ′. By definition of S, it trivially

follows that (E1 \ H, (E2|Π
′) \ H) ∈ S.

Case 4. (E2|Π) \ H
τ
→ (E′

2|Π
′) \ H where E2

a
→ E′

2, Π
ā
→ Π ′ and a ∈ H.

Let C[ ] be the context ( |ā.0) \ H. Hence E2
τ
→C E′

2. By the hypothesis that

E1 \H ≈hc E2, there exists E′
1 such that E1 \H

τ̂
=⇒C E′

1 \H and E′
1 \H ≈hc E′

2.
Since C[E1 \ H] can only perform actions of E1 \ H or τ actions, we have that

E1 \ H
τ̂

=⇒ E′
1 \ H and, by definition of S, (E′

1 \ H, (E′
2|Π) \ H) ∈ S.

13



We now show that if E ∈ P BNDC then E \ H ≈hc E. To this end it is
sufficient to prove that

S = {(E1 \ H,E2) | E1 \ H ≈ E2 \ H and E2 ∈ P BNDC}

is a weak bisimulation on high contexts. This follows from the following cases. Let
C[ ] be an high context.

Case 1. E1 \ H
a
→C E′

1 \ H with E1 \ H
a
→ E′

1 \ H. From the hypothesis that

E1 \ H ≈ E2 \ H, we have that there exists E′
2 such that E2 \ H

â
=⇒ E′

2 \ H and
E′

1 \ H ≈ E′
2 \ H. Moreover, since E2 ∈ P BNDC also E′

2 ∈ P BNDC . From the

fact that E2 \ H
â

=⇒ E′
2 \ H we have that E2

â
=⇒ E′

2. Since a 6∈ H, E2
â

=⇒C E′
2

and, by definition of S, (E′
1 \ H,E′

2) ∈ S.

Case 2. E1 \ H
τ
→C E′

1 \ H with E1 ≡ E′
1. In this case, by definition of S, we

immediately have (E′
1 \ H,E2) ∈ S.

Case 3. E2
a
→C E′

2 with E2 \ H
a
→ E′

2 \ H. Since E1 \ H ≈ E2 \ H, there

exists E′
1 such that E1 \ H

â
=⇒ E′

1 \ H and E′
1 \ H ≈ E′

2 \ H. Moreover, since

E2 ∈ P BNDC also E′
2 ∈ P BNDC . Hence E1 \H

â
=⇒C E′

1 \H and, by definition
of S, (E′

1 \ H,E′
2) ∈ S.

Case 4. E2
τ
→C E′

2 with E2
a
→ E′

2 and a ∈ H. Then, E2/H
τ
→ E′

2/H. From the
fact that E1 \H ≈ E2 \H and E2 ∈ P BNDC , we have that E1 \H ≈ E2/H and

thus there exists E′
1 such that E1 \H

τ̂
=⇒ E′

1 \H and E′
1 \H ≈ E′

2/H. Moreover,
since E2 ∈ P BNDC also E′

2 ∈ P BNDC and hence E′
1 \ H ≈ E′

2 \ H. Thus

E1 \ H
τ̂

=⇒C E′
1 \ H and, by definition of S, (E′

1 \ H,E′
2) ∈ S.

Case 5. E2
τ
→C E′

2 with E2 ≡ E′
2. In this case, by definition of S, we immedi-

ately have (E1 \ H,E′
2) ∈ S. 2

3.2 Avoiding the Universal Quantifications

We show now how it is possible to give a characterization of P BNDC avoiding
both the universal quantification over all the possible high level processes, which
is present in the BNDC basic definition, and the universal quantification over all
the possible reachable states, required by the definition of P BNDC itself.

In the previous subsection, we have shown how the idea of “being secure in ev-
ery state” can be directly moved inside the bisimulation equivalence notion (≈hc).
However, the notion of weak bisimulation on high contexts implicitly contains a
quantification over all possible high contexts. We show here that the same equiv-
alence notion (≈hc), may be expressed in a rather simpler way by exploiting local
information only. This can be done by defining a novel equivalence relation which
focuses only on observable actions that do not belong to H.

14



More in detail, we define an observation equivalence where actions from H may
be ignored, i.e., they may be matched by zero or more τ actions. To this end, we
use a transition relation which enables internal actions to be treated as high level
ones.

Definition 7. Let a ∈ Act. We define the transition relation
â

=⇒\H as follows:

â
=⇒\H =

{

â
=⇒ if a 6∈ H

a
=⇒ ∪

τ̂
=⇒ if a ∈ H

Notice that the relation
â

=⇒\H is a generalization of the relation
â

=⇒ used in
the definition of weak bisimulation [38]. In fact, if H = ∅ then for all a ∈ Act ,

E
â

=⇒\H E′ coincides with E
â

=⇒ E′.
We define the concept of weak bisimulation up to H.

Definition 8 (Weak Bisimulation up to H). A binary relation S ⊆ E×E over
processes is a weak bisimulation up to H if (E,F ) ∈ S implies, for all a ∈ Act,

– whenever E
a
→ E′, then there exists F ′ such that F

â
=⇒\H F ′ and (E′, F ′) ∈ S;

– whenever F
a
→ F ′, then there exists E′ such that E

â
=⇒\H E′ and (E′, F ′) ∈ S.

We say that two processes E,F are weakly bisimilar up to H, written E ≈\H F ,
if (E,F ) ∈ S for some weak bisimulation S up to H.

From the above definition we may equivalently define ≈\H as follows:

≈\H=
⋃

{S : S is a weak bisimulation up to H}.

It is easy to prove that ≈\H is the largest weak bisimulation up to H and it is an
equivalence relation.

The next theorem shows that the binary relations ≈hc and ≈\H are equivalent.
Intuitively, in the definition of E ≈\H F , each high level action of the process
E may be simulated by a sequence of invisible actions of the process F . This
corresponds to the fact that, in E ≈hc F , an interaction of the process E with a
high level context may be simulated by a sequence of internal transitions of F .

Theorem 2. Let E,F ∈ E. Then, E ≈hc F iff E ≈\H F.

Proof. We first show that E ≈hc F implies E ≈\H F . To this end it is sufficient
to prove that

S = {(E,F ) | E ≈hc F}

is a weak bisimulation up to H. This follows from the following two cases.

15



Case 1. E
a
→ E′ with a 6∈ H. Let C[ ] be the high context ( |0) \ H. Then

E
a
→C E′. From the fact that E ≈hc F it follows that there exists F ′ such that

F
â

=⇒C F ′ and E′ ≈hc F ′. By the choice of C[ ], we also have that F
â

=⇒ F ′ and,

since a 6∈ H, F
â

=⇒\H F ′. Moreover, by definition of S, (E′, F ′) ∈ S.

Case 2. E
a
→ E′ with a ∈ H. Let C[ ] be the high context ≡ ( |ā.0) \ H.

Then E
τ
→C E′. From the fact that E ≈hc F it follows that there exists F ′ such

that F
τ̂

=⇒C F ′ and E′ ≈hc F ′. By the choice of C[ ], we also have that either

F
τ̂

=⇒ F ′ or F
â

=⇒ F ′ and, since a ∈ H, F
â

=⇒\H F ′. Moreover, by definition of
S, (E′, F ′) ∈ S.

We now show that E ≈\H F implies E ≈hc F . To this end it is sufficient to
prove that

S = {(E,F ) | E ≈\H F}

is a weak bisimulation on high contexts. This follows from the following two cases.
Let C[ ] be a high context.
Case 1. E

a
→C E′ with E

a
→ E′ and a 6∈ H. Since E ≈\H F , there exists F ′

such that F
â

=⇒\H F ′ and E′ ≈\H F ′. Since a 6∈ H, we also have F
â

=⇒ F ′. Thus

F
â

=⇒C F ′ and, by definition of S, (E′, F ′) ∈ S.
Case 2. E

τ
→C E′ with E

a
→ E′ and a ∈ H. Since E ≈\H F , there exists F ′

such that F
â

=⇒\H F ′ and E′ ≈\H F ′. Thus either F
τ̂

=⇒ F ′ or F
â

=⇒ F ′. Since the
high context C[ ] may synchronize on a by performing the complementary action

ā, we have that F
τ̂

=⇒C F ′ and (E′, F ′) ∈ S. 2

Theorem 2 allows us to identify a local property of processes (with no quanti-
fication on the states and on the high contexts) which is a necessary and sufficient
condition for P BNDC. This is stated by the following corollary.

Corollary 1. Let E ∈ E. E ∈ P BNDC iff E \ H ≈\H E.

Example 4. Consider the process E4
def
= l1.(h.l̄2.0 + l̄2.0) of Example 2. We show

that E4 is P BNDC.
We label the states reachable from E4 as depicted in Figure 5 and construct

the binary relation S as follows:

S = {(Ei
4 \ H,Ei

4) | i ∈ [1 . . . 5]} ∪ {(E2
4 \ H,E3

4), (E5
4 \ H,E4

4 )}

We prove that S is a weak bisimulation up to H. This follows from the following

cases. Let us first consider a ∈ {l1, l̄2}. Notice that, since a is a low action,
â

=⇒\H

coincides with
â

=⇒. Thus, for all i ∈ [1 . . . 5] and (Ei
4 \H,Ei

4) ∈ S we trivially have
that:
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Figure 5. The process E4

– Ei
4\H

a
→ Ej

4 \H. In this case, Ei
4

a
→ Ej

4, and so Ei
4

â
=⇒\H Ej

4 and, by definition

of S, (Ej
4 \ H,Ej

4) ∈ S.

– Ei
4

a
→ Ej

4. In this case, Ei
4 \H

a
→ Ej

4 \H, and so Ei
4 \H

â
=⇒\H Ej

4 \H and, by

definition of S, (Ej
4 \ H,Ej

4) ∈ S.

To conclude the proof we also need to consider the high level transitions and the
remaining pairs (E2

4 \ H,E3
4), (E5

4 \ H,E4
4) ∈ S:

– (E2
4 \H,E2

4) ∈ S and E2
4

h
→ E3

4 . In this case, the high level action is simulated

by no moves, i.e., E2
4 \ H

ĥ
=⇒\H E2

4 \ H with (E2
4 \ H,E3

4) ∈ S.

– (E2
4 \ H,E3

4) ∈ S and E2
4 \ H

l̄2→ E5
4 \ H. In this case, E3

4

ˆ̄l2=⇒\H E4
4 and, by

definition of S, (E5
4 \ H,E4

4) ∈ S.

– (E2
4 \ H,E3

4) ∈ S and E3
4

l̄2→ E4
4 . In this case, E2

4 \ H
ˆ̄l2=⇒\H E5

4 \ H and
(E5

4 \ H,E4
4) ∈ S.

– (E5
4 \ H,E4

4) ∈ S. Nothing to prove since both of these processes have no
transitions. 2

In practice, we have proven that a process is P BNDC if and only if it is equivalent
– with respect to a particular bisimulation based equivalence relation – to the same
process prevented from performing high level actions. This property is particularly
appealing since it suggests the effective computability of P BNDC. In particular,
as we discuss in the concluding section, one may perform the P BNDC check using
already existing tools at a low time complexity.
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3.3 Properties of P BNDC

In this subsection we show that property P BNDC is equivalent to the already pro-
posed security property SBSNNI (Strong Bisimulation-based SNNI, where SNNI
stands for Strong Non-deterministic Non-Interference, see [16, 17]) and we prove
that it is compositional with respect to both parallel and prefix operators.

The security property SBSNNI was defined in [16, 17] as follows.

Definition 9 (SBSNNI). Let E ∈ E.

E ∈ SBSNNI if ∀ E′ reachable from E, E′ \ H ≈ E′/H.

This property was introduced to automatically check BNDC, i.e., to bypass the
quantification over all the possible malicious high level processes. As it follows from
Proposition 3, SBSNNI is strictly stronger than BNDC, since, quite interestingly,
it is equivalent to P BNDC.

Before proving Proposition 3 we recall from [17] the next definition and result.

Definition 10. [17] Let E ∈ E. Then E ∈ BSNNI if E \ H ≈ E/H.

Proposition 2. [17] BNDC ⊂ BSNNI .

Notice that SBSNNI corresponds to requiring BSNNI over all the reachable states.
Notice also that the inclusion of Proposition 2 is strict; this can be seen by consid-

ering, for instance, the process E
def
= l.h.l.h.l.0+l.l.l.0+l.0 which is BSNNI but not

BNDC . In fact, by restricting or hiding all the high level actions we only observe the
cases in which either zero or all h’s are performed. Thus E\H ≈ E/H ≈ l.l.l.0+l.0.
BNDC , instead, also considers the “intermediate” situation in which only the first
h is executed. Formally, (E | h̄.0) \H ≈ l.l.0 + l.l.l.0 + l.0 6≈ l.l.l.0 + l.0 ≈ E \H.

Proposition 3. P BNDC = SBSNNI .

Proof. We first prove that P BNDC ⊆ SBSNNI . Let E ∈ P BNDC . By definition
of P BNDC , for all E′ reachable from E, E′ ∈ BNDC and then, by Proposition 2,
E′ ∈ BSNNI . Hence, by Definition 10, for all E′ reachable from E, E′\H ≈ E′/H,
i.e., E ∈ SBNNI .

In order to prove that SBSNNI ⊆ P BNDC we show that

S = {(E1 \ H, (E2|Π) \ H) | Π ∈ EH and E1 \ H ≈ E2/H and E2 ∈ SBSNNI }

is a weak bisimulation. This is sufficient to say that if E ∈ SBSNNI then E ∈
P BNDC . In fact, by persistence of SBSNNI , this proves that for all E′ reachable
from E and for all Π ∈ EH , E′ \ H ≈ (E′|Π) \ H, i.e., E′ ∈ BNDC .
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The fact that S is a weak bisimulation follows from the following four cases.
Let (E1 \ H, (E2|Π) \ H) ∈ S.

Case 1. E1 \H
a
→ E′

1 \H with a 6∈ H. By the hypothesis that E1 \H ≈ E2/H,

there exists E′
2 such that E2/H

â
=⇒ E′

2/H and E′
1 \ H ≈ E′

2/H. Since E2 ∈

SBSNNI , E2 \ H ≈ E2/H and thus there exists E′′
2 such that E2 \ H

â
=⇒ E′′

2 \ H

and E′
2/H ≈ E′′

2 \H. Hence (E2|Π)\H
â

=⇒ (E′′
2 |Π)\H. By persistence of SBSNNI ,

E′′
2 ∈ SBSNNI and in particular E′′

2 \ H ≈ E′′
2/H; moreover, by transitivity of ≈,

E′
1 \ H ≈ E′′

2/H. Therefore, by definition of S, (E′
1 \ H, (E′′

2 |Π) \ H) ∈ S.

Case 2. (E2|Π) \H
a
→ (E′

2|Π) \H where also E2 \H
a
→ E′

2 \H and a 6∈ H. By
the hypothesis that E2 ∈ SBSNNI , it follows that E2 \ H ≈ E2/H. Hence there

exists E′′
2 such that E2/H

â
=⇒ E′′

2/H and E′
2 \H ≈ E′′

2/H. By the hypothesis that

E1 \H ≈ E2/H, there exists E′
1 such that E1 \H

â
=⇒ E′

1 \H and E′
1 \H ≈ E′′

2/H.
By persistence of SBSNNI , E′

2 ∈ SBSNNI and in particular E′
2 \ H ≈ E′

2/H;
moreover, by transitivity of ≈, E′

1 \ H ≈ E′
2/H. Therefore, by definition of S,

(E′
1 \ H, (E′

2|Π) \ H) ∈ S.

Case 3. (E2|Π)\H
τ
→ (E2|Π

′)\H with Π
τ
→ Π ′. By definition of S, it trivially

follows that (E1 \ H, (E2|Π ′) \ H) ∈ S.

Case 4. (E2|Π) \ H
τ
→ (E′

2|Π
′) \ H where E2

a
→ E′

2, Π
ā
→ Π ′ and a ∈ H.

Hence E2/H
τ
→ E′

2/H. By the hypothesis that E1 \ H ≈ E2/H, there exists E′
1

such that E1 \ H
τ̂

=⇒ E′
1 \ H and E′

1 \ H ≈ E′
2/H. By persistence of SBSNNI ,

E′
2 ∈ SBSNNI and thus, by definition of S, (E′

1 \ H, (E′
2|Π) \ H) ∈ S. 2

In [17] it is proved that SBSNNI is compositional, in the sense that it is pre-
served by the parallel and restriction operators (statements (1) and (2) of Proposi-
tion 4 below). It is easy to prove that P BNDC is also compositional with respect
to the prefix operator limited to low level actions (statement (3) of Proposition 4).

Proposition 4.

(1) If E,F ∈ P BNDC then (E|F ) ∈ P BNDC;
(2) if E ∈ P BNDC and v ⊆ L then E \ v ∈ P BNDC;
(3) if E ∈ P BNDC and a ∈ L ∪ {τ} then a.E ∈ P BNDC.

Property P BNDC is not compositional with respect to the nondeterministic choice
operator as illustrated below.

Example 5. Let E
def
= h.0 with h ∈ H and F

def
= l.0 with l ∈ L. It is easy to see

that both E and F are P BNDC but E +F is not P BNDC. In fact, the transition

E + F
h
→ 0 cannot be simulated by process (E + F ) \ H which cannot reach any

state equivalent to 0 by performing (a possibly empty) sequence of silent actions.
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The problem lies in the fact that process E adds a deadlock state that may be
triggered by a high level action h, making the whole system insecure. 2

Inspired by the above example, in [6] we introduce a novel Non-Interference prop-
erty, named PP BNDC which is compositional with respect to the nondeterminis-
tic choice operator. This property is a variation of P BNDC whose underlying ob-
servation equivalence is the progressing bisimulation relation (see [40]). PP BNDC
is very useful for verification purposes because it is fully compositional with respect
to SPA operators, but it might be too strong in some situations. To give a trivial
example, the process h.0 above is not PP BNDC but it is intuitively secure, as it
can only perform a single high level action, thus no interference is ever possible
because nothing is observable from the low level interface. Hence, PP BNDC is
mainly useful as a sufficient condition to check desired security properties like, e.g.,
BNDC and P BNDC.

4 Security of Mobile Agents

In this section we show that the notion of P BNDC can be successfully applied
to the study of mobile process security. We proceed in two steps: First, we for-
mally prove that P BNDC guarantees security even when the high context is
completely dynamic, i.e., when it can arbitrarily change at run-time. Since, from
the point of view of agents, a migration causes a change of the surrounding execu-
tion environment, we obtain that P BNDC guarantees security even when agents
non-deterministically migrate in every possible way during their executions.

This first step gives a new, sound and complete, characterization of P BNDC
in terms of dynamic contexts, substantiating the intuition that the persistent prop-
erty P BNDC is strong enough to handle agent migrations. However, this is proved
at a very high level of abstraction, modelling migrations as context changes not
controlled by agents.

Our second step is, thus, to consider a more concrete model obtained by adding
explicit process mobility to the SPA language. We formally prove that P BNDC
implies the natural extension of Non-Interference in this concrete model of mobile
agents.

4.1 Towards mobility: a characterization of P BNDC through
Dynamic Contexts

In this section we show that P BNDC is equivalent to an extension of BNDC to
dynamic high contexts, i.e., high contexts that may change arbitrarily at any step
of the computation. This dynamic behaviour of the contexts is modelled through
the new dynamic parallel composition operator that allows contexts to arbitrarily
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change thanks to a special internal action τD 6∈ Act. A dynamic high context is
a high context where dynamic parallel composition is used in place of standard
parallel composition.

Definition 11 (Dynamic high context). A dynamic high context CD[ ] is a
term ( |D Π) \H where Π ∈ EH and |D represents the dynamic parallel compo-
sition which extends the semantics of parallel composition as follows:

E | Π
a
→ E′ | Π ′

E |D Π
a
→ E′ |D Π ′

Π ′′ ∈ EH

E |D Π
τD→ E′ |D Π ′′

We now define a variant of weak bisimulation that requires context changes to be
simulated by no moves. We consider the set ED = E ∪ {CD[E] | ∀CD[ ],∀E ∈ E}
of all SPA processes possibly executed in dynamic high contexts.

Definition 12 (Dynamic Weak Bisimulation). A binary relation S ⊆ ED×ED
is a dynamic weak bisimulation if (E,F ) ∈ S implies, for all a ∈ Act, a 6= τD,

– whenever E
a
→ E′, then there exists F ′ such that F

â
=⇒ F ′ and (E′, F ′) ∈ S;

– whenever F
a
→ F ′, then there exists E′ such that E

â
=⇒ E′ and (E′, F ′) ∈ S;

– whenever E
τD→ E′ then (E′, F ) ∈ S.

– whenever F
τD→ F ′ then (E,F ′) ∈ S.

E,F ⊆ ED are dynamically weakly bisimilar, denoted by E ≈D F , if there exists
a dynamic weak bisimulation S containing the pair (E,F ).

It is possible to prove that ≈D is the largest dynamic weak bisimulation and it
is symmetric and transitive, but, differently from usual bisimulation notions, it is
not reflexive, as shown by the following example.

Example 6. Consider the (insecure) process h.l and the dynamic high context
CD[ ] = ( |D 0) \ H. We have that CD[h.l] 6≈D CD[h.l], i.e., ≈D is not reflex-
ive. In fact, if we had (h.l |D 0) \ H ≈D (h.l |D 0) \ H, it should also hold that

(h.l |D h̄)\H ≈D (h.l |D 0)\H, since (h.l |D 0)\H
τD→ (h.l |D h̄)\H. But this is not

true since (h.l |D h̄)\H
τ
→ (l |D 0)\H and (h.l |D 0)\H cannot simulate this step.

In fact, it cannot perform any τ ’s and simulating by not moving is unsuccessful
given that action l, possibly performed by (l |D 0) \ H, cannot be simulated by
(h.l |D 0) \ H. 2

The example above shows that ≈D is not reflexive in general. This is due to the fact
that the condition on τD transitions is very strong, requiring that context changes
do not change the observable behaviour. As we will see, ≈D is reflexive whenever
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the process inside the dynamic context is secure. In fact, the behaviour of a secure
process is required to be the same with respect to all high level contexts.

We call BNDCD the extension of BNDC to dynamic contexts and dynamic
bisimulation:

Definition 13 (BNDCD). Let E ∈ E.

E ∈ BNDCD if ∀ dynamic high contexts CD[ ], E \ H ≈D CD[E].

The following lemma states that checking equivalence with respect to one dynamic
context is sufficient to prove equivalence with respect to all dynamic contexts. It
directly derives from the fact that CD[F ]

τD→ C ′
D[F ], and τD is required to be

simulated by zero moves:

Lemma 2. Let E,F ∈ E. If E ≈D CD[F ] iff E ≈D C ′
D[F ] for all dynamic contexts

C ′
D[ ].

We give two simple characterizations of BNDCD that help understanding the
power of dynamic contexts and bisimulation. The first characterization states that,
since contexts are dynamic, it is sufficient to check just one of them (e.g., 0); the
second one shows that reflexivity of ≈D holds if and only if E is secure.

Proposition 5. Let E ∈ E. E ∈ BNDCD iff one of the following holds:

– E \ H ≈D (E |D 0) \ H;
– ∀CD[ ], CD[E] ≈D CD[E].

Proof. The first condition is a direct consequence of Lemma 2. The ⇒ implication
of the second one derives by transitivity and symmetry of ≈D since E\H ≈D CD[E]
implies CD[E] ≈D E \ H and, by transitivity, CD[E] ≈D CD[E]. The ⇐ implica-
tion, instead, can be proved by showing that R = {(E \ H,CD[F ]) | C ′

D[E] ≈D

CD[F ],∀C ′
D[ ]} is a dynamic weak bisimulation. The proof is trivial by case analysis

and by exploiting the null context C ′
D[ ] = ( |D 0) \ H. 2

We illustrate how dynamic contexts work through the following simple example.

Example 7. Consider again the process E3 of Example 2 and illustrated in Figure 3.

E3 = l1.h.l̄2.0 + l1.(τ.l̄2.0 + τ.0)

We have seen that E3 is BNDC but not P BNDC. The problem is after the leftmost
l1, since the continuation process h.l̄2.0 is not secure. We show that BNDCD

captures this problem, too. We reason by contradiction: let us assume that E3

is BNDCD. Then, if CD[E3]
l1=⇒ CD[h.l̄2.0], for a certain dynamic high context
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CD[ ], we have that E3 \H
l̂1=⇒ E′

3\H and CD[h.l̄2.0] ≈D E′
3\H. By Lemma 2 and

by transitivity of ≈D, we have that CD[h.l̄2.0] ≈D C ′
D[h.l̄2.0], for all high dynamic

contexts C ′
D[ ]. So, in particular, (h.l̄2.0 |D 0) \ H ≈D (h.l̄2.0 |D h̄) \ H, giving a

contradiction. 2

The next theorem shows that P BNDC and BNDCD are the same. Thus, P BNDC
guarantees security even when contexts may change arbitrarily.

Theorem 3. Let E ∈ E. E ∈ BNDCD iff E ∈ P BNDC.

Proof. (⇐) We show that E \ H ≈hc E implies CD[E] ≈D E \ H, for all dynamic
high contexts CD[ ]. In order to do it we prove that

S = {(E1 \ H,CD[E2]) : E1 \ H ≈hc E2 and CD[ ] is a dynamic context}

is a dynamic weak bisimulation. This is sufficient to conclude that CD[E] ≈D E\H,
for all dynamic high contexts CD[ ].

The fact that S is a dynamic weak bisimulation follows from the following five
cases.

Let (E1 \ H,CD[E2]) ∈ S.

Case 1. E1 \H
a
→ E′

1 \H with a 6∈ H. Thus, for all high contexts C[ ], we have

E1 \ H
a
→C E′

1 \ H. By the hypothesis that E1 \ H ≈hc E2, for all high contexts

C[ ] there exists E′
2 such that E2

â
=⇒C E′

2 and E′
1 \ H ≈hc E′

2. As a consequence,

CD[E2]
â

=⇒ C ′
D[E′

2] and (E′
1 \ H,C ′

D[E′
2]) ∈ S.

Case 2. CD[E2]
a
→ CD[E′

2] with E2 \ H
a
→ E′

2 \ H and a 6∈ H and a 6= τD. Let

C[ ] ≡ ( |0) \ H. Hence E2
a
→C E′

2. By the hypothesis that E1 \ H ≈hc E2, there

exists E′
1 such that E1 \ H

â
=⇒C E′

1 \ H and E′
1 \ H ≈hc E′

2. Since C[E1 \ H] can

only perform actions of E1 \ H and τ actions of the context, E1 \ H
â

=⇒ E′
1 \ H

and, by definition of S, (E′
1 \ H,CD[E′

2]) \ H) ∈ S.

Case 3. CD[E2]
τ
→ C ′

D[E2]. By definition of S, it immediately follows that
(E1 \ H,C ′

D[E2]) ∈ S.

Case 4. CD[E2]
τ
→ C ′

D[E′
2] where E2

a
→ E′

2 and a ∈ H. Consider the high

context C[ ] ≡ ( |ā.0)\H. Hence E2
τ
→C E′

2. By the fact that E1 \H ≈hc E2, there

exists E′
1 such that E1\H

τ̂
=⇒C E′

1\H and E′
1\H ≈hc E′

2. Since C[E1\H] can only

perform actions of E1 \H and τ actions of the context, we have E1 \H
τ̂

=⇒ E′
1 \H

and (E′
1 \ H,C ′

D[E′
2]) ∈ S.

Case 5. CD[E2]
τD→ C ′

D[E2].By definition of S, it immediately follows that (E1 \
H,C ′

D[E2]) ∈ S.
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(⇒) We now show that CD[E] ≈D E \ H, for all dynamic high contexts CD[ ],
implies E \ H ≈hc E. In order to do it we prove that

R = {(E1 \ H,E2) : E1 \ H ≈D CD[E2] for all CD[ ]}

is a weak bisimulation on high contexts. This is clearly sufficient to conclude that
E ≈hc E \ H.

The fact that R is a weak bisimulation on high contexts follows from the
following four cases.

Let (E1 \ H,CD[E2]) ∈ R.
Case 1. C[E1 \ H]

a
→ C[E′

1 \ H] with E1 \ H
a
→ E′

1 \ H and a 6∈ H. By
considering the dynamic context CD obtained by C by replacing the parallel with
|D , we trivially have that CD[E2]

a
→ C ′

D[E′
2] with E′

1 \ H ≈D C ′
D[E′

2]. Since a

cannot be equal to τD, we also obtain that C[E2]
a
→ C ′[E′

2]. By Lemma 2, we
obtain that (E′

1 \ H,E′
2) ∈ R.

Case 2. C[E2]
a
→ C[E′

2] with E2 \H
a
→ E′

2 \H and a 6∈ H. We have CD[E2]
a
→

CD[E′
2] and E1 \ H

â
=⇒ E′

1 \ H with E′
1 \ H ≈D CD[E′

2]. From the fact that

C[E1 \ H]
â

=⇒ C[E′
1 \ H] and by Lemma 2, we obtain that (E′

1 \ H,E′
2) ∈ R.

Case 3. C[E2]
τ
→ C ′[E2] or C[E1\H]

τ
→ C ′[E1\H]. There is no need to simulate

these actions as (E1 \ H,E2) ∈ R.
Case 4. C[E2]

τ
→ C ′[E′

2] where E2
a
→ E′

2 and a ∈ H. Consider the dynamic high

context CD obtained from C by replacing the parallel with |D . Hence CD[E2]
τ
→

C ′
D[E′

2] and E1 \ H
τ̂

=⇒ E′
1 \ H with E′

1 \ H ≈D C ′
D[E′

2]. By Lemma 2 we obtain
that (E′

1 \ H,C ′
D[E′

2]) ∈ R. 2

4.2 Security of Mobile Agents in the Mspa calculus

In this section we extend the SPA calculus with a primitive for mobility, inspired
by Dpi-calculus [26], and call the new calculus Mspa (for Mobility SPA).

The syntax of Mspa processes is the same of SPA processes extended with the
new migration primitive goto l with l ∈ Loc where Loc is a set of locations (i.e.,
a set names ranged over by l, k, s, . . .). As for Dpi, processes must be distributed
among locations in order to be executed. Distributed processes are called systems
and have the following syntax:

M,N ::= l[[E]] | M |N | M \ v

where E is a Mspa process, l ∈ Loc, v ⊆ L. Intuitively, l[[E]] denotes the Mspa

process E being executed at location l, M |N is the parallel composition of systems
M and N , and M \ v is the system M in which actions of set v are prevented,
independently of the location in which they are performed.
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Localized I/O
E

a
→ E′

l[[E]]
a@l
→ l[[E′]]

a ∈ L

Silent Action
E

τ
→ E′

l[[E]]
τ
→ l[[E′]]

Move
E

goto k
→ E′

l[[E]]
goto k
→ k[[E′]]

Parallel Systems
M

α
→ M ′

M |N
α
→ M ′|N

N
α
→ N ′

M |N
α
→ M |N ′

α ∈ ActM

M
a@l
→ M ′ N

ā@l
→ N ′

M |N
τ
→ M ′|N ′

a ∈ L

System Restriction
M

a@l
→ M ′

M \ v
a@l
→ M ′ \ v

a ∈ L, a 6∈ v
M

τ
→ M ′

M \ v
τ
→ M ′ \ v

Figure 6. The operational rules for Mspa systems

The semantics of Mspa processes is given by simply extending the set of SPA
actions with the new mobility actions of the form goto l and by adding new axioms
for them. Formally, the set of all actions of the Mspa language is Act ∪{goto l | l ∈
Loc}, and the set of rules of Figure 1 is extended with the new Migration axiom:

−

goto l.E
goto l
−→ E

The new migration primitive affects the execution of systems whose operational
semantics is given through the rules reported in Figure 6. We denote by ActM the
set of actions of distributed systems that is {a@l | a ∈ L, l ∈ Loc} ∪ { goto l | l ∈
Loc} ∪ {τ}.

Intuitively, a system l[[E]] executes all the I/O of agent E localized at location
l (denoted by symbol @); whenever a goto k is performed by an agent E, the
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location of E becomes k; parallel systems may proceed by interleaving their exe-
cution sequences, possibly synchronizing on complementary input/output actions
performed at the same location l; finally, as done for agents, action execution may
be prevented through the restriction operator.

Example 8. Consider once more the process E3 = l1.h.l̄2.0 + l1.(τ.l̄2.0 + τ.0) of
Examples 2 and 3 and depicted in Figure 3. Assume, now, that after performing
the leftmost l1 the process moves from the initial site s1 to another site s2. We
can write this fact through the new mobility primitive goto s as follows: E5 =
l1.goto s2.h.l̄2.0 + l1.(τ.l̄2.0 + τ.0). If we execute E5 in location s1 we obtain the
following execution paths:

s1[[E5]]
l1@s1−→ s1[[goto s2.h.l̄2.0]]

goto s2

→ s2[[h.l̄2.0]]
h@s2−→ s2[[l̄2.0]]

l̄2@s2−→ s2[[0]]
l1@s1−→ s1[[τ.l̄2.0 + τ.0]]

τ
→ s1[[0]]
τ
→ s1[[l̄2.0]]

l̄2@s1−→ s1[[0]]

Notice that, after goto s2 is performed, the execution proceeds in location s2 and
this fact is made observable by the @s2 suffix in the arrow labels. Notice also that
h.l̄2.0 is executed on site s2, while the (masquerading) right branch (τ.l̄2.0 + τ.0)
is executed in the initial site s1. As a consequence, a low level user on site s2, by
observing the execution of l̄2, will precisely know if h has been executed or not. 2

This example shows that good processes should never move inside their critical
sections, i.e., when they are executing code that, for security reasons, is bound to
other code.

The way we deal with mobility is a bit simplified with respect to Dpi: in Mspa,
when a process E performs a move action goto l, then E as a whole moves to the
new location l, even if E is composed of different parallel components; in Dpi,
instead, it is the single sequential component that moves to the new location.
For example, the Mspa system k[[goto l.E′ | b.0]] moves to l[[E′ | b.0]], while in
Dpi, the same system moves to l[[E′]] | k[[b.0]]. This does not mean that a goto
action moves all the processes in the starting location to the new locations (which
would be quite difficult to implement). For example, k[[goto l.E′]] | k[[b.0]] behaves
like the Dpi process above and moves to l[[E′]] | k[[b.0]]. Our view of mobility
seems to better fit the idea of guaranteeing security even when the environment is
dynamically reconfigured at runtime, which is equivalent to say that the process
(as a whole) moves into a different environment. Of course, it would be interesting
to also explore what happens when the full Dpi mobility is taken into account. We
leave this aspect as a future work.

We extend the notion of weak-bisimulation to Mspa systems as expected, and
we denote it by ≈M.
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Definition 14 (Weak Bisimulation on Mspa Systems). A binary relation S
over Mspa systems is a weak bisimulation if (M,N) ∈ S implies, for all α ∈
ActM,

– whenever M
α
→ M ′, then there exists N ′ such that N

α̂
=⇒ N ′ and (M ′, N ′) ∈ S;

– whenever N
α
→ N ′, then there exists M ′ such that M

α̂
=⇒ M ′ and (M ′, N ′) ∈ S.

Two Mspa systems M and N are weakly bisimilar, denoted by M ≈M N , if there
exists a weak bisimulation S containing the pair (M,N).

The notion of BNDC can be naturally adapted to distributed systems as follows.
First, the set of high level actions H is now defined as the set of all actions of
the form a@l where a is high. Since, in practice, it is very difficult to completely
hide a migration from one host to another, we assume that goto’s are visible, i.e.
low, actions. As a consequence, we consider malicious high level processes that
do not move and are distributed on the sites, adhering to the very general form
l1[[Π1]] | . . . | ln[[Πn]] with Π1, . . . ,Πn ∈ EH . We denote by EM

H the set of those
high level systems. Processes that we analyse may move from site to site finding
themselves under the attack of different, dynamically changing, attackers. The
notion of Mobility BNDC (M BNDC , for short) is defined as follows.

Definition 15 (M BNDC). Let E be a Mspa process. E is M BNDC if for all
l ∈ Loc and for all M ∈ EM

H , (l[[E]] | M) \ H ≈M l[[E]] \ H.

We can show that BNDC does not imply M BNDC . Intuitively, if migration hap-
pens in particular “unstable states”, i.e., states whose behaviour is influenced by
high level activity, the sudden change of high level behaviour caused by migration
could generate some (even subtle) difference in the low level behaviour. This is
not captured by BNDC as it fixes a unique high level attacker in advance, which
is not affected by migrations. The following example illustrates a process which is
BNDC but not M BNDC .

Example 9. Consider the process E6 = l1.(h.l2.0 + goto s2.h.l3.0) + l1.(τ.(τ.l2.0 +
goto s2.l3.0) + τ.goto s2.0 + goto s2.(τ.0 + τ.l3.0)) depicted in Figure 7, where
h is the only high level action. We can prove that E6 is BNDC (see Appendix
B) but not M BNDC . In fact, by considering the distributed high level malicious
system M = s1[[h̄.0]] | s2[[0]], we obtain that (s1[[E6]] | M) \ H 6≈M s1[[E6]] \ H.
Systems (s1[[E6]] | M) \ H and s1[[E6]] \ H are depicted in Figure 8. Notice that
the left-most l1@s1 transition of the former system moves it into a state where it
is possible to perform either a l2@s1 action or a goto s2 one. The latter system
cannot simulate this l1@s1 transition by reaching a state where it is possible to
(only) choose between executing either l2@s1 or goto s2.
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2goto s

2goto s
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τ
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τ

τ
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Figure 7. The process E6

2goto s

2goto s

2goto s

l 1 @s 1 l 1 @s 1

l  @s 12
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l  @3  2s

2goto s

τ
τ

τ
τ

τ
τ τ

2goto s

2goto s

2goto s

l 1 @s 1 l 1 @s 1

l  @3  2sl  @s 12

l  @s 12

l  @3  2s

2goto s

τ
τ

τ
τ

τ
τ τ

τ

Figure 8. The processes (s1[[E6]] | M) \ H and s1[[E6]] \ H

Intuitively, since M BNDC considers different attackers in different sites, the
high level behaviour may suddenly change after a migration causing an “unex-
pected” low level behaviour. This is the case for the above mentioned process
(s1[[E6]] | M) \ H whose behaviour, after the left-most l1 action, depends on the
execution site: in s1 action h is always allowed, while in s2 it is always forbidden.
This “inconsistency” is revealed to the low level observers by the presence of a
state where it is only possible to choose between l2@s1 and goto s2. 2

Property M BNDC is difficult to check due to the presence of a universal quantifi-
cation over all the possible high level systems M . Here we show that P BNDC is
enough to guarantee that a Mspa process is M BNDC . Indeed, P BNDC requires
that every execution state is secure. As a consequence, we are guaranteed that in
a P BNDC -secure process migration always happens in secure, stable, states.
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Theorem 4. E ∈ P BNDC implies E ∈ M BNDC.

Proof. Let E ∈ P BNDC. Then for all E′ reachable from E, E′ ∈ P BNDC , i.e.,
E′ \ H ≈\H E′. It is sufficient to prove that

S = {(l[[E1]] \ H, (l[[E2]] | M) \ H) : E1 \ H ≈\H E2, l ∈ Loc, M ∈ EM
H }

is a ≈M bisimulation.
The fact that S is a ≈M bisimulation follows from the following cases.
Let ((l[[E1]] \ H, (l[[E2]] | M) \ H) ∈ S.

Case 1. l[[E1]] \ H
a@l
→ l[[E′

1]] \ H where E1
a
→ E′

1 and a ∈ L. Thus, E1 \ H
a
→

E′
1\H. By the hypothesis that E1\H ≈\H E2, there exists E′

2 such that E2
â

=⇒ E′
2

and E′
1 \ H ≈\H E′

2. Therefore it holds (l[[E2]] | M) \ H
ˆa@l

=⇒ (l[[E′
2]] | M) \ H and

hence, by definition of S, (l[[E′
1]] \ H, (l[[E′

2]] | M) \ H) ∈ S.

Case 2. l[[E1]] \ H
τ
→ l[[E′

1]] \ H where E1
τ
→ E′

1. Thus, E1 \ H
τ
→ E′

1 \ H. By

the hypothesis that E1 \ H ≈\H E2, there exists E′
2 such that E2

τ̂
=⇒ E′

2 and

E′
1 \H ≈\H E′

2. Thus (l[[E2]] | M)\H
τ̂

=⇒ (l[[E′
2]] | M)\H and hence, by definition

of S, (l[[E′
1]] \ H, (l[[E′

2]] | M) \ H) ∈ S.

Case 3. l[[E1]]\H
goto k
→ k[[E′

1]]\H where E1
goto k
→ E′

1. Thus, E1\H
goto k
→ E′

1\H.

By the hypothesis that E1 \H ≈\H E2, there exists E′
2 such that E2

ˆgoto k
=⇒ E′

2 and

E′
1\H ≈\H E′

2. Thus (l[[E2]] | M)\H
ˆgoto k

=⇒ (l[[E′
2]] | M)\H and hence, by definition

of S, (l[[E′
1]] \ H, (l[[E′

2]] | M) \ H) ∈ S.

Case 4. (l[[E2]] | M) \H
a@l
→ (l[[E′

2]] | M) \H where E2
a
→ E′

2 and a ∈ L. By the

hypothesis that E1 \H ≈\H E2, there exists E′
1 such that E1 \H

â
=⇒ E′

1 \H. Thus

l[[E1]] \ H
ˆa@l

=⇒ l[[E′
1]] \ H and, by definition of S, (l[[E′

1]] \ H, (l[[E′
2]] | M) \ H) ∈ S.

Case 5. (l[[E2]] | M) \H
τ
→ (l[[E′

2]] | M) \H where E2
τ
→ E′

2. By the hypothesis

that E1\H ≈\H E2, there exists E′
1 such that E1\H

τ̂
=⇒ E′

1\H. Thus l[[E1]]\H
τ̂

=⇒
l[[E′

1]] \ H and hence, by definition of S, (l[[E′
1]] \ H, (l[[E′

2]] | M) \ H) ∈ S.

Case 6. (l[[E2]] | M) \ H
τ
→ (l[[E2]] | M ′) \ H where M

τ
→ M ′. In this case, by

definition of S, we immediately obtain (l[[E1]] \ H, (l[[E2]] | M ′) \ H) ∈ S.

Case 7. (l[[E2]] | M) \ H
τ
→ (l[[E′

2]] | M ′) \ H where E2
a@l
→ E′

2, M
ā@l
→ M ′

and a ∈ H. By the hypothesis that E1 \ H ≈\H E2, there exists E′
1 such that

E1 \ H
τ̂

=⇒ E′
1 \ H. Thus l[[E1]] \ H

τ̂
=⇒ l[[E′

1]] \ H and hence, by definition of S,
(l[[E′

1]] \ H, (l[[E′
2]] | M) \ H) ∈ S.

Case 8. (l[[E2]] | M) \ H
goto k
→ (k[[E′

2]] | M) \ H where E2
goto k
→ E′

2. By the

hypothesis that E1\H ≈\H E2, there exists E′
1 such that E1\H

ˆgoto k
=⇒ E′

1\H. Thus
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l[[E1]]\H
ˆgoto k

=⇒ k[[E′
1]]\H and, by definition of S, (k[[E′

1]]\H, (k[[E′
2]] | M)\H) ∈ S.

2

We show that property P BNDC is strictly stronger than M BNDC .

Example 10. Consider again the process E3 = l1.h.l̄2.0 + l1.(τ.l̄2.0 + τ.0) of Ex-
amples 2 and 3 and depicted in Figure 3. This process is M BNDC (as shown in
Appendix C) but not P BNDC (as shown in Example 3). 2

5 An Example with Mobility

In this section, we give a non trivial example of a P BNDC process. Our first aim is
to give evidence that the proposed property is not too restrictive and can be used
to validate interesting system specifications. Then, we show that P BNDC is also
useful for reasoning about mobile code. In particular we add migration primitives
in different places and we study how the security of the resulting mobile process
is affected.

The process we consider is inspired by the Access Monitor of [16, 17] and repre-
sents a very simple implementation of multilevel security over two binary memory
cells (called Objects), a high and a low level one. For the sake of readability we
first express the process using a value-passing extension of SPA. Then, we show
how this specification translates to the basic SPA calculus.

Agent
def
= Objecth(0) | Objectl(0)

Objecth(x)
def
= rhh(x).Objecth(x) + whh(y).Objecth(y) + wlh(y).Objecth(y)

Objectl(x)
def
= rhl(x).Objectl(x) + rll(x).Objectl(x) + wll(y).Objectl(y)

Process Agent is the parallel composition of the two cells Objecth(0) and Objectl(0)
which initially contain value 0. Cell Objecth(x) represents a high level cell which
can communicate its value only to high level users through the output action rhh

(“r” stands for read) and can be updated by both high and low level users through
the two inputs whh(y) and wlh(y), respectively (“w” stands for write). Notice that
the first subscript indicates the level of the user, while the second one represents
the level of the accessed object. The low level cell Objectl(x) communicates its
value to both high and low level users through actions rhl(x) and rll(x) and can
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Agent
def
= Objecth 0 | Objectl 0

Objecth 0
def
= rhh 0.Objecth 0

+ whh 0.Objecth 0 + whh 1.Objecth 1

+ wlh 0.Objecth 0 + wlh 1.Objecth 1

Objecth 1
def
= rhh 1.Objecth 1

+ whh 0.Objecth 0 + whh 1.Objecth 1

+ wlh 0.Objecth 0 + wlh 1.Objecth 1

Objectl 0
def
= rhl 0.Objectl 0

+ rll 0.Objectl 0

+ wll 0.Objectl 0 + wll 1.Objectl 1

Objectl 1
def
= rhl 1.Objectl 1

+ rll 1.Objectl 1

+ wll 0.Objectl 0 + wll 1.Objectl 1

Table 1. The simple multilevel process expressed in SPA.

only be updated by low level users via wll(y). This process implements the no-
write-down/no-read-up rules of [3], since no high level user can write down to the
low level cell and no low level user can read from the high level cell.

The way value-passing SPA is translated into SPA is fully described in [16,
17]. The idea is to have a different action and a different SPA process for each
possible value. We assume that the two memory cells described above only contain
binary values. Thus, for example, the process Objecth(x) is translated to the pair
Objecth 0,Objecth 1 and the corresponding action rhh(x) is translated to rhh 0 and
rhh 1, accordingly. The full translation of the three value-passing processes is re-
ported in Table 1, in which we assume that {rhh 0, whh 0, rhh 1, whh 1, rhl 0, whl 0,
rhl 1, whl 1} ⊆ H and all the other actions are in L.

Using the CoPS tool [44], we can check that process Agent is P BNDC. It is
also possible to check that if either read-up or write-down is enabled (by suitably
modifying the two cells) the process is not P BNDC, as expected. For example,
adding a read-up access correspond to adding a line rlh 0.Objecth 0 in process
Objecth 0 and a line rlh 1.Objecth 1 in process Objecth 1. This introduces a direct
causality between high level inputs (whh 0, whh 1) and low level outputs, represent-
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ing a direct information leakage. Indeed, read-up allows low level users to directly
read high level values from the high level cell.

It is now interesting to see what happens if we add migration actions. We first
observe that, in a secure process, the ability of migrating should not depend on
the high level state of the process. To see this we let the process migrate only
when the high level cell contains value 1. This can be achieved by adding, in the
specification of Objecth 1, the line goto s.Objecth 1. We call this process Agentm1 .
Recall that, according to the Mspa semantics, a goto action migrates the process
Agentm1 as a whole. Thus adding a goto in the high level cell also affects the low
level one.

It can be easily seen that Agentm1 is not P BNDC. More specifically, we show
that Agentm1 is not M BNDC . Notice that goto s is observable by low level users
and it clearly depends on the high level whh 1 action. Indeed, initially, the high
level cell contains value 0, and a way of storing value 1 in such a cell (thus enabling
the migration), is to perform the high level action whh 1. Formally, consider the
high level system M = l[[whh 1.0]]. We have that

(l[[Agentm1 ]] | M) \ H 6≈M l[[Agentm1 ]] \ H .

As a matter of fact,

(l[[Agentm1 ]] | M) \ H
τ
→ (l[[Objecth 1 | Objectl 0]] | l[[0]]) \ H

and the reached state can execute a goto s action. This first internal τ step cannot
be simulated by l[[Agentm1 ]] \H because the only way of for this process to reach a
state where goto s is executable, is to perform a wlh 1 action. Intuitively, the first
τ move represents the high level write performed by M which is revealed by the
observable goto action.

In order to add migration in the high level cell without compromising the secu-
rity, it is sufficient to also modify the Objecth 0 process by adding goto s.Objecth 0.
In this way, migration does not depend on the actual high level value. We can check
that this process is P BNDC using CoPS.

If we try to add migration in the low level cell, we discover that the process
preserves the P BNDC property even if we let it migrate depending on the low
level value. This reflects the intuition that migration should not depend on the
high level state but may depend on the low level one.

Another interesting experiment is to add migration just before the execution
of a high level action. For example let us modify process Agent by adding a goto s
just before the rhl 0 of process Objectl 0, i.e., the corresponding line becomes:
goto s.rhl 0.Objectl 0. This makes the obtained Agentm2 process non-P BNDC,
as the reachable process rhl 0.Objectl 0 is clearly not secure. We also show that,
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because of the above mentioned insecurity of a reachable state, Agentm2 in not
even M BNDC . Consider the high level system M = s[[rhl 0.0]]. We have that

(l[[Agentm2 ]] | M) \ H 6≈M l[[Agentm2 ]] \ H .

As a matter of fact, we have that

(l[[Agentm2 ]] | M) \ H
goto s
→ (s[[Objecth 0 | rhl 0.Objectl 0]] | M) \ H
τ
→ (s[[Agentm2 ]] | s[[0]]) \ H .

Notice that the reached state represents Agentm2 running at location s with no
high level activity. The only way for l[[Agentm2 ]] \ H to simulate this migration,
moving to location s, is to try to perform the goto action. However this moves
the system into the state s[[Objecth 0 | rhl 0.Objectl 0]] \H where no interaction is
possible with the low level cell. In fact, the low level cell is in a deadlock state.
This potential deadlock controlled by high level users can be exploited to construct
covert channels as shown in [17].

6 Conclusion and Related Work

In this paper we have studied a security property, named P BNDC, which is based
on the idea of Non-Interference and is persistent, i.e., it is preserved in all the states
reached during process executions. We have characterized P BNDC through a
local property (with no quantification either on the states or on the high contexts)
which is based on a new notion of weak bisimulation up to high level actions,
denoted by ≈\H .

This result reduces the problem of verifying P BNDC to the problem of check-
ing a weak bisimulation between two processes. In the case of finite state processes,
this can be efficiently solved either through model-checking or by a strong bisim-
ulation checker, as described in [6] and briefly explained below.

– The model-checking technique can be used as follows: one can exploit the well-
known greatest fixpoint characterization of bisimulation-like relations [41] to
derive modal mu-calculus formulae characterizing finite-state processes up to
the equivalence relation ≈\H . A model checker can be then employed to directly
verify P BNDC. Indeed, if φ≈\H is a characteristic formula for a finite state
process E up to ≈\H , then E ∈ P BNDC if and only if E \ H |= φ≈\H (see
[52, 53] for more detail).

– P BNDC can be also proved by following the method proposed in [52] where
the verification of a process equivalence is reduced to the problem of verifying a
strong bisimulation between two transformed processes. Given this transforma-
tion, the strong bisimulation test can be performed using efficient algorithms
for strong bisimulation (see, e.g., [43, 28, 7, 29, 14]).
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Actually, the compositional security checker (CoSeC) described in [16] may be
used to automatically verify P BNDC over finite state processes. This is done by
checking the equivalent property SBSNNI and requires to verify a bisimulation
relation over all the possible reachable states. As explained above, P BNDC may
be verified more efficiently, by simply showing that two processes are weak bisimilar
up to high level actions. The recently developed tool CoPS [44] implements this
new verification technique.

We have proved that P BNDC is compositional with respect to the parallel
operator. This is useful to check the security of a complex system bottom-up,
i.e., starting from its simpler sub-components. This compositional check is im-
plemented both in CoSeC and in CoPS and it often dramatically reduces the
verification time. P BNDC is not compositional with respect to the nondetermin-
istic choice operator. To improve this aspect, in a companion paper [6] we have
studied variations of P BNDC based on different equivalence relations. The main
result is that, by adopting the progressing-bisimulation congruence [40], we obtain
a fully 2 compositional property.

Finally, we have shown that P BNDC is a property suitable for reasoning on
the security of mobile processes. To this end, we have extended SPA with mobility
and we have shown that, in this extended calculus, P BNDC implies an extension
of the BNDC property to migrating processes, in which execution sites may host
different high level malicious processes running locally.

Persistence is not a typical feature of Non-Interference properties. For exam-
ple, many properties based on trace models, like generalized non-inference [36],
non inference [42], generalized Non-Interference [33], separability [36], the perfect
security property [57], are not persistent. An interesting exception is the variant of
BNDC proposed by Lowe in [30], in order to obtain a property which is persistent
with respect to every possible refinement. In that work, persistence is exploited to
guarantee that solving the non-deterministic choice, i.e., refining the process, does
not introduce new information leakages. Persistence is instead used very frequently
to give sufficient conditions to Non-Interference. For example, the techniques based
on type-systems, like [1, 4, 10, 25, 49–51], define sufficient static conditions which
are invariant with respect to execution and imply the desired dynamic property.

Non-Interference properties have already been developed for process calculi
that express mobility. For example, in [12, 8] two notions of Non-Interference are
defined for Boxed Ambients [9] and Mobile Ambients [11], respectively; in [25, 24,
45], other notions of Non-Interference for π-calculus [39] are studied. All of these
approaches aim at defining type systems that can be used to prove Non-Interference
properties. Thus, the given proof method is sound but not complete, as there might
be systems that do not type-check but are secure. On the other hand, P BNDC

2 Except for the high level prefixing.
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is a sound and complete characterization of persistent Non-Interference, which is
also decidable over fine-state systems. Thus, an interesting future work would be to
study P BNDC for the above mentioned calculi and other calculi for mobility like
Dpi-calculus [26]. Since, observation equivalences that take into account mobility
have already been studied for the above mentioned calculi, our impression is that
the most difficult task is to give a precise notion of what are the high and the low
interfaces.

Acknowledgements. We would like to thank the anonymous referees for their
very helpful comments and suggestions.
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A Proof that process E3 of Example 2 is BNDC

In this appendix we prove that process E3
def
= l1.h.l̄2.0+l1.(τ.l̄2.0+τ.0), introduced

in Example 2, is BNDC.

In order to do it, we first partition the set EH of all high level processes into
the following three sets:

Eτ,h̄
H = {Π ∈ EH | Π

τ
=⇒ Π ′ ∧ Π ′ 6

h̄
=⇒ and Π

h̄
=⇒}

Eτ
H = {Π ∈ EH | Π

τ̂
=⇒ Π ′ ∧ Π ′ 6

h̄
=⇒ and Π 6∈ Eτ,h̄

H }

E h̄
H = {Π ∈ EH | Π

h̄
=⇒ and Π 6∈ Eτ,h̄

H }

Then we label the states reachable from E3 as depicted in Figure 9 and con-
struct the binary relation S as follows:

S = {((E1
3 |Π) \ H,E1

3 \ H) | Π ∈ EH} ∪ {((E2
3 |Π) \ H,E5

3 \ H) | Π ∈ Eτ,h̄
H }

∪ {((E2
3 |Π) \ H,E6

3 \ H) | Π ∈ E h̄
H} ∪ {((E2

3 |Π) \ H,E8
3 \ H) | Π ∈ Eτ

H}

∪ {((E3
3 |Π) \ H,E6

3 \ H) | Π ∈ EH} ∪ {((E4
3 |Π) \ H,E7

3 \ H) | Π ∈ EH}

∪ {((E5
3 |Π) \ H,E5

3 \ H) | Π ∈ EH} ∪ {((E6
3 |Π) \ H,E6

3 \ H) | Π ∈ EH}

∪ {((E7
3 |Π) \ H,E7

3 \ H) | Π ∈ EH} ∪ {((E8
3 |Π) \ H,E8

3 \ H) | Π ∈ EH}

∪ {((E8
3 |Π) \ H,E2

3 \ H) | Π ∈ EH}.

We prove that S is a weak bisimulation, i.e., if (E,F ) ∈ S then,

– whenever E
a
→ E′, then there exists F ′ such that F

â
=⇒ F ′ and (E′, F ′) ∈ S;

– whenever F
a
→ F ′, then there exists E′ such that E

â
=⇒ E′ and (E′, F ′) ∈ S.

This follows from the following cases.

1. Consider ((E1
3 |Π) \ H,E1

3 \ H) ∈ S.

– (E1
3 |Π) \ H

l1→ (E2
3 |Π) \ H. We distinguish three cases.

(a) Let Π ∈ Eτ,h̄
H . In this case, E1

3\H
l1→ E5

3\H and ((E2
3 |Π)\H,E5

3\H) ∈ S.

(b) Let Π ∈ E h̄
H . In this case, E1

3\H
l1=⇒ E6

3\H and ((E2
3 |Π)\H,E6

3\H) ∈ S.

(c) Let Π ∈ Eτ
H . In this case, E1

3\H
l1=⇒ E8

3\H and ((E2
3 |Π)\H,E8

3\H) ∈ S.

– (E1
3 |Π)\H

l1→ (E5
3 |Π)\H. In this case, E1

3 \H
l1→ E5

3 \H and, by definition
of S, we have ((E5

3 |Π) \ H,E5
3 \ H) ∈ S.

– (E1
3 |Π) \ H

τ
→ (E1

3 |Π
′) \ H with Π

τ
→ Π ′. In this case, by definition of S,

we have ((E1
3 |Π

′) \ H,E1
3 \ H) ∈ S.
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Figure 9. The process E3 and its nodes

– E1
3 \H

l1→ E2
3 \H. In this case, for all Π ∈ EH , (E1

3 |Π) \H
l1=⇒ (E8

3 |Π) \H
and, by definition of S, we have ((E8

3 |Π) \ H,E2
3 \ H) ∈ S.

– E1
3 \ H

l1→ E5
3 \ H. In this case, for all Π ∈ EH , (E1

3 |Π) \ H
l1→ (E5

3 |Π) \ H
and, by definition of S, we have ((E5

3 |Π) \ H,E5
3 \ H) ∈ S.

2. Consider ((E2
3 |Π) \ H,E5

3 \ H) ∈ S with Π ∈ Eτ,h̄
H .

– (E2
3 |Π) \ H

τ
→ (E3

3 |Π
′) \ H where E2

3
h
→ E3

3 and Π
h̄
→ Π ′. In this case,

E5
3 \H

τ
→ E6

3 \H and, by definition of S, we have ((E3
3 |Π

′)\H,E6
3 \H) ∈ S.

– (E2
3 |Π) \ H

τ
→ (E2

3 |Π
′) \ H where Π

τ
→ Π ′. We distinguish three cases.

(a) Let Π ′ ∈ Eτ,h̄
H . In this case, we have ((E2

3 |Π
′) \ H,E5

3 \ H) ∈ S.

(b) Let Π ′ ∈ E h̄
H . In this case, E5

3\H
τ
→ E6

3\H and ((E2
3 |Π

′)\H,E6
3\H) ∈ S.

(c) Let Π ′ ∈ Eτ
H . In this case, E5

3\H
τ
→ E8

3\H and ((E2
3 |Π

′)\H,E8
3\H) ∈ S.

– E5
3 \ H

τ
→ E6

3 \ H. In this case, for all Π ∈ Eτ,h̄
H there exists Π ′ such that

Π
h

=⇒ Π ′. Thus, (E2
3 |Π)\H

τ
=⇒ (E3

3 |Π
′)\H and ((E3

3 |Π
′)\H,E6

3 \H) ∈ S.

– E5
3 \ H

τ
→ E8

3 \ H. In this case, for all Π ∈ Eτ,h̄
H there exists Π ′ such that

Π
τ

=⇒ Π ′ and Π ′ 6
h

=⇒, i.e., Π ′ ∈ Eτ
H . Thus, (E2

3 |Π) \ H
τ

=⇒ (E2
3 |Π

′) \ H
and, by definition of S, ((E2

3 |Π
′) \ H,E8

3 \ H) ∈ S.
3. Consider ((E2

3 |Π) \ H,E6
3 \ H) ∈ S with Π ∈ E h̄

H .

– (E2
3 |Π) \ H

τ
→ (E3

3 |Π
′) \ H where E2

3
h
→ E3

3 and Π
h̄
→ Π ′. In this case, by

definition of S, we immediately have ((E3
3 |Π

′) \ H,E6
3 \ H) ∈ S.

– (E2
3 |Π) \ H

τ
→ (E2

3 |Π
′) \ H where Π

τ
→ Π ′. In this case, also Π ′ ∈ E h̄

H and
by definition of S, we have ((E2

3 |Π
′) \ H,E6

3 \ H) ∈ S.
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– E6
3 \ H

l̄2→ E7
3 \ H. In this case, for all Π ∈ E h̄

H there exists Π ′ such that

Π
h

=⇒ Π ′. Thus, (E2
3 |Π) \ H

τ
=⇒ (E3

3 |Π
′) \ H

l̄2→ (E4
3 |Π

′) \ H and, by
definition of S, ((E4

3 |Π
′) \ H,E7

3 \ H) ∈ S.
4. Consider ((E2

3 |Π) \ H,E5
3 \ H) ∈ S with Π ∈ Eτ

H .

– (E2
3 |Π) \H

τ
→ (E2

3 |Π
′) \H where Π

τ
→ Π ′. In this case, also Π ′ ∈ Eτ

H and,
by definition of S, we have ((E2

3 |Π
′) \ H,E8

3 \ H) ∈ S.
5. Consider ((E3

3 |Π) \ H,E6
3 \ H) ∈ S.

– (E3
3 |Π)\H

l̄2→ (E4
3 |Π)\H. In this case, E6

3 \H
l̄2→ E7

3 \H and, by definition
of S, ((E4

3 |Π) \ H,E7
3 \ H) ∈ S.

– (E3
3 |Π) \H

τ
→ (E3

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E3
3 |Π

′) \ H,E6
3 \ H) ∈ S.

– E6
3 \H

l̄2→ E7
3 \H. In this case, (E3

3 |Π)\H
l̄2→ (E4

3 |Π)\H and, by definition
of S, ((E4

3 |Π) \ H,E7
3 \ H) ∈ S.

6. Consider ((E4
3 |Π) \ H,E7

3 \ H) ∈ S.

– (E4
3 |Π) \H

τ
→ (E4

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E4
3 |Π

′) \ H,E7
3 \ H) ∈ S.

7. Consider ((E5
3 |Π) \ H,E5

3 \ H) ∈ S.

– (E5
3 |Π)\H

τ
→ (E6

3 |Π)\H. In this case, E5
3 \H

τ
→ E6

3 \H and, by definition
of S, ((E6

3 |Π) \ H,E6
3 \ H) ∈ S.

– (E5
3 |Π)\H

τ
→ (E8

3 |Π)\H. In this case, E5
3 \H

τ
→ E8

3 \H and, by definition
of S, ((E8

3 |Π) \ H,E8
3 \ H) ∈ S.

– (E5
3 |Π) \H

τ
→ (E5

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E5
3 |Π

′) \ H,E5
3 \ H) ∈ S.

– E5
3 \ H

τ
→ E6

3 \ H. In this case, for all Π ∈ EH , (E5
3 |Π) \ H

τ
→ (E6

3 |Π) \ H
and, by definition of S, ((E6

3 |Π) \ H,E6
3 \ H) ∈ S.

– E5
3 \ H

τ
→ E8

3 \ H. In this case, for all Π ∈ EH , (E5
3 |Π) \ H

τ
→ (E8

3 |Π) \ H
and, by definition of S, ((E8

3 |Π) \ H,E8
3 \ H) ∈ S.

8. Consider ((E6
3 |Π) \ H,E6

3 \ H) ∈ S.

– (E6
3 |Π)\H

l̄2→ (E7
3 |Π)\H. In this case, E6

3 \H
l̄2→ E7

3 \H and, by definition
of S, ((E7

3 |Π) \ H,E7
3 \ H) ∈ S.

– (E6
3 |Π) \H

τ
→ (E6

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E6
3 |Π

′) \ H,E6
3 \ H) ∈ S.

– E6
3 \ H

l̄2→ E7
3 \ H. In this case, for all Π ∈ EH , (E6

3 |Π) \ H
l̄2→ (E7

3 |Π) \ H
and, by definition of S, ((E7

3 |Π) \ H,E7
3 \ H) ∈ S.

9. Consider ((E7
3 |Π) \ H,E7

3 \ H) ∈ S.

– (E7
3 |Π) \H

τ
→ (E7

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E7
3 |Π

′) \ H,E7
3 \ H) ∈ S.

10. Consider ((E8
3 |Π) \ H,E8

3 \ H) ∈ S.
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Figure 10. The process E6

– (E8
3 |Π) \H

τ
→ (E8

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E8
3 |Π

′) \ H,E8
3 \ H) ∈ S.

11. Consider ((E8
3 |Π) \ H,E2

3 \ H) ∈ S.

– (E8
3 |Π) \H

τ
→ (E8

3 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E8
3 |Π

′) \ H,E2
3 \ H) ∈ S.

The property that E3 is BNDC follows from the fact that E3 ≡ E1
3 and S

contains all pairs of the form ((E3|Π) \ H,E3 \ H) with Π ∈ EH .

B Proof that process E6 of Example 9 is BNDC

In this appendix we show that process E6 = l1.(h.l2.0 + goto s2.h.l3.0) +
l1.(τ.(τ.l2.0 + goto s2.l3.0) + τ.goto s2.0 + goto s2.(τ.0 + τ.l3.0)) of Example 9
is BNDC.

Again, we consider the partition of the set EH of all high level processes into

the three sets Eτ,h̄
H , Eτ

H , E h̄
H defined in Appendix A.

Then we label the states reachable from E6 as depicted in Figure 10 and con-
struct the binary relation S as follows:
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S = {((E1
6 |Π) \ H,E1

6 \ H) | Π ∈ EH} ∪ {((E2
6 |Π) \ H,E8

6 \ H) | Π ∈ Eτ,h̄
H }

∪ {((E2
6 |Π) \ H,E14

6 \ H) | Π ∈ Eτ
H} ∪ {((E2

6 |Π) \ H,E9
6 \ H) | Π ∈ E h̄

H}

∪ {((E3
6 |Π) \ H,E10

6 \ H) | Π ∈ EH} ∪ {((E4
6 |Π) \ H,E11

6 \ H) | Π ∈ EH}

∪ {((E5
6 |Π) \ H,E16

6 \ H) | Π ∈ Eτ,h̄
H } ∪ {((E5

6 |Π) \ H,E17
6 \ H) | Π ∈ Eτ

H}

∪ {((E5
6 |Π) \ H,E15

6 \ H) | Π ∈ Eτ
H} ∪ {((E5

6 |Π) \ H,E18
6 \ H) | Π ∈ E h̄

H}

∪ {((E5
6 |Π) \ H,E12

6 \ H) | Π ∈ E h̄
H} ∪ {((E6

6 |Π) \ H,E12
6 \ H) | Π ∈ EH}

∪ {((E6
6 |Π) \ H,E18

6 \ H) | Π ∈ EH} ∪ {((E7
6 |Π) \ H,E13

6 \ H) | Π ∈ EH}

∪ {((E7
6 |Π) \ H,E19

6 \ H) | Π ∈ EH} ∪ {((E14
6 |Π) \ H,E2

6 \ H) | Π ∈ EH}

∪ {((E15
6 |Π) \ H,E5

6 \ H) | Π ∈ EH}

∪ {((Ei
6|Π) \ H,Ei

6 \ H) | Π ∈ EH and i ∈ [8..19]}

In order to prove that S is a weak bisimulation, we need to consider the fol-
lowing cases:

1. Consider ((E1
6 |Π) \ H,E1

6 \ H) ∈ S.

– (E1
6 |Π) \ H

l1→ (E2
6 |Π) \ H. We distinguish three cases.

(a) If Π ∈ Eτ,h̄
H , then E1

6 \ H
l1→ E8

6 \ H and ((E2
6 |Π) \ H,E8

6 \ H) ∈ S.

(b) If Π ∈ Eτ
H , then E1

6 \ H
l1=⇒ E14

6 \ H and ((E2
6 |Π) \ H,E14

6 \ H) ∈ S.

(c) If Π ∈ E h̄
H , then E1

6 \ H
l1=⇒ E9

6 \ H and ((E2
6 |Π) \ H,E9

6 \ H) ∈ S.

– (E1
6 |Π)\H

l1→ (E8
6 |Π)\H. In this case, E1

6 \H
l1→ E8

6 \H and, by definition
of S, we have ((E8

6 |Π) \ H,E8
6 \ H) ∈ S.

– (E1
6 |Π) \ H

τ
→ (E1

6 |Π
′) \ H with Π

τ
→ Π ′. In this case, by definition of S,

we have ((E1
6 |Π

′) \ H,E1
6 \ H) ∈ S.

– E1
6 \H

l1→ E2
6 \H. In this case, for all Π ∈ EH , (E1

6 |Π)\H
l1=⇒ (E14

6 |Π)\H
and, by definition of S, we have ((E14

6 |Π) \ H,E2
6 \ H) ∈ S.

– E1
6 \ H

l1→ E8
6 \ H. In this case, for all Π ∈ EH , (E1

6 |Π) \ H
l1→ (E8

6 |Π) \ H
and, by definition of S, we have ((E8

6 |Π) \ H,E8
6 \ H) ∈ S.

2. Consider ((E2
6 |Π) \ H,E8

6 \ H) ∈ S with Π ∈ Eτ,h̄
H .

– (E2
6 |Π)\H

τ
→ (E3

6 |Π
′)\H where E2

6
h
→ E3

6 , Π
h̄
→ Π ′. In this case, E8

6\H
τ

=⇒
E10

6 \ H and, by definition of S, ((E3
6 |Π

′) \ H,E10
6 \ H) ∈ S.

– (E2
6 |Π) \ H

goto s2

→ (E5
6 |Π) \ H with Π ∈ Eτ,h̄

H . In this case, E8
6 \ H

goto s2

→
E16

6 \ H and, by definition of S, ((E5
6 |Π) \ H,E16

6 \ H) ∈ S.
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– (E2
6 |Π) \ H

τ
→ (E2

6 |Π
′) \ H where Π

τ
→ Π ′. We distinguish three cases.

(a) If Π ′ ∈ Eτ,h̄
H , then, by definition of S, ((E2

6 |Π
′) \ H,E8

6 \ H) ∈ S.

(b) If Π ′ ∈ Eτ
H then, E8

6 \ H
τ
→ E14

6 \ H and ((E2
6 |Π

′) \ H,E14
6 \ H) ∈ S.

(c) If Π ′ ∈ E h̄
H then, E8

6 \ H
τ
→ E9

6 \ H and ((E2
6 |Π

′) \ H,E9
6 \ H) ∈ S.

– E8
6 \ H

τ
→ E9

6 \ H. In this case, for all Π ∈ Eτ,h̄
H , there exists Π ′ such

that Π
τ

=⇒ Π ′ with Π ′ ∈ E h̄
H . Thus, (E2

6 |Π) \ H
τ

=⇒ (E2
6 |Π

′) \ H and, by
definition of S, ((E2

6 |Π
′) \ H,E9

6 \ H) ∈ S.

– E8
6 \ H

τ
→ E14

6 \ H. In this case, for all Π ∈ Eτ,h̄
H , there exists Π ′ such

that Π
τ

=⇒ Π ′ with Π ′ ∈ Eτ
H . Thus, (E2

6 |Π) \ H
τ

=⇒ (E2
6 |Π

′) \ H and, by
definition of S, ((E2

6 |Π
′) \ H,E14

6 \ H) ∈ S.

– E8
6 \ H

goto s2

→ E16
6 \ H. In this case, for all Π ∈ Eτ,h̄

H , (E2
6 |Π) \ H

goto s2

→
(E5

6 |Π) \ H and, by definition of S, ((E5
6 |Π) \ H,E16

6 \ H) ∈ S.

3. Consider ((E2
6 |Π) \ H,E14

6 \ H) ∈ S with Π ∈ Eτ
H .

– (E2
6 |Π) \ H

goto s2

→ (E5
6 |Π) \ H with Π ∈ Eτ

H . In this case, for all Π ∈ Eτ
H ,

(E14
6 |Π) \H

goto s2

→ (E15
6 |Π) \H and, by definition of S, we have ((E5

6 |Π) \
H,E15

6 \ H) ∈ S.

– (E2
6 |Π) \ H

τ
→ (E2

6 |Π
′) \ H where Π

τ
→ Π ′ and Π ′ ∈ Eτ

H . In this case, we
immediately have ((E2

6 |Π
′) \ H,E14

6 \ H) ∈ S.

– E14
6 \ H

goto s2

→ E15
6 \ H. In this case, (E2

6 |Π) \ H
goto s2

→ (E5
6 |Π) \ H with

Π ∈ Eτ
H , and, by definition of S, ((E5

6 |Π) \ H,E15
6 \ H) ∈ S.

4. Consider ((E2
6 |Π) \ H,E9

6 \ H) ∈ S with Π ∈ E h̄
H .

– (E2
6 |Π)\H

τ
→ (E3

6 |Π
′)\H where E2

6
h
→ E3

6 , Π
h̄
→ Π ′. In this case, E9

6 \H
τ
→

E10
6 \ H and, by definition of S, ((E3

6 |Π
′) \ H,E10

6 \ H) ∈ S.

– (E2
6 |Π) \ H

goto s2

→ (E5
6 |Π) \ H with Π ∈ E h̄

H . In this case, E9
6 \ H

goto s2

→
E12

6 \ H and, by definition of S, ((E5
6 |Π) \ H,E12

6 \ H) ∈ S.

– (E2
6 |Π) \ H

τ
→ (E2

6 |Π
′) \ H where Π

τ
→ Π ′ and Π ′ ∈ E h̄

H . In this case, we
immediately have ((E2

6 |Π
′) \ H,E9

6 \ H) ∈ S.

– E9
6 \H

τ
→ E10

6 \H. In this case, for all Π ∈ E h̄
H , (E2

6 |Π)\H
τ

=⇒ (E3
6 |Π

′)\H
and, by definition of S, ((E3

6 |Π
′) \ H,E10

6 \ H) ∈ S.

– E9
6 \ H

goto s2

→ E12
6 \ H. In this case, for all Π ∈ E h̄

H , (E2
6 |Π) \ H

goto s2

→
(E5

6 |Π) \ H and, by definition of S, ((E5
6 |Π) \ H,E12

6 \ H) ∈ S.

5. Consider ((E3
6 |Π) \ H,E10

6 \ H) ∈ S.

– (E3
6 |Π)\H

l2→ (E4
6 |Π)\H. In this case, E10

6 \H
l2→ E11

6 \H and, by definition
of S, ((E4

6 |Π) \ H,E11
6 \ H) ∈ S.

– (E3
6 |Π) \H

τ
→ (E3

6 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E3
6 |Π

′) \ H,E10
6 \ H) ∈ S.

45



– E10
6 \H

l2→ E11
6 \H. In this case, (E3

6 |Π)\H
l2→ (E4

6 |Π)\H and, by definition
of S, ((E4

6 |Π) \ H,E11
6 \ H) ∈ S.

6. Consider ((E4
6 |Π) \ H,E11

6 \ H) ∈ S.

– (E4
6 |Π) \H

τ
→ (E4

6 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E4
6 |Π

′) \ H,E11
6 \ H) ∈ S.

7. Consider ((E5
6 |Π) \ H,E16

6 \ H) ∈ S with Π ∈ Eτ,h̄
H .

– (E5
6 |Π)\H

τ
→ (E6

6 |Π
′)\H where E5

6
h
→ E6

6 , Π
h̄
→ Π ′. In this case, E16

6 \H
τ
→

E18
6 \ H and, by definition of S, ((E6

6 |Π
′) \ H,E18

6 \ H) ∈ S.

– (E5
6 |Π) \ H

τ
→ (E5

6 |Π
′) \ H where Π

τ
→ Π ′. We distinguish three cases.

(a) If Π ′ ∈ Eτ,h̄
H , then, by definition of S, ((E5

6 |Π
′) \ H,E16

6 \ H) ∈ S.

(b) If Π ′ ∈ Eτ
H then, E16

6 \ H
τ
→ E17

6 \ H and ((E5
6 |Π

′) \ H,E17
6 \ H) ∈ S.

(c) If Π ′ ∈ E h̄
H then, E16

6 \ H
τ
→ E18

6 \ H and ((E5
6 |Π

′) \ H,E18
6 \ H) ∈ S.

– E16
6 \ H

τ
→ E17

6 \ H. In this case, for all Π ∈ Eτ,h̄
H , there exists Π ′ such

that Π
τ

=⇒ Π ′ with Π ′ ∈ Eτ
H . Thus, (E5

6 |Π) \ H
τ

=⇒ (E5
6 |Π

′) \ H and, by
definition of S, ((E5

6 |Π
′) \ H,E17

6 \ H) ∈ S.

– E16
6 \ H

τ
→ E18

6 \ H. In this case, for all Π ∈ Eτ,h̄
H , there exists Π ′ such

that Π
τ

=⇒ Π ′ with Π ′ ∈ E h̄
H . Thus, (E5

6 |Π) \ H
τ

=⇒ (E5
6 |Π

′) \ H and, by
definition of S, ((E5

6 |Π
′) \ H,E18

6 \ H) ∈ S.
8. Consider ((E5

6 |Π) \ H,E17
6 \ H) ∈ S with Π ∈ Eτ

H .

– (E5
6 |Π) \ H

τ
→ (E5

6 |Π
′) \ H where Π

τ
→ Π ′ and Π ′ ∈ Eτ

H . In this case, by
definition of S, we immediately have ((E5

6 |Π
′) \ H,E17

6 \ H) ∈ S.
9. Consider ((E5

6 |Π) \ H,E15
6 \ H) ∈ S with Π ∈ Eτ

H .

– (E5
6 |Π) \ H

τ
→ (E5

6 |Π
′) \ H where Π

τ
→ Π ′ and Π ′ ∈ Eτ

H . In this case, by
definition of S, we immediately have ((E5

6 |Π
′) \ H,E15

6 \ H) ∈ S.

10. Consider ((E5
6 |Π) \ H,E18

6 \ H) ∈ S with Π ∈ E h̄
H .

– (E5
6 |Π) \ H

τ
→ (E6

6 |Π
′) \ H where E5

6
h
→ E6

6 and Π
h̄
→ Π ′. In this case, by

definition of S, we immediately have ((E6
6 |Π

′) \ H,E18
6 \ H) ∈ S.

– (E5
6 |Π) \ H

τ
→ (E5

6 |Π
′) \ H where Π

τ
→ Π ′ and Π ′ ∈ E h̄

H . In this case, by
definition of S, we immediately have ((E5

6 |Π
′) \ H,E18

6 \ H) ∈ S.

– E18
6 \ H

l3→ E19
6 \ H. In this case, (E5

6 |Π) \ H
l3=⇒ (E7

6 |Π
′) \ H and, by

definition of S, ((E7
6 |Π

′) \ H,E19
6 \ H) ∈ S.

11. Consider ((E5
6 |Π) \ H,E12

6 \ H) ∈ S with Π ∈ E h̄
H .

– (E5
6 |Π) \ H

τ
→ (E6

6 |Π
′) \ H where E5

6
h
→ E6

6 and Π
h̄
→ Π ′. In this case, by

definition of S, we immediately have ((E6
6 |Π

′) \ H,E12
6 \ H) ∈ S.

– (E5
6 |Π) \ H

τ
→ (E5

6 |Π
′) \ H where Π

τ
→ Π ′ and Π ′ ∈ E h̄

H . In this case, by
definition of S, we immediately have ((E5

6 |Π
′) \ H,E12

6 \ H) ∈ S.

– E12
6 \ H

l3→ E13
6 \ H. In this case, (E5

6 |Π) \ H
l3=⇒ (E7

6 |Π
′) \ H and, by

definition of S, ((E7
6 |Π

′) \ H,E13
6 \ H) ∈ S.
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12. Consider ((E6
6 |Π) \ H,E12

6 \ H) ∈ S.

– (E6
6 |Π)\H

l3→ (E7
6 |Π)\H. In this case, E12

6 \H
l3→ E13

6 \H and, by definition
of S, ((E7

6 |Π) \ H,E13
6 \ H) ∈ S.

– (E6
6 |Π) \H

τ
→ (E6

6 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E6
6 |Π

′) \ H,E12
6 \ H) ∈ S.

– E12
6 \H

l3→ E13
6 \H. In this case, (E6

6 |Π)\H
l3→ (E7

6 |Π)\H and, by definition
of S, ((E7

6 |Π) \ H,E13
6 \ H) ∈ S.

13. Consider ((E6
6 |Π) \ H,E18

6 \ H) ∈ S.

– (E6
6 |Π)\H

l3→ (E7
6 |Π)\H. In this case, E18

6 \H
l3→ E19

6 \H and, by definition
of S, ((E7

6 |Π) \ H,E19
6 \ H) ∈ S.

– (E6
6 |Π) \H

τ
→ (E6

6 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E6
6 |Π

′) \ H,E18
6 \ H) ∈ S.

– E18
6 \H

l3→ E19
6 \H. In this case, (E6

6 |Π)\H
l3→ (E7

6 |Π)\H and, by definition
of S, ((E7

6 |Π) \ H,E19
6 \ H) ∈ S.

14. Consider (E7
6 |Π) \ H,E13

6 \ H) ∈ S.

– (E7
6 |Π) \H

τ
→ (E7

6 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E7
6 |Π

′) \ H,E13
6 \ H) ∈ S.

15. Consider (E7
6 |Π) \ H,E19

6 \ H) ∈ S.

– (E7
6 |Π) \H

τ
→ (E7

6 |Π
′) \H where Π

τ
→ Π ′. In this case, by definition of S,

we immediately have ((E7
6 |Π

′) \ H,E19
6 \ H) ∈ S.

16. Consider (E14
6 |Π) \ H,E2

6 \ H) ∈ S.

– (E14
6 |Π) \H

goto s2

→ (E15
6 |Π) \H. In this case, E2

6 \H
goto s2

→ E5
6 \H and, by

definition of S, ((E15
6 |Π) \ H,E5

6 \ H) ∈ S.

– (E14
6 |Π) \ H

τ
→ (E14

6 |Π ′) \ H where Π
τ
→ Π ′. In this case, by definition of

S, we immediately have ((E14
6 |Π ′) \ H,E2

6 \ H) ∈ S.

– E2
6 \H

goto s2

→ E5
6 \H. In this case, (E14

6 |Π) \H
goto s2

→ (E15
6 |Π) \H and, by

definition of S, ((E15
6 |Π) \ H,E5

6 \ H) ∈ S.
17. Consider (E15

6 |Π) \ H,E5
6 \ H) ∈ S.

– (E15
6 |Π) \ H

τ
→ (E15

6 |Π ′) \ H where Π
τ
→ Π ′. In this case, by definition of

S, we immediately have ((E15
6 |Π ′) \ H,E5

6 \ H) ∈ S.

All the other cases are trivial. The property that E6 is BNDC follows from the
fact that E6 ≡ E1

6 and S contains all pairs of the form ((E6|Π) \ H,E6 \ H) with
Π ∈ EH .

C Proof that process E3 of Example 2 is M BNDC

In this appendix we prove that process E3
def
= l1.h.l̄2.0+l1.(τ.l̄2.0+τ.0), introduced

in Example 2, is M BNDC .
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In order to do it, given l ∈ Loc, we partition the set ED
H of all high level Mspa

systems into the following sets:

EDτ,h̄,l
H = {M ∈ ED

H | M
τ

=⇒ M ′ ∧ M ′ 6
h̄@k
=⇒ for k ∈ Loc and M

h̄@l
=⇒}

EDτ,l
H = {M ∈ ED

H | M
τ̂

=⇒ M ′ ∧ M ′ 6
h̄@k
=⇒ for k ∈ Loc and M 6∈ EDτ,h̄,l

H }

EDh̄,l
H = {M ∈ ED

H | M
h̄@l
=⇒ and Π 6∈ EDτ,h̄,l

H }

Consider the labels of the states reachable from E3 given in Figure 9. For a
given l ∈ Loc, we construct the binary relation Sl as follows:

Sl = {((l[[E1
3 ]]|M) \ H, l[[E1

3 ]] \ H) | M ∈ ED
H }

∪ {((l[[E2
3 ]]|M) \ H, l[[E5

3 ]] \ H) | M ∈ EDτ,h̄,l
H }

∪ {((l[[E2
3 ]]|M) \ H, l[[E6

3 ]] \ H) | M ∈ EDh̄,l
H }

∪ {((l[[E2
3 ]]|M) \ H, l[[E8

3 ]] \ H) | M ∈ EDτ,l
H }

∪ {((l[[E3
3 ]]|M) \ H, l[[E6

3 ]] \ H) | M ∈ ED
H }

∪ {((l[[E4
3 ]]|M) \ H, l[[E7

3 ]] \ H) | M ∈ ED
H }

∪ {((l[[E5
3 ]]|M) \ H, l[[E5

3 ]] \ H) | M ∈ ED
H }

∪ {((l[[E6
3 ]]|M) \ H, l[[E6

3 ]] \ H) | M ∈ ED
H }

∪ {((l[[E7
3 ]]|M) \ H,E7

3 [[\]]H) | M ∈ ED
H }

∪ {((l[[E8
3 ]]|M) \ H, l[[E8

3 ]] \ H) | M ∈ ED
H }

∪ {((l[[E8
3 ]]|M) \ H, l[[E2

3 ]] \ H) | M ∈ ED
H }.

It is easy to prove that Sl is a weak bisimulation. Indeed, since E3 does not
perform any goto action, the proof is analogous to the one in Appendix A.

Since Sl is a weak bisimulation for all l ∈ Loc, the binary relation S = ∪l∈LocSl

is a weak bisimulation too. The property that E3 is M BNDC follows from the
fact that E3 ≡ E1

3 and S contains all pairs of the form ((l[[E3]]|M) \ H, l[[E3]] \H)
with M ∈ ED

H .
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