
Tree Vector Indexes: Efficient Range Queries for Dynamic Content on
Peer-to-Peer Networks∗

Moreno Marzolla2 Matteo Mordacchini1,2 Salvatore Orlando1,3

1 Dip. di Informatica, Universit̀a Ca’ Foscari di Venezia, via Torino 155, 30172 Mestre, Italy
2 INFN Sezione di Padova, via Marzolo 8, 35100 Padova, Italy

3 ISTI Area della Ricerca CNR, via G. Moruzzi 1, 56124 Pisa, Italy
{moreno.marzolla|matteo.mordacchini}@pd.infn.it, orlando@dsi.unive.it

Abstract

Locating data on peer-to-peer networks is a complex is-
sue addressed by many P2P protocols. Most of the research
in this area only considers static content, that is, it is often
assumed that data in P2P systems do not vary over time.
In this paper we describe a data location strategy for dy-
namic content on P2P networks. Data location exploits a
distributed index based on bit vectors: this index is used to
route queries towards areas of the system where matches
can be found. The bit vectors can be efficiently updated
when data is modified. Simulation results show that the pro-
posed algorithms for queries and updates propagation have
good performances, also on large networks, even if content
exhibits a high degree of variability.

1. Introduction

Peer-to-Peer (P2P) networks have emerged as one the
most successful way to share resources (e.g. data, storage,
computational power) in a distributed, fault tolerant way.
Large scale resource sharing is also the goal of Grid sys-
tems; for this reason, the P2P and Grid worlds are slowly
converging [7, 17], leading to application of P2P techniques
to Grid systems. One of the core functionalities of Grid
systems is the location of resources satisfying given con-
straints: the user submits a job specifying its requirements
(i.e., memory, disk space, Operating System version). Lo-
cating data that match a given search criteria is one of
the most studied problems in P2P systems. However, the

∗This work has been partially supported by the EU Project EGEE (En-
abling Grids for E-sciencE), the European Research Network on Founda-
tions, Software Infrastructures and Applications for large scale distributed,
GRID and Peer-to-Peer Technologies (CoreGRID), and by MIUR Re-
search Project FIRB/PERF. Part of this work was done while the first au-
thor was with the Dipartimento di Informatica, Università Ca’ Foscari di
Venezia.

Grid resource location problem is more complex as resource
characteristics may vary over time. For example, the avail-
able disk space at a storage element varies as users place
and remove data on/from it. Location of dynamic data on
distributed, P2P-like systems is considerably more difficult
than location of static data.

We may consider a set of resources on a typical Grid
system organized as peers on a P2P network. Each resource
has some attributes whose values identify its characteristics:
CPU speed, free disk space, available memory and so on.
Users query the system to locate resources satisfying some
criteria, such as:

(CPU Speed≥ 500MHz)
and (OS Type= “Linux”)
and (100MB ≤ FreeSpace≤ 300MB)

to denote all computational resources with a CPU speed of
at least 500 MHz, running the Linux operating system, and
with available disk space in the range[100, 300] MB. In this
example, some attribute values (e.g., the amount of free disk
space) may change over time.

In this paper we consider the problem of locating dy-
namic data on P2P systems. In particular, we propose a
protocol that allows peers to locate data matching range
queries, i.e. queries that search for all data items whose
values fall into a given interval.

The first P2P systems that tried to solve the data location
problem usually flood the entire network until all the de-
sired data are collected or a stop condition is reached. This
behavior implies a large network traffic overhead which se-
riously limits the scalability of the system. In order to
address this problem more efficiently, many data indexing
systems have been proposed, such as Distributed Hash Ta-
ble (DHT) [3]. DHTs only support exact matches. Many ex-
tensions and variations of these systems are described in the
literature for supporting range queries, but only few of them
can be used on dynamic content. In general, many indexing

methods face serious overhead problems due to the need of
re-index the items whose content have changed. In this pa-
per we extend and refine previous results introduced in [11],
showing how to build an overlay structure over the set of
peers and how to associate routing information with links
of the overlay network in order to route queries toward po-
tential matches. The routing information can be efficiently
updated when data change; it corresponds to a condensed
representation of all data owned by peers reachable along
a link of the overlay network. Our aim is to build a P2P
system with a reasonable trade-off between the need of ef-
ficiently route range queries and the ability to reduce the
overhead needed to modify the indexes when data changes
over time.

The rest of this paper is organized as follows: in Sec-
tion 2 we relate our approach with other P2P systems de-
scribed in the literature. In Section 3 we describe our ap-
proach in detail. In Section 4 we conduct a simulation study
of our system and discuss the results. Finally, conclusions
and future work are reported in Section 5.

2. Related Works

The problem of routing queries in P2P systems is well
known. In order to avoid flooding the network with query
messages (as done by systems like Gnutella [1]), many data
indexing methods have been proposed. The most promising
ones are the so-called DHT-based systems. In these systems
every data item is associated with a key obtained by hashing
an attribute of the object (e.g. its name). Every node in the
network is responsible for maintaining information about a
set of keys and the associated items. They also maintain a
list of adjacent or neighboring nodes. A query becomes the
search of a key in the DHT. When a peer receives a query, if
it does not have the requested items, it forwards the query to
the neighbor having keys which are closer to the requested
one. Data placement ensures that queries eventually reach a
matching data item.

In order to further enhance the search performance,
many DHT-based protocols organize the peers into an over-
lay structure. So, in Chord [16] nodes are organized into
a virtual circle, while in CAN [14] the identifier space is
seen as ad-dimensional Cartesian space. This space is par-
titioned into zones of equal size and every peer is respon-
sible of one of these zones. Other relevant examples of
this kind of systems are Pastry [15] and Tapestry [18]. Al-
though these networks show good performances and scala-
bility characteristics, they only support exact queries, i.e.,
requests for data items matching a given key. Moreover
the hashing mechanism works well with static object iden-
tifiers like file names, but is not suitable for handling dy-
namic object contents. The ability to perform range queries
over mutable data stores is a key feature in many scenar-

ios, like distributed database and Grid resource discovery.
Range queries are queries that requests all items whose at-
tribute value fall into a given interval. Some systems have
been proposed to support range and multi-attribute queries
in P2P networks. The P-Tree [5] uses a distributed version
of the B+-tree index structure. Other protocols use local-
ity preserving hash functions, like the Hilbert space-filling
curve, to allow DHT to support range queries. For exam-
ple, in [2] the authors propose an extension of the Chord
protocol to support range and multi-attribute queries, by
using a uniform locality preserving hash function to map
items in the Chord key space. In [4] the authors extend
the CAN protocol using the Hilbert space-filling curve and
load balancing mechanisms. In [8] two methods are pro-
posed. The first one (called SCRAP) adopts space filling
curves as hash functions. The second one (MURK) par-
titions the data space into rectangles (hyper-rectangles) of
different size, such that the amount of data stored on peers is
equally distributed. Another form of distributed indexes are
the so-called Routing Index (RI) [6]. RIs are based on the
content of the data present on each node. Each peer in the
network maintains both an index of its local resources and
a table for every neighbor, which summarizes the data that
is reachable trough all the path that start from that neigh-
bor. When a peer receives a query, it checks if the requested
items are present locally and then forwards the query to the
neighboring node which has, accordingly to the RI, the most
relevant data with respect to the query. The process is it-
erated until a stop condition is achieved (e.g. the desired
number of results is reached).

One of the common limitations of many of the tech-
niques proposed in the literature is their inefficiency in
maintaining the indexes in the presence of variable data.
This limitation is addressed in this paper: we present a so-
lution to the problem of dynamic data location with range
queries. We use a form of RI in order to achieve a good
tradeoff between query routing efficiency and the need to
limit updates occurring when some data items change value.
We extend previous results [11] by performing extensive
simulation experiments to assess the performance and scal-
ability of the proposed approach. In particular, we study
how the network topology affects the propagation of query
and update messages, and derive a simple analytical expres-
sion of the precision of our algorithm as a function of query
selectivity and index size.

3. System Overview

We suppose that each peer in the system holds a (pos-
sibly empty) set of data items, also calledlocal repository;
each data item is described by a set of attribute-value pairs.
For example, in a distributed relational database, a data
item would be a database record, and the attribute-value

pairs would be the names and corresponding value of the
attributes of each table. We suppose that data items are
dynamic, in the sense that the value of the attributes may
change over time. Users of the P2P system want to lo-
cate data items satisfying given search criteria, which are
expressed as partial range queries over the set of attributes.

More specifically, we consider a P2P system where each
peer implements the following operations:

insert(D, {A1 : V1, . . . Ar, Vr}) Insert a new data itemD
on the local repository; the data item has attributes
A1, . . . Ar with valuesV1, . . . Vr respectively.

update(D,A : Vnew) Change the value of attributeA for
data itemD on the local repository; the new value will
beVnew.

lookup(Q) Search for data items matching queryQ over
the whole P2P system (including the current node).

Additionally, peers may join and leave the system at any
time; as usual in P2P systems, we want to rely as few as
possible on any centralized information.

3.1. Notation and Data Structures

In the following we consider a P2P system with a set
P = {P1, P2, . . . PN} of N peers. We denote with
Data(Pi) the local repository on peerPi. Each data item
is labelled with a set of attribute-value pairs. We suppose
that there is a limited number of different attribute names.
We denote with{A1 : T1, . . . AM : TM} the set of all the
M possible attribute names with their corresponding types.
Data typesTi can be any arbitrary data types, subject to the
constraint that there must be a total ordering defined over
Ti. Each data item can be labelled with any nonempty sub-
set of attributes of{A1, . . . AM}. For each data itemD, we
denote withAttList(D) the set of all attribute names defined
for D. Moreover, for each attributeA ∈ AttList(D), D[A]
denotes the value of attributeA for data itemD.

The system provides a query facility for locating all data
items matching a user-defined partial range queryQ. We
consider queries generated by the following grammar (we
assume that the usual operator precedence rules apply):

Q := Q and Q | Q or Q | v1 ≤ A ≤ v2

A := A1 | . . . | AM

We consider partial range queries over subsets of the at-
tributes, that is, boolean compositions of range predicates
v1 ≤ A ≤ v2. Multiple conditions over different attributes
are possible. Conditions such asA ≤ v2, A ≥ v1 and
A = v1 are special cases ofv1 ≤ A ≤ v2 which can be
expressed by settingv1 = −∞, v2 = +∞ andv1 = v2

respectively.

Observe that the user is not required to specify con-
ditions on all attributes of a data item. The result of a
lookup(Q) operation is to return the set of all the locations
(i.e., the set of peer IDs) of all data itemsD matchingQ.

A trivial way of locating resources would be that of
flooding the range queries to all nodes within a given ra-
dius from the originating peer. This is clearly undesirable,
as (1) flooding generates a potentially high message load on
all nodes, including those which do not hold resources sat-
isfying the queries; and (2) setting a maximum hop count
to stop the query from flooding the entire network does not
guarantee that all matches are located.

In order to limit the flooding of queries, we build an
overlay network over the set of peers, and associate routing
information with individual links. In particular, we main-
tain an undirected spanning tree over the setP of peers.
The overlay network is used only to route query and update
messages, while individual peers can communicate directly
with each other (e.g., using TCP connections over the un-
derlying physical network). We denote withT = (P,E) a
spanning tree overP , whereE ⊆ {{Pi, Pj} | 1 ≤ i, j ≤
N} is the set of links connecting pairs of nodes. In a system
with N nodes, there areN − 1 links on the spanning tree.
For eachPi ∈ P , we denote withNb(Pi) the set of neigh-
bors ofPi, that is, the set of all peers directly connected to
Pi on the overlay network.

Let T (Pi → Pj) be the subtree ofT which containsPj

and does not containPi ∈ Nb(Pj). That is,T (Pi → Pj)
is the subtree containing nodePj which has been obtained
after removing the link{Pi, Pj} from T (see Fig. 1).

T (Pi → Pj) T (Pi → Pk)

Pk

Pi

Pj

T (Pi → Pl)Pl

Figure 1.

Each peerPi maintains a summary of all the information
which can be found by following its outgoing links, in the
following way. If the domain of attributeA is the interval
[a, b], we selectk + 1 division pointsa = a0 < a1 <
. . . < ak = b such that[a, b] is partitioned intok disjoint
intervals[ai, ai+1), i = 0, 1, . . . k − 1. For each attribute
type we may define a specific partitioning of its domain.
Given an attributeA, for each data itemD for which A is
defined, we encode the valueD[A] with ak bit binary vector
BitIdx(D[A]) = (b0, b1, . . . bk−1), such that, for eachi =
0, 1, . . . k − 1, bi = 1 if and only if D[A] ∈ [ai, ai+1).

A 0001 B 0010

E 0010

F 1000

LinkBitIdx(E → F,A1)

C 0110 D 0001

0111

1000

0111 0011

11111011

00100001

1111 1111

Figure 2. Example of P2P network with bit
vector indexes.

Both the parameterk (number of bits of the bit vector) and
the division pointsa0, a1, . . . ak may be different for each
attribute typeT1, . . . TM .

Let us consider a generic peerPi. For each neighbor
Pj ∈ Nb(Pi), Pi keeps information on the data items which
can be found by following the link{Pi, Pj} on the over-
lay network. For each attributeA of each data itemD in
T (Pi → Pj), Pi knows the following quantity:

LinkBitIdx(Pi → Pj , A) ≡
∨

D∈Data(T (Pi→Pj))

BitIdx(D[A]) (1)

which is the bitwise union of all the bitmap indexes
BitIdx(D[A]) associated with every data item inT (Pi →
Pj). Note thatLinkBitIdx(P → P ′, A) is a binary string of
the same size ofBitIdx(D[A]), with possibly more than one
bit set to 1.

Fig. 2 shows a P2P network with a single attribute
A1, whose values are encoded with a 4-bit vector in-
dex. The binary strings in the shaded boxes represent
the bit vector indexes for the local repository; binary
strings in the small white boxes represent the values of
LinkBitIdx(P → P ′, A1). For example, nodeE has a lo-
cal data itemD with BitIdx(D[A1]) = 0010; the value of
LinkBitIdx(E → F,A1) is 1000.

Observe thatLinkBitIdx(A → C,A1) is, according to
Eq. 1, the logical “or” of the bit vector representation of
values ofD[A1] on nodesB,C,D,E, F .

3.2. Handling Queries

We now illustrate how queries are processed. We as-
sume that queries originate from any nodeP in the sys-
tem. As in Gnutella [1], queries are propagated from node

P to its neighbors using a Breadth First Search (BFS) algo-
rithm; however, unlike Gnutella, queries are not necessar-
ily routed to all neighbors: our system performs a Directed
BFS (DBFS) over the tree overlay network. The DBFS
is driven by the vector indexes associated with individual
peers connections.

Recall from the previous section that nodeP knows the
bit vectorLinkBitIdx(P → P ′, A), for eachP ′ ∈ Nb(P),
whereLinkBitIdx(·) is defined according to Eq. 1. Suppose
that nodeP receives queryQ := v1 ≤ A ≤ v2 from one
of its neighborsPin. The query is propagated along the con-
nection fromP to Pout ∈ Nb(P) − Pin if a match is likely
to be present inT (P → Pout). A necessary condition for
the existence of a match is that the logical “and” between
LinkBitIdx(P → Pout, A) and the bit vector representation
of the interval[v1, v2], is nonzero.

Algorithm 1 illustrates the pseudocode executed byP
to process a query message. Upon receiving a query from
neighborPin, the query is forwarded to the remaining neigh-
bors which have a potential match. Results are fanned back
to Pin, until they eventually reach the originator. Note that
this approach only works if the overlay network is guaran-
teed to be acyclic (i.e., is a tree), as we are assuming. The
result of a query is the set of all peers with local data items
matching the search criteria.

We show in Algorithm 2 the function
Match(Q, Pi → Pj), which is used to test for a po-
tential match of queryQ on the subtreeT (Pi → Pj).
Query Q is decomposed according to the grammar
described in the previous section. For each instance of
the terminal productionQ := v1 ≤ A ≤ v2, the function
compares the bit vector representation of interval[v1, v2]
with LinkBitIdx(Pi → Pj , A). If the intersection is zero,
then no match exists onT (Pi, Pj). If the intersection is
nonzero, then theremaybe a match onT (Pi, Pj).

Algorithm 1 lookup (Q) executed by peerP
loop

Wait for query Q from some Pin ∈ Nb (P)
Let R := ∅ {Query result}
for all Pout ∈ Nb (P)− Pin do

if Match (P → Pout, Q) then
Relay Q to Pout

Let R′ be the reply reported by Pout

Let R := R ∪R′

if There are local matches to Q then
Let R := R ∪ {P}

Report R to Pin

3.3. Handling Updates and Insertions

We now describe how updates can be processed. Let
us assume that the value forD[A] for a data itemD ∈

Algorithm 2 Match(Q,Pi → Pj)
if Q := Q1 and Q2 then

Return Match (Q1, Pi → Pj) ∧Match (Q2, Pi → Pj)
else if Q := Q1 or Q2 then

Return Match (Q1, Pi → Pj) ∨Match (Q2, Pi → Pj)
else if Q := v1 ≤ A ≤ v2 then

Let a0, a1, . . . ak be the subdivision points for A
for all i = 0 . . . k − 1 do

Let bi =

(
1 if [ai, ai+1) ∩ [v1, v2] 6= ∅
0 otherwise

Let B := (b0, b1, . . . bk−1)
Return (LinkBitIdx (Pi → Pj , A) ∧B 6= 0)

Data(P) changes fromvold to vnew. The peerP executes
procedureinitiate update shown in Algorithm 3 to gener-
ate an update messages. First, the new valuevnew is con-
verted into the corresponding bit vector representation. If
BitIdx(vnew) is equal toBitIdx(vold), then the update is not
propagated to neighbors; if the bit vector representations are
different, then the update message is propagated in order to
preserve the property defined by Eq. 1. Update messages
consists of the name of the attribute whose value is changed,
and its up-to-date bit vector representation. The updated bit
vector representation for attributeA to be associated to the
link Pout → P can be computed byP as follows:

LinkBitIdx(Pout → P,A) = BitIdx(D[A])∨ ∨
P ′∈Nb(P)−Pout

LinkBitIdx(P → P ′, A)

 (2)

whereBitIdx(D[A]) is the bit vector representation ofD[A]
for data itemD on nodeP .

Algorithm 3 describes the actions executed by peerP
when it notices a change in the local data store. If the
bit vector representation of the new and old values are the
same, nothing is done. Otherwise, an update vector index is
computed and sent to each of its neighbors.

Algorithm 3 initiate update(A, vnew) executed by peerP
Let vold := D[A]
if BitIdx (vnew) 6= BitIdx (vold) then

for all Pout ∈ Nb (P) do
Let B := BitIdx (vnew)
for all P ′ ∈ Nb (P)− Pout do

Let B := B ∨ LinkBitIdx (P → P ′, A)
Send bit vector B for A to Pout

Each peer executes Algorithm 4 to process update mes-
sages coming from incoming connections. It is very similar
to Algorithm 3: updated bit vector indices are computed
according to Eq. 2 and sent to neighbors.

Insertions of new data items into the P2P system can
be done with the same algorithms just described for up-

Algorithm 4 process update() executed by peerP
loop

Wait for bit vector B for A from Pin

if B 6= LinkBitIdx (P → Pin, A) then
Let LinkBitIdx (P → Pin, A) := B
if BitIdx (D[A]) ∨B 6= B then

for all Pout ∈ Nb (P)− Pin do
Let B′ := (0, 0, . . . 0)
for all P ′ ∈ Nb (P)− Pout do

Let B′ := B′ ∨ LinkBitIdx (P → P ′, A)
Send B′ to Pout

dates. When a new data itemD is registered at peerP ,
then for eachA ∈ AttList(D), P executes the proce-
dure initiate update(A,D[A]) (outgoing messages can be
batched together for efficiency).

3.4. Nodes Joining and Leaving the system

In order to limit the number of hops of the messages
processed in the system, it is necessary to build an ap-
propriate overlay network on the top of the set of peers
P = {P1, P2, . . . PN}. The algorithms presented above
rely on a tree-structured overlay networkT , which is a
spanning tree over the set of nodesP. Algorithms 1–4 are
of course totally independent from the way the overlay net-
work topology is maintained: every algorithm for maintain-
ing a distributed spanning tree over the set of peers can be
applied when nodes join or leave the network.

However, the performance of the system depends on the
topological characteristics of the overlay network, as we
will see in more details in the next section. In order to avoid
degenerate cases, the overlay network should have low di-
ameter, and such property should be maintained as nodes
join and leave the system. For this purpose, it is possible to
use the algorithm described in [12] to maintain the spanning
treeT with bounded degree and logarithmic diameter.

4. Simulation

We performed simulation experiments in order to evalu-
ate the performances of the proposed P2P system. We im-
plemented a process-oriented simulation model of a set of
interacting peers using the C++ library described in [10].
We analyze thesteady-state behaviorof the system: we
compute performance figures of merit as mean values (e.g.,
mean number of nodes updated/queried) when the system
has been running enough to reach its steady-state. We use
the independent replicationapproach to compute perfor-
mance measures [9]: for each simulation run we collect a
fixed number (in our case, 200) of observations. The first
20% of the observations is discarded, in order to remove
the initial transient. Several simulation runs are executed,

and average measures across runs are used to compute a
confidence interval. In the simulation experiments shown
in this section, we compute 90% confidence intervals; each
run is repeated as many times as needed to get confidence
intervals width no more than 10% their central values (in
the plots we only show central values).

The experimental settings are as follow. We consider aN
node P2P system with single attribute data items. Attribute
values are uniformly randomly distributed in the[0, 1] inter-
val. Each peer has one data item with probabilityp (usually
set to 0.5), and has no data items with probability1−p; thus,
the expected number of data items in the network isNp.
We consider the following overlay tree network topologies:
random, degree-5 balanced, and degree-10 balanced.

We first analyze the maximum number of routing hops
(query radius) needed to locate a data item as a function
of network size. Fig. 3(a) shows the results for three dif-
ferent overlay network topologies. In Fig. 3(b) we plot the
total number of queried nodes (query span) as a function of
the network size, for different topologies. The data points
were calculated by performing 100 random range queries on
the network, each one originating from a uniformly chosen
node. As we can see, the query radius grows asO(log(N)),
while the query span grows asO(N), N being the size
of the network. Note also in Fig. 3(b) that the number of
matches is linear with the size of the network. As the query
mechanism is guaranteed to locate every existing match, the
number of matches is a lower bound for the query span.
Thus the query span is optimal considering the number of
matches.

We define the precision of the query routing strategy;
the precision is defined as the ratio between the number
of data items matching the query and the number of
items matching the bit vector representation of the query
(Number of real matches/Number of potential matches).
We consider a network ofN = 1000 nodes, and performed
100 range queries given aselectivity parameters. The
queries have the form(v ≤ A1) and (A1 ≤ v + s) for
v uniformly chosen in[0, 1 − s]. In Fig. 4 we show the
precision of our algorithm as a function of query selectivity
for single attribute range queries. From the figure we see
that the precision is higher as the numberk of bits in the
vector indices increases. Also, the precision increases for
large values of the selectivity parameters. Remember
that in our simulation experiments we haveNp data items
with a single attribute over theN -node network. Attribute
values are uniformly distributed in[0, 1], and we assume
that the [0, 1] interval is partitioned intok equally sized
bins. The expected number of data items matching a range
query with selectivitys is Nps. For 0 < s ≤ 1 − 1/k,
the expected number of false positives (i.e., data items
whose bit vector indexes match the query, but their exact
attribute values do not) isNp/k. The precision in this case

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

Q
ue

ry
ra

di
us

(H
op

s)

Network size N

Random Tree
Bal. Tree, deg=5

Bal. Tree, deg=10

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

0 2000 4000 6000 8000 10000

Q
ue

ry
sp

an

Network size N

Random Tree
Bal. Tree, deg=5

Bal. Tree, deg=10
of Results

(b)

Figure 3. (a) Query radius and (b) query span
as a function of the network size (k = 32,
lower is better)

is Nps/(Nps + Np/k) = ks/(ks + 1). If s > 1 − 1/k,
the expected number of false positives isNp(1 − s), and
the precision is equal tos. Thus, we can given an analytical
expression of the precision as:

Prec(k, s) =

{
ks/(ks + 1) if 0 < s ≤ 1− 1/k

s if 1− 1/k < s ≤ 1
(3)

Fig. 4 confirms that this analytic formulation of precision is
highly accurate.

In Fig. 5 we plot the query span as a function of the se-
lectivity. Remember that the query span is defined as the
number of peers who receive a query message (even if they
don’t have any matching data item). The number of queried

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

on

Query Selectivity s

k = 16
Prec(16, s)

k = 32
Prec(32, s)

k = 64
Prec(64, s)

Figure 4. Precision as a function of selectiv-
ity (N = 1000, random tree, higher is better).
Function Prec(k, s) is defined in 3.

0

100

200

300

400

500

600

700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
of

no
de

s

Query Selectivity s

of Results
Query span k = 32
Query span k = 64

Figure 5. Query span as a function of selec-
tivity (random tree, k = 16, lower is better)

peers is always greater than the number of peers containing
a match, as Algorithm 1 is guaranteed to findall matches.
We observe that more precise indexes (i.e., larger values of
k) allow more accurate query routing, so that less peers are
contacted.

We finally analyze the behavior of the update mecha-
nism. In Fig. 6(a) we plot the mean number of hops tra-
versed by an update message (update radius) as a function
of the network size; in Fig. 6(b) we plot the number of nodes
reached by an update message (update span) as a function
of the network size. From the figures we observe that both
the update radius and update span are independent from the
network size. On the other hand, they are influenced by
the degree of peers on the overlay network: a balanced tree
of degree 10 produces larger update span than the balanced
tree of degree 5, with the random overlay network topology

laying in between.

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

U
pd

at
e

ra
di

us
(H

op
s)

Network size N

Random Tree
Bal. Tree, deg=5

Bal. Tree, deg=10

(a)

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

U
pd

at
e

sp
an

Network size N

Random Tree
Bal. Tree, deg=5

Bal. Tree, deg=10

(b)

Figure 6. (a) Update radius and (b) update
span as a function of network size (k = 16, p =
0.5, lower is better).

Fig. 7 plots the update span as a function of the data den-
sity p. As expected, the update span decreases for larger
values ofp: high data density implies that the vector in-
dexes associated with the links have a higher density of bits
set to 1, thus updates are more likely not to propagate. On
the other hand, the update span increases with large values
of k: if the bitmap index is more accurate, updates are more
likely to propagate to a larger subset of peers.

5. Conclusions

In this paper we described a P2P system which sup-
ports range queries over dynamic content. Data location

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U
pd

at
e

sp
an

Resource density p

k = 32
k = 48
k = 64

Figure 7. Number of nodes updated as a func-
tion of p (N = 1000, random topology, lower is
better, log scale)

is implemented using a distributed data structure based on
bit vectors. Routing information are used to drive queries
away from regions of the network where matches cannot be
found. Routing information can be efficiently updated when
data is modified. Simulation results show that the proposed
update and query processing algorithms have good scala-
bility properties, that is, messages are routed to a relatively
small number of peers without flooding the network.

We are currently extending the proposed algorithms us-
ing histogram indexes instead of bit vectors, following an
approach similar to [13]. This allows us to store also infor-
mations on the approximate number of matches, which can
be very useful for certain applications.

References

[1] Gnutella protocol development. http://rfc-
gnutella.sourceforge.net/.

[2] A. Andrzejak and Z. Xu. Scalable, efficient range queries for
grid information services. InP2P ’02: Proc. of the Second
Int. Conf. on Peer-to-Peer Computing, page 33, Link̈oping,
Sweden, 2002. IEEE Computer Society.

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Looking up data in p2p systems.Comm. of the
ACM, 46(2):43–48, 2003.

[4] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A multi-
attribute addressable network for grid information services.
In GRID ’03: Proc. of the 4th Int. Workshop on Grid Com-
puting, page 184, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[5] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. P-tree: a p2p index for resource discovery applica-
tions. InWWW Alt. ’04: Proc. of the 13th Int. World Wide
Web conference on Alternate track papers & posters, pages
390–391, New York, NY, USA, 2004. ACM Press.

[6] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. InProc. of the 22nd Int. Conf. on
Distributed Computing Systems (ICDCS’02), pages 23–33,
Washington, DC, USA, 2002. IEEE Computer Society.

[7] I. Foster and A. Iamnitchi. On death, taxes, and the con-
vergence of peer-to-peer and grid computing. In2nd Int.
Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley,
CA, Feb. 2003.

[8] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to
rule them all: multi-dimensional queries in p2p systems. In
WebDB ’04: Proceedings of the 7th International Workshop
on the Web and Databases, pages 19–24, New York, NY,
USA, 2004. ACM Press.

[9] A. M. Law and W. D. Kelton. Simulation Modeling and
Analysis. McGraw–Hill, 3rd edition, 2000.

[10] M. Marzolla. libcppsim : a Simula-like, portable process-
oriented simulation library in C++. In G. Horton, editor,
Proc. ESM’04, the 18th European Simulation Multiconfer-
ence, pages 222–227, Magdeburg, Germany, June 13–16
2004. SCS Press.

[11] M. Marzolla, M. Mordacchini, and S. Orlando. Re-
source discovery in a dynamic grid environment. InProc.
DEXA’05, pages 256–260, Copenhagen, DK, Aug. 22–26
2005. IEEE Press.

[12] G. Pandurangan, P. Raghavan, and E. Upfal. Building low-
diameter peer-to-peer networks.IEEE J. on Selected Areas
of Communications, 21(6):995–1002, Aug. 2003.

[13] Y. Petrakis, G. Koloniari, and E. Pitoura. On using his-
tograms as routing indexes in peer-to-peer systems. In
W. S. Ng, B. C. Ooi, A. M. Ouksel, and C. Sartori, editors,
DBISP2P, volume 3367 ofLNCS, pages 16–30, Toronto,
Canada, Aug. 29–30 2004. Springer.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proc. SIGCOMM ’01, pages 161–172, New York, NY, USA,
2001. ACM Press.

[15] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. InProc. of the IFIP/ACM Int. Conf. on Dis-
tributed Systems Platforms, pages 329–350, London, UK,
2001. Springer-Verlag.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. on Networking, 11(1):17–32, 2003.

[17] D. Talia and P. Trunfio. Toward a synergy between p2p and
grids. IEEE Internet Computing, 7(4):94–96, 2003.

[18] B. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and rout-
ing. UCB Technical Report UCB/CSD-01-1141, Univ. of
California Berkeley, Electrical Engineering and Computer
Science Department, April 2001.

http://rfc-gnutella.sourceforge.net/
http://rfc-gnutella.sourceforge.net/

	. Introduction
	. Related Works
	. System Overview
	. Notation and Data Structures
	. Handling Queries
	. Handling Updates and Insertions
	. Nodes Joining and Leaving the system

	. Simulation
	. Conclusions

