
Integrating HPF in a Skeleton Based Parallel Language�

C. Gennaro
Istituto di Elaborazione della Informazione

Consiglio Nazionale delle Ricerche (C.N.R.)
Via Alfieri 1, Pisa, 56010 Italy

gennaro@iei.pi.cnr.it

S. Orlando
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
Via Torino 155, Venezia Mestre, 30172 Italy

orlando@unive.it

R. Perego
Istituto CNUCE

Consiglio Nazionale delle Ricerche (C.N.R.)
Via Alfieri 1, Pisa, 56010 Italy
Raffaele.Perego@cnuce.cnr.it

Abstract

Although HPF allows programmers to express data–
parallel computations in a portable, high–level way, it is
widely accepted that many important parallel applications
cannot be efficiently implemented following a pure data–
parallel paradigm. For these applications, rather than hav-
ing a single data–parallel program, it is more profitable to
subdivide the whole computation into several data-parallel
pieces, where the various pieces run concurrently and co–
operate, thus exploiting task parallelism. This paper dis-
cusses the integration of HPF with SkIE, a skeleton based
coordination language implemented on top of MPI (Mes-
sage Passing Interface), which permits to describe complex
computational parallel structures. We show how HPF can
be used inside common forms of parallelism, e.g. pipeline
and processor farms, and we present experimental results
regarding a sample application.

1 Introduction

* This work has been partially founded by HPCC/SEA contract number EU1063.

It is widely accepted that many important parallel appli-
cations cannot be efficiently implemented following a pure
data-parallel paradigm [5]. Although the data-parallel pro-
gramming model provided by HPF [9] hides low-level pro-
gramming details and let programmers to concentrate on
the high-level exploitation of data parallelism, many impor-
tant parallel applications do not fit into a pure data-parallel
model and can be more efficiently implemented by exploit-
ing both task and data parallelism. The advantage of ex-
ploiting both forms of parallelism is twofold. On the one

hand, the exploitation of parallelism at different levels may
significantly increase the scalability of applications which
may exploit only a limited amount of data parallelism [8].
On the other hand, the capability of integrating task and
data parallelism into a single framework allows the num-
ber of addressable applications to be enlarged. Task paral-
lelism is in fact often needed to reflect the natural structure
of an application. For example, applications of computer
vision, image and signal processing, can be naturally struc-
tured as pipelines of data–parallel tasks where stages which
deal with external devices may be run on a few processors to
better match the available I/O bandwidth, while the remain-
ing processors can be more efficiently used to run computa-
tion intensive parts of the application.

In this paper the problem of integrating HPF with a lan-
guage based on skeletons (SkIE) is addressed. A skele-
ton is a high-order parallel form, capturing a common and
widespread used type of parallelism. In particular, each
skeleton describes a computational structure for which it
is possible find an efficient parallel implementation. This
methodology imposes to use only skeletons to exploit par-
allelism in a program and complex parallel computations
can be described nesting skeletons.

In SkIE (Skeleton based Integrated Environment), when
parallelizing a sequential application, the user can reuse
large chunks of sequential code written in the most common
sequential languages (e.g., C, C++, F77, F90, Java) encap-
sulating them in modules which can then be composed to
develop a larger application. In this paper we enhance the
expressivity of SkIE offering a tool for integrating data par-
allel parts developed using HPF.

This paper is organized as follow. Section 2 gives an
overview of SkIE. Section 3 illustrates ADAPTOR the public

domain HPF compilation system used for our integration.
Section 4 presents the usage of HPF in SkIE and discusses
the problems and relative solutions about its integration. In
Section 5 a case study is given. Section 7 contains conclu-
sions.

2 The SkIE developing environment

SkIE is an integrated environment which allows the
rapid development of complex applications on several par-
allel platforms [2, 3]. SkIE has been developed in the
PQE2000 project [10, 11], a joint initiative of the main Ital-
ian research agencies (CNR, ENEA, INFN) and of Finmec-
canica’s QSW (Quadrics Supercomputers World Ltd) for
development of innovative HPC general-purpose systems
and their applications to industry, commerce and public ser-
vices.

SkIE includes a coordination language SkIE–CL which
is based on the state of the art skeleton methodology. The
language includes a well defined set of skeletons. These
skeletons can be nested, supplying the programmers with
a powerful mechanism to specify parallel applications. In
SkIE–CL when parallelizing a sequential application, the
user can reuse large portions of sequential code written in
the most common sequential languages (e.g., C, C++, F77,
F90, Java) encapsulating them in modules which can then
be composed to develop a larger application.

Sequential modules written in different languages can be
mixed in the same parallel application and, in the current
version, the user can also encapsulate parallel code using
plain MPI and specialized libraries (such as standard nu-
merical libraries [6]).

SkIE–CL helps the programmer in the design of the
global structure of his application by providing a collection
of optimized and ready-to-use typical skeletons which can
be instantiated and combined to define parallel applications.
Examples of common skeletons provided are the processor
farm, in which a pool of worker processes computes a pool
of independent tasks, and the pipeline, which exploits par-
allelism in different phases of the computation. In SkIE
these patterns can be freely composed to build more com-
plex structures and SkIE–CL automatically generates an
optimized implementation of the compositions of the skele-
tons provided. This means that when using a SkIE skeleton,
the support not only generates the code needed for parallel
interaction automatically, but also optimizes the resources
allocated to each skeleton, decides the best granularity of
computation and locates inefficiencies in the global struc-
ture.

3 The HPF compiler ADAPTOR 6.0

ADAPTOR (Automatic DAta Parallelism TranslatOR) is

a public domain HPF compilation system developed at the
SCAI institute (GMD) during the last years [4]. The tool
transforms data parallel programs written in HPF (i.e., a
Fortran language with array extensions, parallel loops, and
layout directives) into programs with explicit message pass-
ing. Beside some restrictions, it supports the new standard
HPF 2.0 as well as many of the approved extensions within
this new standard. The ADAPTOR package consists of:

� the source to source transformation tool fadapt,

� the distributed array library DALIB . This is the HPF
runtime system that handles descriptors for arrays, sec-
tions and distributions, and implements communica-
tion routines,

� the compiler driver gmdhpf.

DA L IB

M ess.

Pas s.
Lib .

fad ap t

com p i le, l in k

Data p ar allel
Pro gram

(H P F)

S P M D (M essage
P assin g) P rogram

(F ortran + D A LI B cal ls)

Par allel
Exec utab le

gm d h p f

Figure 1. Overview of the ADAPTOR tool.

Figure 1 shows how the different components work to-
gether. The compiler driver gmdhpf invokes the source-
to-source translation fadapt that generates an SPMD pro-
gram with message passing from the HPF program. Af-
terwards, it invokes a native FORTRAN 77 or Fortran 90
compiler to compile the generated code. Finally, the com-
piled codes are linked with the DALIB runtime system and
the utilized message passing library.

The ADAPTOR source–to–source translator fadapt,
the DALIB runtime system, and the compile driver
gmdhpf are available as C programs.

For the generated code to be compiled, linked and run,
the following additional components are required:

� A MPI or PVM message-passing subsystem, for some
systems (IBM SP, Intel Paragon, CM 5 and Meiko CS–
2) the native message passing subsystem can be used
directly.

� A FORTRAN 77 compiler.

2

� A parallel programming environment in which paral-
lel programs can be loaded and executed on a parallel
machine.

4 Integrating HPF in SkIE

In this Section we present the approach used for inte-
grating HPF in the coordinator language SkIE–CL. As an
example of our approach and without loss of generality, a
pipeline consisting of three stages is presented. The first
and the last stage of the pipeline are simple C language se-
quential tasks while the second one is a data–parallel HPF
task compiled with ADAPTOR.

4.1 A simple pipeline of three stages

Suppose we have the three stages pipeline shown in Fig-
ure 2, where in particular:

� the first and the third stages of the pipeline are sequen-
tial tasks written in C language, while the second is a
data–parallel task written in HPF.

� Each task (either sequential or data-parallel) is as-
signed to a disjoint set of processors.

� The tasks communicate by means of MPI using the
SkIE global communicator SKIE COMM WORLD (i.e,
a global communicator defined by the communication
layer of SkIE–CL that, at the program startup, is a
copy of MPI COMM WORLD).

The first stage (init) generates a stream of matrices of
doubles, the stage HPF (StageHpf) receives a matrix
X , performs some computation on X and outputs a new
matrix Y . Finally, the last stage (stop) performs some
final computation on the received matrix Y .

init StageHpf stopX[N][N] Y[N][N]

Sequen tia l module
 written in C

Sequen tia l module
 written in C

Data-paral le l HPF

Figure 2. Example of pipeline composed of
three stages, where the second one is a data–
parallel HPF.

4.2 The SkIE implementation of the pipeline

The code of the simple pipeline described above would
be (for further details see [11, 1]):

pipe main in() out()
init in() out(stream of dou-

ble x[N][N])
StageHpf in(x) out(double y[N][N])
stop in(stream y) out()

end pipe

init in() out(stream of double x[N][N])
$c{
/*

C code that initializes x
*/
}c$
end

stop in (stream of double y[N][N]) out()
$c{
/*

C code that uses y
*/
}c$
end

StageHpf in(double x[N][N]) out(double y[N][N])
$hpf{
! HPF Preamble: setting the stage status

!skie$ %%%

! HPF Body: code that uses x and produces y
}hpf$ end

pragma parallelism degree 4 in StageHpf;

The main pipe construct declares a pipeline of three
stages which exchange data representing the stream, as il-
lustrated in the previous section. The following three blocks
of code define the stages belonging to the declared pipeline.
The pair of tags: $cf gc$ and $hpff ghpf$ declare that
the code inside the block is written in C and HPF, respec-
tively.

We focus on the module HPF that is the subject of this
paper. It is important to note the special comment !skie$
inside the module HPF. This comment works as a separa-
tor: the section of code before and following the special
comment are called Preamble and Body, respectively. The
Preamble is executed once at the start–up of the program
and comprises the local variables of the module, the HPF
directives and a possible initialization code. The Body is
the main part of the module and it is executed every time a
new stream item arrives from the previous stage.

The pragma directive instructs the SkIE–CL compiler
that the stage HPF must be executed on 4 processors.

4.3 The local communicators

We discuss now the problem of the use of MPI as low–
level communication layer, both for skeleton inter–task
communications of SkIE–CL and for HPF (i.e., the com-
munications performed inside the run–time ADAPTOR).

3

M a -
ster

X Y

new_comm new_comm

new_comm

SKIE_COMM_WORLD

Figure 3. Communicator splitting.

Our solution is the following: we split the global
communicator MPI COMM WORLD into as many sub–
communicators as the number of stages of the pipeline.
Each of these sub–communicators, that we refer as
new comm, comprises the virtual processors that belong to
each stage of the pipeline. It is worth observing that, in the
case of sequential tasks (in our case, the first and the last
stage), the local communicators will comprise only a single
virtual processor.

The advantage of using local communicators is that we
need only a slight modification of the run–time of ADAP-
TOR: all the communications of the data–parallel gen-
erated by ADAPTOR that uses the global communicator
MPI COMM WORLD must now refer the local communica-
tor new comm.

In order to simplify the integration of HPF and also mod-
ify as less as possible SkIE–CL, we use the communicator
SKIE COMM WORLD for grouping the processors that are
involved in the stream communications. Figure 3 shows
how the different communicators work. As can be seen,
only one of the processors of the data–parallel HPF is in-
cluded in SKIE COMM WORLD. We refer to this proces-
sor as Master, that is the manager of the communications
from/to the other stages of the pipeline. The processor of the
stage HPF besides the Master, called Slaves, will be “hid-
den” from the perspective of the SkIE–CL communication
layer.

4.4 The structure of the stage HPF.

As explained in Section 4.2, the variables defined in the
Preamble will be instanced at the start–up of the program
and will live for its total execution time (By default, us-
ing different language from HPF, the local variables are not
static). This behavior can be obtained encapsulating the
code of the stage HPF in a special template written in HPF.
The structure of this template is shown in Figure 4.

����

��������	
���

�������������������������
�������������������������
��� !��"#$�"�%$������&����&��''�����

Template support code

Template support code

���������	
�������������

	��

Loop

Send Y to the
next stage

Rec. X from
the prev. stage

Figure 4. The structure of the HPF template.

The template corresponds to an HPF subroutine,
proc temp hpf, which is called by the task loader of
SkIE–CL at the program start–up and is executed by all
of the processors of the stage HPF in a SPMD fashion. The
template starts with the Preamble code and proceeds with
a support code that manages the communications and exe-
cutes the Body part of the HPF module. The first part of
this support code, receives the matrix X (in general, it re-
ceives all the input data of the stage HPF). After that, the
Body code is executed. Finally, the second part of the sup-
port code is executed. This part sends the results (the ma-
trix Y) to the next stage of the pipeline. The template starts
again receiving a new matrixX , and so on, until the pipeline
stream finishes.

The communications from/to the stage HPF are obtained
through two external procedures written in C. Moreover, be-
cause only the Master processor must be involved in the
communications we need a mechanism that permits the dis-
tribution/gather of the received/sent arrays. The semantic
of HPF EXTRINSIC SERIAL procedures ensure the re-
quired behavior. More specifically, if the external commu-
nicating procedures are defined as EXTRINSIC SERIAL,
we have that:

� Only one processor, among the ones involved in the ex-
ecution of the stage HPF (i.e., the Master) executes the
EXTRINSIC SERIAL subroutines used for commu-
nicating. The Slave processors synchronize with the
Master waiting for its return.

4

� A new copy of each parameter of the invoked subrou-
tine is allocated in the Master processor.

� The input/output parameters are conveniently up-
dated on the basis of type of their interface
declaration: input, output or input–output (IN-
TENT(IN,OUT,INOUT)).

� If a replicated variable (e.g., in the case of scalar vari-
ables) is passed to the subroutine as INTENT(IN),
the copy of the parameter will involve only the Mas-
ter processor. On the contrary, if the parameter is
declared as INTENT(INOUT), the Master processor
will broadcast it to the Slave processors at the subrou-
tine return, in order to update the replicated variables.

� If a parameter of the subroutine is distributed, either
if it is declared as input or is declared as output, it is
necessary to gather or to distribute portion of the array
that are allocated in the distinct processors of the stage
with respect the local copy of the Master.

In order to better understand how the different communi-
cation mechanisms work together, in Figure 5 we show the
distinct communications that characterize the receive phase
of the HPF stage of the pipeline.

memcopy

broadcast

X

Array slice

1

2

3

3

3

4

4

4

4

Master

StageHpf

init

MPI_Send

Figure 5. Receive phase of the array X .

The dashed arrows represent the operations performed
by the SkIE–CL support system, while the solid arrows the
operations relative the run–time of ADAPTOR (the numeric
labels identify the items of the following list):

1. The first stage of the pipeline sends the matrixX to the
stage HPF. The matrix is received by the support code
(written in C) of the template above described.

2. The array is transposed during its copying. This is
necessary for translating the array from the SkIE–CL
standard which stores multidimensional arrays in row-
major order (in the same way as C language does) to
the HPF standard which stores multidimensional ar-
rays in column-major order.

3. The Master processor broadcasts the matrix X to the
Slave processors.

4. Array slice: because the matrix X is declared as dis-
tributed, each processor must copy its section of the
array X in a local slice copy.

5 A case study

In this section a case study is given that demonstrates
how the proposed tool can be applied when integrating a
data–parallel program written in HPF in a SkIE program.
The case study is a classical FFT 3–D transform which is
probably the application most widely used to demonstrate
the usefulness of exploiting a mixture of both task and data
parallelism [5, 7]. FFT transformations are commonly used
in the field of signal and image processing applications,
which generally require the FFT to be applied in real–time
to a stream of frames acquired from an external device.

The SkIE code implementing a 3-D FFT has the follow-
ing structure (We omit the code of the part of the program
written in C in the interest of space):

pipe main

matrix_generator
in()
out(stream of double xr[SIZE][SIZE][SIZE],

stream of double xi[SIZE][SIZE][SIZE])

fft3d
in(xr,xi)
out(double yr[SIZE][SIZE][SIZE],

double yi[SIZE][SIZE][SIZE])

matrix_printer in(yr, yi) out()

end pipe

pragma parallelism degree 8 in fft3d;

fft3d in (double xr[SIZE][SIZE][SIZE],
double xi[SIZE][SIZE][SIZE])

out(double yr[SIZE][SIZE][SIZE],
double yi[SIZE][SIZE][SIZE])

$hpf{
integer i1, i2, i3

5

!hpf$ distribute xr(BLOCK,*,*)
!hpf$ distribute xi(BLOCK,*,*)

!skie$ %%%

!hpf$ independent
do i1=1,SIZE
do i2=1,SIZE
call fft_slice(xr(i1,i2,:),xi(i1,i2,:),SIZE,1)

end do
end do

forall (i1=1:SIZE)
xr(i1,:,:) = transpose(xr(i1,:,:))
xi(i1,:,:) = transpose(xi(i1,:,:))

end forall

!hpf$ independent
do i1=1,SIZE
do i2=1,SIZE
call fft_slice(xr(i1,i2,:),xi(i1,i2,:),SIZE,1)

end do
end do

forall (i2=1:SIZE)
xr(:,i2,:) = transpose(xr(:,i2,:))
xi(:,i2,:) = transpose(xi(:,i2,:))

end forall

!hpf$ independent
do i1=1,SIZE
do i2=1,SIZE
call fft_slice(xr(i1,i2,:),xi(i1,i2,:),SIZE,1)

end do
end do

yr = xr
yi = xi

}hpf$
end

The pipe directive defines a pipeline of three stages.
The first stage, named matrix generator, generates a
stream of SIZE � SIZE � SIZE 3-D matrices (that we
call cubes) to be transformed. The second stage is the HPF
stage that performs the FFT3D transform. The last stage,
named matrix printer, prints the results of the FFT3D
transform. The matrices xr and xi are the respective real
and imaginary parts of the cubes to be transformed. Sim-
ilarly, yr and yi represent the real and imaginary part of
the transformed 3D matrix, respectively.

The stage HPF performs SIZE independent 1–D FFT
transform (i.e., the pair of do–loop with fft slice) over
the three spatial coordinates x, y and z on the input cube.
Actually, each do–loop executes the transformation over the
same spatial direction, but because between a do–loop and
the successive we properly transpose the cube, we obtain
the transformation according the three spatial coordinates.
The cube transpositions are performed by forall–loops that
transpose the matrices belonging first to the plane y; z and

then to the plane x; z. Note that the cubes are distributed
over the first spatial dimension. This allows the 1–D FFTs
to be applied in parallel to each memory-contiguous col-
umn of the cubes. No communications are generated by
the HPF compiler within the three parallel do–loops, while
cube transpositions involve all–to–all communications.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Number of processors

T
im

e
in

 s
ec

on
ds

SIZE = 32
SIZE = 64

Figure 6. Execution time for SkIE FFT3D as a
function of the number of processors of the
stage HPF, for different problem size. Single
task.

Figure 6 shows the total execution time of the program
FFT3D on the QSW QM1 machine, as a function of the
number of processors of the stage HPF. Throughout this and
next experiments, we do not consider the time spent by ma-
trix printer. The solid and the dashed curves denote
the execution time for stream of one cube of SIZE = 64

and SIZE = 32, respectively. In this experiment, we eval-
uate the performance of the simple pipeline structure of Fig-
ure 2, when executing just one task. In this way, we can
evaluate how the FFT3D stage scales and the cost of the
pipeline communications. In both cases the program does
not practically scale when the number of used processors
is greater that 4. This is due to the communication cost
among the stages of the pipeline and the communication for
the cube transpositions (the for–all loops). In order to have
an estimate of the overhead for sending/receiving the ma-
trices to/from the HPF stage (including also the overhead of
the template HPF described in Section 4.4), we compare the
execution time of the SkIE version with the one exhibited
by a version entirely written in HPF. To compare the re-
sults, the same HPF compiler (Adaptor), the same data lay-
outs and the same parallelization strategy (except the task

6

parallelism, of course) were used for both the pure HPF and
SkIE implementations of the sample applications.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Number of processors

T
im

e
in

 s
ec

on
ds

HPF
SkIE

Figure 7. SkIE–CL fft3d vs pure HPF fft3d.
Problem size: 64� 64� 64. Single task.

Figure 7 makes this comparison for the worst case
SIZE = 64, we can see that the overhead introduced by
SkIE–CL is acceptable (The time spent by the matrix gen-
eration is about 1 second. This time is also present in the
SkIE implementation because, in this case, the number of
matrices elaborated is 1).

6 Exploiting task parallelism

The benefits of using a task parallelism developing envi-
ronment as SkIE with respect a pure data–parallel one, can
be observed when the data length stream is greater than one.
In fact, as we shall see, SkIE–CL gives better performance
because it is possible to overlap the elaboration of the i–
th item of the stream with the elaboration of the (i � 1)-th
item of the stream, in a pipeline fashion. For this reason,
it is convenient to split the stage HPF into three new stages
each one performing a transformation over one of the three
spatial coordinates.

Figure 8 shows the program structure. The first stage
matrix generator generates a stream of 100 cubes of
complex numbers (the pair of matrix xr and xi) and the
following three stages HPF, called fft3d1, fft3d2 and fft3d3,
perform the three spatial FFT transformations.

Another technique of optimization is to replace the
FFT3D sub–pipe with a processor farm construct, i.e., us-
ing a replication technique (see Figure 9). Suppose a set of
p processors is available for executing the HPF FFT3D, it is

matrix_
maker

fft3d1 fft3d2xr, xi

HPF FFT3D

fft3d3
matrix_
printer

yr, yi

z

y x

spatial transformations

Figure 8. Structure of FFT3D pipeline imple-
mentation.

profitable to divide the p processors in two or more disjoint
groups and process alternate cubes on these disjoint groups
of processors. Clearly, this is feasible only if we are not
interested in the order of transform results.

matrix_
maker

farm
emitter

fft3d

xr, xi
farm

collector
matrix_
printer

yr, yi

HPF FFT3D (Farm)

fft3d

fft3d

..

.

..

.

Figure 9. Structure of FFT3D farm implemen-
tation.

In Figure 10, we compare the behavior of the two differ-
ent SkIE implementations with the pure HPF implementa-
tion. Due to the different implementation strategies not all
processor allocations are convenient or feasible when using
SkIE. In the case of pipeline implementation, it is conve-
nient to distribute the available processors among the HPF
stages as uniformly as possible. Instead, in case of farm im-
plementation, we need two further processors, one for emit-
ter and one for the collector (see Figure 9). Moreover, be-
cause we have chosen to allocate two processors1 for each
one of the w workers (i.e., the replicated modules) of the
farm, the total number of processor is given by 2 + 2 � w.

From these results we can anyway see that the SkIE im-

1We have conducted several experiments to determine that the optimal
number of processors to assign to the workers is two.

7

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Number of processors

T
im

e
in

 s
ec

on
ds

HPF
Pipe (SkIE)
Farm (SkIE)

Figure 10. Comparison of execution times
obtained with pipeline, farm parallelism and
pure HPF implementation of the FFT3D.
Stream length = 100, SIZE = 32.

plementation provides the best performance when the num-
ber of available processor is greater than 4 and that, in par-
ticular, the farm solution scales better than the others.

7 Conclusions

In this paper we have discussed the integration of HPF
with SkIE, a skeleton coordination language implemented
on top of MPI. The main idea behind our approach is to
allow programmers to coordinate HPF tasks with modules
written in different languages as C, C++, Java, according to
specific paradigms for task parallelism. These paradigms,
for example pipelines and processors farms, are the most
commonly encountered in parallel applications, and, more
importantly, can be associated with simple analytic perfor-
mance models that, on the basis of profiling information,
can be used to automatically solve the problem of optimal
resource allocation. According to this approach, program-
mers have only to specify the HPF source code of each
task, and the high-level constructs which specify the co-
ordination among the various tasks. The associated com-
piler, depending on the specific paradigm, generates the
suitable “system” code for carrying out task creation and
interaction, and integrates the HPF user-provided code with
the compiler-generated SkIE calls for intertask communi-
cations. For example, if the paradigm is a pipeline, it gener-
ates the code to process streams of data, while, for a proces-
sor farm paradigm, it produces the code which dynamically
schedules incoming stream elements in order to balance the
workload.

Finally, we have presented some encouraging perfor-
mance studies, conducted on a QSW QM1 machine. For the
experiments we used a real sample application. We struc-
tured this application in order to exploit a mixture of task
and data parallelism, and we compared two different imple-
mentations with a pure data parallel one. We have presented
a classical 3–D fast Fourier transform, which was structured
as a three–stage pipeline and as a processor farms. We ob-
served that the mixed task/data–parallel versions of such ap-
plication always achieved performance improvements over
the pure data parallel counterparts. These improvements
ranged from a few per cent up to 200%.

References

[1] ENEA: PQE2000 Project.
www.pqe2000.enea.it/home/pqe1/Docum_a.html.

[2] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi.
SkIE: an heterogeneous HPC environment. Parallel Com-
puting, 25:1827–1852, 1999.

[3] B. Bacci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Skele-
tons and transformations in an integrated parallel program-
ming environment. September 1999. To be presented at
PaCT’99, St. Petersburg, September 1999.

[4] T. Brandes. ADAPTOR Programmer’s Guide
Version 7.0. Internal Report Adaptor 3, GMD-
SCAI, Sankt Augustin, Germany, Nov. 99. URL:
www.gmd.de/SCAI/lab/adaptor/adp_docs.html.

[5] P. Dinda, T. Gross, D. O’Halloron, E. Segall, E. Stichnoth,
J. Subhlok, J. Webb, and B. Yang. The CMU task parallel
program suite. Technical Report CMU-CS-94-131, School
of Computer Science, Carnegie Mellon University, March
1994.

[6] J. Dongarra, J. D. Croz, J. Hammarling, and R. J. Hanson.
An extended set of fortran basic algebra subprograms. ACM
Trans. Math. Softw., 14:1–17, 1988.

[7] I. Foster, D. R. Kohr, Jr., R. Krishnaiyer, and A. Choud-
hary. A Library-Based Approach to Task Parallelism in a
Data-Parallel Language. Journal of Parallel and Distributed
Computing, 45(2):148–158, Sept. 1997.

[8] T. Gross, D. O’Halloron, E. Stichnoth, and J. Subhlok. Ex-
ploiting task and data parallelism on a multicomputer. In
Proc. ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 13–22, May 1993.

[9] C. Koebel, D. Loveman, R. Schreiber, G. Steele Jr., and
M. Zosel. The High Performance Fortran Handbook. The
MIT Press, 1994.

[10] M. Vanneschi. Heterogeneous HPC Environments. In Proc.
4th Int. Conf. Euro-Par’98, pages 21–34, Southampton, UK,
Sept. 1998. LNCS 1470 Spinger-Verlag.

[11] M. Vanneschi. PQE2000: HPC Tools for industrial applica-
tions. IEEE Concurrency, 6(4), October-December 1998.

8

