
Approximate Mining of Frequent Patterns on
Streams

Claudio Silvestri and Salvatore Orlando

Dipartimento di Informatica, Università Ca’ Foscari, Via Torino 155, Venezia, Italy
silvestri@dsi.unive.it, orlando@dsi.unive.it

Abstract. This paper introduces a new algorithm for approximate min-
ing of frequent patterns from streams of transactions using a limited
amount of memory.
The proposed algorithm consists in the computation of frequent itemsets
in recent data and an effective method for inferring the global support
of previously infrequent itemsets. Both upper and lower bounds on the
support of each pattern found are returned along with the interpolated
support. An extensive experimental evaluation shows that APStream, the
proposed algorithm, yields a good approximation of the exact global
result considering both the set of patterns found and their support.

1 Introduction

Association Rule Mining (ARM), one of the most popular topic in the KDD
field [13, 5], regards the extractions of association rules from a database of trans-
actions D. In this paper we are interested in the most computationally expensive
phase of ARM, i.e the Frequent Pattern Mining (FPM) one, during which the set
F of all the frequent patterns (sorted itemsets) is built. In a stream setting new
transactions are continuously added to the dataset. Hence, we need a notation
for indicating that a particular dataset or result is referred to a particular time
interval. To this end, we write the interval as a subscript after the entity. Thus
D[1,t] denote the part of the dataset preceding time t. If t is current time, and
the notation is not ambiguous we will write just D.

A pattern x is frequent at time t in dataset D[1,t] with respect to a minimum
support minsup, if its support is greater than σmin[1,t] = minsup · |D[1,t]|, i.e.
the pattern occurs in at least σmin[1,t] transaction, where |D[1,t]| is the number
of transactions in the stream D until time t. A k-pattern is a pattern composed
of k items, Fk[1,t] is the set of all frequent k-patterns, and F[1,t] is the set of all
frequent patterns.

The infinite nature of stream data sources is a serious obstacle to the use of
most of the traditional methods since available computing resources are limited.
One of the first effect is the need to process data as they arrive. The amount
of previously happened events is usually overwhelming, so they can be either
dropped after processing or archived separately in secondary storage. Even the
apparently simple discovery of frequent items in a stream is challenging [3], since

its exact solution requires to store a counter for each distinct item received.
The frequent itemset mining problem on stream of transactions poses additional
memory and computational issues due to the exponential growth of solution size
with respect to the corresponding problem on streams of items. In [11] Manku
and Motwani propose an extension of their Lossy Count approximate algorithm
to the case of frequent itemset. In [8] R.Jin and G.Agrawal describe a new
algorithm for frequent itemset mining based on a simple algorithm for iceberg
query on a stream [10] inspired by [9].

In this paper we discuss a streaming algorithm for approximate mining of
frequent patterns, APStream (Approximate Partition for Stream), that exploits
DCI [17], a state-of-the-art algorithm for FPM, as the miner engine for recent
data. The proposed algorithm is based on AP [15], an algorithm for approximate
distributed mining of frequent itemset which in turn uses a computation method
inspired by the Partition algorithm [2].

This paper is organized as follow. Section 2 describes the APStream algorithm
and the Partition algorithm who inspired AP. In Section 3 we report and discuss
our experimental results. Finally, in Section 4, we draw some conclusions.

2 The algorithm

Our APStream (Approximate Partition for Stream) algorithm was inspired by
Partition [2], a sequential algorithm which divides the dataset into several parti-
tions processed independently and then merges local solutions.

In this paper we will use the terms local and global to refer to data or result
concerning just a contiguous part of the stream, hereinafter called a block of
transactions, and the whole stream. Furthermore, we suppose that each block
corresponds to one time unit: hence, D[1,n) will indicate the first n−1 data blocks,
and Dn the nth block. This hypothesis allows us to adopt a lighter notation and
cause no loss of generality.

The Streaming Partition algorithm. The basic idea exploited by Partition is the
following: if the dataset is divided into several partitions then each globally fre-
quent pattern must be locally frequent in at least one partition. This guarantees
that the union of all local solutions is a superset of the global solution. However,
one further pass over the database is necessary to remove all false positives, i.e.
patterns that result locally frequent but globally infrequent.

In order to extend this approach to a stream setting, blocks of data received
from the stream are used as an infinite set of partitions. Unfortunately, in the
stream case, only recent raw data (transactions) can be maintained available for
processing due to memory limits, thus the usual Partition second pass will be
restricted to accessible data. We will name this algorithm Streaming Partition.
The first time a pattern x is reported, its support corresponds to the support
computed in the current block. In case it appeared previously, this mean intro-
ducing an error. If j is the first block where x is frequent, then this error can be
at most σmin[1,j] − 1.

The APStream algorithm. The streaming algorithm we propose in this paper,
APStream, tries to overcome some of the problems encountered by Streaming
Partition ([14]) and other similar algorithms for association mining on streams
when the data skew between different incoming blocks is high. This skew might
cause a globally frequent pattern x to result infrequent on a given data block
Di. In other words, since σi(x) < minsup · |Di|, x will not be found as a frequent
pattern in the ith block. As a consequence, we will not be able to count on
the knowledge of σi(x), and thus we can not exactly compute the support of
x. Unfortunately, Streaming Partition might also deduce that x is not globally
frequent, because

∑
j,j 6=i σj(x) < minsup · |D|.

APStream addresses this issue in different ways, according to the specific
situation. The following table summarize the possible cases and the action taken
by APStream:

σ[1,i)(x) σi(x) Action
known known sum recent support to past support and bounds.
known unknown recount support on recent, still available, data.

unknown known interpolate past support

The first case is the simpler to handle: the new support σ[1,i](x) will be the
sum of σ[1,i)(x) and σi(x). If σ[1,i)(x) was approximated, then the width of the
error interval will remain the same. The second one is similar, except that we need
to look at recent data for computing σi(x). The key difference with Streaming
Partition is the handling of the last case. APStream, instead of supposing that
x never appeared in the past, tries to interpolate σ[1,i)(x). The interpolation is
based on the knowledge of:

– the exact support of each item (or optionally just the approximate support
of a fixed number of most frequent items)

– the reduction factors of the support count of subpatterns of x in current block
with respect to its interpolated support over the past part of the stream.

The algorithm will thus deduce the unknown support σ[1,i)(x) of itemset x

on the part of the stream preceding the ith block as follows:

σ[1,i)(x)interp = σi(x)∗min

({
min

{
σ[1,i)(item)

σi(item)
,
σ[1,i)(xr item)interp

σi(xr item)

}∣∣∣∣∣ item ∈ x

})

In the previous formula the result of the first min is the minimum among the
ratios of supports of items contained in pattern x in past and recent data and
the same values computed for itemsets obtained from x by removing one of
its items. Note that during the processing of recent data, the search space is
visited levelwise and the merge of the results is performed starting from shorter
pattern too. Hence the interpolated supports σ[1,i)(x r item)interp of all k − 1-
subpatterns of a k-pattern x are known. In fact each support can be either
known from the processing of the past part of the stream or computed during
the previous iteration on recent data.

Example of interpolation. Suppose that we have received 440 transactions so
far, and that 40 of these are in the current block. The itemset {A,B, C}, briefly
indicated as ABC, is frequent locally whereas it was unfrequent in previous data.
Table 1 reports the support of every subpattern involved in the computation.

x σi(x) σ[1,i)(x)interp σ[1,i)(x)interp

σi(x)

ABC 6 ? ?
AB 8 50 6.2
AC 12 30 2.5
BC 10 100 10
A 17 160 9.4
B 14 140 10
C 18 160 8.9
{} 40 400 -

Table 1. Sample supports and reduc-
tion ratios.

The first columns contains the pat-
terns in compressed notation, the sec-
ond and third columns contain the
supports of the patterns in the last re-
ceived block and in the past part of the
stream. Finally the last column shows
the reduction ratio for each pattern.

The algorithm looks among item-
sets of size two and single items for the
one having the minimum ratio. In this
case the minimum is 2.5, correspond-
ing to the subpattern {A,C}. Since in
recent data the support of itemset x =
{A,B, C} is σi(x) = 6, the interpo-
lated support will be σ[1,i)(x)interp =
6 · 2.5 = 15

It is worth remarking that this method works if the support of larger item-
sets decreases similarly in most parts of the stream, so that a reduction factor
(different for each pattern) can be used to interpolate unknown values. Finally
note that, as regards the interpolated value above, we expect that the follow-
ing inequality should hold: σ[1,i)(x)interp < minsup · |D[1,i)|. So, if we obtain
it is not satisfied, this interpolated result should not be accepted. If it was
true, the exact value σi(x) should have already been found. Hence, in those
few cases where the above inequality does not hold, the interpolated value will
be: σ[1,i)(x)interp = (minsup · |D[1,i)|)− 1.

Obviously several other way of computing a support interpolation could be
devised. Some are really simple as the average of the bounds while others are
complex as counting inference, used in a different context in [16]. We chose this
particular kind of interpolation because it is simple to calculate, since it is based
on data that we already maintain for other purposes, and it is aware of the
underlying data enough to allow for accurate handling of datasets characterized
by data-skew on item distributions among different blocks.

We can finally introduce the pseudo-code of APStream. As in Stream-
ing Partition the transactions are received and buffered. DCI, the algorithm
used for the local computations, is able to exactly know the amount of
memory required for mining a dataset during the intersection phase. Since
frequent patterns are processed sequentially and can be offloaded to disk,
the memory needed for efficient computation of frequent patterns is just
that used by the bitmap representing the vertical dataset and can be com-
puted knowing the number of transactions and the number of frequent items.

processBlock(buffer, globFreq)
locFreq[1] = <frequent items>;
k = 2;
while size(locFreq[k − 1]) >= k do

locFreq[k] = computeFrequent(k, locFreq, globFreq);
commitInsert(k, locFreq, globFreq);

end while
end;

commitInsert(k, locFreq, globFreq)
for all pat in globFreq[k] and not in locFreq[k] do

<count support of pat in recent data>
if <pat is frequent> then

<pre-insert pat in globFreq[k]>
end if

end for
<update globFreq>

end;

computeFrequent(k, locFreq, globFreq)
< compute local frequent pattern >
for all pat locally frequent do

<compute global interpolated support and bounds>
if <pat is frequent> then

<insert pat in locFreq[k]>
<pre-insert pat in globFreq[k]>

end if
end for
return Fk;

end;

Fig. 1. APStream pseudo-code.

Thus we can use this
knowledge in order to
maximize the size of the
block of transactions pro-
cessed at once. For the
sake of simplicity we will
neglect the quite obvious
main loop with code re-
lated to buffering, concen-
trating on the processing
of each data block. The
interpolation formula has
been omitted too for the
same reason.

Each block is pro-
cessed, visiting the search
space level-wise, for dis-
covering frequent patterns.
In this way itemsets are
sorted according to their
length and the interpo-
lated support for frequent
subpattern is always avail-
able when required. The
processing of patterns of length k is performed in two step. First frequent pat-
terns are computed in the current block and then the actual insertion into the
current set of frequent patterns is carried out. When a pattern is found to be
frequent in the current block its support on past data is immediately checked:
if it was already known then the local support is summed to previous support
and previous bounds. Otherwise a support and a pair of bounds are inferred for
past data and summed to the support in the current block. In both cases, if
the resulting support pass the support test, the pattern is queued for delayed
insertion. After every locally frequent pattern of the current length k has been
processed, the support of every previously known pattern which is not locally fre-
quent is computed on recent data. Patterns passing the support test are queued
for delayed insertion too. Then the set of pre-inserted itemsets is sorted and the
actual insertion take place.

2.1 Tighter bounds

As a consequence of using an interpolation method to guess an approximate
support value in the past part of the stream, it is very important to establish
some bounds on the support found for each pattern. In the previous subsection
we have already indicated a pair of really loose bounds: each support can not be
negative, and if a pattern was not frequent in a time interval then its interpolated
support should be less than the minimum support threshold for the same interval.

This criteria is completely true for non-evolving distributed dataset (distributed
frequent pattern mining) or for the first two data block of the stream. In the
stream case the upper bound is based on previous approximate results and could
be inexact if the pattern corresponds to a false negative. Nevertheless it does
represent a useful indication.

Bounds based on pattern subset The first bounds that interpolated supports
should obey derive from the Apriori property : no set can have a support greater
than those of any of its subset. Since recent results are merged level-wise with
previously known ones, the interpolation can exploit already interpolated subset
support. When a subpattern is missing during interpolation this mean that it
has been examined during a previous level and discarded. In that case all of its
superset may be discarded as well. The computed bound is thus affected by the
approximation of past results: a pattern with an erroneous support will affect the
bounds for each of its superset. To avoid this issue it is possible to compute the
upper bound for a pattern x using the upper bounds of its sub-patterns instead
of their support. In this way the upper bounds will be weaker but there will be
less false negatives due to erroneous bounds enforcement.

Bounds based on transaction hash In order to address the issue of error
propagation in support bounds we need to devise some other kind of bounds
which are computed exclusively from received data and thus are independent of
any previous results. Such bounds can be obtained using inverted transaction
hashes. This technique was first introduced in the algorithm IHP [7], an asso-
ciation mining algorithm where it was used for finding an upper bound for the
support of candidates in order to prune infrequent ones. As we will show this
method can be used also for lower bounds. The key idea is that each item has
an associated hashed set of counters which are accessed by using transaction id
as a key. More in detail, each array hcnt[item] associated with an item is an
array of hsize counters initialized to zero. When the tidth transaction t = {ti}
is processed a hash function transforms the tid value into an index to be used
for the array of counters. Since tids are consecutive integer numbers, a trivial
hash function as h(tid) = tid mod hsize will guarantee a equal repartition of
transactions among all hash bins. For each item ti ∈ t the counter at position
h(tid) in the array hcnt[ti] is incremented.

Let hsize = 1, A and B two items and hA = hcnt[A][0] and hB = hcnt[B][0]
the only counters contained in their respective hashes, i.e. hA and hB are the
number of occurrences of items A and B in the whole dataset. According to the
Apriori principle the support σ({A,B}) for the pattern {A,B} can be at most
equal to min(hA, hB). Furthermore we are able to indicate a lower bound for the
same support. Let n[i] be the number of transactions associated with the ith hash
position, which, in this case, corresponds to the total number of transactions n.
We know from the inclusion/exclusion principle that σ({A, B}) should be greater
than or at least equal to max(0,hA +hB−n). In fact if n−hA transactions does
not contains the item A then at least hB − (n − hA) of the hB transactions

containing B will also contain A. Suppose that n = 10, hA = 8, hB = 7. If we
represent with an X each transaction supporting a pattern and with a dot any
other transaction we obtain the following diagrams:

Best case(ub(AB)= 7) Worst case(lb(AB)=5)
A: XXXXXXXX.. XXXXXXXX..
B: XXXXXXX... ...XXXXXXX
AB: XXXXXXX... ...XXXXX..

Then no more than 7 transactions will contain both A and B. At the same time
at least 8+7−10 = 5 transactions will satisfy that constraint. Since each counter
represents a set of transaction, this operations is equivalent to the computation
of the minimal and maximal intersections of the tid-lists associated with the
single items.

Usually hsize will be larger than one. In that case the previously explained
computations will be applied to each hash position, yielding an array of lower
bounds and an array of upper bounds. The sums of their elements will give the
pair of bounds for pattern {A,B} as we will show in the following example.
Let hsize = 3, h(tid) = tid mod hsize the hash function, A and B two items
and n[i] = 10 be the number of transactions associated with the ith hash posi-
tion. Suppose that hcnt[A] = {8, 4, 6} and hcnt[B] = {7, 5, 6}. Using the same
notation previously introduced we obtain:

h(tid)=0 h(tid)=1 h(tid)=2
Best case Worst case Best case Worst case Best case Worst case

A: XXXXXXXX.. XXXXXXXX.. A: XXXX...... XXXX...... A: XXXXXX.... XXXXXX....
B: XXXXXXX... ...XXXXXXX B: XXXXX.....XXXXX B: XXXXXX....XXXXXX
AB: XXXXXXX... ...XXXXX.. AB: XXXX...... AB: XXXXXX....XX....
supp 7 5 supp 4 0 supp 6 2

Each pair of columns represents the transactions having a tid mapped into the
corresponding location by the hash function. The lower and upper bounds for
the support of pattern AB will be respectively 5 + 0 + 2 = 7 and 7 + 4 + 6 = 17.

Both lower bounds and upper bounds computations can be extended to larger
itemsets by associativity: the bounds for to the first two items are composed
with the third element counters and so on. The sums of the elements of the last
pair of resulting arrays will be the upper and the lower bounds for the given
pattern. This is possible since the reasoning previously explained still holds if
we considers the occurrences of itemsets instead of those of single items. The
lower bound computed in this way will be often equal to zero in sparse dataset.
Conversely on dense datasets this method did proved to be effective in narrowing
the two bounds.

3 Experimental evaluation

In this section we study the behavior of the proposed method. We have run the
APStream algorithm on several datasets using different parameters. The goal of
these tests is to understand how similarities of the results vary as the stream
length increase, the effectiveness of the hash based pruning, and, in general,
how dataset peculiarities and invocation parameters affect the accuracy of the
results. Furthermore, we studied how execution time evolves in time when the
stream length increases.

Similarity and Average Support Range. The method we are proposing yields
approximate results. In particular APStream computes pattern supports which
may be slightly different from the exact ones, thus the result set may miss
some frequent pattern (false negatives) or include some infrequent pattern (false
positives). In order to evaluate the accuracy of the results we use a widely used
measure of similarity between two pattern sets introduced in [12], and based on
support difference.To the same end, we use the Average support Range (ASR),
an intrinsic measure of the correctness of the approximation introduced in [15].

Experimental data. We performed several tests using both real world datasets,
mainly from the FIMI’03 contest [1], and synthetic dataset generated using
the IBM generator. We randomly shuffled each dataset and used the resulting
datasets as input streams.

Table 2 shows a list of these datasets along with their cardinality. The
datasets having the name starting with T are synthetical datasets, which mimic
the behavior of market basket transactions. The sparse dataset family T20I8N5k
has transactions composed, on average, of 20 items, chosen from 5000 distinct
items, and include maximal patterns whose average length is 8. The dataset
family T30I30N1k was generated with the parameters synthetically indicated
in its name and is a moderately dense, since more than 10,000 frequent pat-
terns can be extracted even with a minimum support of 30%. A description
of all other datasets can be found in [1]. Kosarak and Retail are really sparse
datasets, whereas all other real world dataset used in experimental evaluation
are dense. Table 2 also indicates for each dataset a short identifying code which
will be used in our charts.

Dataset Reference #Trans.
accidents A 340183
kosarak K 990002
retail R 88162
pumbs P 49046
pumbs-star PS 49046
connect C 67557
T20I8N5k S2..6 77302..3189338
T25I20N5k S7..11 89611..1433580
T30I30N1k D1..D9 50000..3189338

Table 2. Datasets used in experimen-
tal evaluation.

Experimental Results. For each dataset
and several minimum support thresholds
we computed the exact reference solutions
by using DCI [17], an efficient sequen-
tial algorithm for frequent pattern mining
(FPM). Then we ran APStream for differ-
ent values of available memory and num-
ber of hash entries.

The first test is focused on catching
the effect of used memory on the behavior
of the algorithm when the block of trans-
actions processed at once is sized dynami-
cally according to the available resources.
In this case data are buffered as long as all
the item counters, and the representation
of the transactions included in the current block fit into the available memory.
Note that the size of all frequent itemsets, mined either locally or globally, is
not considered in our resource evaluation, since they can be offloaded to disk if
needed. The second test is somehow related to the previous one. In this case the
amount of required memory is varied, since we determine a-priori the number of

transactions to include in a single block, independently of the stream content.
Since the datasets used in the tests are quite different, in both cases we used
really different ranges of parameters. Therefore, in order to fit all the datasets
in the same plot, the number reported in the horizontal axis are relative quan-
tities, corresponding to the block sizes actually used in each test. These relative
quantities are obtained by dividing the memory/block size used in the specific
test by the smallest one for that dataset. For example, the series 50KB, 100KB,
400KB thus becomes 1,2,8.

The first plot in figure 2 shows the results obtained in the fixed memory case,
while the second one when the number of transactions per block is fixed. The
relative quantities reported in the plots refer to different base values of either
memory or transactions per blocks. These values are reported in the legend of
each plot. In general when we increase the number of transaction processed at
once, either statically or dynamically on the basis the memory available, we also
improve the results similarity. Nevertheless the variation is in most cases small
and sometimes there is also a slightly negative trend caused by the nonlinear
relation between used memory and transactions per block. In our test we noted
that choosing an excessively low amount of available memory for some datasets
lead to performance degradation and sometimes also to similarity degradation.
The last plot shows the effectiveness of the hash-based bounds on reducing the
Average Support Range (zero corresponds to an exact result). As expected the
improvement is evident only on more dense datasets.

The last batch of tests makes use of a family of synthetic datasets with
homogeneous distribution parameters and varying lengths. These datasets are
obtained from the larger dataset of the series by truncating it to simulate streams
with different lengths. For each truncated dataset we computed the exact result
set, used as reference value in computing the similarity of the corresponding
approximate result obtained by APStream. The first chart in figure 2 plots both
similarity and ASR as the stream length increases. We can see that similarity
remains almost the same, whereas the ASR decreases when an increasing amount
of stream is processed. Finally, the last plot shows the evolution of execution time
as the stream length increases. The execution time increases linearly with the
length of the stream, hence the average time per transaction is constant if we
fix the dataset and the execution parameters.

4 Conclusions

In this paper we have discussed APStream, a new algorithm for approximate
frequent pattern mining on streams. APStream exploits a novel interpolation
method to infer the unknown past counts of some patterns, which are frequents
only on recent data. Since the support values computed by the algorithm are
approximate, we have also proposed a method for establishing a pair of upper
and lower bounds for each interpolated value. These bounds are computed using
the knowledge of subpattern frequency in past data and the intersection of an
hash based compressed representation of past data.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 4 8 16

%

Reletive available memory

Similarity(%)

A (minsupp= 30%, base mem=2MB)
C (minsupp= 70%, base mem=2MB)
P (minsupp= 70%, base mem=5MB)

PS (minsupp= 40%, base mem=5MB)
R (minsupp= 0.05%, base mem=5MB)
K (minsupp= 0.1%, base mem=16MB)

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 4 8 16

%

Relative transaction number per block

Similarity(%)

A (minsupp= 30%, base trans/block=10k)
C (minsupp= 70%, base trans/block=4k)

K (minsupp= 0.1%, base trans/block=20k)
P (minsupp= 70%, base trans/block=8k)

PS (minsupp= 40%, base trans/block=4k)
R (minsupp= 0.05%, base trans/block=2k)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400

%

Hash entries

Average support range(%)

A (minsupp= 30%)
C (minsupp= 70%)
K (minsupp= 0.1%)
P (minsupp= 70%)

Fig. 2. Similarity as a function of available memory, number of transactions per block,
number of hash entries.

The experimental tests shows that the solution produced by APStream is a
good approximation of the exact global result. The comparisons with exact re-
sults considers both the set of patterns found and their support. The metric
used in order to assess the quality of the algorithm output is the similarity mea-
sure introduced in [12], used along with the novel false positive aware similarity
proposed in [15]. The interpolation works particularly well for dense dataset,
achieving a similarity close to 100% in best cases. The adaptive behavior of
APStream allow us to limit the amount of used memory. As expected, we have
found that a larger amount of available memory corresponds to a more accurate
result. Furthermore, as the length of the processed stream increases, the similar-
ity to the exact result remains almost the same. At the same time we observed a
decrease in the average difference between upper and lower bounds, which is an
intrinsic measure of result accuracy. Finally the time needed to process a block
of transactions does not depend on the stream length, hence the total execution
time is linear with respect to the stream length. In the future we plan to im-
prove the proposed method by adding other stricter bounds on the approximate
support and to extend it to closed patterns.

 99

 99.2

 99.4

 99.6

 99.8

 100

 1 2 4 8 16 32
 0

 0.05

 0.1

 0.15

 0.2

S
im

ila
rit

y
(%

)

A
S

R
 (

%
)

Stream length (/100k)

dataset: T30I30N1k min_supp=30%

Similarity
ASR

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

R
el

at
iv

e
tim

e

Stream length (/100k)

dataset: T30I30N1k min_supp=30%

relative time

Fig. 3. Similarity and Average Support Range as a function of different stream lengths.

5 Acknowledgements

This work was partially supported by the PRIN’04 Research Project entitled
”GeoPKDD - Geographic Privacy-aware Knowledge Discovery and Delivery”.
The datasets used during the experimental evaluation are some of those used for
the FIMI’03 (Frequent Itemset Mining Implementations) contest [1]. We thanks
the owners of this data and people who made them available in current format.
In particular Karolien Geurts [6] for Accidents, Ferenc Bodon for Kosark, Tom
Brijs [4] for Retail and Roberto Bayardo for the conversion of UCI datasets.
Synthetic datasets were generated using the publicly available synthetic data
generator code from the IBM Almaden Quest data mining project.

References

1. Workshop on frequent itemset mining implementations in conjunction with
ICDM’03. In fimi.cs.helsinki.fi, 2003.

2. A.Savasere, E.Omiecinski, and S.B.Navathe. An efficient algorithm for mining
association rules in large databases. In VLDB’95, Proc. of 21th Int.Conf. on Very
Large Data Bases, pages 432–444. Morgan Kaufmann, September 1995.

3. B.Babcock, S.Babu, M.Datar, R.Motwani, and J.Widom. Models and issues in data
stream systems. In Proc. of the 21st ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, pages 1–16. ACM Press, 2002.

4. Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association
rules for product assortment decisions: A case study. In Knowledge Discovery and
Data Mining, pages 254–260, 1999.

5. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press, 1998.

6. Karolien Geurts, Geert Wets, Tom Brijs, and Koen Vanhoof. Profiling high fre-
quency accident locations using association rules. In Proceedings of the 82nd An-
nual Transportation Research Board, Washington DC. (USA), January 12-16, page
18pp, 2003.

7. John D. Holt and Soon M. Chung. Mining association rules using inverted hashing
and pruning. Inf. Process. Lett., 83(4):211–220, 2002.

8. R. Jin and G. Agrawal. An algorithm for in-core frequent itemset mining on
streaming data. Submitted for publication, July 2003, 2003.

9. J.Misra and D.Gries. Finding repeated elements. Technical report, Ithaca, NY,
USA,, 1982.

10. Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algo-
rithm for finding frequent elements in streams and bags. ACM Trans. Database
Syst., 28(1):51–55, 2003.

11. G. Manku and R. Motwani. Approximate frequency counts over data streams. In
In Proceedings of the 28th International Conference on Very Large Data Bases,
August 2002.

12. Srinivasan Parthasarathy. Efficient progressive sampling for association rules.
In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM’02), page 354. IEEE Computer Society, 2002.

13. R.Agrawal, T.Imielinski, and A.N.Swami. Mining association rules between sets
of items in large databases. In Proc. of the 1993 ACM SIGMOD Int. Conf. on
Management of Data, pages 207–216, Washington, D.C., 1993.

14. C. Silvestri and S. Orlando. Approximate mining of frequent patterns on streams.
Technical report, Venice, Italy,, 2005.

15. C. Silvestri and S. Orlando. Distributed approximate mining of frequent patterns.
In Proceedings of ACM Symposim on Applied Computing SAC, March 2005,.

16. S.Orlando, P.Palmerini, R.Perego, C.Lucchese, and F.Silvestri. kdci: a multi-
strategy algorithm for mining frequent sets. In Proc. of the Int. Workshop on
Frequent Itemset Mining Implementations in conjunction with ICDM’03, 2003.

17. S.Orlando, P.Palmerini, R.Perego, and F.Silvestri. Adaptive and resource-aware
mining of frequent sets. In Proc. of the 2002 IEEE Int. Conf. on Data Mining,
ICDM, 2002.

