
Modeling and Predicting the Task-by-Task Behavior of

Search Engine Users

Claudio Lucchese
ISTI-CNR, Pisa, Italy

claudio.lucchese@isti.cnr.it

Salvatore Orlando
Università Ca’ Foscari Venezia, Italy

orlando@unive.it

Raffaele Perego
ISTI-CNR, Pisa, Italy

ra↵aele.perego@isti.cnr.it

Fabrizio Silvestri
ISTI-CNR, Pisa, Italy

fabrizio.silvestri@isti.cnr.it

Gabriele Tolomei
Università Ca’ Foscari Venezia, Italy

gabriele.tolomei@unive.it

ABSTRACT
Web search engines answer user needs on a query-by-query

fashion, namely they retrieve the set of the most relevant
results to each issued query, independently. However, users
often submit queries to perform multiple, related tasks. In
this paper, we first discuss a methodology to discover from
query logs the latent tasks performed by users. Furthermore,
we introduce the Task Relation Graph (TRG) as a represen-
tation of users’ search behaviors on a task-by-task perspec-
tive. The task-by-task behavior is captured by weighting the
edges of TRG with a relatedness score computed between
pairs of tasks, as mined from the query log. We validate our
approach on a concrete application, namely a task recom-

mender system, which suggests related tasks to users on the
basis of the task predictions derived from the TRG. Finally,
we show that the task recommendations generated by our
solution are beyond the reach of existing query suggestion
schemes, and that our method recommends tasks that user
will likely perform in the near future.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Clustering, Query formulation,

Search process

General Terms
Algorithms, Design, Experimentation

Keywords
Query log analysis, Task discovery, Task recommendation

1. INTRODUCTION
People heavily trust in Web search engines to satisfy their

daily information needs and running activities.
A key factor for the popularity of today’s search engines is

their user-friendly interfaces [6], which allow users to phrase

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

OAIR’13, May 22-24, 2013, Lisbon, Portugal.

Copyright 2013 CID 978-2-905450-09-8.

their needs by means of queries as simple lists of keywords.
Users exploit this simple query-based interface to retrieve
Web information and resources with the aim of performing
one or more specific Web-mediated tasks [16], e.g., “find a

recipe”, “book a flight”, etc. Moreover, often users operate
in parallel on multiple, related tasks, which in turn are part
of more complex goals, usually referred to as missions [12].

To clarify this better, let us consider the user Alice issu-
ing the queries “new york hotel” and “waldorf astoria”,
while Bob typing the query “cheap new york hotels” and
“holiday inn ny”. Both users are clearly trying to achieve
the same task, that is “reserving a hotel room in New York”,
but with di↵erent pairs of queries.

Then, suppose Alice issues other queries related to the
task intent “booking a ticket to the MoMA”, and Bob sub-
mits queries associated with the task “dining in a pizzeria

in New York”. Again, both Alice and Bob are possibly in-
volved in the same mission of “organizing a touristic travel

to New York”, but such mission is enacted by means of dif-
ferent tasks. So, even the same mission can be performed
by distinct users in terms of di↵erent tasks and queries.

In this paper, we are interested in studying how people
search the Web from a novel task-by-task perspective, in
contrast with the common query-by-query fashion. Further-
more, we explore how such high-level view of users’ search
behaviors help realize a new application, namely a task rec-

ommender system.
Since users may express the same task intent with a vari-

ety of queries, we focus on the following challenges:
(i) mining search engine query logs to detect tasks, i.e.,

groups of queries issued by many users yet related to the
same latent need;

(ii) extracting a graph-based representation of the task-

by-task behavior of a large number of search engine users;
(iii) exploiting the graph to predict tasks performed by

users; predictions are in turn used as task recommendations.
We call Task Relation Graph (TRG) the task-by-task se-

arch representation extracted from a query log. In a nut-
shell, TRG is a directed graph, whose nodes are the tasks
performed by users, and the weights on the edges model the
likelihood that, given a task performed by a user, she will
also perform another task directly connected. We show how
TRG may be exploited to generate novel task recommenda-

tions, which can help user achieve her long-term missions.
To the best of our knowledge, our work is the first attempt
towards modeling the task-by-task user search behavior, and
providing task recommendations.

Queries'

Session-based�
query clustering

User%Tasks! Collec-ve%Tasks!

Construction of the�
TASK RELATION GRAPH w"

w"
w"

w" w"

w"

w"

TRG:!weighted"directed"graph"
of"Collec1ve"Tasks!

Global clustering�
of User Tasks

Figure 1: The proposed framework to represent the task-by-task search behaviors.

Of course, TRG may have many other possible applica-
tions, e.g., discovering periodic or frequently co-occurring
tasks, understanding and anticipating user tasks for adver-
tisements purposes, analyzing how users compose tasks to
accomplish missions, etc.

TRG is built by first mapping queries to specific tasks.
We propose a two-phase algorithm for this query mapping
process. First, we extract sets of queries, named user tasks,
where each set includes queries issued by a single user to
achieve a given task within one of her interactions with the
search engine. Then, we discover all the queries in the query
log, related to a specific task, by grouping together all the
similar user tasks, also performed by distinct users. We refer
to this agglomeration of similar user tasks as a collective

task. Finally, we learn the task relatedness, thus adding
the weighted edges of TRG, by measuring the (temporal)
task co-occurrence strength in the various user sessions used
to build our model. Fig. 1 exemplifies the overall process of
building TRG from the queries issued by two users identified
by black and grey colors.

Furthermore, we firstly evaluate the precision of task pre-
dictions, which in turn lead to task recommendations. Sec-
ondly, we discuss some examples of possible task recommen-
dations. This last evaluation reveals that the generated task
recommendations can often be regarded as “surprising” and
thus useful hints. To remark that task recommendation is
di↵erent from query recommendation, we measure the abil-
ity of a well-known query suggestion scheme based on the
query-flow graph (QFG) [7, 8], in recommending queries out
of the current task boundary. As expected, QFG mostly
recommends queries only related to the same task.

The rest of the paper is organized as follows. Section 2
describes the two-step task discovery process. In Section 3
we introduce TRG and we discuss several edge weighting
schemes. More importantly, there we propose our novel task
recommender system. An exhaustive experimental evalua-
tion of this task recommender system is reported in Sec-
tion 4. Section 5 discusses related work. Finally, Section 6
draws conclusion, and points out future research directions.

2. TASK DISCOVERY
This section describes how to discover tasks from histor-

ical usage data recorded in a search engine query log. We
start by defining some notation and background concepts.
Then, we introduce our task detection technique as com-
posed of two main steps: (i) discovering user tasks and (ii)

discovering collective tasks.
The rationale for this two-step task discovery strategy is

that user tasks in each single user session can be discovered
by exploiting the lexical and semantic content similarity of
queries issued by individuals within their specific search con-

texts. On the other hand, the same approach would not be

able to discover collective tasks if applied directly to users’
queries. This is because queries that are issued by two users
and that are similar, either from a lexical or a semantic per-
spective, might in fact refer to di↵erent latent needs.

2.1 Notation and Definitions
Let QL be a query log, which records the queries – along

with userIDs, timestamps, clicked URLs, etc. – issued by a
set of distinct users U , with |U| = N .

We denote by S
u

= hq1, q2, . . . , q|Su|i the chronologically
ordered sequence of all the queries in QL issued by a user
u 2 U . The sequence S

u

of the queries submitted by u is
the result of multiple, long-term interactions with the search
engine. Therefore, we partition each sequence S

u

into a set
of time-based sessions according to a temporal query gap
criterium. Basically, each time-based session contains the
set of contiguous queries submitted by u such that each pair
of query has been submitted within less than a maximum
time-gap threshold �.

However, a time-based session s may include queries re-
lated to di↵erent needs due to multitasking [16, 3]. We fur-
ther identify a partitioning of each time-based session into
search related queries, and we refer to it as a user task.

Definition 2.1 (User Task [3]). Given a time-based

session s ✓ S
u

relative to user u 2 U , a user task ✓, ✓ ✓ s, is

the maximal sub-sequence of possibly non consecutive queries

in s referring to the same latent need. The set of all user
tasks in s gives a partitioning of s.

According to the notation above, a user task ✓ is the set of
queries that a user u 2 U adopted to perform a given task.
Also, the user may perform several tasks at the same time,
thus generating a multitasking time-based session s 2 S

u

.
The sequence of tasks performed by a user u 2 U is denoted
by ⇥

u

=
S

s✓Su

S
✓✓s

✓, while the set of all the user tasks
performed by all the N users is denoted by ⇥ =

S
u2U ⇥

u

.
In general, we have to take into account the presence of

multitasking within each time-based session s ✓ S
u

, so we
chronologically order the user tasks by looking at the times-
tamps of their first queries. In the following we use ✓

i

u

as a
reference to the i-th user task performed by user u. This
allows us to distinguish among the user tasks performed
by each user, and to represent each ⇥

u

as an ordered set,
namely a sequence, of user tasks, i.e., ⇥

u

= h✓1
u

, ✓

2
u

, . . . , ✓

|⇥u|
u

i.
Fig. 2 illustrates the process pursued to obtain the user

tasks for a generic user, and also summarizes the notation
we have just introduced.

The second step of our methodology concerns the agglom-
eration of user tasks to generate collective tasks, namely we
aim at recognizing those similar user tasks across several
users, and aggregating them into a single collective task.

gap > �gap > �

Su

s

�i
u �i+1

u�i�1

u

Figure 2: A generic time-based session composed of

a set of interleaved user tasks ✓

i�1
u

, ✓

i

u

, and ✓

i+1
u

.

Definition 2.2 (Collective Task). Given the set ⇥
of all the sequences of user tasks, a collective task T is a

maximal subset of ⇥ containing user tasks related to the

same search intent. The set of all collective tasks in QL,
denoted by T = {T1, T2, . . . , T|T |}, is a partitioning of QL.

It turns out that this partitioning provides an implicit
mapping from user to collective tasks, i.e., an onto function
f : ⇥ 7�! T . Therefore, each original sequence of user tasks
⇥

u

= h✓1
u

, ✓

2
u

, . . . , ✓

|⇥u|
u

i can be associated with a sequence

of collective tasks b⇥
u

, as follows:

b⇥
u

= hf(✓1
u

), f(✓2
u

), . . . , f(✓|⇥u|
u

)i.

Finally, we define ⇥
u

as the set of the corresponding collec-
tive tasks, disregarding task ordering and duplicates:

⇥
u

= {f(✓i
u

) | ✓i
u

2 ⇥
u

}.

2.2 Discovering User Tasks
The first step of our technique aims at identifying user

tasks. To this end, we exploit the QC-htc algorithm (Query
Clustering based on Head-Tail Components) introduced in [3].
QC-htc is a graph-based query clustering solution, which
has proven to outperform other techniques addressing the
problem of session boundary detection [7, 12].

In a nutshell, QC-htc exploits a content-based similar-

ity that combines two di↵erent kinds of query features, i.e.,
lexical and semantic. Moreover, since it is applied to indi-
vidual time-based sessions, QC-htc implicitly captures also
the temporal feature of queries. The rationale for this choice
is that each of those features a↵ects the probability of any
two queries being part of the same user task.

In more detail, QC-htc operates as follows: first, it splits
the long-term stream of queries S

u

of a user u 2 U into
shorter time-based sessions. Then, for each time-based ses-
sion s 2 S

u

, QC-htc builds a graph whose nodes are the
queries in s, and whose edges link together any pair of con-
secutive queries. Each edge (q

i

, q

i+1) is thus weighted by the
probability of the two queries being task-related on the basis
of their lexical and semantic similarity mentioned above.

The algorithm starts finding clusters of consecutive queries,
i.e., query chains, whose edges are labeled by a similarity
above a predefined threshold. Furthermore, QC-htc aug-
ments the size of the clusters by hierarchically merging the
chains. The merge is carried out by checking the similarity
between heads (i.e., the first queries) and tails (i.e., the last
queries) of the discovered chains, assuming that heads and
tails might be a good representative for a user need. If the
head (tail) of a chain is similar to the head (tail) of another
chain, those clusters are eventually merged. At the end of
this step, QC-htc returns a set of user tasks ✓

i

u

for each
time-based session s 2 S

u

. This merging phase is crucial to
handle the multitasking behavior of users.

2.3 Discovering Collective Tasks
The second step of our technique completes the overall

task discovery process, and aims at capturing similar la-
tent needs under the form of user tasks, i.e., di↵erent set of
queries, submitted by several users.

We adopt a bag-of-words representation of each user task
✓

i

u

2 ⇥. More formally, we denote with q the bag-of-words
representation of a query q 2 QL, thus disregarding the or-
der of the word tokens in q. Therefore, a user task is repre-
sented by ✓

i

u

=
U

q2✓

i
u
q, where

U
is the bag union operator.

Of course, more complex solutions might be devised to en-
rich this simple representation by considering, for instance,
the content of Web pages retrieved for the included queries
and clicked by users.

Anyway, according to our chosen representation each query
is viewed as a sentence, and a user task as a concatena-
tion of many sentences, i.e., a text document. Thus, the
problem of finding collective tasks can be reduced to the
problem of clustering similar text documents, which is a
well-investigated research topic [17, 18]. Note that, since we
aggregate user tasks composed of several queries (indeed,
their bag-of-words representations), this overcome the issue
of the intrinsic ambiguity of single queries.

Eventually, clustering ⇥ results in a set of K collective
tasks T = {T1, T2, . . . , TK

}.

3. TASK RELATION GRAPH
To date, there exists several ways of representing the inter-

actions between users and search engines on a query-by-query
basis, like the query-flow graph (QFG) [7, 8]. We consider a
di↵erent take on representing user-to-search engine interac-
tions, and we define the Task Relation Graph (TRG). This
is a new model capturing the task-by-task, as opposite to
query-by-query, behavior of search engine users.

Definition 3.1 (Task Relation Graph). Let TRG =

(T , E, w, ⌘) be a weighted directed graph, called Task Rela-
tion Graph, such that:

– T = {T1, T2, . . . , TK

}, the set of collective tasks, are the

nodes of the graph;

– E ✓ T ⇥ T includes the graph edges, representing task

relatedness;

– w : (T ⇥ T) 7�! [0, 1] is a weighting function;
– ⌘ > 0 is a weight threshold,
where E = {(T

i

, T

j

) 2 T ⇥ T | w(T
i

, T

j

) � ⌘}.

Intuitively, the TRG links any pair of collective tasks T
i

, T

j

2
T with an edge weighted by a function w, which measures
the pairwise task relatedness. The threshold ⌘ is exploited to
prune TRG, by dropping weak edges, i.e., edges connecting
collective tasks with low relatedness.

This new graph-based modeling of the users’ search be-
haviors can inspire innovative research directions and inter-
esting applications. In fact, in this work we leverage the
prediction capability of TRG for building a novel task rec-

ommender system.

3.1 Task Relatedness
In this section, we discuss how to compute the relatedness

between pairs of collective tasks in our TRG. Intuitively,
those pairs of tasks that highly frequently occur together in
many user sessions are also likely to be related to each other.

Sequence Pairs. We first discuss how to exploit a classical
algorithm for mining frequent sequential patterns [5] in order
to compute task relatedness. To this end, we start from
the input sequences b⇥

u

= hf(✓1
u

), f(✓2
u

), . . . , f(✓|⇥u|
u

)i, one
for each u 2 U . A sequence ↵ = (T

i

! T

j

), T

i

6= T

j

,

is supported by b⇥
u

, denoted by ↵ v b⇥
u

, if there exists
at least a pair of user tasks ✓

h

u

and ✓

l

u

, h < l, such that
f(✓h

u

) = T

i

and f(✓l
u

) = T

j

. The support count of ↵, denoted

by �1(↵), is the number of distinct input sequences b⇥
u

such

that ↵ v b⇥
u

. Finally, let seq-supp(↵) 2 [0, 1] the support of
sequence ↵, defined as:

seq-supp(↵) =
�1(↵)
|U| .

This leads to the following task relatedness score, which is
associated with the corresponding threshold ⌘ = min supp

(minimum support of the sequence):

w(T
i

, T

j

) = w

seq-supp(Ti

, T

j

) = seq-supp(T
i

! T

j

). (1)

Association Rules. In order to define task relatedness, we
can also exploit classical association rules [4]. To this end,
we consider the various sessions ⇥

u

= {f(✓i
u

) | ✓i
u

2 ⇥
u

} as
our input transactions, whose items are the collective tasks
in T . For our purposes, an association rule is defined as
an implication of the form T

i

) T

j

, where T

i

, T

j

2 T and
T

i

6= T

j

, whose significance and interest are computed in
terms of the classical support and confidence measures. Let
�2(X) be the support count of a set of collective tasks X,
X ✓ T , defined as the number of distinct “transactions”⇥

u

such that X ✓ ⇥
u

. Then, the support supp(·) 2 [0, 1] of an
association rule is defined as follows:

supp(T
i

) T

j

) =
�2({Ti

, T

j

})
|U| .

Instead, the confidence conf(·) 2 [0, 1] of the same rule is:

conf(T
i

) T

j

) =
�2({Ti

, T

j

})
�2({Ti

}) ,

where the confidence of a rule can be interpreted as the
conditional probability P (T

j

|T
i

), namely the probability of
finding collective task T

j

in those transactions where users
already performed T

i

.
Finally, we derive the two following edge weighting scores:

w(T
i

, T

j

) = w

ar-supp(Ti

, T

j

) = supp(T
i

) T

j

), (2)

w(T
i

, T

j

) = w

ar-conf

(T
i

, T

j

) = conf(T
i

) T

j

), (3)

which are associated with the following thresholds: ⌘ =
min supp (minimum support of the rule) for Eq. (2), and
⌘ = min conf (minimum confidence of the rule) for Eq. (3).

3.2 Task Recommendation
The ultimate goal of this work is to prove the capability

of TRG to predict, given a task performed by a user, which
are the tasks most likely to be performed in the near future.
We exploit this capability to build a novel task recommender

system that considers as “related” exactly those tasks that
TRG predicts to be executed next.

The main idea is to retrieve the set R
m

(T
j

) of collective
tasks that are the most related to collective task T

j

, which
is currently performed by a user. In turn, from R

m

(T
j

) we
select the most relevant tasks to be returned as recommen-
dations to the current user.

Definition 3.2 (Task Recommendations). Given a

task relation graph TRG = (T , E, w), and a set of col-

lective tasks T ⇤ ✓ T , compute the set R
m

(T ⇤) ✓ (T \ T ⇤),
such that:

– |R
m

(T ⇤)| = m;

– R
m

(T ⇤) \ T ⇤ = ;;
– if T

i

2 T ⇤ and T

j

2 R
m

(T ⇤) then w(T
i

, T

j

) � w(T
h

, T

k

)
for all T

h

2 T ⇤ and T

k

2 T \ R
m

(T ⇤).

In other words, the top-m recommended tasks R
m

(T ⇤)
are those reachable from T ⇤ on the TRG by following the
edges with the maximum weighting scores.

Finally, we remark that we are not proposing a user inter-
face for task recommendation, which involves other issues,
such as labeling the set of tasks R

m

(T ⇤), and that are be-
yond the scope of this work.

4. EXPERIMENTS
In this section, we present the experimental setup used to

generate our TRG model. Moreover, we assess the validity
of TRG on a concrete application by evaluating the quality
of the task recommendations it is able to provide.

4.1 Experimental Setup
All the experiments were conducted on the 2006 AOL

query log QL, which is a very large, long-term collection,
consisting of about 20 million Web queries issued by ap-
proximately 657, 000 users1. For our tests, we referred to
a smaller dataset QL

top�600 ⇢ QL, which contains the 600
user sessions with the highest total number of queries yet
limited to the first week of logging. QL

top�600 consists of
58,037 queries, meaning an average of about 97 queries per
user over a week, and about 14 queries per user every day.

QL
top�600 was first preprocessed via query stopwords re-

moval and stemming [15], thereby it was randomly parti-
tioned in two disjoint subsets A and B of user sessions. The
first subset A had 48,257 queries issued by UA = 500 users,
and it has been used as the training set for building TRG.
Instead, B had 9,780 queries issued by UB = 100 users, and
it has been used as the test set to evaluate the task recom-
mendations. Both A and B are available to download2, 3.

4.2 Building and Exploiting TRG
In order to build TRG from A, we followed the two-steps

methodology described in Section 2. After the first cluster-
ing step, we discovered a set of user tasks ⇥A, |⇥A| = 8, 301,
also available to download4.

Then we clustered the user tasks in ⇥A, thereby obtaining
a new set of collective tasks T . To this end, we evaluated
two clustering approaches (i.e., partitional vs. agglomera-

tive) included in the CLUTO5 toolkit. In addition, both
approaches needed three input parameters: (i) the similar-
ity measure, (ii) the objective function, and (iii) the final
number K of clusters. For the first choice, we used both co-

sine similarity and the Pearson’s correlation coe�cient. For
the second one, we maximized the intra-cluster similarity.
Lastly, in order to devise a reasonable value K of clusters,

1
http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

2
http://bit.ly/Tv6WkX

3
http://bit.ly/WndztU

4
http://bit.ly/UHRtfP

5
http://glaros.dtc.umn.edu/gkhome/views/cluto

we exploited a common empirical heuristic, also known as
the “elbow method”. Roughly, we select a number K = K̄

of clusters, such that for any K > K̄ the slope of our ob-
jective function appears to increase lesser than what it does
for K < K̄. The motivation behind this method is that it
suggests a number of clusters so that adding another cluster
does not give much better modeling of the data.

Several solutions have been tested by combining all the
above parameters. Eventually, we chose the partitional clus-
tering in conjunction with the cosine similarity. This al-
gorithm computes the final solution by performing a se-
quence of K � 1 repeated bisections, starting from an ini-
tial cluster containing all the user tasks of the collection.
This method has proven to outperform other tested solu-
tions when compared to a ground-truth of collective tasks,
which was manually built in advance by human annotators.
Finally, we came up with a set of K = 1, 024 collective tasks
T = {T1, T2, . . . , T1024}.

On the basis of the edge weighting functions in Eq. (1),
(2), and (3), respectively, we built three versions of TRG,
then exploited to generate task recommendations for the
users of the test set B. Note that using di↵erent thresholds ⌘,
we can prune these graphs, thus obtaining di↵erent models.
For the first two TRGs, we varied ⌘ = min supp from 0.4%
up to 100%. For the last TRG, we varied ⌘ = min conf

from 5% up to 100%.
In order to evaluate these TRGs on the test set B, we

mined from B a set of user tasks ⇥B
6, |⇥B| = 1, 762, as we

did for the training set A.
However, since no direct mapping exists from these user

tasks to the collective tasks T identified from A, namely
the nodes of TRGs, we needed to “guess”, for each user task
✓

u

2 ⇥B, the most suitable collective task T

0 2 T to include
✓

u

, where u 2 UB. To this end, we defined the mapping
function g : ⇥B 7�! T , as follows:

g(✓
u

) = T

0 = argmax
T2T

{sim(✓
u

, T)}, (4)

where sim(✓
u

, T) was the cosine similarity between the vec-
tor space representations of the user task ✓

u

and the collec-
tive task T 2 T , respectively.

Finally, task recommendations were provided according
to the scheme described in Def. 3.2. In particular, given a
user task ✓

u

, and the associated collective task T

0 = g(✓
u

),
we looked at TRG and we suggested the top-m neighboring
tasks R

m

(T
c

), i.e., the m collective tasks, directly reach-
able from T

0, whose corresponding edges have the highest
weighting values.

4.3 Precision of Task Recommendations
Evaluating the quality of provided suggestions is a well-

known issue in traditional recommender systems. Indeed,
the primary aim of recommender systems is to enhance user’s
satisfaction. Unfortunately, no standard measure of user’s
satisfaction exists, and most approaches evaluate the accu-
racy of provided suggestions using o✏ine assessments. There-
fore, we start measuring the precision of suggestions gener-
ated by our task recommender system. This in turn refers
to the precision of TRG in predicting, given a currently per-
forming task, which tasks a user might likely execute next.
In order to measure the precision of provided recommen-

dations, each sequence of user tasks ⇥
u

2 ⇥B, u 2 UB, was

6
http://bit.ly/YgCDDg

first subdivided into two subsequences, the former ⇥
u1 con-

taining 1/3 of user tasks, and the latter ⇥
u2 the remaining

2/3. By using Eq. (4), we got the two sets of collective tasks:

⇥
u1 = {g(✓

u

) | ✓
u

2 ⇥
u1}, ⇥

u2 = {g(✓
u

) | ✓
u

2 ⇥
u2}.

The first set of collective tasks ⇥
u1 was used to generate

task recommendations, which in turn were evaluated on the
second one, i.e., ⇥

u2.
According to Def. 3.2, the set of generated suggestions for

the collective tasks in ⇥
u1 was R

m

(⇥
u1), where no collective

task of ⇥
u1 was suggested, i.e., R

m

(⇥
u1) ✓ (T \⇥

u1).
Thus, for each user session ⇥

u

, u 2 UB, we computed the
precision p(⇥

u

) as follows:

p(⇥
u

) =
|R

m

(⇥
u1) \⇥

u2|
|R

m

(⇥
u1)|

. (5)

The precision of all the user sessions in the test set B was
then computed as follows:

p(⇥B) =

P
⇥u2⇥B

p(⇥
u

)

|⇥B|
. (6)

Furthermore, we had to compare the precision of the task
recommendations obtained from the three di↵erent TRGs,
built as specified in Section 4.2. In addition, each TRG may
have many instances, since it can be gradually pruned by
increasing its associated threshold ⌘. For each TRG, we
argued that there existed a value of ⌘, which corresponded
to a particular TRG instance maximizing the precision of
task recommendations.

In order to contrast a TRG instance with another, we
checked if they were comparable, by implicitly looking at
their graph connectivity. To this end, we measured the pro-
portion of collective tasks T 2 ⇥

u1 that were able to provide
at least one task to recommend. More formally, we defined
the coverage c(⇥

u

), as follows:

c(⇥
u

) =
|{T 2 ⇥

u1 | R
m

(T) > 0}|
|⇥

u1|
. (7)

We derived the value of coverage for all the user sessions in
B, as follows:

c(⇥B) =

P
⇥u2⇥B

c(⇥
u

)

|⇥B|
. (8)

Obviously, the coverage of a TRG is inversely proportional
to the threshold ⌘. When ⌘ increases, edges in the graph
are pruned and, consequently, the coverage decreases.

Fig. 3 shows the precision of the top-k recommendations,
provided by leveraging the various TRG models for both
medium- and large-sized sessions, as a function of the cor-
responding coverage. Specifically, the plots report the out-
comes obtained by di↵erent model instances, each built by
using a given parameter setting, e.g., a specific threshold ⌘

(minimum support or confidence).
The medium-sized test sessions contain between 9 and 19

user tasks, and the large-sized more than 19. Also, they are
significant representatives of the whole test set B, since they
account for about 79% of the total number of test sessions.

We compared the above results with a baseline approach,
which, for a given set of tasks, generated the set of recom-
mended tasks by uniformly choosing them among the set of
all possible tasks. In all these cases, the uniform approach
provided the lowest values of precision, as expected.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-1 suggestions in medium-sized sessions

uniform (baseline)
seq-supp

ar-supp
ar-conf

(a)

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-3 suggestions in medium-sized sessions

uniform (baseline)
seq-supp

ar-supp
ar-conf

(c)

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-5 suggestions in medium-sized sessions

uniform (baseline)
seq-supp

ar-supp
ar-conf

(e)

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-1 suggestions in largest-sized sessions

uniform (baseline)
seq-supp

ar-supp
ar-conf

(b)

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-3 suggestions in largest-sized sessions

uniform (baseline)
seq-supp

ar-supp
ar-conf

(d)

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Pr
ec

is
io

n
(%

)

Coverage (%)

Top-5 suggestions in largest-sized sessions

uniform (baseline)
seq-supp

ar-supp
ar-conf

(f)

Figure 3: Precision vs. Coverage for top-1, top-3, and top-5 task recommendations.

From all the plots depicted in Fig. 3 we can draw general
conclusion, which are valid independently of the number k =
{1, 3, 5} of provided recommendations.

First of all, the very best value of precision is obtained
when the weights on the edges of TRG were computed with
the association rule score of Eq. (2), namely when using
the support of learned association rules. In particular, we
obtain high values of precision both for medium- and large-
sized sessions. For instance, if we limit to top-1 suggestions,
we observe the precision evaluates to 41.2% and 50.0% (see
Fig. 3(a) and 3(b), respectively).

The second observation concerns the di↵erent behaviors of
medium- and large-sized sessions when coverage increases.
In general, by increasing coverage we were able to produce
more recommendations thus necessarily reducing the preci-
sion. However, this behavior appears significantly smoother
in medium- than in larger-sized sessions. Indeed, preci-
sion in medium-sized sessions tends to remain “stable” or to
gracefully degrade even for larger values of coverage. Again
considering top-1 recommendations, we note that precision
evaluates to 36.3% when coverage is approximately 47.7%.
Thereby, precision is still close to its maximum (i.e., 41.2%),
which instead is obtained with a smaller value of coverage
(i.e., about 13.0%). In contrast, coverage seems to a↵ect the
precision of recommendations for large-sized sessions.

This depends on the fact that the first third of the se-
quence used to generate suggestions is shorter in medium-
than in large-sized sessions. Intuitively, by increasing the
coverage the likelihood that the first third of large-sized ses-
sions already contain tasks that are provided as suggestions
increases as well. The precision drops because these dupli-
cate tasks are filtered out from the final set of suggestions.

4.4 Examples of Task Recommendations
It is worth noting that our recommendation mechanism

lies at a higher level of abstraction than traditional query
suggestion schemes. Indeed, we also show some examples
derived from our test set, which clarify how and why our
task recommender solution is substantially di↵erent from
existing query suggestion.

Performed Tasks/Queries Recommended Tasks

Home Furnitures Home Gardening
cottage garden

beach house cottage garden roses

· · ·
· · ·

beach house vanity

Kitchen Decor Kitchen Supplies
dining room stoves

· · ·
· · ·

Table 1: Recommended and performed tasks.

First, the ability of our technique in predicting tasks that
users are going to execute in the near future is remarked in
Tab. 1. The left column of this table shows tasks that a
user planned to perform by issuing a set of queries, which
appear below the task label

7. In the right column is shown a
suggested task that actually the same user executes during
her next searches by issuing the underlined queries.
7
Task labels have been manually generated in advance.

On the other hand, Tab. 2 shows task recommendations
that are not performed by any user in our test set. Anyway,
it is evident that these recommendations are very relevant to
the task the user is performing because they might provide
hints on “what task to do next”. To clarify this better, we
report some of the most representative queries contained in
each collective task just below its label.

Performed Tasks/Queries Recommended Tasks

Child Entertainment Child Games
baby shower games

fables baby horse

· · · Child Dressing
· · · baby gap

baby fables Child Health
baby emotional disease

University University Sports
university university sports

· · · university basketball

· · · University Information
duke university university tuition

Table 2: Recommended and surprising tasks.

4.5 Query vs. Task Recommendation
Up to now, we have evaluated our task recommender sys-

tem in terms of its precision in predicting future tasks. In
this section, we discuss the reasons why our proposed so-
lution di↵ers from existing query suggestion mechanisms,
by comparing it to a state-of-the-art query suggestion ap-
proach, based on the query-flow graph (QFG) [7, 8]. To
this end, we used the same experimental setup as described
above in Section 4.3. First, we learned the QFG model on
the same training set A, illustrated in Section 4.1. Then,
we used the test set B for evaluating QFG recommenda-
tions. Each sequence of user tasks ⇥

u

2 ⇥B, u 2 UB, was
divided into two disjoint portions: the first ⇥

u1 containing
1/3 of user tasks was used to ask QFG for suitable query
suggestions, whereas the second ⇥

u2 included the remaining
2/3, and it is used for evaluation purposes. However, since
the QFG was designed for recommending queries, we had
to “roll back” each ⇥

u

into its original sequence of queries
S
u

. Then, for each user task ✓

i

u

2 ⇥
u1 and for each query

q 2 ✓

i

u

, we retrieved the set of top-1, top-3, and top-5 recom-
mended queries returned by the QFG. Thereby, we checked
if the suggested queries q0 were actually part of ⇥

u2. If this
was the case, we figured out which user task ✓

j

u

2 ⇥
u2 were

including q

0. Eventually, the two queries q and q

0 belonged
to two distinct collective tasks if g(✓i

u

) 6= g(✓j
u

). In the end,
we aimed at measuring the proportion of this recommended
queries q

0 belonging to a collective task that was di↵erent
from the one where the original query q lived.

From our results, the vast majority of the suggestions gen-
erated by QFG resides in the same collective task of the
queries that originated them. In particular, about 99.7% of
the top-1 QFG suggestions lives in the same task of their
original queries. Of course, this percentage decreases as
the number of generated suggestions increase, because the
chance of finding recommended queries that belong to mul-
tiple tasks becomes higher. Thus, about 83.8% of top-3 and
72.3% of top-5 recommended queries reside in the same task
of their original queries. Indeed, this is not an unexpected

result, since QFG recommendations for a certain query q

contain those queries that appear immediately next to q with
high probability. From a query-by-query perspective, this is
certainly reasonable, since users are assumed to keep inter-
ested in the same task from one query to the next. However,
this approach becomes unsatisfactory when we go up to a
task-by-task point of view, where users are instead supposed
to perform multiple tasks for reaching complex missions.

Nevertheless, since a very small amount of suggested que-
ries led users towards new tasks, we also evaluated the “di-
versity” of provided recommendations, by measuring the
number of tasks covered by all the suggested queries. About
15.1% (23.8%) of top-3 (top-5) suggestions led to 2 distinct
tasks, respectively, only 3.5% of top-5 suggestions cover 3
tasks, and a very small fraction of them (i.e., about 0.4%)
refer to 4 or 5 tasks.

Globally, top-1 suggestions refer to only 1 task on average
whereas for top-3 and top-5 suggestions the average diversity
is about 1.2 and 1.3 tasks, respectively.

For the sake of completeness, we also measured the preci-
sion of QFG recommendations according to Eq.(6). To this
end, we computed the proportion of collective tasks behind
the suggested queries that were correctly mapped to the col-
lective tasks in ⇥

u2. Actually, no significant di↵erence be-
tween top-1, top-3, and top-5 suggestions was evidenced,
and precision we obtained was very low (i.e., about 2.1%).

Altogether, these results highlighted that a state-of-the-
art query suggestion technique like QFG-based is suitable
for driving Web search engine users inside the same task
they are currently performing. Our experiments revealed
that QFG-based query suggestion is not designed and cannot
be adapted to supply “high-level” task recommendations, as
instead allowed by our proposed method.

Concretely, we claim that modern Web search engines
should integrate existing query suggestion tools with novel
task suggestion techniques, thus giving users the chance of
either staying in their current task or jumping to other tasks
for achieving complex missions more quickly.

5. RELATED WORK
Search engine query logs record precious information about

the search activities of users [2]. Extracting valuable knowl-
edge from such data may help improve both the e↵ectiveness
and the e�ciency of search engines [1].

Many works concerning query log mining aim to under-
stand how people search the Web on a query-by-query per-
spective. Broder [9] conducted the first study attempting to
classify Web queries with respect to their search intents, and
introduced a widely used query taxonomy. Boldi et al. [7]
proposed the query-flow graph (QFG) as a model for rep-
resenting data collected in search engine query logs. Intu-
itively, in the QFG a directed edge from query q to query
q

0 means that the two queries are likely to refer to the same
search need. Any path over the QFG may be seen as a
searching behavior, whose likelihood is given by the strength
of the edges along the path. The authors proved the useful-
ness of the model in two concrete applications, i.e., session
boundary detection and query recommendation.

Jones and Klinkner [12] presented the first high-level, task-
by-task analysis of user search behavior, by introducing the
concept of hierarchical search. They argued that within a
user’s query stream it is possible to recognize complex search

missions, which are in turn composed of simpler search goals,

i.e., our user task, while a search mission is a set of topically-
related information needs, resulting in one or more goals.
The authors investigated how to learn a binary classifier,
aimed to precisely detect whether two queries belong to the
same goal or not. Mei et al. [14] presented a framework to
analyze sequences of user search activities. This framework
adopts the same hierarchical model introduced by Jones and
Klinkner [12], and is able to capture sequences of user be-
havior at multiple levels of granularity. Donato et al. [10]
developed SearchPad, a novel Yahoo! application. It is still
built on the top of the hierarchical structure of search be-
havior proposed in [12], and is able to automatically iden-
tify search missions “on-the-fly”, as the user interacts with
the search engine. Guo et al. [11] introduced the concept
of intent-aware query similarity, namely a novel approach
for computing query pair similarity, which takes into ac-
count the potential search intents behind user queries, and
then measures query similarity under di↵erent intents using
intent-aware representations. The authors showed the use-
fulness of their approach by applying it to query recommen-
dation, thereby suggesting diverse queries in a structured
way to search users. More recently, Kotov et al. [13] pro-
posed a classification framework for modeling and analyzing
user search behavior spanning over multiple search sessions.
The authors focused on two problems: (i) given a user query,
identify all related queries from previous sessions that the
user has issued, and (ii) given a multi-query task for a user,
predict whether the user will return to this current task in
the future. Unlike our approach, they did not tackle the
problem of predicting new tasks, but they only aimed at
guessing whether or not a user will ever perform again the
same task she is currently executing. In fact, to the best of
our knowledge, our solution is the first proposed technique
to discover, model, predict, and finally recommend tasks to
search engine users, thus providing an overall framework for
the task-by-task Web search.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the first proposal for a novel

task recommender system, which generates task recommen-

dations on the basis of the task-by-task (instead of the classi-
cal query-by-query) behavior of several search engine users.

This ambitious goal was achieved by firstly discovering the
tasks from the stream of queries stored in a query log using of
a two-step clustering technique. Furthermore, we introduced
the Task Relation Graph (TRG) as a model for capturing
any relationship between detected tasks. In TRG, each task
is a node, and any edge connecting two tasks is weighted
by the likelihood of those tasks being related to each other.
We proposed three task relatedness scores learned from the
query log, which lead to three distinct TRG models.

We conducted an intensive experimental phase on a real-
world query log in order to measure the ability of each model
in predicting and covering the actual tasks that users were
going to perform next. Task predictions were in turn used to
generate task recommendations whose precision and cover-
age are significantly higher than a baseline approach, which
instead consisted in suggesting tasks uniformly. In addition,
even if task recommendations were not part of future user
requests, we have shown that they could be anyway“surpris-
ing”. Then, we performed a set of additional experiments to
show that our task recommender addressed a new problem,
which existing query suggestion is not able to tackle.

We plan to investigate several research directions in the
future. First, advanced task representations, as opposite to
simple bag-of-queries, could allow to suggest more interest-
ing “items” to search engine users at search-time. In addi-
tion, TRG might be exploited for many sound applications
other than task recommendation, such as task-based adver-
tisement, mission discovery, etc. Finally, automatic task
labeling might help build a “taxonomy of Web tasks”.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the partial support

of projects MIDAS (FP7 EU Grant Agreement no. 318786),
InGeoCloudS (CIP-PSP EU Grant Agreement no. 297300),
and MIUR PRIN ARS TechnoMedia. Finally, we acknowl-
edge the authors of [7] and the Yahoo! Research Labs in
Barcelona, Spain, for providing us their query-flow graph

implementation, and Dr. Franco Maria Nardini for adapt-
ing this implementation to our needs.

8. REFERENCES
[1] F. Silvestri, R. Baraglia, C. Lucchese, S. Orlando, and

R. Perego. (Query) history teaches everything, including
the future. In LA-WEB 2008, pp. 12–22. IEEE CS 2008.

[2] F. Silvestri. Mining Query Logs: Turning Search Usage

Data into Knowledge. Foundations and Trends in
Information Retrieval, 4(1-2):1–174, 2010.

[3] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and
G. Tolomei. Identifying task-based sessions in search engine
query logs. In WSDM ’11, pp. 277–286. ACM 2011.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB ’94, pp.
487–499, 1994.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE ’95, pp. 3–14, 1995.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley 1999.

[7] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and
S. Vigna. The query-flow graph: model and applications. In
CIKM ’08, pp. 609–618. ACM 2008.

[8] P. Boldi, F. Bonchi, C. Castillo, D. Donato, and S. Vigna.
Query suggestions using query-flow graphs. In WSCD ’09,
pp. 56–63. ACM 2009.

[9] A. Broder. A taxonomy of web search. SIGIR Forum,
36:3–10, September 2002.

[10] D. Donato, F. Bonchi, T. Chi, and Y. Maarek. Do you
want to take notes?: identifying research missions in yahoo!
search pad. In WWW ’10, pp. 321–330. ACM 2010.

[11] J. Guo, X. Cheng, G. Xu, and X. Zhu. Intent-aware query
similarity. In CIKM ’11, pp. 259–268. ACM 2011.

[12] R. Jones and K. L. Klinkner. Beyond the session timeout:
automatic hierarchical segmentation of search topics in
query logs. In CIKM ’08, pp. 699–708. ACM 2008.

[13] A. Kotov, P. N. Bennett, R. W. White, S. T. Dumais, and
J. Teevan. Modeling and analysis of cross-session search
tasks. In SIGIR ’11, pp. 5–14. ACM 2011.

[14] Q. Mei, K. Klinkner, R. Kumar, and A. Tomkins. An
analysis framework for search sequences. In CIKM ’09, pp.
1991–1994. ACM 2009.

[15] M. F. Porter. An Algorithm for Su�x Stripping, pages
313–316. Morgan Kaufmann Publishers 1997.

[16] A. Spink, M. Park, B. J. Jansen, and J. Pedersen.
Multitasking during web search sessions. IPM,
42(1):264–275, January 2006.

[17] Y. Zhao and G. Karypis. Evaluation of hierarchical
clustering algorithms for document datasets. In CIKM ’02,
pp. 515–524. ACM 2002.

[18] Y. Zhao and G. Karypis. Empirical and theoretical
comparisons of selected criterion functions for document
clustering. Machine Learning, 55(3):311–331, June 2004.

