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In this paper we investigate some issues and solutions related to the design of a Data Warehouse
(DW), storing several aggregate measures about trajectories of moving objects. First we discuss
the loading phase of our DW which has to deal with overwhelming streams of trajectory obser-
vations, possibly produced at different rates, and arriving in an unpredictable and unbounded
way. Then, we focus on the measure presence, the most complex measure stored in our DW.
Such a measure returns the number of distinct trajectories that lie in a spatial region during a
given temporal interval. We devise a novel way to compute an approximate, but very accurate,
presence aggregate function, which algebraically combines a bounded amount of measures stored
in the base cells of the data cube.

We conducted many experiments to show the effectiveness of our method to compute such an
aggregate function. In addition, the feasibility of our innovative trajectory DW was validated with
an implementation based on Oracle. We investigated the most challenging issues in realizing our
trajectory DW using standard DW technologies: namely, the preprocessing and loading phase,
and the aggregation functions to support OLAP operations.

Categories and Subject Descriptors: E.2 [DATA STORAGE REPRESENTATIONS]:

General Terms: Design

Additional Key Words and Phrases: Data Warehouse, Aggregate Function

1. INTRODUCTION

Modern location-aware devices and applications deliver huge quantities of spatio-
temporal data concerning moving objects, which must be either quickly processed
for real-time applications, like traffic control management, or carefully mined for
complex, knowledge discovering tasks. Even if such data usually originate as timed,
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located observations of well identified objects, they must often be stored in aggre-
gate form, without identification of the corresponding moving objects, either for
privacy reasons, or simply for the sheer amount of data which should be kept on-
line to perform analytical operations. Such an aggregation is usually a complex
task, and prone to the introduction of errors which are amplified by subsequent
aggregation operations.
For these reasons, we propose an approach to the problem which is based on

classical Data Warehouse (DW) concepts, so that we can adopt a well established
and studied data model, as well as the efficient tools and systems already developed
for such a model. Our DW is aimed at defining, as basic elements of interest, not
the observations of the moving objects, but rather their trajectories, so that we can
study properties such as average speed, travelled distance, maximum acceleration,
presence of distinct trajectories. We assume the granularity of the fact table given
by a regular three-dimensional grid on the spatial and temporal dimensions, where
the facts are the set of trajectories which intersect each cell of the grid, and the
measures are properties related to that set.
One of the main issues to face is the efficient population of the Trajectory DW

(TDW) from streams of trajectory observations, arriving in an unpredictable and
unbounded way, with different rates. The challenge is to exploit a limited amount
of buffer memory to store a few incoming past observations, in order to correctly
reconstruct the various trajectories, and compute the needed measures for the base
cells, reducing as much as possible the approximations.
The model of our TDW and the corresponding loading issues have been intro-

duced in [Braz et al. 2007]. In this paper we discuss in detail the loading and
computation of a complex aggregate measure, the presence, which can be defined
as the number of distinct trajectories lying in a cell. Such a measure poses non triv-
ial computational problems. On one hand, in the loading phase, only a bounded
amount of memory can be used for analysing the input streams. This suffices for
trajectory reconstruction, but in some cases we may still count an object, with mul-
tiple observations in the same cell, more than once. Hence the measure presence
computed for base cells is in general an approximation of the exact value. A second
approximation is introduced in the roll-up phase. In fact, since the roll-up function
for the measure presence is, as distinct count, a holistic function, it cannot be com-
puted using a finite number of auxiliary measures starting from sub-aggregates. Our
proposal is based on an approximate, although very accurate, presence aggregate
function, which algebraically combines a bounded amount of other sub-aggregate
measures, stored in the base cells of the grid.
The paper will provide a thorough analysis of the above mentioned technique,

focusing, in particular, on the errors introduced by the approximations. From our
tests, our method turned out to yield an error which is sensibly smaller than the
one of a recently proposed algorithm [Tao et al. 2004], based on sketches, which are
a well known probabilistic counting method in database applications [Flajolet and
Martin 1985].
We also realized a prototype of our TDW, in order to investigate its feasibility

when using commodity warehousing tools, like the Oracle one. The first challenge
is the ETL process of the DW: by exploiting a few memory, we have to transform
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a stream of trajectory observations on-the-fly and aggregate them to update the
base cells of our spatio-temporal cube. Using a Java application, performing the
data transformation, and a specific loading method available in the Oracle suite,
we were able to elaborate and load about 7000 observations per second. The other
challenge is the efficient computation of our approximate aggregate function, used
to roll-up the presence measure.
The rest of the paper is organised as follows. In Section 2 we present some related

work whereas in Section 3 we discuss the issues related to the representation of
trajectories. In Section 4 we recall our TDW model and in Section 5 we describe
the loading phase of the measure presence and the aggregate functions supporting
the roll-up operation. Then in Section 6 the approximation errors of the loading
and roll-up phases are studied, both analytically and with the help of suitable
tests. Section 7 focuses on our experience in designing a prototype of our TDW
using Oracle. Finally, Section 8 draws some conclusion.

2. RELATED WORK

Research on spatial multidimensional data models is relatively recent. The pioneer-
ing work of Han et al. [Han et al. 1998] introduces a spatial data cube model which
consists of both spatial and non-spatial dimensions and measures. Additionally, it
analyses how OLAP operations can be performed in such a spatial data cube. Then,
several authors have proposed data models for spatial data warehouses at a con-
ceptual level (e.g., [Pedersen and Tryfona 2001; Damiani and Spaccapietra 2006]).
Unfortunately, none of these approaches deal with objects moving continuously in
time.
Research on moving objects has focused on modelling [Sistla et al. 1997; Güting

et al. 2000] and on indexing such spatio-temporal data [Kollios et al. 1999; Pfoser
et al. 2000], whereas the definition of TDWs is still an open problem. An issue that
is gaining increasingly interest in the last years and that is relevant for the devel-
opment of a TDW concerns the specification and efficient implementation of the
operators for spatio-temporal aggregation. Nevertheless a standard set of operators
(e.g, operators like Avg, Min, Max in SQL) has not yet been defined. A first com-
prehensive classification and formalisation of spatio-temporal aggregate functions is
presented in [Lopez et al. 2005]. The aggregate operations are defined as functions
that, applied to a collection of tuples, return a single value. To generate the collec-
tion of tuples to which these operations are applied, the authors distinguish three
kinds of methods: group composition, partition composition and sliding window
composition. On the other hand, in [Papadias et al. 2002; Tao and Papadias 2005]
techniques for the computation of aggregate queries are developed based on the
combined use of specialised indexes and materialisation of aggregate measures. For
instance [Papadias et al. 2002] introduces the aRB-tree, which consists of two types
of indexes: a host index and some measure indexes. The host index is an R-tree
which manages the region extents, and associates with these regions an aggregate
information over all the timestamps of interest. Additionally, for each entry of the
host index, a B-tree containing the time-varying aggregate data is defined.
As shown in [Tao et al. 2004], most of these indexes, like aRB-trees, can suffer

from the distinct counting problem, i.e., if an object remains in the query region for
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several timestamps during the query interval, it will be counted multiple times in
the result. In fact such indexes store, for each region, an aggregate measure and
they forget the identifiers of the objects.
To cope with this issue, [Tao et al. 2004] proposes an approach which com-

bines spatio-temporal indexes with sketches, a traditional approximate counting
technique based on probabilistic counting [Flajolet and Martin 1985]. The index
structure is similar to aRB-trees but differs from them in the querying algorithms
since one can exploit the pruning power of the sketches to define some heuristics
which allow to reduce the query time.
It is worth noticing that the above cited works on aggregation methods do not

take into account the fact that the spatio-temporal observations belong to moving
objects. Instead they treat such observations as unrelated points. For a data ware-
house of trajectories, we will show that it is important to exploit such relationships
existing among observations. For example, in order to compute the approximate
number of distinct trajectories intersecting a given spatio-temporal area, in this
paper we exploit the knowledge about how many objects move from one region to
the close ones, thus improving the result of roll-up operations.

3. TRAJECTORY REPRESENTATION

In real-world applications the movements of a spatio-temporal object, i.e. its tra-
jectory, is often given by means of a finite set of observations. This is a finite subset
of points, called sampling, taken from the actual continuous trajectory. Figure 1(a)
shows a trajectory of a moving object in a 2D space and a possible sampling, where
each point is annotated with the corresponding time-stamp. It is reasonable to
expect that observations are taken at irregular rates for each object, and that there
is no temporal alignment between the observations of different objects.
Formally, let T S be a stream of samplings of 2D trajectories T S = {Ti}i∈{1,...,n}.

Each Ti is the sampling for an object trajectory: Ti = (IDi, Li), where IDi is the
identifier associated with the object and Li = {L1

i , L
2
i , . . . , L

Mi
i } is a sequence of

observations. Each observation Lj
i = (tji , xj

i , yj
i ) represents the presence of an

object at location (xj
i , yj

i ) and time tji . The observations are temporally ordered,
i.e., tji < tj+1

i .
In many situations, e.g., when one is interested in computing the cumulative

number of trajectories in a given area, an (approximate) reconstruction of each
trajectory from its sampling is needed. Among the several possible solutions, we
will focus on local interpolation. According to this method, although there is not
a global function describing the whole trajectory, objects are assumed to move be-
tween the observed points following some rule. For instance, a linear interpolation
function models a straight movement with constant speed, while other polynomial
interpolations can represent smooth changes of direction. The linear (local) inter-
polation, in particular, seems to be a quite standard approach to the problem (see,
for example, [Pfoser et al. 2000]), and yields a good trade-off between flexibility and
simplicity. Hence in this paper we will adopt this kind of interpolation. However, it
is straightforward to use a different interpolation, based, for example, on additional
information concerning the environment traversed by the moving objects.
Starting from the stream of samplings, T S, we want to investigate if DW tech-
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Figure 1. (a) A 2D trajectory with a sampling, (b) a DW example, and (c) a concept (set-grouping)
hierarchy.

nologies [Chaudhuri and Dayal 1997; Han et al. 2005], and thus the concept of
multidimensional and multilevel data model, can be used to store and compute
specific measures regarding trajectories.

4. FACTS, DIMENSIONS, MEASURES AND AGGREGATE FUNCTIONS

We define a DW model by means of a star schema, as simple and generic as pos-
sible. The facts of our TDW are the set of trajectories which intersect each cell
of the grid. Some typical properties we want to describe, i.e., the measures, are
the number of trajectories, their average, maximum/minimum speed, the covered
distance. The dimensions of analysis consist of the spatial dimensions X, Y rang-
ing over spatial intervals, and the temporal dimension T ranging over temporal
intervals. We assume a regular three-dimensional grid obtained by discretizing the
corresponding values of the dimensions and then we associate with them a set-
grouping hierarchy. A partial order can thus be defined among groups of values, as
illustrated in Figure 1(c) for a temporal or a spatial dimension. Note that in the
TDW of Figure 1(b), the basic information we represent concerns the set of trajec-
tories intersecting the spatio-temporal cell having for each X, Y, or T dimensions
as minimum granularity 30 units, measured in the corresponding unit of measure.
The hierarchy is not explicitly represented (we refer the reader to Figure 4 for a
more complete picture).
It is interesting to investigate whether some pre-computation must be carried

out on the trajectory observations in order to feed the TDW. Some measures re-
quire little pre-computation, and can be updated in the TDW as soon as single
observations of the various trajectories arrive, others need all the observations of
a trajectory to be received, before updating the TDW. In [Braz et al. 2007] we
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classified the measures according to an increasing amount of pre-calculation effort.
For instance, in order to compute the average, maximum/minimum speed and the
covered distance by the trajectories intersecting a cell we need two consecutive ob-
servations since we have to infer the trajectory route through interpolation. On the
other hand, the measure number of observations falling in a cell can be updated
directly using each single observation.
We can build the spatial data cube [Gray et al. 1997] as the lattice of cuboids,

where the lowest one (base cuboid) references all the dimensions at the primitive
abstraction level, while the others are obtained by summarising on different subsets
of the dimensions, and at different abstraction levels along the concept hierarchy.
In order to denote a component of the base cuboid we will use the term base cell,
while we will simply use cell for a component of a generic cuboid.
In order to summarise the information contained in the base cells, Gray et

al. [Gray et al. 1997] categorise the aggregate functions into three classes based
on the space complexity needed for computing a super-aggregate starting from a
set of sub-aggregates already provided, e.g., the sub-aggregates associated with the
base cells of the DW. The classes are the following:

(1) Distributive. The super-aggregates can be computed from the sub-aggregates.
(2) Algebraic. The super-aggregates can be computed from the sub-aggregates

together with a finite set of auxiliary measures.
(3) Holistic. The super-aggregates cannot be computed from sub-aggregates, not

even using any finite number of auxiliary measures.

For example, the super-aggregates for the distance and the maximum/minimum
speed are simple to compute because the corresponding aggregate functions are
distributive. In fact once the base cells have been loaded with the exact measure, for
the distance we can accumulate such measures by using the function sum whereas
for maximum/minimum speed we can apply the function max/min. The super-
aggregate for the average speed is algebraic: we need the pair of auxiliary measures
〈distance, time〉 where distance is the distance covered by trajectories in the cell
and time is the total time spent by trajectories in the cell. For a cell C arising
as the union of adjacent cells, the cumulative function performs a component-wise
addition, thus producing a pair 〈distancef , timef 〉. Then the average speed in C is
given by distancef/timef .

5. THE MEASURE PRESENCE

In this paper we focus on the measure presence which returns the number of distinct
trajectories in a cell. As already remarked, a complication in dealing with such a
measure is due to the distinct count problem and this has an impact on both the
loading of the base cells and on the definition of aggregate functions able to support
the roll-up operation.

5.1 Aggregate functions

According to the classification presented in Section 4, the aggregate function to
compute the presence is holistic, i.e., it needs the base data to compute the result
in all levels of dimensions. Such a kind of functions represents a big issue for DW
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007
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technology, and, in particular, in our context, where the amount of data is huge
and unbounded. A common solution consists in computing holistic functions in an
approximate way.
We propose two alternative and non-holistic aggregate functions that approx-

imate the exact value of the presence. These functions only need a small and
constant memory size to maintain the information to be associated with each base
cell of our TDW, from which we can start computing a super-aggregate.
The first aggregate function is distributive, i.e., the super-aggregate can be com-

puted from the sub-aggregate, and it is called PresenceDistributive . We assume
that the only measure associated with each base cell is the exact (or approximate)
count of all the distinct trajectories intersecting the cell. Therefore, the super-
aggregate corresponding to a roll-up operation is simply obtained by summing up
all the measures associated with the cells. This is a common approach (exploited,
e.g., in [Papadias et al. 2002]) to aggregate spatio-temporal data. However, our
experiments will show that this aggregate function may produce a very inexact ap-
proximation of the effective presence, because the same trajectory might be counted
multiple times. This is due to the fact that in the base cell we do not have enough
information to perform a distinct count when rolling-up.
The second aggregate function is algebraic, i.e., the super-aggregate can be com-

puted from the sub-aggregate together with a finite set of auxiliary measures, and
it is called PresenceAlgebraic . In this case each base cell stores a tuple of measures.
Besides the exact (or approximate) count of all the distinct trajectories intersecting
the cell, the tuple includes other measures which are used when we compute the
super-aggregate. The additional measures are helpful to correct the errors, caused
by the duplicates, introduced by the function PresenceDistributive .
More formally, let Cx,y,t be a base cell of our cuboid, where x, y, and t identify

intervals of the form [l, u), in which the spatial and temporal dimensions are parti-
tioned. The tuple associated with the cell consists of Cx,y,t.presence, Cx,y,t.crossX ,
Cx,y,t.crossY , and Cx,y,t.crossT .

—Cx,y,t.presence is the number of distinct trajectories intersecting the cell.
—Cx,y,t.crossX is the number of distinct trajectories crossing the spatial border
between Cx,y,t and Cx+1,y,t.

—Cx,y,t.crossY is the number of distinct trajectories crossing the spatial border
between Cx,y,t and Cx,y+1,t.

—Cx,y,t.crossT is the number of distinct trajectories crossing the temporal border
between Cx,y,t and Cx,y,t+1.

Let Cx′,y′,t′ be a cell consisting of the union of two adjacent cells with respect
to a given dimension, namely Cx′,y′,t′ = Cx,y,t ∪ Cx+1,y,t. In order to compute the
super-aggregate corresponding to Cx′,y′,t′ , we proceed as follows:

PresenceAlgebraic(Cx,y,t ∪ Cx+1,y,t) = Cx′,y′,t′ .presence =

= Cx,y,t.presence + Cx+1,y,t.presence − Cx,y,t.crossX
(1)

The other measures associated with Cx′,y′,t′ can be computed in this way:

Cx′,y′,t′ .crossX = Cx+1,y,t.crossX (2)

Cx′,y′,t′ .crossY = Cx,y,t.crossY + Cx+1,y,t.crossY (3)
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Figure 2. A trajectory (a) that is correctly counted, and (b) that entails duplicates during the
roll-up.

Cx′,y′,t′ .crossT = Cx,y,t.crossT + Cx+1,y,t.crossT (4)

Equation (1) can be thought of as an application of the well known Inclusion/Exclusion
principle: |A∪B| = |A|+ |B|− |A∩B| for all sets A, B. Suppose that the elements
included in the sets A and B are just the distinct trajectories intersecting the cells
Cx,y,t and Cx+1,y,t, respectively. Hence, their cardinalities |A| and |B| exactly cor-
respond to Cx,y,t.presence and Cx+1,y,t.presence. Then Cx,y,t.crossX is intended
to approximate |A∩B|, but, notice that, unfortunately, in some cases Cx,y,t.crossX
is not equal to |A ∩ B|, and this may introduce errors in the values returned by
PresenceAlgebraic . Figure 2(a) shows a trajectory that will be correctly counted,
since it crosses the border between the two cells to be rolled-up. Conversely, Fig-
ure 2(b) shows a very agile and fast trajectory, which will be counted twice during
the roll-up, since it is not accounted in Cx,y,t.crossX , even if it should appear in
|A ∩ B|. In fact, the trajectory intersects both Cx,y,t and Cx+1,y,t, but does not
cross the X border between the two cells.
In order to understand Equations 2–4, notice that the right X border of the new

cell Cx′,y′,t′ is the corresponding X border of the rightmost cell Cx+1,y,t, hence the
number of distinct trajectories crossing the X border of Cx′,y′,t′ is Cx+1,y,t.crossX
(Equation 2). Instead, the top Y border of Cx′,y′,t′ is the union of the corresponding
borders of the component cells Cx,y,t and Cx+1,y,t. This is why in the Equation 3
we take the sum of Cx,y,t.crossY and Cx+1,y,t.crossY . Similar considerations apply
to Equation 4.

5.2 Loading phase

In this section we deal with the problem of feeding the DW, i.e., the base cells of
our base cuboid, with suitable sub-aggregate measures, from which the aggregate
functions compute the super-aggregates.
We recall that trajectory observations arrive in streams at different rates, in an

unpredictable and unbounded way. In order to limit the amount of buffer memory
needed, it is essential to store information only about active, i.e., not ended trajecto-
ries. In our simple model of trajectory sampling, since we do not have an end-mark
associated with the last observation of a given trajectory, the system module that
is responsible for feeding data decides to consider a trajectory as ended when for a
long time interval no further observation for the object has been received.
In the following we present two options to compute the sub-aggregates stored

in each base cell Cx,y,t, namely Cx,y,t.presence, Cx,y,t.crossX , Cx,y,t.crossY , and
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Trajectory Data Warehouses: Design and Implementation Issues 219

Cx,y,t.crossT , which are used by the aggregate functions PresenceDistributive and
PresenceAlgebraic .

(1) Single observations. Considering a single observation at a time, without
buffering any past observation, we can only update/increment the measure
Cx,y,t.presence. As a consequence, we cannot compute PresenceAlgebraic , since
Cx,y,t.crossX , Cx,y,t.crossY and Cx,y,t.crossT are not available.

(2) Pairs of observations. We consider a pair of observations consisting of the
currently received observation Lj

i of trajectory Ti, with the previously buffered
Lj−1

i . Using this pair of points, we can linearly interpolate the trajectory, thus
registering further presences for the cells only traversed by Ti.
Moreover, if we store in the buffer not only Lj−1

i , but also the last base cell
Cx,y,t that was modified on the basis of trajectory Ti, we can reduce the num-
ber of duplicates by simply avoiding updating the measure when Lj

i falls into
the same Cx,y,t. It is worth noting that since this method only exploits a very
small buffer, it is not able to remove all the possible duplicates from the stored
presence measures. Consider, for example, three observations of the same tra-
jectory, all occurring within the same base time interval. If the first and the
third points fall into the same cell Cx,y,t, but the second one falls outside (e.g.,
into Cx,y+1,t), this method will store a duplicate count in Cx,y,t.presence when
the third observation is encountered.
Finally, by exploiting linear interpolation, we can also identify the cross points
of each base cell, and accordingly update the various sub-aggregates Cx,y,t.crossX ,
Cx,y,t.crossY , and Cx,y,t.crossT .

5.3 Accuracy of the approximate aggregate function

Let us give an intuitive idea of the errors introduced by the aggregate function
PresenceAlgebraic , starting from the measures loaded in the base cells by the method
Pairs of observations. Notice that the overall error can be obtained as the sum of
the errors computed for each single trajectory in isolation.
Let us first consider the simplest case: a trajectory is a line segment l. In this

case, no roll-up errors are introduced in the computation of presence. In fact,
let Cx′,y′,t′ be the union of two adjacent cells, Cx,y,t and Cx+1,y,t, i.e., Cx′,y′,t′ =
Cx,y,t

⋃
Cx+1,y,t, and l intersect Cx′,y′,t′ . Then by definition:

PresenceAlgebraic(Cx,y,t

⋃
Cx+1,y,t) =

Cx,y,t.presence + Cx+1,y,t.presence − Cx,y,t.crossX

If l intersects the X border, then correctly PresenceAlgebraic(Cx′,y′,t′) = 1 + 1− 1.
Otherwise, Cx,y,t.crossX = 0, but l intersects only one of the two cells. Hence
PresenceAlgebraic(Cx′,y′,t′) = 1 + 0− 0 or PresenceAlgebraic(Cx′,y′,t′) = 0 + 1− 0.
This result can be extended to a trajectory which is composed of a set of line

segments whose slopes are in the same octant of the three-dimensional coordinate
system. Let us call uni-octant sequence a maximal sequence of line segments whose
slopes are in the same octant. Clearly, every trajectory can be uniquely decomposed
in uni-octant sequences and, in the worst case, the error introduced by the aggregate
function PresenceAlgebraic will be the number of uni-octant sequences composing a
trajectory.
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6. EVALUATING APPROXIMATE SPATIO-TEMPORAL AGGREGATES

In this section we evaluate our method to approximate the measure presence and
we are also interested in comparing it with a distributive approximation recently
proposed [Tao et al. 2004]. The method is based on sketches, a traditional technique
based on probabilistic counting, and in particular on the FM algorithm devised by
Flajolet and Martin [Flajolet and Martin 1985].

6.1 FM sketches

FM is a simple, bitmap-based algorithm to estimate the number of distinct items.
In particular, each entry in the sketch is a bitmap of length r = log UB, where
UB is an upper bound on the number of distinct items. FM requires a hash
function h which takes as input an object ID i (in our case a trajectory identifier),
and outputs a pseudo-random integer h(i) with a geometric distribution, that is,
Prob[h(i) = v] = 2−v for v ≥ 1. Indeed, h is obtained by combining a uniformly
distributed hash function h′, and a function ρ that selects the least significant 1-bit
in the binary representation of h′(i). The hash function is used to update the r-bit
sketch, initially set to 0. For every object i (e.g., for every trajectory observation in
our stream), FM thus sets the h(i)-th bit. In the most naive and simple formulation,
after processing all objects, FM finds the position of the leftmost bit of the sketch
that is still equal to 0. If k is this position, then it can be shown that the overall
object count n can be approximated with 1.29× 2k.
Unfortunately, this estimation may entail large errors in the count approxima-

tion. The workaround proposed in [Flajolet and Martin 1985] is the adoption of m
sketches, which are all updated by exploiting a different and independent hash func-
tion. Let k1, k2, . . . , km be the positions of the leftmost 0-bit in the m sketches.
The new estimate of n is 1.29× 2ka , where ka is the mean of the various ki values,
i.e. ka = (1/m)

∑m
i=1 ki. This method reduces the standard error of the estima-

tion, even if it increases the expected processing cost for object insertion. The
final method that reduces the expected insertion cost back to O(1) is Probabilistic
Counting with Stochastic Averaging (PCSA). The trick is to randomly select, for
each object to insert, one of the m sketches. Each sketch thus becomes responsible
for approximately n/m (distinct) objects.
An important feature of FM sketches is that they can be merged in a distributive

way. Suppose that each sketch is updated on the basis of a different set of objects.
We can merge a pair of sketches together, in order to get a summary of the number
of distinct items seen over the union of both sets of items, by simply taking the
bitwise-OR of the corresponding bitmaps. We can find a simple application of these
FM sketches in our TDW. First, we can exploit a small logarithmic space for each
base cell, used to store a sketch that approximates the distinct count of trajectories
seen in the corresponding spatio-temporal region. The distributive nature of the
sketches can then be used to derive the counts at upper levels of granularities, by
simply OR-ing the sketches at the lowest granularities.

6.2 Experimental Setup

Datasets. In our experiments we have used several different datasets. Most of
them are synthetic ones, generated by the traffic simulator described in [Brinkhoff
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2002], but also some real-world sets of trajectories, presented in [Frentzos et al.
2005], were used.
Due to space limitations, we present only the results produced for one of the

synthetic datasets and for one real dataset. The synthetic dataset was generated
using a map of the San Joaquin road network (US Census code 06077), and contains
the trajectories of 10000 distinct objects monitored for 50 time units, with an
average trajectory length of 170k space units. The real-world dataset contains the
trajectories of 145 school buses. The average number of sample points per trajectory
is 455, and, differently from the case of synthetic data, not all points are equally
distant in time. Since the setting does not suggest a specific granularity, we define as
a standard base granularity for each dimension the average difference of coordinate
values between two consecutive points in a trajectory. We will specify granularities
as multiples of this base granularity g. For the synthetic dataset g = (1, 2000, 2000)
and for the school buses one g = (2, 100, 100), where the granularities of the three
dimensions are in the order: t, x, y.

Accuracy assessment. Vitter et al. [Vitter et al. 1998] proposed several error
measures. We selected the one based on absolute error, which appears to be the
most suited to represent the error on data that will be summed. Instead of the
∞−norm, however, we preferred to use the 1−norm as a normalisation term, since
it is more restrictive and less sensible to outliers.
The formula we used to compute the normalised absolute error for all the OLAP

queries q in a set Q is thus the following:

Error =

∥∥∥M̃ −M
∥∥∥

1

‖M‖1
=

∑
q∈Q |M̃q −Mq|∑

q∈Q Mq
(5)

where M̃q is the approximate measure computed for query q, while Mq is its exact
value. The various queries q may either refer to base cells, or to cells at a coarser
level of granularity. In particular, we used this error measure for evaluating the
loading errors at the level of base cells, and the roll-up errors at the level of coarser
cells. In all these cases, we always applied Equation (5) to evaluate the errors
entailed by a set Q of queries at uniform granularity.

6.3 Experimental Evaluation

First we evaluate the errors in the loading phase of our TDW. During this phase,
the reconstruction of the trajectories takes place. Figures 3.(a) and 3.(b) show the
accuracy of the loaded (sub-aggregate) presence, for different granularities of the
base cells. In particular, the two figures illustrate the normalised absolute error as
a function of the size of base cells for the two datasets.
Let us focus on the curves labelled single observations. In this case we simply fed

the TDW with each single incoming trajectory observation, without introducing
any additional interpolated point. For small granularities, errors are mainly due to
the fact that some cells are traversed by trajectories, but no observation falls into
them. On the other hand, for very coarse granularities, the main source of errors
is the duplicate observations of the same trajectory within the same cell. There
exists an intermediate granularity (around 2 g for these particular datasets) which
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represents the best trade-off between the two types of errors, thus producing a small
error.

Then consider the curves labelled as observation pairs. In this case the presence
(sub-aggregate) measure of the base cells of the TDW is loaded by exploiting a
buffer, which stores information about active trajectories. For each of these tra-
jectories, the buffer only stores the last received observation. This information is
used to reduce the errors with respect to the previous feeding method, by adding
interpolated points, and also avoiding to record duplicates in the base cells. The
resulting normalised absolute error is close to 0 for small granularities, and it re-
mains considerably small for larger values. For very large granularities, a buffer that
only stores information about the last previously encountered observation does not
suffice to avoid recording duplicates in the base cells.

The other curves in Figure 3(a) and 3(b) represent the error introduced in the base
cell by approximating the presence (sub-aggregate) measure by using sketches. It is
worth noting that also to load the sketch-base cells, we added further interpolated
observations, by using the buffer during the loading phase. Although the error
slightly decreases when a larger number of sketches, m, is used for each cell, it
remains considerably larger than the curve labelled as observation pairs, except for
coarse granularities and a large number of sketches (m = 40).

The second set of tests, whose results are reported in Figures 3(c) and 3(d),
regards the errors introduced by rolling-up our cube, starting from the base cells at
granularity g. The base granularity g = 1 used for these tests was the same as the
one in Figures 3(a-b), while the method used to load the base cells was observation
pairs. Therefore the normalised absolute error at the various base cells was close to
0. In all the roll-up tests, the error is averaged by submitting many queries at a given
granularity g′ > g, g′ = n ·g. Each query computes the presence measure associated
with a distinct coarse-grain cell, obtained by aggregating different adjacent base
cells. As an example of query, eight adjacent base cells are aggregated to make one
cell of granularity 2 · g.

As shown by the corresponding curves, the distributive aggregate function (sum)
quickly reaches very large errors as the roll-up granularity increases. This is due
to the duplicated counting of the same trajectories, when they are already counted
by multiple sub-aggregates. Conversely, we obtained very accurate results with our
algebraic method, with an error always smaller than 10%, for most granularities
(except for very coarse ones and 40 sketches). Finally, the distributive function
(or) used to aggregate sketches produce much larger errors than our method, even
because such large errors are already present in the sketches stored in the base
cells. However, a nice property of sketches is that the cumulative errors do not
increase, and, are actually often reduced when rolling-up, but sketches also exploit
much more memory per cell. In case of m = 40, the memory usage of the sketch-
based method is one order of magnitude larger than our algorithm. Thus it is
remarkable that our method achieves a better accuracy in most cases, in spite of
this unfavourable bias.
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Figure 3. Errors on different datasets during the load and roll-up phases as a function of the
granularity. Granularity is expressed as a multiple of the minimal granularity g for load, and of
the base granularity g for roll-up (note logarithmic scale for both axes).

7. PROTOTYPE OF OUR TDW USING ORACLE

In this section we will focus on the implementation of our TDW. In particular we will
discuss the most challenging issues with respect to a traditional DW: namely, the
preprocessing phase to transform data to be loaded, and the aggregation functions,
necessary to support OLAP operations. As described in Section 5.2, the set of
streaming observations are not enough to correctly compute the measures, e.g.,
we have to generate new points through interpolations. Moreover, the common
aggregation functions provided by DWs are sum, max/min, average. Instead, in
our case, we have to implement a more complex algebraic function, in order to
approximate the holistic function needed to compute the measure presence in a
roll-up query.
The TDW has been implemented and tested by using the DW tools of the Or-

acle DBMS suite. We experimented different solutions to tackle the mentioned
problems: the most efficient ones use ad-hoc constructs of Oracle, but, in order to
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Figure 4. The Trajectory DW model.

have a portable software, we also tested alternative implementations which employ
standard SQL.
Let us first describe the data model for our TDW, illustrated in Figure 4. As

presented in Section 4, we define three dimension tables, two for the spatial dimen-
sion, DimX and DimY, ranging over equally sized spatial intervals, and one for the
temporal dimension, DimT, ranging over equally sized temporal intervals. For each
base interval I in each dimension, the corresponding table contains its identifier and
some attributes level1, level2, . . . , modelling a set-grouping hierarchy, defined
by the user. In particular, attribute levelj assumes as value the identifier of the
interval at the j-th level of the hierarchy including I. Referring to the simple hier-
archy shown in Figure 1(c), if I = "[60,90)", the corresponding attribute level1
contains the father of I in the hierarchy, i.e. "[60,120)". The Fact_Table has
the conjunction of the foreign keys of the dimension tables, (dimX_id, dimY_id,
dimT_id) as primary key, and presence, crossX, crossY and crossT as measures.
Since in this paper we focus on the measure Presence, the other measures, such as
distance and average speed, are not reported in the figure.
As already remarked in Section 4, the fact table contains only aggregate infor-

mation about trajectories (i.e., the number of distinct trajectories in a cell and the
number of distinct trajectories crossing the X, Y and T border of the cell). The
identifiers of the trajectories and their observations are not kept in the TDW. These
data can be stored into a Moving Object Database (MOD) [Güting and Schneider
2005], which can be useful also to extract higher level knowledge that in turn will
feed the TDW. In this context, the features of a spatial Database, like Spatial
Oracle, could be of great help for storing, querying and indexing trajectories (see
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e.g. [Pelekis et al. 2006]). In this paper, we focus only on the design of the TDW
while issues related to the MOD are not of interest.

7.1 The ETL process

In our prototype we assume that data arrive in streams of observations of the form
(id, t, x, y), ordered by time, and we extract an observation at a time from this
ordered stream.
In the transformation phase we prepare data for loading. In particular, we trans-

form the various observations into single contributions to the measures to be stored
in the various cells. Then such contributions must be grouped-by, in order to load
the actual final measures into the DW cells.
The main operations of our transformation phase consist of:

(i) transforming each observation (id, t, x, y) into a cell tuple, containing the key of
the corresponding base cell into which the observation falls into, and its contri-
bution to the cell measures;

(ii) determining, through linear interpolation, the base cells traversed by a trajec-
tory where no observation falls, and creating the relative cell tuples;

(iii) avoiding the production of duplicate contributions to the same cell for the
same trajectory. Therefore, if the current observation of a trajectory falls into
the same base cell of the last received point for the same trajectory, we avoid
producing a cell tuple.

Finally, during the loading phase of the cell tuples obtained by the previous
procedure, another transformation operation is necessary to obtain the measures
to store in a cell:

(iv) aggregating the cell tuples according to the cell key, and summing up the
corresponding measures, thus resulting into a single tuple for each cell traversed
by at least one trajectory. This tuple corresponds to the base cell to insert into
the TDW.

It is worth remarking that, in order to obtain a correct update of our TDW, this
loading procedure must occur at fixed times. In particular, if ∆T is the temporal
granularity of the base cells of the TDW, we can load the tuple cells that have
been so far produced when all the observations that fall in a given ∆T interval
(or a multiple of ∆T ) have been received and transformed. All the tuple cells
grouped-by and loaded in the TDW have to refer to this ∆T interval (or a multiple
of ∆T ).

Let us give an example of the result of the transformation process. Consider the
set of observations depicted in Figure 1(a). Then, we reconstruct the whole trajec-
tory by using linear interpolation, as discussed in Section 3. Figure 5 shows the re-
constructed trajectory together with the discretized 2D space and the points where
the interpolated trajectory intersects the spatio-temporal cells. The transformation
phase generates the cell tuples described in Table I where (dimX_id, dimY _id,
dimT_id) – i.e., the conjunction of the foreign keys for the X, Y , and T dimen-
sions – is the primary key for the fact table of our TDW1. The observation with

1For the sake of clarity, we use the corresponding intervals instead of the numeric values of such
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Figure 5. Linear interpolation of a 2D trajectory. The white points correspond to intersections
between the interpolated trajectory and spatial/temporal borders.

Table I. The cell tuples obtained by the transformation phase. For the sake of clarity, we also
report the timestamps (labels) of the original (or interpolated) points shown in Figure 5 that
originated each tuple. Note that some points, like the one labelled by 23, may not correspond to
any tuple: this avoid counting duplicates in the DW.

Tstamp dimX_id dimY _id dimT_id presence crossX crossY crossT

10 [30,60) [30,60) [0,30) 1 0 0 0
30 [30,60) [30,60) [0,30) 0 0 0 1
32 [30,60) [30,60) [30,60) 1 1 0 0
60 [60,90) [30,60) [30,60) 1 0 0 1
65 [60,90) [30,60) [60,90) 1 0 0 0
67 [60,90) [30,60) [60,90) 0 0 1 0
70 [60,90) [60,90) [60,90) 1 1 0 0
73 [90,120) [60,90) [60,90) 1 0 1 0
75 [90,120) [90,120) [60,90) 1 0 0 0
81 [90,120) [90,120) [60,90) 0 1 0 0
87 [120,150) [90,120) [60,90) 1 0 0 0

timestamp 10 generates the first tuple, whereas no tuple is created by the second
observation (timestamp 23) since it is inside the same cell of the first point. The
second, the third and the fourth tuples are inserted because the interpolated tra-
jectory between the observations with timestamp 23 and 65 crosses a T border, a
X border and a T border, respectively, of spatio-temporal base cells. Note that,
by construction, in each tuple cell the measures can assume only the values 0 or 1,
since we process each single trajectory in isolation. Therefore we can have different
cell tuples having the same value for the primary key. Only when we aggregate

foreign keys.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Trajectory Data Warehouses: Design and Implementation Issues 227

Table II. Performances of the loading techniques
Method rows per second
SQL*Loader 26695
INSERT 1446
INSERT Batch 4135
EXTERNAL Table 30884
MERGE INTO 4834

these cells according to (dimX_id, dimY _id, dimT_id), we obtain a unique tuple
containing the actual values to be loaded into the fact table.

7.1.0.1 Transformation/Loading Tools.. In order to feed the DW, we analysed
different techniques:

—SQL*Loader: this is the standard loading tool for Oracle. It is a command line
tool that can refresh the data in the DBMS. A configuration file describes the
format of data in the input file and how these data are loaded into a DBMS table.

—SQL INSERT: this is a common way to process and load data by using an external
ad-hoc application, which can exploit an API for Database Connectivity (e.g.,
JDBC for Java applications) to load data. It can perform whichever operations,
and it has complete control on the operations to perform on importing data.

—batch SQL INSERT: as the above, but optimised for large number of insertions
(the insertions are executed in blocks for optimising the performance).

—EXTERNAL Table: this is a way for accessing external data from within the DBMS,
which can operate on external text files in the same way as DBMS tables. To use
EXTERNAL Table as a transformation/loading tool, consider that we can perform
any SQL transformation on external tables, and copy the results of these SQL
queries into the DBMS internal tables.

—MERGE INTO: this is the Oracle tool for updating a DBMS table from other tables,
or even EXTERNAL ones. Each single row of the DBMS table can be updated or
inserted, depending on a Boolean condition.

We compared the above solutions to load the TDW, using an enlarged version
(151k trajectories) of the Tiger dataset described in Section 6.2. The results ob-
tained, expressed in terms of maximum throughput, are reported in Table II. It
turns out that the fastest way of importing data is through EXTERNAL Tables.

7.1.0.2 Implementing the ETL process.. Even if EXTERNAL Tables allow us also
to make whichever SQL manipulations on the data during the import, for perfor-
mance reasons, we decided to implement the most complex transformations, such
as interpolation and the computation of the contribution of each observation to the
measures, by using a Java application. This Java application is also in charge of
extracting the observations from the incoming stream.
In summary, our ETL process works as follows:

—a Java application reads, one at a time, the trajectory observations from the
temporally-ordered stream of observations. For each observation, it retrieves
from an internal buffer the previous observation of the same trajectory, and
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checks whether the current observation falls in the same base cell of the stored
one. If it belongs to a different cell (or, it is the first read observation of a given
trajectory), our application determines its contribution to the cell measures, and
creates a new cell tuple (like the ones shown in Table I) that is appended to
a temporary file. Moreover, it computes other possible cells traversed by the
trajectory via interpolation, also appending the corresponding cell tuples to the
temporary file (operations (i)–(ii)–(iii) of the transformation stage).
As mentioned above, to simplify the following phase and avoid errors while load-
ing the DW, multiple temporary files are created/updated by our application.
More precisely, all the cell tuples that fall into a given interval ∆T of the time
dimension of our DW, are appended to the same file.

—Each completed temporary file can be viewed by the DBMS as an External
Table. The cell tuples are thus aggregated via a GROUP BY command, according
to the primary key of the cell (dimX_id, dimY _id, dimT_id), and the measures
are simply summed up. In this way, we prepare a single/distinct tuple for each
cell (operation (iv) of the transformation stage). The resulting tuples can be
simply inserted into the fact table of the DW, and, finally, the temporary file can
be thrown away.

We chose this distribution of the ETL task between the Java application and the
DBMS also to keep the amount of memory used by the Java application low: we
only need a buffer containing, for each trajectory, the last processed observation,
whereas the cell tuples with the measures are directly appended to a temporary file.
In this way, we do not need to maintain in the main memory all the contributions
to the measures to store in the various base cells of our TDW.
We tested the ETL implementation we have discussed so far, by using the Tiger

dataset. It took 27 minutes to load all the 151000 trajectories (10867722 observa-
tions) of the dataset. We also tested other ETL implementations, based on either
SQL INSERT or MERGE INTO. They required about 6 hours to complete.

7.2 Aggregation

The challenging problem concerning aggregation is due to the measure presence.
As discussed in Section 5.1, we compute the value of this measure, for the higher
levels of the hierarchy, by using two approximate functions, one distributive and
the other one algebraic. The implementation of the distributive function is based
on the aggregate standard function SUM applied to the measure presence. Then,
by using the CUBE operation we can summarise between multiple dimensions. For
instance, given levelI as the layer of the hierarchy on dimension X, levelH as the
layer of the hierarchy on dimension Y and levelJ as the layer of the hierarchy on
dimension T , we can obtain an aggregate information for all the combinations of
these three levels, i.e., 23 groupings. The SQL query is the following:

SELECT dt.levelI, dX.levelH, dY.levelJ, SUM(presence) FROM
Fact_Table ft, DimT dt, DimX dX, DimY dY WHERE ft.dimT_id =
dt.dimT_id AND ft.dimX_id= dX.dimX_id AND

ft.dimY_id=dY.dimY_id
GROUP BY CUBE (dt.levelI, dX.levelH, dY.levelJ);
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The implementation of the algebraic function is more complex since it requires
the combination of several aggregate functions and the use of a non-standard SQL
operation. In fact, suppose that we want to roll-up n adjacent cells along the X
dimension. We have to implement the following operation:

Σn−1
i=0 Cx+i,y,t.presence − Σn−2

i=0 Cx+i,y,t.crossX

The difficulty consists in avoiding to subtract the crossX of the last cell of this
sequence of cells. In fact, considering the sequence of cells as a single cuboid, the
presence in it is given by the sum of the presence in each cell corrected by removing
the flow (i.e., the number of crossing trajectories) at the internal X borders. In
Oracle, the LAST function is available: it operates on a set of values from a set of
rows that rank as the last with respect to a given sorting specification. As for the
above query, we use the CUBE operation to obtain all the possible combinations.

SELECT dt.levelI, dX.levelH, dY.levelJ,
SUM(presence)-(SUM(crossX)+SUM(crossY)+SUM(crossT))+ (SUM(crossT)
KEEP (DENSE_RANK LAST ORDER BY dimT_id ASC) + SUM(crossX) KEEP
(DENSE_RANK LAST ORDER BY dimX_id ASC) + SUM(crossY) KEEP
(DENSE_RANK LAST ORDER BY dimY_id ASC)) FROM Fact_Table ft, DimT dt,
DimX dX, DimY dY WHERE ft.dimT_id = dt.dimT_id AND ft.dimX_id=
dX.dimX_id AND

ft.dimY_id=dY.dimY_id
GROUP BY CUBE (dt.levelI, dX.levelH, dY.levelJ);

The construct KEEP. . . DENSE_RANK LAST indicates that the aggregation will be ex-
ecuted over only those rows having maximum dense rank. This construct simplifies
the computation of the algebraic function for the presence. In fact, a solution
without LAST would require several nested queries combined with the use of outer
joins.
As far as the performance is concerned, the first query has an execution time less

than the second one, as expected. However, the difference is around 30%.

8. CONCLUSIONS

In this paper we discussed some relevant issues arising in the design of a DW
devised to store measures regarding trajectories. In particular, we focused on the
research problems related to storing and aggregating the holistic measure presence.
We contributed a novel way to compute such a measure in an approximate, but
nevertheless very accurate way. We also compared our approximate function with
the method proposed in [Tao et al. 2004], based on sketches, showing, with the help
of various experiments, that in our case the error is in general much smaller.
We also analysed the design issues deriving from the implementation of an Oracle

prototype of our TDW. We have investigated in depth its feasibility, and, in partic-
ular, the challenges deriving from the ETL process of the DW, which has to start
from a stream of trajectory observations, possibly produced at different rates, and
arriving in an unpredictable and unbounded way. In addition, we have analysed
the issue related to the computation of our approximate aggregate functions, used
to roll-up on the presence measure.
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