
Fast and Memory Efficient Mining of Frequent Closed Itemsets

Claudio Lucchese1,2, Salvatore Orlando1, Raffaele Perego2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Venezia, Italy, orlando@dsi.unive.it
2 ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy, {r.perego,c.lucchese}@isti.cnr.it

Technical Report CS-2004-9, Nov 2004

Abstract

This paper presents a new scalable algorithm for discovering closed frequent itemsets, which are a
lossless, condensed representation of all the frequent itemsets and associated supports that can be mined
from a transactional database.

Our algorithm exploits a depth-first visit of the search space, and a bitwise vertical representation of
the database. It adopts several innovative optimizations aimed to save both space and time in computing
itemset closures and their supports. Moreover, since one of the main problems raising up in this type of
algorithms is the multiple generation of the same closed itemset, we have also devised a general technique
for promptly detecting and discarding generators of duplicated closed itemsets. Our technique is memory-
efficient, since, unlike other previously proposed ones, does not need to keep in the main memory the
whole set of closed patterns mined so far.

The tests conducted on a large number of publicly available datasets show that our algorithm outper-
forms other state-of-the-art algorithms like Closet+ and FP-Close, in some cases by more than one
order of magnitude. More importantly, the performance improvements become more and more significant
as the support threshold is decreased.

Keywords: Data Mining, Association rules, Frequent itemsets, Equivalence classes, Closed itemsets.

1

1 Introduction

Frequent Itemsets Mining (FIM) is a demanding task common to several important data mining applications
that looks for interesting patterns within databases (e.g., association rules, correlations, sequences, episodes,
classifiers, clusters). The problem can be stated as follows. Let I = {a1, ..., aM} be a finite set of items, and
D a dataset containing a finite set of transactions, where each transaction t ∈ D is a list of distinct items
t = {i0, i1, ..., iT }, ij ∈ I. We call k-itemset a sequence of k distinct items I = {i0, i1, ..., ik} | ij ∈ I. Given
a k-itemset I, let supp(I) be its support, defined as the number of transactions in D that include I. Mining
all the frequent itemsets from D requires to discover all the itemsets having a support higher than (or equal
to) a given threshold min supp. This requires to browse the huge search space given by the power set of I.

The FIM problem has been extensively studied in the last years. Several variations to the original Apriori
algorithm [1], as well as completely different approaches, have been proposed [10, 5, 13, 18, 2, 16, 6, 8, 3].
The Apriori downward closure property makes it possible to effectively mine sparse datasets, also for very
low min supp thresholds. Sparse datasets contain in fact transactions with weak correlations, and the search
space can be effectively pruned by exploiting the antimonotonicity of the support constraint. On the other
hand, dense datasets contain strongly correlated transactions, and are much harder to mine since pruning
is less effective, and the number of frequent itemsets grows very quickly as the minimum support threshold
is decreased. As a consequence, the complexity of the mining task becomes rapidly intractable by using
traditional mining algorithms. Moreover, the huge size of the output makes hard the task of the analyst,
who has to extract useful knowledge from a very large amount of frequent patterns.

Closed itemsets are a solution to these problems: when a dataset contains highly correlated transactions,
closed itemsets are orders of magnitude fewer than frequent itemsets, since they implicitly benefit from
data correlations. Furthermore, they concisely represent exactly the same knowledge. From closed itemsets
it is in fact trivial to generate all the frequent itemsets along with their supports. More importantly,
association rules extracted from closed sets have been proved to be more meaningful for analysts, because
all redundancies are discarded [17]. Some efficient algorithms for mining closed itemsets have been recently
proposed [14, 15, 4, 12, 19, 17]. Unfortunately, no algorithm able to directly mine closed itemsets only has
been yet devised, but all of them perform unuseful or redundant computations in order to determine whether
a given frequent itemset is closed or not, and, if so, whether it was already previously discovered or not. In
most cases these algorithms are not memory-efficient, since they require to maintain all the closed itemsets
mined so far in the main memory in order to avoid generating duplicates, i.e., to check whether the closure
of a given itemset yields an already mined closed itemset.

In this paper we investigate in depth the problem of the generation of duplicated closed itemsets. We
claim that this problem is a consequence of the strategy adopted by current algorithms to browse the lattice
of frequent itemsets, and we propose an innovative strategy, based on a lexicographically ordered visit of the
lattice, which entails a general technique for promptly detecting and discarding duplicates. Our technique is
highly efficient, and does not require to keep in the main memory the whole set of closed patterns mined so
far. It can be exploited with substantial performance benefits by all algorithms using a vertical representation
of the dataset.

We implemented our technique within DCI Closed, a new algorithm which exploits a depth-first visit
of the search space, and adopts a vertical bitmap representation of the dataset. DCI Closed inherits
from DCI [8, 7] – an efficient algorithm to mine frequent itemsets previously proposed – the in-core vertical
bitwise representation of the dataset, and several optimization heuristics. In addition we devised innovative
techniques specifically for DCI Closed, aimed at saving both space and time in computing itemset closures
and their supports. In particular, since the basic operations to perform closures, support counts, and
duplicate detections, are intersections of tidlists, i.e., lists of identifiers of the transactions which contain a
given item, we particularly optimized this operation, and, when possible, we reused previously computed
intersections to avoid redundant computations.

The experimental evaluation demonstrates that DCI Closed remarkably outperforms other state-of-
the-art algorithms such as Closet+ and FP-Close, and that the performance advantage – up to one or
two orders of magnitude – becomes more and more significant as the support threshold decreases.

The paper is organized as follows. In Section 2 we introduce closed itemsets and describe a framework
for mining them. This framework is shared by all the algorithms surveyed in Section 3. In Section 4 we

2

formalize the problem of duplicates and propose our technique. Section 5 describes the implementation of
our closed itemset mining algorithm, while Section 6 discusses the experimental results obtained. Follow
some concluding remarks.

2 Closed itemsets

Let T and I, T ⊆ D and I ⊆ I, be subsets of all the transactions and items appearing in D, respectively.
The concept of closed itemset is based on the two following functions f and g:

f(T) = {i ∈ I | ∀t ∈ T, i ∈ t}
g(I) = {t ∈ D | ∀i ∈ I, i ∈ t}.

Function f returns the set of itemsets included in all the transactions belonging to T , while function g returns
the set of transactions supporting a given itemset I.

Definition 1 An itemset I is said to be closed if and only if

c(I) = f(g(I)) = f ◦ g(I) = I

where the composite function c = f ◦ g is called Galois operator or closure operator.

The closure operator defines a set of equivalence classes over the lattice of frequent itemsets: two itemsets
belong to the same equivalence class iff they have the same closure, i.e. they are supported by the same
set of transactions. We can also show that an itemset I is closed if no superset of I with the same support
exists. Therefore mining the maximal elements of all the equivalence classes corresponds to mining all the
closed itemsets.

Figure 1.(a) shows the lattice of frequent itemsets derived from the simple dataset reported in Fig. 1.(b),
mined with min supp = 1. We can see that the itemsets with the same closure are grouped in the same
equivalence class. Each equivalence class contains elements sharing the same supporting transactions, and
closed itemsets are their maximal elements. Note that closed itemsets (six) are remarkably less than frequent
itemsets (sixteen).

All the algorithms for mining frequent closed itemsets adopt a strategy based on two main steps: Search
space browsing, and Closure computation. In fact, they browse the search space by traversing the lattice of
frequent itemsets from an equivalence class to another, and compute the closure of the frequent itemsets
visited in order to determine the maximal elements (closed itemsets) of the corresponding equivalence classes.
Let us analyze in some depth these two phases.

Browsing the search space.

The goal of an effective browsing strategy should be to devise a particular visit of the lattice of frequent
itemsets, able to exactly touch a single itemset for each equivalence class. We could in fact mine all the
closed itemsets by computing the closure of just a representative itemset for each equivalence class, without
generating any duplicates. Let us call these representative itemsets closure generators.

Some algorithms choose the minimal elements (or key patterns) of each equivalence class as generators.
Key patterns form a lattice, and this lattice can be easily traversed with a simple apriori-like algorithm [16].
Unfortunately, an equivalence class can have more than one minimal element leading to the same closed
itemset. For example, the closed itemset {ABCD} of Fig. 1 could be mined twice, since it can be obtained
as closure of the two minimal elements of its equivalence class, namely {AD} and {CD}.

Other algorithms use a different technique, which we call closure climbing. As soon as a generator is
devised, its closure is computed, and new generators are built as supersets of the closed itemset discovered
so far. Since closed itemsets are maximal elements of their own equivalence classes, this strategy always
guarantees to jump from an equivalence class to another. Unfortunately, it does not ensure that a new
generator belong to an equivalence class that was never visited. Hence, similarly to the approach based on
key patterns, we can visit multiple generators of the same closed itemset. For example, {AB} and {AC} are

3

CB

Ø

A

ACAB AD BDBC CD

ABC

ABCD

ABD ACD BCD

D

1

2 12

2

2 1

2

1

1 1

3 3 2

2

ABD1B 3 Frequent
Closed Itemset Frequent itemset

Equivalence
Class

SUPPORT

TID items
1 B D
2 A B C D
3 A B C
4 C

(a) (b)

Figure 1: (a) Lattice of frequent itemsets with closed itemsets and equivalence classes given by the dataset
(b).

both generators of the closed itemset {ABC}, since they can be obtained as supersets of the closed itemsets
{B} and {C}, respectively.

Hence, regardless of the strategy adopted, we need to introduce a duplicate check to avoid generating
multiple times the same closed itemset. A naive approach to check for duplicates is to search for each
generated closed itemset among all the others mined so far. Indeed, in order to avoid to perform a lot of
expensive closure operations, several algorithms exploit the following lemma:

Lemma 1 Given two itemsets X and Y , if X ⊂ Y and supp(X) = supp(Y) (i.e., |g(X)| = |g(Y)|), then
c(X) = c(Y).

Proof. If X ⊂ Y , then g(Y) ⊆ g(X). Since |g(Y)| = |g(X)| then g(Y) = g(X). g(X) = g(Y) ⇒ f(g(X)) =
f(g(Y))⇒ c(X) = c(Y).
�

Therefore, given a generator X, if we find an already mined closed itemsets Y that set-includes X, where
the supports of Y and X are identical, we can conclude that c(X) = c(Y). Hence we can prune the generator
X without computing its closure. Unfortunately this may become expensive, both in time and space. In time
because it requires the possibly huge set of closed itemsets mined so far to be searched for the inclusion of
each generator. In space because to perform efficiently set-inclusion checks all the closed itemsets have to be
kept in the main memory. To reduce such costs, closed sets can be stored in compact prefix tree structures,
indexed by one or more levels of hashing.

Computing Closures.

To compute the closure of a generator X, we have to apply the Galois operator c. Applying c requires to
intersect all the transactions of the dataset including X. Another way to obtain this closure is suggested by
the following lemma:

Lemma 2 Given an itemset X and an item i ∈ I, g(X) ⊆ g(i)⇔ i ∈ c(X).

Proof.
(g(X) ⊆ g(i)⇒ i ∈ c(X)):

4

Since g(X ∪ i)1 = g(X) ∩ g(i), g(X) ⊆ g(i) ⇒ g(X ∪ i) = g(X). Therefore, if g(X ∪ i) = g(X)
then f(g(X ∪ i)) = f(g(X))⇒ c(X ∪ i) = c(X)⇒ i ∈ c(X).

(i ∈ c(X)⇒ g(X) ⊆ g(i)):

If i ∈ c(X), then g(X) = g(X ∪ i). Since g(X ∪ i) = g(X) ∩ g(i), g(X) ∩ g(i) = g(X) holds too.
Thus, we can deduce that g(X) ⊆ g(i).

�
From the above lemma, we have that if g(X) ⊆ g(i), then i ∈ c(X). Therefore, by performing this

inclusion check for all the items in I not included in X, we can incrementally compute c(X). Note that the
set g(i) can be represented by a list of transaction identifiers, i.e., the tidlist associated with i. This suggests
the adoption of a vertical format for the input dataset in order to efficiently implement the inclusion check:
g(X) ⊆ g(i).

The closure computation can be performed off-line or on-line. In the former case we firstly retrieve the
complete set of generators, and then compute their closures. In the latter case, as soon as a new generator
is discovered, its closure is computed on-the-fly. The algorithms that compute closures on-line are generally
more efficient than those that adopt an off-line approach, since the latter ones usually exploit key patterns
as generators. Key patterns are the minimal itemsets of the equivalence class, and thus are the shortest
possible generators. Conversely, the on-line algorithm usually adopt the closure climbing strategy, according
to which new generators are created recursively from closed itemsets. These generators are likely longer than
key patterns. Obviously, the longer a generator is, the fewer checks (on further items to add) are needed to
get its closure.

3 Related Works

The first algorithm proposed for mining closed itemsets was A-Close [11] (N. Pasquier, et al.). A-Close
first browses level-wise the frequent itemsets lattice by means of an Apriori-like strategy, in order to mine the
generators of all the closed itemsets. In particular, in this first step the generators extracted by A-Close
are all the key-patterns, i.e. the minimal itemsets of all equivalence classes. Since a k-itemset is a key
pattern if and only if no one of its (k − 1)-subsets has the same support [16], minimal elements can only
be discovered with an intensive subset checking. In its second step, A-Close computes the closure of all
the minimal generators previously found. Since a single equivalence class may have more than one minimal
itemsets, redundant closures may be computed. A-Close performance suffers from the high cost of the
off-line closure computation and the huge number of subset searches.

The authors of FP-Growth [5] (J. Han, et al.) proposed Closet [14] and Closet+ [15]. These two
algorithms inherit from FP-Growth the compact FP-Tree data structure and the exploration technique
based on recursive conditional projections of the FP-Tree. Frequent single items are detected after a first
scan of the dataset, and with another scan the transactions, pruned from infrequent items, are inserted in the
FP-Tree stored in the main memory. With a depth first browsing of the FP-Tree and recursive conditional
FP-Tree projections, Closet mines closed itemsets by closure climbing, and by incrementally growing up
frequent closed itemsets with items having the same support in the conditional dataset. Duplicates are
discovered with subset checking by exploiting Lemma 2. Thus, all closed sets previously discovered are
kept in a two level hash table stored in the main memory. Closet+ is similar to Closet, but exploits
an adaptive behaviour in order to fit both sparse and dense datasets. As regards the duplicate problem,
Closet+ introduces a new detection technique for sparse datasets named upward checking. This technique
consists in intersecting every path of the initial FP-Tree leading to a candidate closed itemset X. If such
intersection is empty then X is actually a closed itemset. The rationale for using this technique only for
mining sparse dataset is that the transactions are in this case generally quite short, and thus the intersections
can be performed quickly. Note that with dense dataset, where the transactions are usually longer, closed
itemsets equivalence classes are large and the number of duplicates is high, such technique is not used because

1For the sake of readability, we will drop parentheses around singleton itemsets, i.e. we will write X ∪ i instead of X ∪ {i},
where single items are represented by lowercase characters.

5

of its inefficiency, and Closet+ adopts the same duplicate detection strategy of Closet, i.e. the one based
on keeping every mined closed itemset in the main memory.

FP-Close [4] (G. Grahne and J. Zhu), which is a variant of Closet+, resulted to be the best algo-
rithm for closed itemsets mining presented at the 2003 Frequent Itemset Mining Implementations Workshop
(http://fimi.cs.helsinki.fi).

Charm [19, 17] (M. Zaki, et al.) performs a bottom-up depth-first browsing of a prefix tree of frequent
itemsets built incrementally. As soon as a frequent itemset is generated, its tid-list is compared with those
of the other itemsets having the same parent. If one tid-list includes another one, the associated nodes are
merged since both the itemsets surely belong to the same equivalence class. Itemset tid-lists are stored in
each node of the tree by using the diff-set technique [18]. Since different paths can however lead to the same
closed itemset, also in this case a duplicates detection and pruning strategy is implemented. Charm adopts
a technique similar to that of Closet, by storing in the main memory the closed itemsets indexed by a
single level hash.

According to the framework introduced in Section 2, A-Close exploits a key pattern browsing strategy
and performs off-line closure computation, while Charm, Closet+ and FP-Close are different implemen-
tations of the same closure climbing strategy with on-line incremental closure computation.

4 Memory-efficient duplicate detection and pruning

In this Section we propose a particular visit of the lattice of frequent sets that efficiently identifies unique
generators for each equivalence class, and allow all the closed patterns to be mined through the minimum
number of closure computations.

We assume that a closure climbing strategy is adopted to browse the search space and find out new
generators. As soon as a closed itemset Y has been identified, new generators are built as proper supersets
of Y , i.e., generators of the form gen = Y ∪ i, where i ∈ I, i 6∈ Y . It is straightforward to show that for
each closed itemset Y ′, Y ′ 6= c(∅), there must exists at least a generator of the form gen = Y ∪ i, where Y ,
Y ⊂ Y ′, is a closed itemset, i 6∈ Y , and Y ′ = c(gen).

By looking at Figure 1.(a), we can see that it is possible to discover multiple generators of the form
gen = Y ∪ i for the same closed itemset. For example, we have four generators, {A}, {A,B}, {A,C} and
{B,C}, whose closure is the closed itemsets {A,B,C}. Note that all these generators have the form Y ∪ i,
since they can be obtained by adding a single item to a smaller closed itemset, namely ∅, {B} and {C}.

Our strategy exploits a total lexicographic order ≺ between itemsets, in turn based on a total order
relationship between single item literals, according to which each k-itemset I can be considered, without loss
of generality, an increasingly sorted set of k distinct items {i0, i1, ..., ik}. In the following we will assume
that all the k-itemsets are increasingly sorted sets, and that a relation ≺ always exists between each pair
I, I ′ of itemsets (i.e., if I 6= I ′, then either I ≺ I ′ or I ≺ I ′).

In the following we will formally show that, for each closed itemset, it is possible to devise one and only
one sequence of generators that respect a specific property, i.e., whose closures can be carried out according
to the total lexicographic order relation ≺ between itemsets (see Definition 2). In other words, if we force
the computation of generator closures to be carried out in the order established by ≺, no duplicates will ever
occur.

Definition 2 A generator X = Y ∪ i, where Y is a closed itemset and i 6∈ Y , is said to be order preserving
iff i ≺ (c(X) \X).

Theorem 1 below shows that, for any closed itemset Y , there exists a sequence of order preserving
generators that allow to climb a sequence of closed itemsets and reach Y . Corollary 1 shows instead the
uniqueness of this sequence.

Hence, the goal of an algorithm that mines closed itemsets by avoiding redundances is to compute the
closure of all order preserving generators, and prune the other generators that do not respect the order
preserving property.

6

Theorem 1 For each closed itemset Y 6= c (∅), a sequence of n, n ≥ 1, items i0 ≺ i1 ≺ ... ≺ in−1 exists
such that

{gen0, gen1, . . . , genn−1} = {Y0 ∪ i0, Y1 ∪ i1, . . . , Yn−1 ∪ in−1}

where the various geni are order preserving generators, with Y0 = c (∅) ,∀j ∈ [0, n − 1], Yj+1 = c(Yj ∪ ij),
and Yn = Y .

Proof. First we have to show that, for all generators geni, if geni ⊆ Y , then c(geni) ⊆ Y . Note that
g(Y) ⊆ g(geni) because geni ⊆ Y . Moreover, Lemma 2 states that if j ∈ c(geni), then g(geni) ⊆ g(j).
Thus, since g(Y) ⊆ g(geni), then g(Y) ⊆ g(j) holds too, and from Lemma 2 it also follows that j ∈ c(Y).
So, if j 6∈ Y held, Y would not be a closed itemset because j ∈ c(Y), and this is in contradiction with the
hypothesis.

As regards the proof of the Theorem, we show it by constructing a sequence of closed itemsets and
associated generators having the properties stated above.

Since Y0 = c (∅), Y0 is included in all the transactions of the dataset, then, by definition of closure, all
the items in Y0 must be also included in Y , i.e. Y0 ⊆ Y .

Moreover, since Y0 6= Y by definition, in order to create the first order preserving generator {Y0 ∪ i0}, we
choose i0 = min≺ (Y \ Y0), i.e. i0 is the smallest item in {Y \ Y0} with respect to the lexicographic order ≺.
Afterwards, we compute Y1 = c(Y0 ∪ i0) = c(gen0). If Y1 = Y we can stop.

Otherwise, in order to build the next order preserving generator gen1 = Y1 ∪ i1, we choose i1 =
min≺ (Y \ Y1), where i0 ≺ i1 by construction, and we compute Y2 = c(Y1 ∪ i1) = c(gen1).

Again, if Y2 = Y we can stop, otherwise we iterate the process by choosing i2 = min≺ (Y \ Y2), and so
on.

Note that each generator genj = {Yj ∪ ij} is order preserving, because c({Yj ∪ ij}) = Yj+1 ⊆ Y and ij is
the minimum item in {Y \ Yj} by construction, i.e. ij ≺ {Yj+1 \ {Yj ∪ ij}}.
�

Corollary 1 For each closed itemset Y 6= c (∅), the sequence of order preserving generators of Theorem 1
is unique.

Proof. Suppose that, during the construction of the sequence of generators, we choose ij 6= min≺ (Y \ Yj)
to build generator genj . Since genj and all the following generators must be order preserving, it should
be impossible to obtain Y , since we could no longer consider the item i = min≺ (Y \ Yj) ∈ Y in any other
generator or closure in order to respect the order preserving property.
�

Looking at Figure 1.(a), for each closed itemset we can easily identify the unique sequences of order
preserving generators. For example, for the the closed itemset Y = {A,B,C, D}, we have Y0 = c(∅) = ∅,
gen0 = ∅ ∪ {A}, Y1 = c(gen0) = {A,B, C}, gen1 = {A,B, C} ∪ {D}, and, finally, Y = c(gen1). Another
example regards the closed itemset Y = {B,D}, where we have Y0 = c(∅) = ∅, gen0 = ∅ ∪ {B}, Y1 =
c(gen0) = {B}, gen1 = {B} ∪ {D}, and, finally, Y = c(gen1).

4.1 Detecting order preserving generators

In order to exploit the results of Theorem 1, we need to devise an efficient method to check whether a given
generator is order preserving or not. Let us introduce the following Definition:

Definition 3 Given a generator gen = Y ∪ i, where Y is a closed itemset and i 6∈ Y , we define pre-set(gen)
as follows:

pre-set(gen) = {j | j ∈ I, j 6∈ gen, and j ≺ i}.

The following Lemma gives a way to check the order preserving property of gen by considering the tidlists
g(j), for all j ∈ pre-set(gen).

7

Lemma 3 Let gen = Y ∪ i be a generator where Y is a closed itemset and i 6∈ Y . If ∃j ∈ pre-set(gen), such
that g(gen) ⊆ g(j), then gen is not order preserving.

Proof. If g(gen) ⊆ g(j), then j ∈ c(gen). Since by hypothesis j 6∈ gen, we have that j ∈ (c(gen) \ gen).
Since j ≺ i because j ∈ pre-set(gen), i 6≺ (c(gen) \ gen) and thus, according to Definition 2, gen is not order
preserving.
�

We have thus contributed a deep study on the the problem of duplicates in mining frequent closed itemsets.
We have introduced the concept of order preserving generators, i.e. specific generators whose closures can
be computed by browsing the itemset lattice according to a total lexicographic order. We have shown that
duplicate generators are the ones that do not respect the order preserving property. So, the duplication
check can be carried out by simply using the tidlists associated with single items, instead of using the set of
closed itemsets already mined. Our technique is not resource demanding, because frequent closed itemsets
need not to be stored in the main memory during the computation. Moreover, once introduced suitable
optimization techniques (see Section 5.1.2), our order preserving check becomes less time demanding, and
results cheaper than searching the set of closed itemsets mined so far. Note that Closet+ needs the initial
FP-tree as an additional requirement to the current FP-tree in use, and moreover does not use its upward
checking technique with dense datasets.

5 The DCI Closed algorithm.

The DCI Closed algorithm adopts two different strategies to deal with dense and sparse datasets. It is well
known that frequent closed itemsets are a lossless condensed representation of frequent itemsets. However,
in sparse datasets the number of closed itemsets is nearly equal to the number of frequent ones. Thus, due
to the high number of closure computations, mining closed itemsets in sparse datasets may become more
expensive than extracting all the frequent itemsets. The profitability of mining closed frequent itemsets
rather than frequent itemsets, roughly depends on the ratio between the number of frequent closed itemsets
and the corresponding total number of frequent itemsets. Unfortunately, this ratio is not known till the end
the mining process. We found however that a simple statistical measure of the density of a dataset [9], allows
to effectively discriminate between datasets and adopt the better strategy.

The two different strategies for dense and sparse datasets are implemented within two different pro-
cedures: DCI Closeds(), suitable for sparse datasets, and DCI Closedd(), suitable for dense datasets.
Before starting the actual mining process, the dataset D is scanned to determine the frequent single items
F1 ⊆ I, and to build the bitwise vertical dataset VD containing the various tidlists g(i), ∀i ∈ F1.

In Section 5.1 we will detail the most interesting part of the algorithm, i.e. the techniques and optimiza-
tions used in DCI Closedd(). Here we only sketch the strategy adopted by the DCI Closeds() procedure,
used to mine sparse datasets.

While DCI Closedd(), used to mine dense datasets, adopts a depth-first exploration of the lattice of
frequent itemsets, DCI Closeds() adopts a traditional level-wise visit. The reason is that in mining sparse
datasets we can effectively exploit the anti-monotone Apriori property to prune candidates. DCI Closeds()
is thus based on a slightly modified version of our level-wise DCI algorithm for mining frequent itemsets
[8, 7], with a simple additional closedness test over the frequent itemsets discovered. Since a frequent k-
itemset I can be identified as closed if no superset of I with the same support exists, we delay the output
of the frequent k-itemsets (level k) until all the frequent (k + 1)-itemsets (level k + 1) have been discovered.
Then, for each frequent (k + 1)-itemset I ′, we mark as non closed all subsumed k-itemsets I (I ⊂ I ′) with
exactly the same support as I ′ (supp(I) = supp(I ′)). At the end, we can finally identify as closed ones all
the frequent k-itemsets which result to be not marked.

5.1 Mining dense datasets.

The pseudo-code of the recursive procedure DCI Closedd() is shown in Algorithm 1. The procedure has
three input parameters: a closed itemset CLOSED SET, and two sets of items, PRE SET and POST SET.

8

It outputs all the closed itemsets that properly contain CLOSED SET by analyzing the valid generators
obtained by extending CLOSED SET with the items in POST SET.

As previously discussed, the dataset D is firstly scanned to determine the frequent single items F1 ⊆ I,
and to build the bitwise vertical dataset VD containing the various tidlists g(i), ∀i ∈ F1. The procedure
DCI Closedd() is then called by passing as arguments: CLOSED SET = c(∅) 2, PRE SET = ∅, and
POST SET = F1 \ c(∅).

The procedure builds all the possible generators, by extending CLOSED SET with the various items in
POST SET (lines 2–5). Both infrequent and not order preserving generators are promptly discarded (lines
6–7) without computing their closure. Note that the items i ∈ POST SET used to obtain these invalid
generators will no longer be considered in the following recursive calls. The closures of valid generators are
then computed (lines 8–17). It is worth noting that each generator new gen← CLOSED SET ∪ i is strictly
extended according to the order preserving property, i.e. by using all items j ∈ POST SET such that i ≺ j
(lines 3–4, and line 10). Moreover, all the items j, i ≺ j, that do not belong to c(new gen) are included in
the new POST SET (line 14) to be used for the next recursive call. At the end of this process, a new closed
set (CLOSED SETNew ← c(new gen)) is obtained (line 17). From this new closed set, new generators and
corresponding closed sets can be built, by recursively calling the procedure DCI Closedd() (line 18).

Algorithm 1 DCI Closed pseudocode
1: procedure DCI Closedd(CLOSED SET, PRE SET, POST SET)
2: while POST SET 6= ∅ do
3: i← min≺(POST SET)
4: POST SET ← POST SET \ i
5: new gen← CLOSED SET ∪ i . Build a new generator
6: if supp(new gen) ≥ min supp then . new gen is frequent
7: if is dup(new gen, PRE SET) = FALSE then . new gen is an order preserving generator
8: CLOSED SETNew ← new gen
9: POST SETNew ← ∅

10: for all j ∈ POST SET do . Compute closure of new gen
11: if g(new gen) ⊆ g(j) then
12: CLOSED SETNew ← CLOSED SETNew ∪ j
13: else
14: POST SETNew ← POST SETNew ∪ j
15: end if
16: end for
17: Write out CLOSED SETNew and its support
18: DCI Closedd(CLOSED SETNew, PRE SET, POST SETNew)
19: PRE SET ← PRE SET ∪ i
20: end if
21: end if
22: end while
23: end procedure
24:

25:

26: function is dup(new gen, PRE SET)
27: for all j ∈ PRE SET do . Duplicate check
28: if g(new gen) ⊆ g(j) then
29: return TRUE . new gen is not order preserving
30: end if
31: end for
32: return FALSE
33: end function

2The closed itemset c(∅) contains, if any, the items that occur in all the transactions of the dataset D.

9

Before recursively calling the procedure, it is however necessary to prepare the suitable PRE SET and
POST SET. Note that when the recursive level is deepened, the size of CLOSED SET (CLOSED SETNew)
monotonically increases, while the size of POST SET (POST SETNew) monotonically decreases, and PRE SET
does not change. On the other hand, PRE SET size is monotonically increased each time a recursive call
returns (line 19): the new PRE SET is then used to explore in depth the next valid generator (new gen)
obtained by extending the current CLOSED SET.

Regarding the construction of POST SETNew made before the recursive call of the procedure, assume that
the closed set X=CLOSED SETnew passed to the procedure (line 16) has been obtained by computing the
closure of a generator new gen = Y ∪i (i.e., X = c(new gen)), where Y =CLOSED SET and i ∈ POST SET.
Note that, since i has been chosen as i ← min≺(POST SET) (line 3), and then removed from POST SET
(line 4), we have that i ≺ j for all j used for computing the closure of new gen (line 10). POST SETnew is
thus built as the set of all the items that follow i in the lexicographic order, but that have not been already
included in X. More formally, POST SETnew = {j ∈ POST SET | i ≺ j and j 6∈ X}. This condition
allows the recursive call of the procedure to only build new generators X ∪ j, where i ≺ j, according to the
hypothesis of Theorem 1.

The composition of PRE SET instead depends on the sequence of valid generators, i.e. the ones that have
passed the frequency and duplicate tests, that precede new gen = Y ∪ i in the lexicographic order. If all the
generators were valid, it would simply be composed of all the items j that precede i in the lexicographic order,
and j 6∈ X = c(new gen). In other words, PRE SET would be the complement set of X ∪ POST SETnew.
Conversely, if invalid generators are discovered, this permits us to prune PRE SET, as discussed later in
Section 5.1.1.

While the composition of POST SET guarantees that the various generators will be produced according
to the lexicographic order ≺, the composition of PRE SET guarantees that duplicate generators will be
correctly pruned by function is dup() (lines 26–33).

Since we have shown that for each closed itemset Y one and only one sequence of order preserving
generators exists, and since our algorithm clearly explores every possible order preserving generator from
every closed itemset, we have that the algorithm is complete and does not produce any duplicate.

5.1.1 Pruning PRE SET

We have discussed above that the PRE SET passed to the recursive call of DCI Closedd() is monotonically
increased. Each time a generator new gen is built by extending CLOSED SET, PRE SET should be modified
accordingly, in order to obtain pre-set(new gen) (see Definition 3) for the duplication check.

However, PRE SET ⊆ pre-set(new gen), since the items added to PRE SET are only those that have
been already used to build valid generators (line 19). In other words, the items that have been used to build
invalid generators are pruned from pre-set(new gen), thus obtaining the pruned PRE SET exploited by our
algorithm. The following lemmas show that we can safely prune these items, since the duplication check still
works properly. While Lemma 4 regards the pruning of items used to build not order preserving generators,
Lemma 5 is concerned with those used to produce infrequent generators.

Lemma 4 Let gen = Y ∪i be a not order preserving generator, where Y is a closed itemset and i 6∈ Y . Thus
there must exist h ∈ pre-set(gen), i.e. h ≺ i, such that g(Y ∪i) ⊆ g(h). Also suppose that there exists another
closed itemset Y ′, Y ⊂ Y ′, from which we obtain a generator gen′ = Y ′ ∪ i′, where both h, i ∈ pre-set(gen′).
Then, in order to check the order preserving property of gen′ (see Lemma 3), we can avoid to check whether
g(gen′) ⊆ g(i), because g(gen′) 6⊆ g(h) ⇒ g(gen′) 6⊆ g(i).

Proof. We prove by contrapositive. So, in order to show that g(gen′) 6⊆ g(h) ⇒ g(gen′) 6⊆ g(i), we
equivalently show that g(gen′) ⊆ g(i) ⇒ g(gen′) ⊆ g(h). If g(gen′) ⊆ g(i), then g(gen′) ≡ g(gen′ ∪ i). Since
we can also express gen′ as gen′ = Y ∪ Z ∪ i′, where Z = Y ′ \ Y , then g(Y ∪ Z ∪ i′) ≡ g(Y ∪ Z ∪ i′ ∪ i).
Since if A ⊆ B ⇒ g(B) ⊆ g(A), then we have that g(Y ∪ Z ∪ i′ ∪ i) ⊆ g(Y ∪ i). Thus we have that
g(gen′) ≡ g(gen′ ∪ i) = g(Y ∪ Z ∪ i′ ∪ i) ⊆ g(Y ∪ i). Since, by hypothesis, g(Y ∪ i) ⊆ g(h), then we can
deduce that g(gen′) ⊆ g(h) holds.
�

10

Lemma 4 can be exploited as follows. We know that both i and h should belong to pre-set(gen′), but we
can remove i from this set. Consider in fact, that, once checked whether g(gen′) ⊆ g(h), if the inequality
holds then we can deduce that gen′ is not order preserving and no further checks are needed. Otherwise, if
the inequality does not hold, it is not needed to also check whether g(gen′) ⊆ g(i), because this inequality
surely will not hold too.

Lemma 5 Let gen = Y ∪ i be a not frequent generator (i.e., |g(gen)| < min supp), where Y is a closed
itemset and i 6∈ Y . Suppose that there exists a closed itemset Y ′, Y ⊂ Y ′, |g(Y ′)| ≥ min supp, from which
we obtain a frequent generator gen′ = Y ′ ∪ i′, i.e. |g(gen′)| ≥ min supp. Then, in order to check the
order preserving property of gen′ (see Lemma 3), we can avoid checking whether g(gen′) ⊆ g(i), because
g(gen′) 6⊆ g(i).

Proof. We prove the Lemma by contradiction. Assume that g(gen′) ⊆ g(i). Then, g(gen′) ≡ g(gen′ ∪ i),
and thus |g(gen′)| = |g(gen′ ∪ i)|. Note that, since Y ⊂ Y ′, then we can write gen′ = Y ∪ Z ∪ i′, where
Z = Y ′ \ Y . Since if A ⊆ B ⇒ g(B) ⊆ g(A), then we have that g(gen′ ∪ i) = g(Y ∪ Z ∪ i′ ∪ i) ⊆ g(Y ∪ i)
because Y ∪ i ⊆ gen′ ∪ i. Thus |g(Y ∪ Z ∪ i′ ∪ i)| ≤ |g(Y ∪ i)|. Since by hypothesis |g(Y ∪ i)| < min supp,
then also |g(gen′)| ≡ |g(Y ∪ Z ∪ i′ ∪ i)| < min supp. This is in contradiction with the hypothesis that gen′

is frequent.
�

5.1.2 Optimizations to save bitwise intersection work

We adopted a large amount of optimizations to reduce the amount of bitwise AND intersections performed
by our algorithm. These intersections are needed for duplication checking and closure computations (line
10 and 34), and also for computing the tidlist (g(new gen)) and the support (supp(new gen)) of each new
generators (line 6). For the sake of simplicity, these optimizations were not reported in the pseudo-code
shown in Algorithm 1, but are described in the following paragraphs.

Dataset projection. Let us consider a closed set X and its tidlist g(X), i.e. the set of all the transactions
that set-include X. All the closed itemsets that are proper supersets of X, i.e. those that are discovered by
recursively calling DCI Closedd(X, ,), will be supported by subsets of g(X). Thus, once X is found, we
can save work in the subsequent recursive calls of the procedure by projecting VD. This is carried out by
deleting from VD all the columns corresponding to T \g(X). Since this bit-wise projection is quite expensive,
we limit it to generators of the first level of recursion only, i.e., those obtained from the order preserving
generators obtained by extending c(∅). In Section 6 we will evaluate the benefits of this optimization
technique, and will refer to it as the projection optimization.

Highly correlated datasets. DCI Closed inherits the internal representation of our previous works
DCI[8] and kDCI[7]. The dataset is stored in the main memory using a vertical bitmap representation. With
two successive scans of the dataset, a bitmap matrix VDM×N is stored in the main memory. The VD(i, j)
bit is set to 1 if and only if the j -th transaction contains the i -th frequent single item. Row i of the matrix
thus represent the tidlist associated with item i.

The columns of VD are then reordered to profit of data correlation, which entails high similarity between
the rows of the matrix when we mine dense datasets. As in [7][8], columns are reordered to create a
submatrix VE of VD having all its rows identical. Every operation (e.g. intersection ones) involving rows in
the submatrix VE will be performed only once, thus gaining strong performance improvements.

In Section 6 we will evaluate the benefits of this optimization technique, and will refer to it as the section
eq optimization.

Reusing results of previous bitwise intersections. Besides the above optimizations, we exploited
another technique made possible by the depth-first visit of the lattice of itemsets, and by the repeated scans
of the same tidlists for performing bitwise AND operations.

In order to determine that an itemset X is closed, the tidlist g(X) must be compared with all the tidlists
g(j), of items j contained in the PRE LIST (POST LIST) of X, i.e. the items that precede (follows) all

11

items included in X according to the lexicographic order. The tidlists of items in PRE SET are accessed
for checking duplicate generators, while those of POST SET for computing the closure. In particular, for all
j ∈ PRE SET ∪ POST SET, we already know that g(X) * g(j), otherwise those items j should have been
included in X. Therefore, we can save some important information regarding each comparison between each
g(j) and g(X). Such information can profitably be reused to reduce the cost of the following computations
involving g(j), i.e., when each g(j) is exploited to look for further closed itemsets.

In particular, even if, for all j, it is true that g(X) * g(j), we may know that large sections of the bitwise
tidlists g(X) are however strictly included in g(j). Let gh(X) be the section of g(X), composed of h words,
strictly included in the corresponding section gh(j) of g(j). Hence, since gh(X) ⊆ gh(j), it is straightforward
to show that gh(X∪Y) ⊆ gh(j) holds, for every itemset Y , because g(X∪Y) ⊆ g(X). So, when we extend X
to obtain a new generator, we can limit the inclusion check of the various g(j) to the complementary portions
of gh(j). It is worth noting that, as soon as our visit of the itemset lattice gets deeper, the closed itemset X
we deal with becomes larger, while the portions g(X) strictly included in the corresponding portion of g(j)
gets larger, thus making possible to save a lot of work related to inclusion check.

In Section 6 we will evaluate the benefits of this optimization technique, and will refer to it as the
included optimization.

5.1.3 Space complexity.

The size of the output is actually a lower bound on the space complexity of those algorithms that require
to keep in the main memory the whole set of closed itemsets to perform duplicate check. Conversely, the
memory size required by an implementation based on our duplicate check is almost independent of the size
of the output. To some extent, its memory occupation depends on those data structures that also need to be
maintained in memory by other algorithms that visit depth-first the lattice and exploit tidlist intersections.

The main information that DCI Closed has to maintain in the main memory is the tidlist of each
generator in the current path of the lattice explored by the algorithm, and the tidlist of every frequent single
item. In this way we are able to browse the search space intersecting nodes with tidlists of single items, and
also to discard duplicates checking the order preserving property.

The worst case in memory occupation occurs when the number of generators and the length of the
longest closed itemsets are maximal: this occurs when c(∅) = ∅, and every itemset is frequent and closed. If
N is the number of frequent single items, the deepest path along the lattice is composed of N nodes, each
associated with a distinct tidlist. Therefore, also considering the tidlists of the original vertical dataset, the
total number of tidlists to be kept in the main memory is 2N − 1. Since the length of a tidlist is equal to
the number of transactions T in the dataset, the worst space complexity of our algorithm is

O ((2N − 1)× T) .

Note that if this worst case occurred, the total number of closed itemsets should be O(2N), so that, from
the point of view of space complexity, it should be always better to store tidlists rather than storing the
closed itemsets already mined in order to detect duplicates.

An important remark regards the features of dense datasets, which are the subject of this space complexity
comparison. Fortunately the worst case above should not actually occur with such datasets, since frequent
itemsets are usually orders of magnitude greater than closed itemsets, and equivalence classes are thus
composed of several frequent itemsets. The number of frequent itemsets is instead comparable to the number
of closed ones and associated generators in sparse datasets, but the length of the largest closed frequent
itemset that can be extracted from them is usually much less than N . Note that DCI Closed uses a
different method for mining sparse datasets, based on a level-wise visit of the lattice and the same in-core
vertical bitwise dataset. Independently of the algorithm adopted, mining sparse datasets should not be a
big issue from the point of view of memory occupation, because number and length of frequent itemsets do
not explode even for very low support thresholds.

12

6 Performance comparisons

We tested our implementation on a suite of publicly available datasets: chess, connect, pumsb, pumsb*,
retail, T40I10D100K. They are all real datasets, except for the last one, which is a synthetic dataset available
from IBM Almaden. The first four datasets are dense and produce large numbers of frequent itemsets also
for large support thresholds, while the last two are sparse.

We compared the performances of DCI Closed with those of two well known state of the art algo-
rithms: FP-Close [4], and Closet+ [15]. FP-Close is publicly available from the FIMI repository
http://fimi.cs.helsinki.fi/fimi03/, while the Windows binary executable of Closet+ was kindly
provided us from the authors. We did not included Charm in our tests, because FP-Close was already
proved to be faster. The experiments were conducted on a Windows XP PC equipped with a 2.8GHz Pen-
tium IV and 512MB of RAM memory. The FP-Close and DCI Closed algorithms were compiled with
the gcc compiler available in the cygwin environment.

As shown in Figure 2.(a-f), DCI Closed outperforms both competitors in all the tests conducted.
Closet+ performs quite well on the connect dataset with relatively high supports, but in all other cases
it is about two orders of magnitude slower. FP-Close is effective in pumsb*, where its performance is close
to that of DCI Closed, but it is one order of magnitude slower in all the other tests.

As stated in Section 5.1.2, we adopted a large amount of optimizations to reduce the number of operations
performed by DCI Closed on dense datesets. It is worth recalling that, for each generator X = Y ∪ i,
we need to: (1) compute the associated tidlist g(X) and thus the support of X, i.e. |g(X)|; (2) perform
the duplication checks; (3) compute its closure. For all these operations we need to execute bitwise AND
operations. In case (1), we perform AND operations to compute g(X) = g(Y) ∩ g(i), in order to derive
cardinality |g(X)|, i.e. the number of 1’s contained in the resulting bitvector g(X). In both cases (2) and
(3), we have to check for the inclusion of g(X) in the various tidlists g(j) associated with each single item
j that either precedes or follows i in the lexicographic order. All these inclusion checks are carried out by
intersecting g(X) ∩ g(j), and stopping at the first resulting word which is not equal to the corresponding
word in g(X). The two plots in Figure 3.(a) and 3.(c) show to the number of bitwise AND operations
relative to case (1). They plot the number of operations actually executed by DCI Closed to mine chess
and connect, as a function of the support threshold. On the other hand, the two plots in Figure 3.(b) and
3.(d) refer to the number of bitwise AND operations relative to cases (2) and (3). Similarly to the above
case, they show the number of operations actually executed to mine chess and connect, as a function of
the support threshold.

In all the plots of Figure 3, the top curves represent the baseline case, when no optimizations are exploited,
so that the bitwise tidlists associated with single items are the original ones, i.e. the rows in the vertical
dataset VD. From the top curves to the bottom ones, we incrementally introduced the three optimization
techniques discussed in Section 5.1.2, namely projection, section eq, and included. Therefore, the bottom
curves correspond to the number of operations actually performed when all the optimizations are activated.
We can see that the exploitation of all the three techniques allowed us to reduce the total number of AND
operations up to an order of magnitude.

Another interesting remark regards the comparison between the amounts of operations actually executed
to compute the tidlist g(X) associated with each generators X (Figures 3.(a,c)), and the amounts of opera-
tions carried out for the various inclusion checks (Figures 3.(b,d)). The two amounts, given a dataset and a
support threshold, appear to be similar. This result might surprise a careful reader. One could think that
the operations needed for the inclusion checks are the majority, since, for each frequent generator X, we
have to check the inclusion of g(X) with almost all the tidlists g(j). Indeed, while g(X) must be generated
for all generators X, only those that turn out to be frequent are furtherly processed for inclusion checks.
Moreover, whereas lists must be completely scanned in order to produce g(X), the same does not hold for
inclusion checks relative to order preserving check or closure computation: when a single particular word of
g(X) is not included in the corresponding word of g(j), we can stop since the whole inclusion check surely
fails. Finally, if a single inclusion check fails during the order preserving test, then we discard X and not
continue with further inclusions checks.

In order to compare our memory efficient duplication check technique with a more traditional one, based
on the presence of a data structure that stores all the closed itemsets mined so far, we instrumented the

13

0.511.522.533.544.55
10

0

10
1

10
2

10
3

T40I10D100K

support %

tim
e

(s
ec

.)

FPCLOSE
CLOSET+
DCI−CLOSED

00.010.020.030.040.050.06
10

0

10
1

10
2

RETAIL

support %

tim
e

(s
ec

.)

FPCLOSE
CLOSET+
DCI−CLOSED

(a) (b)

15202530354045
10

0

10
1

10
2

10
3

CHESS

support %

te
m

po
 (

se
c.

)

FPCLOSE
CLOSET+
DCI−CLOSED

4045505560657075
10

0

10
1

10
2

10
3

PUMSB

support %

tim
e

(s
ec

.)

FPCLOSE
CLOSET+
DCI−CLOSED

(c) (d)

51015202530354045
10

0

10
1

10
2

10
3

CONNECT

support %

te
m

po
 (

se
c.

)

FPCLOSE
CLOSET+
DCI−CLOSED

810121416182022
10

0

10
1

10
2

10
3

PUMSB*

support %

tim
e

(s
ec

.)

FPCLOSE
CLOSET+
DCI−CLOSED

(e) (f)

Figure 2: Execution times of FP-Close, Closet+, and DCI Closed as a function of the minimum support
threshold on various publicly available datasets.

14

15202530354045
10

6

10
7

10
8

10
9

10
10

Intersection Operations on CHESS

% support

w
or

d
in

te
rs

ec
tio

ns

base
+ projection
+ section eq
+ included

15202530354045
10

7

10
8

10
9

10
10

Inclusion Operations on CHESS

% support

w
or

d
in

cl
us

io
ns

base
+ projection
+ section eq
+ included

(a) (b)

51015202530354045
10

7

10
8

10
9

10
10

10
11

Intersection Operations on CONNECT

% support

w
or

d
in

te
rs

ec
tio

ns

base
+ projection
+ section eq
+ included

51015202530354045
10

7

10
8

10
9

10
10

10
11

Inclusion Operations on CONNECT

% support

w
or

d
in

cl
us

io
ns

base
+ projection
+ section eq
+ included

(c) (d)

Figure 3: Number of intersections (a-c), and of inclusions (b-d), operations actually performed by the
DCI Closedd() procedure when the various optimization techniques discussed in Section 5.1.2 are exploited
or not. The plots refers to the chess (a-b) and connect datasets (c-d). The number of operations is plotted
as a function of the support threshold.

15

00.10.20.30.40.50.60.7
0

50

100

150

200

250

300

350

400

450
Duplicate check time

% support

tim
e

(s
ec

.)

connect − fpclose
connect − dci−closed
pumsb − fpclose
pumsb − dci−closed

Figure 4: Absolute times spent for the duplication check by DCI Closed and FP-Close two mine two
dense datasets, chess and connect, as a function of the support threshold.

publicly available FP-Close code and our DCI Closed code. Figure 4 shows the absolute times spent for
the duplication check while mining two dense datasets, chess and connect, as a function of the support
threshold. For small values of the support threshold our technique resulted the best, with a speedup up to
six.

Another way to observe the efficiency of our method for duplication check is to measure main memory
usage. Figure 5(a) plots memory occupation of FP-Close, Closet+ and our algorithm DCI Closed
when mining the connect dataset as a function of the support threshold. Note that the amount of main
memory used by Closet+ and FP-Close grows exponentially when the support threshold is decreased due
to the huge number of closed itemsets generated that have to be stored in the main memory. Conversely,
the memory used by DCI Closed, which does not need to maintain the frequent closed itemsets in memory
for duplication check, continues to be nearly constant. In Figure 5(b) we plotted the results of the same test
using the sparse dataset T40I10D100K, where Closet+ is supposed to use its upward checking technique.
Also in this last test, DCI Closed outperforms every other algorithm using ten times less memory.

7 Conclusions

In this paper we have investigated in depth the problem of efficiency in mining closed frequent itemsets from
transactional datasets. We claimed that state-of-the-art algorithms like Charm, Closet+, and FP-Close,
are not memory efficient since they require to keep in the main memory the whole set of closed patterns mined
so far in order to detect duplicated closed itemsets. We asserted that the duplicates generation problem is
a consequence of the strategy adopted by current algorithms to browse the itemset lattice, and thus we
proposed a new strategy for browsing the lattice which allows to effectively detect and discard duplicates
without storing the closed patterns in the main memory. The proposed strategy has been formally proved
to be valid, and can be exploited with substantial performance benefits by algorithms using a vertical
representation of the dataset.

Moreover, we implemented our technique within DCI Closed, a new algorithm which exploits a depth-
first visit of the search space, and adopts a vertical bitmap representation of the dataset. DCI Closed also
exploits several innovative optimizations aimed to save both space and time in computing itemset closures
and their supports. Since the basic operation to perform closures, support counts, and duplicate detections,
is bitwise list intersection, we particularly optimized this operation, and, when possible, we reused previously
computed intersections to avoid redundant computations.

As a result of the efficient strategies and optimizations introduced, DCI Closed outperforms other state-

16

51015202530354045
10

1

10
2

10
3

10
4

CONNECT

support %

si
ze

 (
M

eg
aB

yt
es

)

FPCLOSE
CLOSET+
DCI−CLOSED

0.511.522.533.544.55
10

1

10
2

10
3

T40I10D100K

support %

si
ze

 (
M

eg
aB

yt
es

)

FPCLOSE
CLOSET+
DCI−CLOSED

(a) (b)

Figure 5: Memory used by DCI Closed, Closet+, and FP-Close when a dense (a), and a sparse (b)
dataset are mined, as a function of the support threshold.

of-the-art algorithms and requires orders of magnitude less memory when dense datasets are mined with low
support thresholds. The in depth experimental evaluation conducted, demonstrates the effectiveness of our
optimizations, and shows that the performance improvement over competitor algorithms – up to one order
of magnitude – becomes more and more significant as the support threshold decreases.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB ’94, pages
487–499, September 1994.

[2] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset counting and
implication rules for market basket data. In Joan Peckham, editor, SIGMOD 1997, Proceedings ACM
SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA,
pages 255–264. ACM Press, 05 1997.

[3] Bart Goethals and Mohammed J. Zaki. Advances in Frequent Itemset Mining Implementations: Report
on FIMI’03. SIGKDD Explor. Newsl., 6(1):109–117, 2004.

[4] Gosta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent itemsets. In Proceedings
of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, November 2003.

[5] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. In Proc.
SIGMOD ’00, pages 1–12, 2000.

[6] J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. In Proc.
2002 Int. Conf. on Knowledge Discovery in Databases (KDD’02), Edmonton, Canada, 2002.

[7] Claudio Lucchese, Salvatore Orlando, Paolo Palmerini, Raffaele Perego, and Fabrizio Silvestri. kdci:
a multi-strategy algorithm for mining frequent sets. In Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, November 2003.

17

[8] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware mining of frequent
sets. In Proc. The 2002 IEEE International Conference on Data Mining (ICDM ’02), pages 338–345,
2002.

[9] P. Palmerini, S. Orlando, and R. Perego. Statistical properties of transactional databases. In Proceedings
of the 2004 ACM symposium on Applied computing, pages 515–519. ACM Press, 2004.

[10] J. S. Park, M.-S. Chen, and P. S. Yu. An Effective Hash Based Algorithm for Mining Association Rules.
In Proc. of the 1995 ACM SIGMOD Int. Conf. on Management of Data, pages 175–186, 1995.

[11] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering frequent closed itemsets
for association rules. In Proc. ICDT ’99, pages 398–416, 1999.

[12] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of association rules
using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

[13] J. Pei, J. Han, H. Lu, S. Nishio, and D. Tang, S. amd Yang. H-Mine: Hyper-Structure Mining of
Frequent Patterns in Large Databases. In Proc. The 2001 IEEE International Conference on Data
Mining (ICDM’01), San Jose, CA, USA, 2000.

[14] Jian Pei, Jiawei Han, and Runying Mao. Closet: An efficient algorithm for mining frequent closed
itemsets. In SIGMOD International Workshop on Data Mining and Knowledge Discovery, May 2000.

[15] Jian Pei, Jiawei Han, and Jianyong Wang. Closet+: Searching for the best strategies for mining frequent
closed itemsets. In SIGKDD ’03, August 2003.

[16] Rafik Taouil, Nicolas Pasquier, Yves Bastide, Lotfi Lajhal, and Gerd Stumme. Mining freqent patterns
with counting inference. SIGKDD Explorations, 2(2):66–75, December 2000.

[17] Mohammed J. Zaki. Mining non-redundant association rules. Data Min. Knowl. Discov., 9(3):223–248,
2004.

[18] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 326–335. ACM
Press, 2003.

[19] Mohammed J. Zaki and Ching-Jui Hsiao. Charm: An efficient algorithm for closed itemsets mining. In
2nd SIAM International Conference on Data Mining, April 2002.

18

