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Abstract

This paper presents SUPPLE �SUPort for Parallel Loop Execution�� an innovative run�time support
for the execution of parallel loops with regular stencil data references and non�uniform iteration costs�
SUPPLE relies upon a static block data distribution to exploit locality� and combines static and dynamic
policies for scheduling non�uniform iterations� It adopts� as far as possible� a static scheduling policy
derived from the owner computes rule� and moves data and iterations among processors only if a load
imbalance actually occurs� SUPPLE always tries to overlap communications with useful computations by
reordering loop iterations and prefetching remote ones in the case of workload imbalance� The SUPPLE
approach has been validated by many experimental results obtained by running a multi�dimensional �ame
simulation kernel on a �	�node Cray T
D� We have fed the benchmark code with several synthetic input
data sets built on the basis of a load imbalance model� We have compared our results with those obtained
with a CRAFT Fortran implementation of the benchmark�

Keywords Data parallelism� parallel loop scheduling� load balancing� run�time supports� compiler
optimizations�

� Introduction

Data parallelism is the most common form of parallelism exploited to speed�up scienti�c applica�
tions� In the last few years� high level data parallel languages such as High Performance Fortran
�HPF� ��	� Vienna Fortran �
�	 and Fortran D ��	 have received considerable interest because they
facilitate the expression of data parallel computations by means of a simple programming ab�
straction� In particular HPF� whose de�nition is the fruit of several research proposals� has been
recommended as a standard by a large Forum of universities and industries� Using HPF� program�
mers only have to provide a few directives to specify processor and data layouts� and the compiler
translates the source program into an SPMD code with explicit interprocessor communications
and synchronizations for the target multicomputer� Data parallelism can be expressed above all
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by using collective operations on arrays �

	� e�g� collective Fortran � operators� or by means
of parallel loop constructs� i�e� loops in which iterations are declared as independent and can be
executed in parallel� In this paper we are interested in run�time supports for parallel loops with
regular stencil data references� In particular� we consider non�uniform parallel loops� i�e� parallel
loops in which the execution time of each iteration varies considerable and cannot be predicted
statically�
The typical HPF run�time support for parallel loops exploits a static data layout of arrays onto
the network of processing nodes� and a static scheduling of iterations which depends on the spe�
ci�c data layout� Arrays are distributed according to the directives supplied by programmers� and
computations� i�e� the various loop iterations� are assigned to processors following a given rule
which depends on the data layout �e�g� the owner computes rule�� A BLOCK distribution is usu�
ally adopted to exploit data locality� computations mapped on a given processor by the compiler
mainly use the data block allocated to the corresponding local memory� Conversely� CYCLIC
distribution is usually adopted when load balancing issues are more important than locality ex�
ploitation� A combination of both the distributions� where smaller array blocks are scattered on
processing nodes� can be adopted to �nd a tradeo� between locality exploitation and load balanc�
ing� It is worth noting� however� that the choice of the best distribution is still up to programmers�
and that the right choice depends on the features of the particular application� The general prob�
lem of �nding an optimal data layout is in fact NP�complete �	�
The adoption of a static policy to map data and computations reduces run�time overheads� be�
cause all mapping and scheduling decisions are taken at compile�time� While it produces very
e�cient implementations for regular concurrent problems� the code produced for irregular prob�
lems �i�e� problems where some features cannot be predicted until run�time� may be characterized
by poor performance� Many researches have been conducted in the �eld of run�time supports and
compilation methods to e�ciently implement irregular concurrent problems� and these researches
are at the basis of the new proposal of the HPF Forum for HPF
 ��	� The techniques proposed
are mainly based on run�time codes which collect information during the �rst phases of computa�
tion� and then use this information to optimize the execution of the following phases of the same
computation� An example of these techniques is the one adopted by the CHAOS support �
�	 to
implement non�uniform parallel loops� The idea behind this feature of the CHAOS library is the
run�time redistribution of arrays� and the consequent re�mapping of iterations� Redistribution is
carried out synchronously between the execution of subsequent executions of parallel loops� and
is decided on the basis of information �mainly� timing information� collected at run�time during a
previous execution of the loop� If the original load distribution is not uniform� the data layout is
thus modi�ed in order to balance the processor loads� In ���	 a dialect of HPF has been extended
with new language constructs which are interfaced with the CHAOS library to support irregular
computations�
In this paper we address non�uniform parallel loop implementations� introducing a truly innovative
support called SUPPLE �SUPort for Parallel Loop Execution�� SUPPLE is not a general support
on which we can compile every HPF parallel loop� but only non�uniform �as well as uniform� par�
allel loops with regular stencil data references� Since stencil references are regular and known at
compile time� optimizations such as message vectorization� coalescing and aggregation� as well as
iteration reordering can be carried out to reduce overheads and hide communication latencies ��	�






C Loop on the time steps

DO k� ��K

C Convection phase over a structured mesh

C Nearest neighbor communications � Constant computation time

FORALL �i� ��N���� j� ��N����

A�i�j� � A�i�j� 	 F�B�i�j�� B�i���j�� B�i�j���� B�i	��j�� B�i�j	��� C�i�j��

END FORALL

B � A

C Chemical reaction phase � No communications � High load imbalance

C Workload distribution evolves during simulation

FORALL �i� ��N�� j� ��N�� C�i�j� � Reaction�A�i�j��

END DO

Fig� �� HPF�like code of a simpli�ed two�dimensional �ame modeling code�

SUPPLE is able to initiate loop computation using a statically chosen BLOCK distribution� thus
starting iteration scheduling according to the owner computes rule� During the execution� however�
if a load imbalance actually occurs� SUPPLE adopts a dynamic scheduling strategy that migrates
iterations and data from overloaded to underloaded processors in order to increase processor uti�
lization and improve performances� All decisions about migration are mainly local� in order not
to introduce global communication�synchronizations� SUPPLE overlaps most overheads deriving
from dynamic scheduling� i�e� messages to monitor loads and move data� with useful computations�
The main features that allow us to overlap the otherwise large overheads are ��� prefetching of
remote loop iterations on underloaded processors� and �
� a complete asynchronous support that
does not introduce barriers between consecutive iterations of loops� Below we describe our support
in detail� and we show some results obtained by running the kernel of a �ame simulation code on
a Cray T�D� In this application� the characteristics of the input data set strongly in�uence the
time needed to compute loop iterations and thus may cause workload imbalances� For this reason�
we ran our tests on synthetic data sets� built on the basis of a simple load imbalance model�
To compare SUPPLE with an HPF�style static approach� we used the Cray CRAFT�Fortran�
whose language directives and compilers were partially adapted from Fortran�D ��	 and Vienna
Fortran �
�	� Even if SUPPLE is presented here as a run�time support to implement non�uniform
parallel loops� it can be pro�tably used ���	 for a less narrow class of applications� i�e� to compile
�uniform� parallel loops on heterogeneous and�or time�shared systems� where we can have high
load imbalance even if the speci�c application is regular�
The paper is organized as follows� Section 
 describes the �ame simulation code we used as a
benchmark to validate the SUPPLE approach� Section � presents the main features of SUPPLE
and gives some details on its implementation� Assessments of the experiment results are reported
and discussed in depth in Section �� which also describes the load imbalance model used to build
the synthetic data sets� Finally� Section � provides a summary of related work� and Section �
draws the conclusions�

� The benchmark

The benchmark we used to validate the SUPPLE approach is directly derived from a class of actual
scienti�c codes used to carry out detailed �ame simulations �
�	� Flame simulations have attracted
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growing interest in the last few years� highly detailed simulations can in fact give scientists impor�
tant information on fuel �ammability limits and on the interactions between chemical and physical
processes� One example of code that performs a time�dependent multi�dimensional simulation of
hydrocarbon �ames is described in detail in ���	� and is included in the HPF�
 draft ��	 as one of its
motivating applications� The code is split into two distinct computational phases executed at each
time step� The �rst phase computes �uid convection over a structured mesh� The computation at
each point has similar costs� and involves the point itself and the nearest neighboring elements of
the simulation mesh� Stencil communications are thus required at each time step to carry out this
phase on a distributed memory machine� The second phase simulates chemical reaction and sub�
sequent energy releases represented by ordinary di�erential equations� The solution at each grid
point only depends on the value of the point itself� but its computational costs may vary signi��
cantly since the chemical combustion proceeds at di�erent rates across the simulation space� The
reaction phase globally requires more than half of the total execution time� and most of this time
is spent on a small fraction of the mesh points� Furthermore� the workload distribution evolves
as the simulation progresses� The HPF�like code of a simpli�ed two�dimensional �ame modeling
code is reported in Fig� �� The interesting characteristic of �ame simulation codes is that� in order
to e�ciently exploit a highly parallel machine� two con�icting requirements have to be dealt with�
the need to adopt a regular block partitioning to take advantage of data locality during the �rst
convection phase� and� conversely� the need to balance the highly variable workloads during the
reaction phase� This second point would entail a di�erent distribution of the simulation grid on
the processor local memories� Unfortunately� since the workload distribution evolves and depends
on the speci�c features of the input data set� we cannot devise at compile time a distribution that
is suitable for both phases of the simulation� The following are therefore possible solutions�

�i� CYCLIC distribution of the simulation grid thus losing data locality in favor of a better
balance of the processor workloads� This solution must be followed to obtain acceptable
performances with HPF�like data�parallel languages� which currently do not support irregular
applications ��	� A combination of BLOCK and CYCLIC distribution may also be used to �nd
a tradeo� between locality exploitation and load balancing� However� static optimizations like
these may be unsuccessful when the workload distribution varies unpredictably at run time�

�ii� Using BLOCK distribution for the �rst loop� and CYCLIC for the second� This solution would
entail using an executable redistribution directive� Although several HPF implementations do
not support yet this directive� we can simulate it by assigning one array distributed CYCLIC
to another distributed BLOCK� and vice versa�

�iii� BLOCK partitioning the grid in the �rst convection phase� and then suitably redistributing
data and iterations to balance the workloads before starting the reaction computation� This
approach is di�erent from the previous one� because data and computation reallocation is
minimized� and is carried out at run time on the basis of information collected during previous
phases of the computation� This implementation scheme is followed by Ponnusamy et al� in
�
����	� They exploit the CHAOS run�time library �
�	� whose functionalities are used to
build at run�time an irregular data redistribution plan resulting in a nearly balanced reaction
computation� Experiments were conducted by the authors on up to �� Intel iPSC���� nodes
���	� Redistribution for achieving load balance takes about ���
�� of the total execution
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time� but results in execution times ���� times better than without load balance actions�
The authors do not compare the approach with the �rst� much simpler solutions�

�iv� BLOCK partitioning the grid to exploit data locality� and dynamically redistributing the
expensive calculations of the reaction loop to balance the load� This is the approach dis�
cussed in this paper� Non�uniform loops are executed by adopting� as far as possible� a static
scheduling policy� and dynamically moving data and iterations among processors only if a
load imbalance is actually detected� SUPPLE builds the balanced schedule from scratch at
every loop execution� this is useful to e�ciently implement highly adaptive application codes
in which the workload varies at each iteration�

� Overview of SUPPLE

SUPPLE is a run�time support for the e�cient implementation of data parallel loops with regu�
lar� stencil references ��	� characterized by per�iteration computation times which may be non�
uniform� thus generating a workload imbalance� SUPPLE only supports BLOCK array distribu�
tions to exploit locality deriving from stencil computations� Since stencil references are regular
and known at compile time� several optimizations such as message vectorization� coalescing and
aggregation ��	 can be carried out to reduce communication overheads� These optimizations com�
bine element messages which are then sent to the same processor in one single message without
redundant data� Another optimization technique implemented in SUPPLE is iteration reordering�
The local loops assigned to every processor according to the BLOCK distribution and the owner
computes rule are split into multiple localized loops� those accessing only local data� and those
accessing remote data as well� The loops accessing only local data are scheduled between the
asynchronous sends and the corresponding receives which are used to transmit remote data� in
this way the execution of the iterations accessing only local data allows communication latencies
to be hidden ��	� Besides uniform loops� SUPPLE also supports non�uniform loops through the
adoption of an innovative dynamic load balancing technique� Dynamic scheduling is combined
with the optimized static scheduling illustrated above� This hybrid �static � dynamic� strategy
only applies to loop iterations that access local data� Loop iterations that need to fetch remote
data are simply scheduled as in the static case� This limitation in the dynamic scheduling is not
very strong� and does not a�ect the ability of our technique to balance the overall workload� Con�
sider� in fact� that the number of iterations that access remote data is usually a small fraction
of the total when data sets of interesting sizes are BLOCK distributed and stencil computations
apply� One of the reasons for this limitation is to avoid the introduction of irregularities in the
stencil data references� thus preventing the possibility of optimizing communications� The hybrid
scheduling strategy works as follows� at the beginning iterations are scheduled statically according
to the optimized ordering mentioned above� and start being dynamically migrated only if a load
imbalance is actually detected at run�time� The load balancing heuristic adopts local policies of
imbalance detection to avoid global synchronizations� and prefetching of remote iterations to hide
communication latencies�
This section presents SUPPLE in detail� In particular� we describe the optimized implementation

�



of stencil communications� and both the static and hybrid �static � dynamic� scheduling strategies
that can be adopted� SUPPLE supports� however� di�erent processor layouts� multi�dimensional
arrays distributed in any dimensions� and parallel loops with di�erent stencil references� To this
end� SUPPLE uses several descriptors to store information about the arrays and loops involved�
and provides routines to �ll the descriptor �elds used at run�time by the implementation code�

Management of stencil references� SUPPLE provides the support to implement uniform loops
by adopting the scheduling and the communication optimizations that can be employed when data
are accessed with regular stencils ����	� It allocates on each processing node enough memory to
host the array partitions assigned according to the BLOCK distribution� and a surrounding ghost
�or overlap� area� The ghost area width depends on the shape of the stencil� and is used to bu�er
the perimeter areas of the adjacent partitions owned by neighboring processors� and accessed
through non�local references�
In the �nal SPMD program which implements the loop� an equal fraction of loop iterations is as�
signed to each processor according to the owner computes rule� Each processor executes a localized
loop� whose boundaries and array references refer to the local array block� Before executing the
loop� however� non local data must be fetched from the nearest neighboring nodes� SUPPLE allow
communications required to implement stencil computations to be optimized� by avoiding sending
several messages or replicated data to the same processor ��	� However� if all communication are
scheduled before the localized loop execution� we do not hide communication latency� To overlap
communications with useful computations� SUPPLE allows iteration to be reordered ��	� To this
end� if one considers the iterations executed by a localized loop� she�he can distinguish those as�
signing the perimeter area and those assigning the remaining inner area of the array blocks� Loop
iterations assigning the inner area only refer to local data� while the others� which also access the
ghost area� need to wait for non local data� Hence� we can reorder the loop iterations by executing
the iterations that update the inner area between the asynchronous sending of messages and the
corresponding receiving� Finally� in the SPMD code that implements the parallel loop we can
distinguish four sequential steps�

�� � pack and send perimeter areas to neighboring processors �

�� � execute localized loops that update inner areas �

�� � receive from neighboring processors and unpack ghost areas �

�� � execute localized loops that update perimeter areas �

Steps 
 and � include the execution of the new parallel loops obtained by iteration reordering� while
steps � and � correspond to communications that implement stencil data references� Nevertheless�
if a parallel loop accesses several arrays� steps � and � only exchange data for those arrays for which
stencil references apply� While step � is straightforward� because it simply requires the execution
of the iterations which modify data elements belonging to the perimeter area� step 
 may be
implemented by exploiting either a static or a hybrid �static � dynamic� scheduling technique�
where the right choice depends on whether the loop to be implemented is uniform or not� In order
to support hybrid scheduling� the iterations that assign the elements lying on the inner area are
statically grouped into chunks by tiling the iteration space� Tiling is necessary because SUPPLE
migrates chunks of iterations on the basis of the workload distribution� Tiling is not strictly needed
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Static Scheduler �queue Q�
T � chunk�
begin

foreach T � Q

while �� the full�empty �ag of T is set �� do
Wait for coherency�T ��

end while

Execute �T ��
end foreach

end

Fig� � Pseudo�code of step  when static scheduling is adopted�

if static scheduling is exploited� but we adopted it in this case too because it has been proved that it
may improve locality exploitation ���	� Another problem considered in SUPPLE is data coherence
when hybrid scheduling is adopted� in fact some tiles of a BLOCK partition may be updated by
processors other than the owner of the partition itself and must be returned to the owner� To this
end SUPPLE associates a full�empty�like �ag ��	 with each data tile� If a chunk that modi�es a
given tile is migrated� then the associated �ag is set� The �ag will be unset when the updated data
tile is received back from the remote processor� Flags are checked only when the corresponding
tiles need to be read� This mechanisms does not introduce large overheads� because �ags are
maintained for every tile and not for every array element� Moreover� the mechanism is useful to
avoid the introduction of a global synchronization between executions of distinct loops� where�
for example� the �rst loop updates an array that is read by a following one� Note that if the �rst
loop adopts hybrid scheduling� the following loop has to check �ags even if it is uniform and thus
chunks can be scheduled statically� Fig� 
 shows the SPMD pseudo code that implements step 
 of
the general technique described above� All the code is included in the routine Static Scheduler���
which statically schedules the chunks of iterations by accessing local data only� The queue Q
contains this chunk sequence� Note the subroutine Wait for coherency��� which guarantees the
correct program semantics by waiting until the data tile associated with T becomes coherent�
and the subroutine Execute �T �� which is a simple localized loop that updates the associated
data tile� The results discussed in Section � show that the routine Wait for coherency�T � does
not actually block computation because� when it is invoked� the corresponding coherence message
has already been received� Note that� however� the while loop which waits for coherency can be
completely removed if the data tiles of the arrays involved are not scheduled dynamically by other
parallel loops� As far the benchmark illustrated in Section 
 is concerned� we have used such a
static scheduling scheme to implement the uniform Convection loop �see Fig� ��� The width of the
perimeter area is in this case equal to one� while a ghost area of the same width surrounds the
blocks of array B� The resulting inner area is tiled� and the chunks are scheduled statically� Each
chunk updates the array A and reads both arrays B and C� Before the execution of each chunk�
according to the code in Fig� 
� we wait for the coherence of the corresponding tile of array C�
Coherence is checked because the array C is written by the previous non�uniform Reaction loop�
which is implemented by adopting the hybrid scheduling scheme described below�

Non�uniform loop implementation�The innovative feature of SUPPLE is its support for non�
uniform loops� which is attained by adopting a hybrid �static � dynamic� scheduling strategy to
implement step 
 of the general technique described in the previous section� At the beginning� to
reduce overheads� iterations are scheduled statically� by sequentially executing the chunks stored
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in queue Q� hereinafter called local queue� Once a processor understands that its local queue
is becoming empty� the dynamic part of our scheduling policy is initiated� Computations are
migrated at run�time to balance the workload� Work migration requires both chunk identi�ers and
corresponding data tiles to be transmitted over the interconnection network� If loops access an
array with a given stencil data reference� tiles with a suitable surrounding area must be migrated�
In order to overlap computation with communication� an aggressive prefetching policy is adopted
to avoid processors becoming idle while waiting for further work� Migrated chunks are stored
by each receiving processor in a queue RQ� called remote� The size g of chunks is �xed and is
decided statically� This size gives only a lower bound on the amount of work migrated at run�
time� because the support adopts a heuristics to decide at run�time how many chunks must be
moved from an overloaded processor to a underloaded one� On the other hand� since SUPPLE
uses a polling technique to probe message arrivals� g directly in�uences the time elapsed between
two consecutive polls �see Section ��� The dynamic scheduling algorithm is fully distributed and
asynchronous� chunk migration decisions are taken on the basis of local information only� and�
since it is the receiver of remote chunks that asks overloaded processors for work migration� it
can be classi�ed as a receiver initiated load balancing technique� According to the framework
proposed by Willebeek�LeMair and Reeves �
�	� the load balancing technique can be characterized
by considering the strategies exploited for processor load evaluation� load balancing pro�tability
determination� task migration� and task selection�

Processor Load Evaluation� Each load balancer policy requires a reliable workload estimation
to detect load imbalances and take� hopefully� correct decisions about workload migration� Our
technique is based on the assumption that each processor can derive the expected� average exe�
cution cost of its own chunks stored in the local queue Q� Since the �rst part of our technique is
static� at the beginning each processor only executes chunks belonging to Q� During this phase�
the average chunk cost is derived through a non�intrusive code instrumentation �the parallel sys�
tem used� a Cray T�D� allows to read the clock cycle count in a single� inexpensive� machine
instruction�� Moreover� when chunks are migrated toward underloaded processors� an estimate of
their cost is communicated as well� Each processor is thus aware of the average costs of remote
chunks stored in RQ� On the basis of the cost estimates of chunks still stored in Q and RQ� each
processor can therefore measure its own current load�

Load Balancing Pro�tability Determination� This strategy is used to evaluate the poten�
tial speedup obtainable through load migration weighted against the consequent overheads� In
SUPPLE� each processor detects a possible load imbalance� and starts the dynamic part of the
scheduling technique on the basis of local information only� It compares the value of its current
load with a machine�dependent Threshold� When the estimated local load becomes lower than
Threshold� the processor begins to ask other processors for remote chunks� The same comparison
of the current load with Threshold is used to decide whether a chunk migration request should be
granted or not� A processor pj� which receives the migration request from a processor pi� will grant
the request only if its current load is higher than Threshold� Note that the Threshold parameter
is chosen high enough to prefetch remote chunks� thus avoiding underloaded processors becoming
idle while waiting for chunk migrations�
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Task Migration Strategy� Sources and destinations for task migration are determined� In our
case� since the load balancing technique is receiver initiated� the source �sender� of a load migration
is determined by the destination �receiver� of the chunks� The receiver selects the processor to be
asked for further chunks by using a round�robin policy� This criterion was chosen for its simplicity
and also because tests showed its e�ectiveness� SUPPLE uses the same Threshold parameter
mentioned above to reduce overheads of our task migration strategy �overheads should derive
from requests for remote chunks which cannot be served because the current load of the partner
that has been asked for is too low�� Thus each processor� when its current load becomes lower than
Threshold� broadcasts a so�called termination message� Our round�robin strategy can thus select
a processor from those that have not yet communicated their termination� Termination messages
are also needed to end the execution of a parallel loop� When a processor has already received
a termination message from all the other processors� and both its queues Q and RQ are empty�
then it can locally terminate the parallel loop since no further chunk can be fetched from both its
local queues and the remote processors�

Task Selection Strategy� Source processors select the most suitable tasks for e�ectively bal�
ancing the load� and send them to the destinations that asked for load migration� In terms of
our support� this means choosing the most appropriate number of chunks that must be moved to
grant a given migration request� We use a modi�ed Factoring scheme to determine this number ��	�
Factoring is a Self Scheduling heuristics formerly proposed to address the e�cient implementation
of parallel loops on shared�memory multiprocessors� It provides a way to determine the appro�
priate number of iterations that each processor must fetch at each access from a central queue
storing the indexes of unscheduled loop iterations� Clearly� the larger this number is� the lower the
contention overheads for accessing the shared queue� and the higher the probability of introducing
load imbalances when the fetched iterations are actually executed� Factoring requires that� if u is
the number of remaining unscheduled iterations and P is the number of processors involved� the
next P requests for new work are granted with a bunch of u

��P
iterations� Consequently� at the

beginning large bunches of iterations are scheduled� and this number is reduced when the shared
queue is going to be emptied� In our case� instead of having a single queue� we have multiple shared
queues� one for each processor� When a loop is unbalanced only some of these queues� i�e� those
owned by overloaded processors� will be involved in granting remote requests for further work�
The other di�erence regards our scheduling unit� which is a chunk of iterations instead of a single
iteration� The modi�ed heuristic we used is thus the following� an overloaded processor replies
to a request for further work by sending k

��P
chunks� where k is the number of chunks currently

stored in Q� and P is the number of processors� Note that� in order to exactly apply Factoring�
each processor should have the global knowledge of all the chunks stored into the local queues
of all the overloaded processors� and also of all the possible underloaded processors that can ask
for further work� If this knowledge was available and the original Factoring technique was thus
applied� the number of chunks returned for each request would be larger than k

��P
� Unfortunately�

this knowledge cannot be achieved without introducing global synchronizations due to the asyn�
chronous behavior of processors involved� However� due to the multiple and concurrent requests
from underloaded processors� if we moved more than k

��P
chunks� we would risk prefetching too

much chunks toward underloaded processors�





Hybrid Scheduler �queue Q�
RQ� queue� T � chunk�
begin

Initialize Data Structures ���
while �not Terminated	Empty queues �Q
 RQ�� do
if �My Load �Q� RQ� � Threshold� then
Prefetch Chunk � ��
if �� not already done �� then
Comm termination � ��

end if

end if

T � Extract�Q��
if �Empty �T �� then
T � Extract �RQ��
Execute �T ��
Send Results Coherence �T ��

else Execute �T ��
end if

Request Handler ���
end while

end

Fig� 
� Pseudo�code of step  when hybrid scheduling is adopted�

��� SPMD code of the load balancer�

Fig� � shows the SPMD pseudo code to implement step 
 of the general technique above� The
code exploits the hybrid �scheduling � dynamic� scheduling used by SUPPLE to implement
non�uniform parallel loops� All the code is included in the routine Hybrid Scheduler��� which
schedules the iteration chunks of the local Q either locally� according to a static sequential order�
ing� or remotely� according to dynamic scheduling decisions made only if load imbalance occurs�
The core part of the code is a while construct� which ends looping when the function Termi�
nated	Empty queues�� returns a True value� This function checks the termination condition� a
processor that is executing this SPMD code terminates as soon as its queues Q and RQ are
empty� and it has received a termination message from all the other processors� The function
My load�� estimates the current workload of a processor� It returns the product of the number of
chunks still stored in Q times the average local chunk execution cost� plus the the cost estimated
for any chunks stored in RQ� Q chunk average cost is determined by monitoring the execution of
the local chunks� while estimated costs of remote chunks are communicated by sender processors
along with data tiles� At the beginning� when no chunk executions have been monitored� these
costs are initialized with high values to avoid wrong chunk requests and migrations�
The prefetching policy adopted to reduce overheads of chunk migration is driven by a machine�
dependent Threshold parameter� a processor sends a request for remote chunks by calling subrou�
tine Prefetch Chunk�� only if its current load is lower than Threshold� Likewise� the processor that
has been asked for� grants the request only if its own load is greater than Threshold� Since latencies
of chunk migrations may be very large� we may risk prefetching too much because we might send
many requests before the �rst remote chunks arrive� To avoid this� we �x a limit on the number
of requests sent by a processor and not yet granted� Prefetch Chunk�� sends a request message
only if this limit has still not been reached� Prefetch Chunk�� employs a simple local round�robin
policy to select the next processor to be asked for a remote chunk� processor pi� whose round�robin
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counter is initialized to pi� at the beginning� chooses the next partner from those which have not
yet communicated their termination by means of a call to subroutine Comm termination��� The
function Extract�� returns a chunk from a queue� The subroutine Execute�� executes a chunk T �
and� if T is local� measures the time taken to complete it and consequently updates the estimate
average cost of local chunks� We adopt an asynchronous coherence protocol to migrate updated
data from the processor that actually executed the chunk to the processor that is the owner
of the corresponding data partition� The updated data tiles are transmitted by the subroutine
Send Results Coherence��� which also implements message vectorization by bu�ering more data
tiles to be sent to the same processor� The subroutine inserts data tiles in a bu�er� and transmits
the bu�er when either it becomes full or termination is detected� A full�empty�like technique ��	 is
used by our coherence protocol to avoid processing invalid data� When processor pi sends a chunk
b to pj� it sets a �ag marking the data tile to be modi�ed by pj as invalid� The next time pi needs
to access the same data� for example during the execution of another loop accessing the same
array� pi checks the �ag and� if the �ag is still set� waits for the updated data tile from node pj�
We have already seen how this check is performed in the static scheduling code of Fig� 
� The same
job is performed in the code of Fig� � by the function Extract�� when applied to the local queue
Q� Such a control of data consistency does not entail stopping waiting for coherence messages
at the end of parallel loop execution� a new loop can be started and useful computation can be
overlapped with these communications� Finally� the subroutine Request Handler�� performs many
of the above tasks� This subroutine whose code� for the sake of simplicity� is not shown in detail�
polls and handles all the messages that can arrive at a processor� For example�

� requests for work migration� which entail deciding about migration pro�tability and possibly
extracting a bunch of chunks from Q and sending it to the requesting processor�

� coherence messages transporting updated data tiles� which entail copying the received data in
the local array partitions and unsetting the corresponding full�empty �ags�

� remote chunk bunches sent by overloaded processors� which have to be inserted into RQ�
� termination messages which modify the behavior of our task migration strategy and are needed
to manage termination detection�

� Experimental results

We have tested SUPPLE on a �� node Cray�T�D� The message passing layer used by SUPPLE is
MPI� release CRI�EPCC ���� developed by the Edinburgh Parallel Computing Centre in collabo�
ration with Cray Research Inc� The experiments are concerned with a SUPPLE implementation
of the benchmark illustrated in Section 
 on a set of synthetic data sets presented in Section ����
We have also compared the SUPPLE implementation with an HPF�style one� For the HPF imple�
mentation we have used the Cray CRAFT�Fortran� whose language directives and compiler have
been adapted in part from Rice University�s Fortran�D project ��	 and Vienna Fortran �
�	�
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Fig� 	� Data layout of some data sets characterized by di�erent F on a �� � processor grid�


�� The synthetic input data sets

We have adopted a set of synthetic data sets because of the need to validate SUPPLE as a general
support� Conversely� if we tested SUPPLE on a single problem instance� we might have come to the
wrong conclusions due to the speci�c features of the data set chosen for the test� According to the
code skeleton shown in Fig� �� to build the di�erent data sets we make the following assumptions�

� the simulation grid is ��
� � ��
� points� Due to the blocking data distribution� �
� � �
�
contiguous points are assigned to each of the �� processors of the target machine�

� convection and reaction phases require 
�
and �

�
of the total execution time� respectively�

� � is the average time needed to process a grid point during the reaction phase� Due to the
previous assumption� the average per�point convection time is thus �

�
�

� each input data set is built according to a simple model of load imbalance ���	 discussed in the
following� Note that the imbalance features of the data set are important for the behavior of the
reaction phase� where the per�point execution time depends on the values of the point itself�

Model of load imbalance� Given �� the average execution time� our model of load imbalance
assumes that the workload is not distributed uniformly� and that there exists a region of the
simulation grid� hereafter called loaded region� in which the average per�point execution time is
greater than �� The load imbalance model is thus based on two parameters� d and t� The parameter
d� � � d � �� is a fraction of the whole simulation grid� and determines the dimension of the loaded
region� The parameter t� � � t � �� is a fraction of the total workload T � and determines the
whole workload concentrated on the loaded region� Therefore� it follows that t � d� Note that the
imbalance is directly proportional to t for a given value of d� since larger values of t correspond
to larger fractions of T concentrated on the loaded region� Similarly� the imbalance is inversely
proportional to d for a given value of t� From these remarks� we can derive F � called factor of
imbalance� de�ned as F � t

d

Sample data sets� Fig� � shows a representation of some di�erent data sets we have used to
force an unbalanced workload during the reaction phase of our benchmark� We employed data
sets characterized by values of F ranging from � to � where the size of the loaded region is kept
�xed �d � ����� The grey levels used in Fig� � represent the workloads associated with grid points�
where a darker grey stands for a heavier workload� Note that the case F � � corresponds to a
data set that does not introduce any workload imbalance� since the computational cost of each
reaction point simulation is equal to �� The �gure shows also the blocking distribution of the data
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Table �
Reaction phase� per�point execution time for some values of � and F

� F Loaded points Unloaded points

����� msec � ����� msec ����� msec

��� msec � ��� msec ����� msec

����� msec � ���� msec ���� msec

��� msec � ���� msec ���� msec

����� msec � ����� msec ����� msec

��� msec � ����� msec ����� msec

sets on a grid of �� � processors� Due to the position of the grey loaded region� processors �� �� ��
and  appear to be overloaded� while processors 
� ��� ��� ��� and �� are only partially loaded� We
will refer to this �gure to explain the overheads introduced by our support during the dynamic
load balancing phase� All the results reported in this paper were obtained by keeping �xed the
position of the loaded region during all the simulation iterations� We also carried out many tests
in which the position of the loaded region is di�erent or is moved at each iteration to simulate the
adaptivity of the code� The di�erence between the results of these experiments and those reported
in the paper are not appreciable� because SUPPLE does not exploit any previous knowledge about
which the overloaded or the underloaded processors are�


�� The experimental parameters

The experiments were conducted on �� processors for di�erent values of F and �� and speci�cally
for F � f�� � � � � g� and � � f����� msec� ����� msec� ���� msec� ��� msecg� The external se�
quential loop of the �ame simulation code was iterated for �� time steps� The theoretical Optimal
Completion Time �OCT� is thus ��
 sec����� sec� �
�� sec� and ���� sec� for � equal to ����� msec�
�����msec� ����msec� and ���msec� respectively� This time� which does not take into account any
overheads� is computed by multiplying the average time required to process a single point of the
simulation grid �������� times the number of points assigned to each processor ��
���
��� times
the number of simulation time steps ����� Table � reports some examples regarding the imbalance
introduced by our synthetic data sets� In particular� it shows the times needed to compute each
point during the reaction phase� and distinguishes between points belonging to the unloaded and
loaded region�

Tuning the dynamic load balancing parameters� The only parameters that can be mod�
i�ed and tuned in our support are the size g of a chunk of iteration� i�e� our scheduling unit�
and the prefetching Threshold� The parameter g a�ects the scheduling overhead� and the polling
mechanism used to check for message arrivals� More speci�cally� a larger g reduces the schedul�
ing overhead since it reduces the number of scheduling units stored in each local queue� On the
other hand� a larger g may reduce the ability of our support to e�ectively balance the workload�
mainly because� due to the polling mechanism adopted� it makes the response time of overloaded
processors slower when they are asked for by underloaded ones� A tradeo� must be found� and
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this depends on both the architecture and the features of the problem� The tuning of the other
parameter� Threshold� mainly depends on the speci�c architecture� It should be larger on archi�
tectures where communications are not very e�cient� We found� however� that it is also related
to the granularity of each chunk� which in turn depends on g but also on the features of the
speci�c problem� i�e� on the parameters � and F � From the remarks above it follows that the two
parameters g and Threshold are highly interdependent� One strategy is to �x one and tune the
other parameter on the basis of the �rst setting� Hence� all the experiments were carried out by
�xing g � 
�� so that each chunk assigns the iterations which update a tile of �� � points of the
simulation grid� The number of chunks scheduled by each parallel loop is thus ���� We changed
the granularity of each chunk by using data sets characterized by di�erent �� We observed that for
larger �� i�e� for chunks with a larger granularity� it is better to increase the value of Threshold�
This is not surprising� since for large chunk granularities� overloaded processors become lazier in
answering incoming requests due to our polling implementation of input message checking� Thus�
for larger �� prefetching further work should be begun earlier to avoid emptying both the local
and the remote queues� To do this we have to increase the value of Threshold� Hence� we used
values of Threshold ranging from 
 to �� msec� where larger Threshold values are used for larger
�� We found� however� that a heuristic resulting in a small decrease in performance with respect
to the case in which the correct value of Threshold is established before running the program� is
the following�

� �x a chunk dimension g� which depends on the size of the problem� The number of chunks
must be large enough to allow the load balancing algorithm to work properly� a small number
should only allow a few very large bunch of iterations to be moved� thus introducing probable
wrong workload balances� Conversely� a very large number of chunks can increase the overhead
introduced by our algorithm� though for some applications� we may have cache performance
bene�ts from scheduling loop iterations using small tiles ���	�

� start the load balancing algorithm with a small value of Threshold� and increase its value at run�
time if necessary� When an underloaded processor begins to receive remote chunks along with
their expected execution times� on the basis of this value it can increase� if necessary� the current
Threshold to take into account the possible lazy behavior of remote overloaded processors� Both
the initial value of Threshold and the amount of increase depend on the speci�c architecture�


�� Result assessment

Fig� ���a� shows several curves� Each curve is related to a distinct �� and plots the di�erence be�
tween the completion time of the slowest processor and the theoretical OCT for various factors of
load imbalance F � The di�erence shown in this and in the following plots can be considered as the
sum of all overheads due to communications� residual workload imbalance� and loop housekeeping�
It therefore also includes the time to send�receive messages by implementing the stencil commu�
nications of the �rst convection loop� There is an overhead of almost ��� sec even in the balanced
case� and the overhead becomes larger when the input data set introduces a more extensive load
imbalance� For F �  and � � ���� msec� SUPPLE balances the load with a completion time
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Fig� �� Case F � � and � � ����� �a� overheads due to send� receive� and probe MPI primitives� �b� chunks
sent and received by each processor�

which is very close to the OCT� the di�erence is nearly � sec� Note that� in the absence of load
balancing actions� the completion time is around 

 sec� with a di�erence from the OCT of more
than �� sec� If we look at the same results by considering their optimality in terms of percentage
with respect to the optimum time� then for � � ����� this percentage ranges from �� to ����
while for � � ��� it ranges between ����� and �����

Execution pro�le�We have pro�led the execution of some tests carried out with di�erent values
of F and �� Fig� ���a� shows� for all �� processors� the time spent by each of them doing� ��� useful
work on local or remote chunks� but also some small service computations requested by our load
balancing algorithm� �
� sending� receiving� and checking for arrivals of messages� Fig� � helps to
understand this graph� which is relative to the case F � � and � � ���� msec� since it identi�es
the overloaded processors with respect to the input data set and the data layout� Recall that
processors identi�ed by �� �� �� and  are overloaded� while processors 
� ��� ��� ��� and �� are
partially loaded� Going back to the graph of Fig� ���a�� one can note a larger send�receive�probe
overhead for the processors above� The reason for this overhead is the large amount of messages
that they must dispatch to give away chunks� and to receive migration requests and coherence
messages� Moreover� note that� due to these overheads� the processors that execute less useful
work are the same processors that are overloaded at the beginning of computation� The graph
in Fig� ���b� plots� for each processor� the expression �Chunks executed � Chunks assigned��
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Fig� �� CRAFT Fortran di�erences from the OCT� �a� for di�erent data layouts with � � ���
� msec�
�b� for di�erent � with array redistribution�

Chunks assigned is a constant� it is the number of chunks assigned to the local queue LQ of each
processor during all the iterations of the reaction parallel loops� This number� considering that
the simulation is iterated �� times� is equal to ����� Chunks executed is the interesting datum�
and corresponds to the number of chunks �local � remote� that a processor actually executes� The
expression is positive if a processor executes more chunks than those statically assigned� this is
the case� as Fig� ���b� shows� of the underloaded processors� which receive further remote chunks�
The same expression is negative if a processor executes less chunks than the initial ones� this is
the case of the overloaded processors� which give away a lot of chunks to underloaded processors�
Fig� ���a� illustrates the moderate and uniform overheads introduced by SUPPLE for a balanced
case characterized by F � � and � � �� msec� Fig� ���b� shows� for the same case but with
a di�erent scale� the expression �Chunks executed � Chunks assigned�� We can note a sort of
symmetry between processors that export and import chunks� If we look at Fig� � �in this case�
since F � �� consider that the workload is uniformly distributed�� we can discover that those
processors that receive a few remote tasks are the same as those that are assigned blocks on the
borders of the simulation grid� and processors on the corners are those that import the most
chunks� This behavior is due to the �rst convection loop of our benchmark� this loop does not
compute� in fact� the elements on the boundaries of the simulation grid� and thus introduces a
low load imbalance which is detected and managed by SUPPLE during the reaction phase of the
computation�
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Comparison with CRAFT� We implemented the same benchmark with CRAFT Fortran� by
feeding it with the same synthetic data sets� We tested several di�erent data layouts� The best
results for unbalanced problem instances were obtained by using a pure CYCLIC distribution�
One of the reasons of these performance results is the computational weight of the reaction loop�
which is three times that of the �rst convection loop� Thus� due to this feature of our benchmark�
it is more important to try to balance the workload through a pure CYCLIC distribution than to
increase locality exploitation with a BLOCK distribution� Fig� ���b� shows the results attained by
CRAFT Fortran by adopting a CYCLIC distribution� The di�erences from the OCT are larger
than those obtained by SUPPLE� even for the completely balanced case �nearly a half second
more than SUPPLE�� These bad results for F � � are also due to the CYCLIC distribution�
which should be turned to BLOCK to take advantage of data locality in the �rst convection loop�
The results are worse for larger � and F � For example� for F � � the CRAFT di�erences from
the optimal times are ����� ��

� ����� 
�
� sec for � equal to ������ ������ ����� ��� msec re�
spectively� against the ����� ����� ���� ���� sec obtained on the same tests by SUPPLE� The
CYCLIC distribution� besides losing data locality� is not able to perfectly balance the workload�
so that� for larger �� the workload di�erences between overloaded and underloaded processors in�
crease� We also conducted other tests with CRAFT Fortran to evaluate combinations of BLOCK
and CYCLIC distributions� By adopting a pure BLOCK distribution for the completely balanced
case �F � �� we obtained� as expected� the best CRAFT results� Also in this case� however� the
SUPPLE results are better than the CRAFT ones� We believe that this is due to our very e��
cient implementation of stencil communications� the absence of barrier synchronizations� the small
overheads introduced by our load balancing technique� and some migrations of chunks toward the
processors holding the borders of the simulation grid �see Fig� ���b��� Some of the results obtained
by adopting a combination of BLOCK and CYCLIC distributions are shown in Fig� ���a�� All the
curves� which refer to the case � � ����� msec� plots the di�erences from the optimum time for
di�erent values of F � The scale of the ordinate axis is logarithmic due to the very large di�erences
from the optimal times when adopting a BLOCK data distribution for unbalanced cases�
Finally� we tested the redistribution of the simulation grid between consecutive parallel loop ex�
ecutions� CRAFT Fortran does not support run�time redistribution directives� so we used two
di�erent arrays� the former distributed BLOCK to use in the �rst convection loop� and the latter
distributed CYCLIC to use in the second reaction phase� We re�assign one array to the other
before the execution of each parallel loop� The results� which are shown in Fig� ���b� are worse
than those obtained by using a pure CYCLIC distribution for both loops� The reason for this
worse performance depends on the huge volume of data moved simultaneously between non adja�
cent processors which may cause network congestion problems� With regard to the communication
volumes� we have measured the amounts of data transferred during �� time steps of the whole
simulation for � � ���� msec� SUPPLE transfers from 
�� to ��� MB for F � � and F � �
respectively� Independently from the factor of imbalance� the communication volumes are 
���
�
� and ���� MB for the BLOCK� CYCLIC� and REDISTRIBUTION CRAFT versions of the
benchmark� respectively� Note that for CRAFT CYCLIC� most of the communications derive from
the implementation of the �rst convection loop� while for CRAFT REDISTRIBUTION it derives
from the assignment statements used to redistribute the arrays� Data volumes moved in the case
of a CYCLIC data layout are larger than the ones for REDISTRIBUTION� However� while in the
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CYCLIC implementation messages are exchanged only among nearest neighbor processors� array
redistribution requires that each processor communicates with all the others�

� Related work

The parallel loop scheduling problem has been investigated in depth by researchers working on
shared�memory multiprocessors� Most proposals address the e�cient implementation of loops by
de�ning dynamic Self Scheduling policies which reduce synchronizations among processors by en�
larging parallel task granularity� The main goal of these works is to determine the optimal size
for the chunks fetched by each processor at each access to a shared queue which stores iteration
indexes� Clearly� the larger the chunk size is� the lower the contention overheads for accessing
the shared queue� and the higher the probability of introducing load imbalances� Polychronopou�
los and Kuck have proposed Guided Self Scheduling� according to which u

P
iterations� where u is

the number of remaining unscheduled iterations and P is the number of processors involved� are
fetched at each time by an idle processor ���	� Trapezoid Self Scheduling �
�	 has been proposed
by Tzen and Ni to reduce the number of synchronizations by linearly decreasing the chunk size�
Hummel� Schonberg and Flynn have presented Factoring ��	� the policy adopted also in SUPPLE
to implement the task selection strategy of our load balancer �see Section ��� The introduction
of large caches on shared�memory multiprocessors makes the schema above unsuitable because
they do not guarantee the exploitation of locality� Markatos and LeBlanc ���	 have investigated
locality and data reuse to obtain scalable and e�cient implementations of non�uniform parallel
loops� They have explored a scheduling strategy� based on a static partitioning of iterations� which
initially assigns iterations for a�nity with previously assigned ones� A�nity regards the presence
of accessed data in the processor caches� The dynamic part of the technique� which performs run�
time load balancing� is postponed until a load imbalance occurs� Liu and Saletore have worked on
Self Scheduling techniques for distributed�memory machines ��
	� They have designed hierarchical
and distributed implementations of a shared queue manager� and have investigated partial data
replication as a way to solve the data locality problem� Plata and Rivera ���	 presents another
centralized solution on distributed�memory systems� Di�erently from their proposal� SUPPLE
scheduling policy is fully distributed and does not introduce bottlenecks which may jeopardize the
e�ciency when many processors are used�
Willebeek�LeMair and Reeves �
�	 have presented several general load balancing strategies for
multicomputers� They have introduced the framework that is used in Section � to characterize our
load balancer� Another interesting work that presents general load balancing techniques is the one
by Kumar et al� ���	� They introduce a technique that adopts a global round�robin policy to select
the processing node to which a further task must be requested� The technique does not assume
any knowledge of the load� and thus it may not be very accurate in scheduling decisions� but it
does not waste any time evaluating the best load balancing choices� Kumar et al� have shown that
the technique is actually very scalable� provided that an e�cient contention�free implementation
of the global round�robin is adopted� On the other hand� SUPPLE adopts a local round�robin tech�
nique to select the source of a task migration �Task Migration strategy�� where the round�robin
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counter of each processor pi is initialized to pi� at the beginning� This solution avoids contention
problems� but it would result in less accurateness if underloaded processors that select the partners
to be requested for further work did not have any knowledge about their load� To this end� to
avoid underloaded processors to ask other underloaded ones for� asynchronous broadcast termi�
nation signals are sent by those processors whose local chunk queues are becoming empty� these
signals states that those processors made a transition from the overloaded state to the underloaded
one� A lot of research has been carried out on run�time supports and compilation methods for
distributed�memory multiprocessors� The Fortran D project at Rice and Syracuse universities ��	�
the Vienna Fortran project at the University of Vienna �
�	� the Fx Fortran compiler developed
at Carnegie Mellon ��	� and the CHAOS project at the University of Maryland �
�	� are only some
of the most important projects addressing these topics� A number of compile�time optimizations
have been designed to increase the performances obtained on distributed�memory multiproces�
sors �
�����	� The solution to problems whose irregularities prevent compile�time optimizations� is
generally addressed by exploiting inspector�executor codes which collect information at run�time�
and then use this information to optimize the successive computations �
	� The CHAOS�PARTI
library �
�	 developed by the group headed by Joel Saltz at the University of Maryland� adopted in
the Vienna Fortran Compilation System and in other HPF�like compilers� is the most notable ex�
ample of this approach� It provides support for irregular array distribution� loop scheduling based
upon the almost owner computes rule� run�time data redistribution� data accessed through indi�
rection arrays� thus o�ering general support for irregular�adaptive codes whose behavior cannot
be anticipated until run�time� Non�uniform parallel loops can be implemented with the CHAOS
library by collecting information about iteration execution time at run�time� and by consequently
building an irregular data layout resulting in balanced processor workloads �
����	� Data parti�
tioning and redistribution have to be repeated several times if the computational costs associated
with the data items involved vary as execution progresses�

	 Conclusions

We have described SUPPLE� an innovative run�time support� which can be used to compile ei�
ther uniform or non�uniform parallel loops with regular stencil data references� SUPPLE exploits
general BLOCK distributions of the involved arrays to favor data locality exploitation� and uses
the static knowledge of the data layout and of the regular stencil references to perform well�known
optimizations such as message vectorization� coalescing and aggregation� Iteration reordering is ex�
ploited to hide the latencies of the communications needed to fetch remote data� SUPPLE supports
two di�erent loop scheduling strategies� Parallel loops characterized by iterations whose costs are
uniform� can be scheduled according to a pure static strategy based on the owner computes rule�
A hybrid scheduling strategy is used instead if the load assigned to the processors according to the
owner computes rule is unbalanced� In this case loop iterations are initially scheduled statically�
and� if a load imbalance is actually detected� an e�cient dynamic scheduling� which requires data
tiles and iteration indexes to be migrated� is started� We have shown that SUPPLE hides most
dynamic scheduling overheads produced by the need for monitoring the load and moving data� by
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overlapping them with useful computations� To this end it exploits an aggressive prefetching tech�
nique that tries to avoid underloaded processors from becoming idle while waiting for workload
migration requests to be satis�ed� Nevertheless� since data may be migrated and updated remotely
due to dynamic scheduling decisions� and the same data must be kept coherent on the original
owner� SUPPLE adopts a fully asynchronous coherence protocol that allows useful computations
to be executed while waiting for data to become coherent� At our best known� SUPPLE is the �rst
distributed memory run�time support that exploits this kind of dynamic techniques to compile
data parallel languages� All the previous approaches to the compilation of loops adopt more static
and synchronous approaches� A typical example is CHAOS� which collects performance informa�
tion during previous execution of a loop� and prepare an irregular data redistribution plan to
obtain a more balanced execution� This solution require synchronizations between distinct loop
execution� and� in addition� does not work when a non�uniform loop must be executed only one
time� Moreover� SUPPLE can be pro�tably used for a less narrow class of applications ���	� i�e� to
compile �uniform� parallel loop on heterogeneous and�or time�shared systems� where load imbal�
ance is due to the target architecture rather than to the speci�c application� The results of our
experiments conducted on a Cray T�D machine have shown that the performances obtained are
very close to the optimal ones� To validate SUPPLE as a general support for non�uniform loops we
employed a simpli�ed �ame simulation application and di�erent synthetic data sets built on the
basis of a simple load imbalance model� These data sets� fed in input to the �ame simulation code�
introduce di�erent workload imbalances� In most of the experiments we obtained completion times
which di�er by less than � sec from the optimal completion times� For data sets characterized
by an average iteration execution times of ��� msec� the overheads due to communications and
the residual load imbalance range between ����� and ���� of the optimal times� In addition�
we have compared the SUPPLE results with those obtained running HPF�like implementations of
the same benchmark� In all the cases tested� SUPPLE obtained better performances�
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