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Abstract

We consider the problem of scheduling parallel loops whose iterations operate on
large array data structures and are characterized by highly varying execution times

�unbalanced or non�uniform parallel loops�� A general parallel loop implementation
template for message�passing distributed�memory multiprocessors �multicomputers�

is presented� Assuming that it is impossible to statically determine the distribution
of the computational load on the data accessed� the template exploits a hybrid

scheduling strategy� The data are partially replicated on the processor�s local mem�
ories and iterations are statically scheduled until �rst load imbalances are detected�

At this point an e�ective dynamic scheduling technique is adopted to move iter�
ations among nodes holding the same data� Most of the communications needed

to implement dynamic load balancing are overlapped with computations� as a very
e�ective prefetching policy is adopted� The template scales very well� since knowing

where data are replicated makes it possible to balance the load without introducing
high overheads�

In the paper a formal characterization of load imbalance related to a generic
problem instance is also proposed� This characterization is used to derive an ana�
lytical cost model for the template� and in particular� to tune those parameters of
the template that depend on the costs related to the speci�c features of the target

machine and the speci�c problem�

The template and the related cost model are validated by experiments conducted

on a 	
��node nCUBE 
� whose results are reported and discussed�
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� Introduction

Loops with independent iterations �parallel loops� are the largest source of par�
allelism in many time�consuming scienti�c applications� Restructuring compil�
ers for sequential or data parallel programming languages successfully exploit
this source of parallelism by distributing iterations of parallel loops among
di�erent processors of the target parallel machine� The assignment of iter�
ations to processors �schedule� can be determined statically or dynamically�
Dynamic scheduling techniques may be needed to smooth the unbalanced and
unpredictable processor workloads which derive from loops whose iterations
are characterized by high execution time variance� These non�uniform loops
are common in many application �elds such as sparse matrix computations�
image processing� and Montecarlo calculations�
Although the problem of �nding an optimal schedule for non�uniform par�
allel loops is NP�hard �	
�� many e�ective dynamic scheduling heuristics for
shared�memory multiprocessors have been proposed and tested �	��	�		�����
A less frequently studied problem is loop scheduling for distributed�memory
architectures �	
��� which involves strong relationships with other important
issues such as data partitioning and locality of references�
On the other hand� the general problem of load balancing for these archi�
tectures has been studied in depth� and many dynamic strategies have been
proposed �	����� In this paper� the load balancing problem is addressed by re�
stricting the form of parallelism exploited to parallel loops� As shown in �	���
the restriction of the computational model often allows much more e�ective
implementations to be devised by applying the parallel programming method�
ology known as template�based ��� or skeleton�based ����
We consider distributed�memory machines that only supply mechanisms for
message passing �multicomputers�� Processors in these machines can only refer
data that are allocated� either statically or dynamically� to the corresponding
processor local memories�
Implementations of parallel loops on multicomputers usually exploit not only
static allocation of data� but also static schedules� For example� static sched�
ules are exploited by compilers of data�parallel languages� such as HPF or
FortranD ������ These languages require programmers to provide a data distri�
bution scheme on an abstract architecture � � while the compiler derives a static
allocation of loop iterations on the basis of the speci�ed distribution �	�	���
Such static approaches may result in poor processor utilization when proces�
sor loads cannot be predicted statically�
Conversely� pure dynamic strategies which entirely build the loop schedule
at run time may be adopted� These strategies are directly derived from the

� Programmers can either specify regular data distributions� i�e� block or cyclic� or

can specify irregular distributions by employing accurate knowledge about the load
of computation associated with the various parts of a given data structure�
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Self Scheduling techniques developed for shared memory environments �	��� A
centralized queue is used by a master processor to store the iteration indexes
and to manage the scheduling process� As a worker processor ends its work�
it asks the master for a new batch of iterations� The centralized management
of the queue is one of the main drawbacks of pure dynamic scheduling strate�
gies� Several techniques can be exploited to reduce the overheads caused by
this bottleneck� For example� the introduction of a hierarchy of balancing do�
mains� each responsible for a subset of the queue� has been proposed �	
�	���
Another problem is data allocation� If no restriction is imposed on the dy�
namic strategy� to avoid data transfer overheads� the full data set must be
replicated in the local memories of all the processors� Complete replication
limits the applicability of these techniques to problem instances whose data
sets can be contained by the local memory of a single processing node�
This paper shows that a very simple distributed implementation of the global
queue can be e�ectively exploited by a hybrid scheduling strategy� Both the
queue which contains the iteration indexes� and the data accessed within the
loop� are statically partitioned and allocated to the various processing nodes�
Each data partition is also replicated on the local memories of a small number
of other nodes� Iterations are statically scheduled until �rst load imbalances are
detected� At this point an e�ective dynamic scheduling technique is adopted
to move iterations among partner nodes holding the same data� The load
balancing choices are made on the basis of very limited knowledge and only
require a few interactions because the subset of processing nodes which hold
the data accessed by each iteration is small and statically known� Moreover� a
very e�ective prefetching policy allows most communications to overlap with
computations�
We have veri�ed� both theoretically and experimentally� that our technique
can solve very di�erent load imbalances� and thus provides a general solu�
tion for cases in which either load imbalance cannot be predicted at compile
time� or its determination is too expensive with respect to bene�ts� The im�
plementation template we have devised scales very well� as its performance
approaches the ideal case� i�e� the maximum speedup allowed by using a given
number of processing nodes� This behavior has been veri�ed for di�erent load
imbalances� which have been synthetically generated on the basis of a general
model of load imbalance� The template�s high performance is mainly due to
low scheduling overheads� and the iteration prefetching policy that hides most
iteration migration delays�

The paper is organized as follows� Section � brie�y surveys work related to
the dynamic scheduling of parallel computations� A simple model of loop load
imbalance is presented in Section �� while Section  describes the proposed
implementation template� and also presents the analytical model used to tune
some parameters of the template� The results of experiments� conducted on a
	���node nCUBE � multicomputer� are reported and discussed in Section ��
Conclusions follow�
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� Related works

The parallel loop scheduling problem has been investigated in depth by re�
searchers working on shared�memory multiprocessors� Most proposals address
the e�cient implementation of loops by de�ning Self Scheduling policies which
reduce synchronizations among processors by enlarging parallel task granular�
ity� The main goal of these works is to determine the optimal number of
iterations fetched by each processor at each access to the central queue �chunk
size�� Clearly� the larger the chunk size is� the lower the contention overheads
for accessing the shared queue� and the higher the probability of introducing
load imbalances�
Polychronopoulos and Kuck proposed Guided Self Scheduling� according to
which u

P
iterations� where u is the number of remaining unscheduled itera�

tions and P is the number of processors involved� are fetched at each time by
an idle processor �	��� Trapezoid Self Scheduling �	� was proposed by Tzen
and Ni to reduce the number of synchronizations by linearly decreasing the
chunk size� Hummel� Schonberg and Flynn presented Factoring ���� which re�
quires that P consecutive chunks of size k� where k � u

��P
� are inserted into

the shared queue when it becomes empty�
Due to improvements in processor architectures with the exploitation of �ne
grain parallelism� processors are getting faster at a higher rate than memories
and interconnection networks are� To overcome this problem� shared�memory
multiprocessors are being equipped with even larger caches� This architectural
trend is moving shared�memory multiprocessor even closer to distributed�
memory counterparts� Thus� in both shared and distributed�memory ma�
chines� exploiting locality is recognized as one of the main requirements to
achieve scalability ���� The allocation of data in either local memories or caches
of each processor must therefore be accurately considered to obtain e�ective
scheduling algorithms�
As far as regards shared�memory environments� Markatos and LeBlanc �		�
investigated locality and data reuse to obtain scalable and e�cient imple�
mentations of non�uniform parallel loops on shared�memory multiprocessors�
They explored a scheduling strategy� based on a static partitioning of iter�
ations� which initially assigns iterations for a�nity with previously assigned
ones� A�nity regards the presence of accessed data in the processor caches�
The dynamic part of the technique� which performs run�time load balancing�
is postponed until a load imbalance occurs� This approach is similar to ours�
though we explicitly have to take into account data allocation�replication in
the local memories of each node�
Liu and Saletore worked on Self Scheduling techniques for distributed�memory
machines �	
�� They attempted to overcome the shortcomings mentioned in
Section 	 by providing a hierarchical and distributed implementation of the
centralized manager� and by investigating partial replication techniques to in�
crease problem sizes�





Willebeek�LeMair and Reeves �	�� presented several general load balancing
strategies for multicomputers� They introduced a very interesting framework
to classify the various strategies� The main items that characterize their frame�
work are�

�i� Processor Load Evaluation� how each processing node estimates its
own load if needed�

�ii� Load Balancing Pro�tability Determination� how a node can decide
whether it is pro�table or not to perform load balancing by taking into
account the related overheads�

�iii� Task Migration Strategy� how the source and the destination of a task
migration are determined�

They also presented a technique called Receive Initiated Di�usion� which� like
ours� employs task prefetching when the local load is below a given threshold�
Their technique� however� needs to maintain global knowledge of the load
either on all the nodes involved� or on a subset of the nodes called domain�
Another interesting work that presents general load balancing techniques is
the one by Kumar et al� ���� Among others� they introduced a technique that
adopts a global round�robin policy to select the processing node to which a
further task must be requested� The technique does not assume any knowledge
of the load� and thus it might not be very accurate in scheduling decisions� On
the other hand� the technique does not waste any time to evaluate the best
load balancing choices� Kumar et al� showed that the technique is actually
very scalable� provided that an e�cient contention�free implementation of the
global round�robin is adopted� We agree with their conclusions and we used
a similar technique to implement the Task Migration Strategy� However� our
strategy is local rather than global since whenever a node needs further work�
it sends a request to one of its partners chosen on a simple inexpensive round�
robin basis�

� A model of load imbalance

In this paper we consider loops which access arrays� though similar techniques
could be devised for other types of data structures� Suppose that we have a
parallel loop that reads an array and produces a new array with the same
dimensions� Let D be the number of iterations in the loop� where each inde�
pendent iteration produces a new element in the target array�
If the sequential time to compute all the D iterations is T � the average time to
compute each iteration is � � T

D
� We have a non�uniform parallel loop when

the iteration execution time may signi�cantly di�er from ��
If the unbalanced iterations are evenly distributed on all the data structure�
the problem can often be solved by adopting a simple coarse�grained block dis�
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tribution� In this case the probability of obtaining partitions with even loads
is quite high�
However� we are interested in non�uniform parallel loops whose computational
load is concentrated on one or more regions �i�e� subsets of contiguous el�
ements� of the input arrays� In this case� block distributions fail to evenly
distribute the computational load� while cyclic distributions may cause loss of
locality�
Let I � fI�� � � � � IDg be the iteration space of the parallel loop� and e�Ii�
the execution time for iteration Ii� If the loop is non�uniform� there exists a
subset I � fIi� � � � � � Iikg such that e�Iij� � � for all j � 	� � � � � k� Thus
d � k

D
� 
 � d � 	� represents the fraction of these more expensive iterations�

Let H� where H � � � k� be the total execution time required to compute the
iterations in I� Thus� t � H

T
is the fraction of total execution time spent in I�

From the above de�nitions we have�

	 � t �
H

T
�

� � k

� �D
� d � 
� �	�

The workload imbalance is clearly proportional to t� In fact� a high value of t
means that the cost H is prevalent on T � The imbalance becomes even more
di�cult to treat when the load is too concentrated on a small portion of the
data set� Thus� the imbalance is also inversely proportional to d�
From the above remarks� we can derive F � called factor of imbalance� as follows�

F �
t

d
� ���

The value of F is directly proportional to load imbalance� The more the value
of F approaches 	� the more the loop is uniform� On the other hand� high
values of F �obtained for d � 
 and t � 	� correspond to very unbalanced
loops in which the load is very much concentrated on a small portion of the
dataset�
If we adopt a static scheduling scheme by uniformly distributing the array
with a blocking strategy and by assigning loop iterations according to the
owner computes rule �	��� the value of F can be used to derive the worst�

case total execution time� Suppose that the processing nodes involved are P �
so that a block partition corresponding to D

P
iterations is assigned to each

node� Moreover� suppose that the portion of the dataset �d �D� over which the
predominant part of the total computational load �H � t �T � is concentrated�
is a region large enough to entirely contain almost one partition of the dataset�
Let B be the most loaded partition and p the processing node holding it� Thus�
to execute the parallel loop� node p will take a time Tp approximately equal
to

Tp �
t � T

d � P
� F �

T

P
� F �

� �D

P
� ���
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Note that� since Tp is the completion time of the most loaded node� this time
will also be the completion time of the parallel run of the loop�

� The scheduling strategy

Our goal is to �nd an implementation template which results in a good trade�
o� between static and dynamic strategies� Our technique relies upon a static
data partitioning� and a distribution strategy that allocates these partitions
to the processing nodes with partial replications� These replications are taken
into account by a dynamic scheduling technique� which does not involve all the
processing nodes� thus limiting overheads and preserving locality exploitation�

��� Data distribution strategy

In distributed�memory environments� a given loop iteration can be scheduled
to a processing node only if that node holds a copy of the data that is needed
to compute the iteration� Regarding the allocation of the data� we propose
that�

�i� data structures� if necessary aligned to an abstract topology� are parti�
tioned into blocks of equal size� The number of blocks is equal to the num�
ber P of processing nodes� For each block Bi� where i � f
� � � � � P � 	g� a
single node pi is chosen to be the owner of the block� Bi is called primary

partition of node pi�
�ii� besides the above primary allocation� each block is also copied as a sec�

ondary partition on the local memories of exactly m� 	� m � P � distinct
processing nodes�

Consequently� each processing node p holds the primary partition Bi and m�
	 distinct secondary partitions fBi� � � � � � Bi�m���

g� The value of m is named
replication degree� The degree of replication clearly in�uences the outcomes
of our technique� and may need to be adjusted to the number of processors
�partitions� used� and to the factor of imbalance F � Note� however� that we
are considering problems in which�

� a total replication of the data may not be proposed� due to the large size of
the data sets involved�

� the run�time transfer of the data is not appropriate because the time needed
to compute each iteration is lower than the time required to transfer the
accessed data over the interconnection network�
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The m� 	 nodes on which each partition Bi is replicated� are the only nodes
which may require node pi to migrate some loop iterations operating on Bi�
Correspondingly� each node pj can ask for further work only the nodes which
own its secondary partitions�
Since we are assuming that the load is very concentrated on some unknown
regions of the data set� to increase the probability that an unloaded node will
�nd a more loaded partner when looking for further work� them distinct parti�
tions stored in each node have to be chosen so that they are evenly distributed
on the data structure�
Taking into account these requirements� we can reformulate our distribution
policy as follows� Given the blocks fB�� � � � � Bi� � � � � BP��g which must be dis�
tributed with replication degree m� it is su�cient to generate m distinct per�

mutations of these blocks�

Perm� � fB�� � � � � Bi� � � � � BP��g

Perm� � fBF����� � � � � BF��i�� � � � � BF��P���g

� � �

Permm�� � fBFm������ � � � � BFm���i�� � � � � BFm���P���g

where�

� each Fk� k � f	� � � � � m�	g� de�nes a distinct permutation of f
� � � � � P�	g�
� the blocks allocated to processing node pi are fBi� BF��i�� � � � � BFm���i�g�
� � i � f
� � � � � �P � 	�g and � k� k� � f	� � � � � �m � 	�g� we have that Bi ��
BFk�i� and BFk�i� �� BFk�

�i��
� permutations are built so that the blocks allocated to a generic processing
node pi are uniformly scattered on the array data structure�

��� Scheduling strategy

The scheduling technique exploits the static knowledge about the allocation
of primary and secondary copies of each block� The �rst part of the technique
resembles a static schedule� according to which each node performs iterations
which update its primary partition� The second part is dynamic� as it only
takes place if a load imbalance occurs� The overhead introduced by the dy�
namic part of our scheduling strategy is limited� since the static knowledge on
the data distribution is e�ectively exploited� The interactions occurring during
the dynamic phase are limited to the processing nodes storing the same blocks�
and an e�ective prefetching mechanism is implemented to overlap communi�
cations with computations� Furthermore� when the workloads of the primary
partitions are well balanced� the dynamic phase is never started� In this case�
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the run�time overhead becomes comparable to the one that derives from the
adoption of a static scheduling scheme�

Schedule�queue Q� QR� process prtn�list�m���	




chunk T�

while ��Terminated�prtn�list�Q�QR		 


if �Local�Load�Q�QR	 � THRESHOLD	

Prefetch�Chunks�prtn�list	�

T  Get�Chunk�Q�QR	�

Execute�Chunk�T	�

Handle�Msg�prtn�list�Q�QR	�

�

�

Fig� 	� Pseudo�code of the scheduling algorithm�

Figure 	 reports the pseudo�code of the scheduling algorithm executed by
each processing node p holding a primary partition B and �m� 	� secondary
partitions� The iterations operating on the primary block of each node are
organized into chunks �i�e� the lower and upper limits of a batch of iterations��
and inserted into a local queue Q� Each node manages another queue QR used
to store prefetched chunks operating on the �m� 	� secondary partitions� At
the beginning queue QR is empty�

Function Terminated�prtn list�Q�QR	 returns TRUE i� queues Q� QR are
empty� and p has received a message from all its partners �whose names are
stored in the array prtn list�� signaling that their local load does not allow
them to give work away�
Function Local Load�Q�QR	 returns an estimate of the processor�s own load�
e�g� the number of chunks currently stored in the queues�
Subroutine Prefetch Chunks�prtn list	� which is executed when the pro�
cessor load is lower than a given THRESHOLD� sends to the active nodes that are
the owners of the secondary partitions of p� a message requiring chunks to be
inserted into QR� The active partner to which a chunk request is sent is chosen
on a round�robin basis� Since most communication overheads are hidden by
the prefetching strategy� it is more important not to waste time in making the
choice than always making the best choice�
Function Get Chunk�Q�QR	 �rst inspects queue Q and then queue QR� It gets
a chunk from the �rst non empty queue� the �rst time the function discov�
ers that Q is becoming empty� it noti�es this event to the nodes holding B

as a secondary partition to prevent further requests of chunks� The extracted
chunk is soon processed within subroutine Execute Chunk�T	�
Subroutine Handle Msg�prtn list�Q�QR	 receives and manages messages at
node p that have arrived from the partners� The messages from partner p may
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contain�

�i� a chunk that has been previously requested by subroutine Prefetch �

Chunks�prtn list	� The chunk is immediately inserted into queue QR�
�ii� a signal �sent within function Get Chunk�Q�QR	�� stating that� on the

basis of its estimated load� p decided not to give away any more chunks�
A �ag is set in the partner p �eld of structure prtn list�

�iii� the request to move a chunk from queue Q of p to queue QR of node p� The
request is granted only if node p estimates a load greater than THRESHOLD�

In principle� any well�known scheme �such as factoring ���� trapezoid self
scheduling �	�� guided self scheduling �	��� etc�� can clearly be used to de�
termine the sizes of chunks inserted into the local queue � � However� if the
template is implemented on target parallel machines which do not provide ef�
�cient mechanisms to handle asynchronously arrived messages� the algorithm
must periodically check the communication bu�er for the presence of requests
to be handled� This sort of polling mechanism can be simply implemented be�
tween the execution of two consecutive chunks �as in the pseudocode reported
in Figure 	�� It is more di�cult to devise a general implementation in which
the execution of a chunk is periodically interrupted for performing message
handling� Thus� by scheduling chunks with decreasing sizes� a node working
on a large chunk may delay the handling of requests from its partners� Such
delays increase the overheads and a�ect the capability of unloaded nodes to
balance the load� These strategies could� on the other hand� be e�ciently ex�
ploited by implementations of the template on parallel machines which supply
e�cient multitasking capabilities� or active messages �	��� or high level inter�
rupt handling� Without such mechanisms� uniformly small chunks must be
preferred�

��� Tuning the implementation template

On distributed memory machines� the e�ective exploitation of dynamic load
balancing strategies generally entails �ne tuning several parameters� Our par�
allel loop implementation template� too� is sensitive to a number of parameters
that depend either on the features of the target machine� e�g� the time required
to transfer a chunk over the interconnection network� or on the speci�c prob�
lem instance� e�g� the average execution time of loop iterations�
Assuming that the average costs regarding the machine and the problem are
known� we need a simple analytical cost model which will allow us to �x the
parametric template implementation� i�e� the replication degree� the chunk

� If chunk sizes are non�uniform� chunks have to be inserted into Q according to

their size� and in descending order� This means that� at the beginning� potentially
larger chunks are scheduled�

	




size� and the prefetching threshold that maximize the expected performances�
The replication degree is certainly the simplest parameter to �x� As will be
shown in the following section� the scheduling overheads are low and any �rea�
sonable� replication degree is well tolerated� Secondary partitions are only
exploited when they are useful for balancing the load� When only one subset
of secondary partitions is exploited� interactions with the owners of the unex�
ploited partitions are limited to a very simple management of termination�
The smaller the array region is on which time�consuming iterations operate�
obviously the higher the probability that blocks all characterized by a low com�
putational load are assigned to a given node thus making it unable to balance
the load� Therefore� when the factor of imbalance F is high� the replication
degree should be chosen correspondingly large to increase the probability that
each node will �nd a partner from which it can fetch more chunks� However�
memory constraints and higher costs if updated values need to be transferred
to the corresponding owners have to be taken into account� As an empirical
rule� a replication degree lower than the square root of the number of proces�
sors used� allows us to balance most non�uniform loops � � Higher replication
degrees may be useful but only for very particular cases�

Let us now recall some notations and introduce a few new ones for tuning the
other parameters�

�� the average iteration execution time on the target machine�
�high �

t���D

d�D
� �F � the average execution time of the d�D more time�consuming

iterations �see Section ���

�low � ���t����D
���d��D

� � � ���t�
���d�

� the average execution time of the �	� d� � D less
expensive iterations�

s� the constant number of iterations included in a chunk�
L� an estimate of the current processor load� L is clearly proportional to the
numbers lL and lR of chunks stored in queues Q and QR respectively�

TComm� the maximum time needed to perform a request for a new chunk on
the target parallel machine� i�e� the time needed for processor p to send a
message to a node at a distance equal to the diameter of the interconnection
network and to receive the corresponding answer�

LT � the optimal prefetching threshold for the considered problem� Each node
should ask for remote chunks and stop giving away local ones when its load
becomes lower than LT �

THRESHOLD� the prefetching threshold used by the template implementation�
Each node asks for remote chunks and stops giving away local ones when
the number of chunks stored in the queues is lower than THRESHOLD�

Note that while �� �low� �high� and TComm depend on the problem instance and

� For values of F lower than 	� and up to 	
� nodes� we obtained satisfactory
performances by adopting replication degrees ranging from  to 	��

		



on the features of the machine� the chunk granularity s and the prefetching
threshold THRESHOLD can be tuned on the basis of the other parameters to
maximize the performances of the parallel loop implementation� In particular�
THRESHOLD will be derived from the analysis of the possible values of LT �
Regarding load estimate L� it is clear that the load on each processing node
is equal to the costs of all the chunks currently stored in queues Q and QR�
Unfortunately� the exact costs of these chunks are only known after their ex�
ecutions� A heuristic to approximate L must therefore be followed�
Chunk prefetching is clearly exploited only by unloaded nodes� i�e� by those
that� on average� execute low�cost iterations on their primary partitions� Re�
mote chunks are in fact never fetched by more loaded processors which� on
the other hand� should give away part of their work until they estimate a
load greater than LT � We can suppose that� with high probability� the chunks
stored in queues Q of unloaded nodes are characterized by a computational
cost approximately equal to s ��low� With the same reasoning� it is likely that
on the same nodes� the chunks stored in queue QR� have a cost approximately
equal to s � �high� In fact� the chunks operating on secondary partitions have
certainly been obtained from more loaded partners�
We can now estimate L for unloaded processing nodes as�

L � lL � s � �low � lR � s � �high � s � �lL � �low � lR � �high�� ��

Note that when remote chunks have not yet been fetched lR is equal to zero�
On the other hand� loaded processors can estimate L as�

L � lL � s � �high� ���

Similar remarks can be made for s and LT � The computational costs of a chunk
transferred across the interconnection network must be greater than the time
required to move it� Thus�

s �
TComm

�high
� ���

Moreover� the value for LT must be large enough to prevent a processor from
becoming idle waiting for further remote chunks� The time required to fetch a
chunk from a loaded partner may be equal to the communication time TComm

plus the time needed for the partner to execute its current chunk before han�
dling the request� Thus�

LT � TComm � s � �high � TComm � s � � � F� ���

	�



Values for s and LT cannot� however� be increased without penalties� In fact�

� as noted in the above section� enlarging granularity s results in larger av�
erage times required by loaded processing nodes to handle chunk migration
requests�

� once all the partners have estimated a load L lower than LT � chunk trans�
ferring is disabled� If� at this time� many chunks are stored in the queues�
the probability increases that the time required by each processor to empty
the queues di�ers�

A good trade�o� for the choice of these values may therefore be�

s � d
TComm

�
e �

TComm

�high
���

and� by substituting Equation ��� in Equation ����

LT � �F � 	� � TComm � TComm � d
TComm

�
e � � � F� ���

This analysis shows that the implementation of the proposed parallel loop
template can be tuned to precisely adapt itself to any particular problem�
However� most of these optimizations can only be made if both the factor of
imbalance and the load distribution �i�e� t and d� are statically known� This
is not the general case� Our implementation template must e�ectively exploit
the parallel machine also when the problem costs are not precisely known�
Thus� the template implementation cannot rely upon costs such as �low and
�high� while the average iteration execution time � can be assumed known�
The value for s can be still �xed according to Equation ����
Regarding load estimate L� each processing node knows the values lL and
lR� and we use their sum as load estimate �this is the value returned by the
function Local Load�Q� QR� � lL � lR�� However� if both loaded and unloaded
nodes adopt the same estimate for L� the value of THRESHOLD cannot be the
same� In fact� from the previous analysis it results that� on more loaded nodes�
L becomes equal to LT when

LT � IL � s � �high� �	
�

from which the following value of THRESHOLD can be derived�

THRESHOLD � lL �
LT

s � �high
� �� �		�

On the other hand� on less loaded nodes� chunk prefetching should start when

	�



L becomes equal to LT �

LT � IL � s � �low� �	��

from which we can derive the following value of THRESHOLD

THRESHOLD � lL �
LT

s � �low
� �	��

The value determined by Equation �	�� still depends from F � Supposing that
the average value of F is � �e�g� for t � 
�� and d � 
�	� we have�

THRESHOLD �
LT

s � �low
�

�F � 	� � TComm

s � � � ���t�
���d�

�
F � 	
���t�
���d�

� 	
� �	�

We therefore implemented the following heuristic� Since a generic node p can�
not know whether its load is high or low� at the beginning it assumes that its
primary partition is unloaded� and sets THRESHOLD according to Equation �	��
At this point two events may occur� either p begins to prefetch chunks because
its load becomes lower than THRESHOLD� or p receives a termination message
from a partner node� In the �rst case� p progressively decreases THRESHOLD

up to � �see Equation �		�� as lR increases� It thus takes into account that
remote chunks stored in QR have higher execution times� In the second case�
node p decides that its primary partition is loaded� and immediately decreases
THRESHOLD to � to continue giving away work�
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� Experiments and results

We conducted many experiments to tune and evaluate our parallel loop imple�
mentation template� All the tests discussed here were performed on a 	���node
nCUBE � multicomputer keeping � and the sizes of the array partitions �	


	 	

� �xed� while varying the number of processing nodes used� the factor of
imbalance F � and the replication degree m� Thus� when the number of nodes
used grows� the size of the problem increases accordingly and the same per�
processor average load 	

 � 	

 � � is maintained� In most experiments we
used synthetic loads from a dummy non�uniform loop whose iterations update
a bidimensional array� and have a cost proportional to the value of the array
elements processed� By providing synthetic loads we could verify the behavior
of the scheduling algorithm for many di�erent problem instances � � Iterations
were organized into �xed�size chunks of s iterations� The value of s in each test
was chosen according to Equation ���� given a value of about one millisecond
for TComm on the nCUBE ��

In Figure � the completion time curves on � processing nodes as a function
of the factor of imbalance F are plotted� one curve relates to our scheduling
method which was used by setting the replication degree equal to � �curve
labeled Dynamic�� and the other to static scheduling �curve labeled Static��
These tests were carried out by keeping the average per iteration execution
time �xed �� � 
�� msec�� so that a curve y � k� with constant k equal to
� seconds �	

 � 	

 � ��� represents the ideal completion time �curve labeled
Ideal� independently of the value of F � As can be seen� substantial per�
formance improvements over static scheduling were achieved� For F � 	 we
obtained about the same times� for F � � our scheduling algorithm achieved a
��� speedup over static scheduling� while� for F � 	
 the speedup increased to
���� Moreover� the curve of our implementation template keeps close enough
to the optimal curve� In addition� the static scheduling curve grows very reg�
ularly and� as estimated in section �� has a slope approximately expressed by

Equation ���� ��D

P
� ���������������

	�
� ��

Similar remarks can be made for the curves in Figure �� This �gure compares�
for di�erent factors of imbalance� static and dynamic scheduling as a function
of the number of nodes used� The di�erences are large for higher values of
F � and become less and less evident as the factor of imbalance decreases to
	� In these tests we exploited a replication degree approximately equal to the
square root of the number of processor used� Note that the Dynamic curve

�We built the input arrays by concentrating the fraction d of expensive iterations
on the center of the arrays� However� when the number of nodes used is large with

respect to the replication degree the position of the more loaded region becomes
irrelevant�
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Fig� � Comparison between static scheduling and our approach for di�erent factors

of imbalance as a function of the number of nodes used�

obtained by executing a uniform loop �i�e� F � 	� exactly overlaps the Static
curve� thus indicating that overheads are in this case negligible� Moreover� on
all plots dynamic curves have a slope that approaches 
 thus indicating the
good scalability of the implementation template�

� Conclusions and future work

A template for the implementation of a non�uniform parallel loop on distributed�
memory machines has been presented and evaluated� The technique is based
on a static partitioning of the problem data� which are allocated on the various
processing nodes with a �xed degree of replication� In this way� a given itera�
tion can be executed on all the nodes which store a copy of the data needed�
The implementation template follows a static scheduling policy until a load

	�



imbalance occurs� At this point� the partial data replication allows some run�
time scheduling decisions to be made� aimed at balancing processor workloads�
Moreover� since the data distribution scheme is established at compile time�
this knowledge is used during the dynamic phase to limit the interactions to
the processing nodes which store the same partitions� This guarantees the
scalability of the technique� On the other hand� if the processor workloads are
well balanced� the dynamic phase is never started and the run�time overhead
of our template becomes about equal to the one derived from the adoption of
a static scheduling scheme�
A simple analytical model of load imbalance has been also introduced� which
optimizes the performances of the proposed parametric implementation tem�
plate on the basis of the given problem instance and the related costs on the
target machine�
The result of experiments conducted on a 	���node nCUBE � multicomputer
have been presented and discussed� With our technique we obtained satis�
factory performances� The substantial performance improvements over static
scheduling were proportional to the factor of imbalance F � For highly unbal�
anced loops� our template resulted in speedups of up to ��� by adopting a
replication degree equal to � on � nCUBE � processing nodes�
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