
Revised paper submitted to the Journal of Parallel and Distributed Computing� Feb ��

A Comparison of Implementation Strategies for

Non�Uniform Data�Parallel Computations

Salvatore Orlando�� Ra�aele Peregoy

� Dip� di Matematica Applicata ed Informatica

Universit�a Ca� Foscari di Venezia

Venezia Mestre � Italy

orlando�unive�it

y Istituto CNUCE

Consiglio Nazionale delle Ricerche �CNR�

Pisa� Italy

r�perego�cnuce�cnr�it

�

CORRESPONDING AUTHOR�

Ra�aele Perego� Istituto CNUCE� Consiglio Nazionale delle Ricerche �CNR�� via S� Maria ��� Pisa� 	��
� Italy� Tel�

��� 	 	��
	�� Fax ��� 	 ��	
� E�mail� r�perego�cnuce�cnr�it

RUNNING HEAD� Non�Uniform Data�Parallel Computations

Abstract

Data�parallel languages allow programmers to easily express parallel computations by means of high�level constructs�

To reduce overheads� the compiler partitions the computations among the processors at compile�time� on the basis of

the static data distribution suggested by the programmer� When execution costs are non�uniform and unpredictable�

some processors may be assigned more work than others� Workload imbalance can be mitigated by cyclically distribut�

ing data and associated computations� or by employing adaptive strategies which build a more balanced schedule at

run�time� on the basis of the actual execution costs� This paper discusses static and hybrid �static � dynamic�

scheduling strategies which can be used to balance the workloads derived from the execution of non�uniform parallel

loops� A multi�dimensional �ame simulation kernel has been used to evaluate di�erent implementation strategies on

a Cray T�E� We fed the benchmark code with synthetic input data sets built on the basis of a load imbalance model

and we report and compare the results obtained�

LIST OF SYMBOLS

We use typewriter font� generated using the LATEX ntt command� to denote language constructs and subroutine

names� All the symbols in formulas are generated using the standard LATEXmathematical environment�

�

� INTRODUCTION

High�level data�parallel languages make it easier to write parallel programs for both shared and distributed�memory

multiprocessors� Exploiting the results of previous research projects �	�
��� a consortium of academic and industrial

partners �participating in the High Performance Fortran Forum� de�ned the HPF language ���� HPF allows program�

mers to provide a few directives to specify processor and data layouts� and to express parallelism by means of parallel

loop constructs or collective operations� The compiler manages data distribution and translates the source program

into an SPMD code with explicit interprocessor communications and synchronizations� The view that programmers

have of the target machine is su�ciently high�level� and the performances of the codes obtained by compiling regular

applications are often comparable to those obtained with the hand�coded optimized versions of the same problems�

Irregular problems� on the other hand� are a big challenge for data�parallel languages� compilers and run�time

support designers� The main problem concerns the impossibility for programmers and compilers to be aware before

run�time of some features of computation that may signi�cantly a�ect the �nal performance� These features are� above

all� irregular communications and load imbalances�

In this paper we address the load balancing problem of non�uniform data�parallel computations which exploit

regular and predictable data references� These computations are usually expressed by means of parallel loops charac�

terized by iteration execution costs which are variable and often unpredictable �non�uniform parallel loops�� On the

other hand� the data referenced by each loop iteration are known at compile�time so that optimizations to minimize

overheads and hide the latencies of communications needed to implement remote data retrieval can be applied� To

e�ciently implement non�uniform parallel loops on distributed�memory multiprocessors� the binding of both data to

memories and computations to processors must be solved in a way that maximizes locality exploitation and� at the

same time� minimizes loop completion time by achieving balanced processor workloads� The binding may be static�

i�e� established before running the program� dynamic� i�e� postponed at run�time� or hybrid� i�e� when a combination

of both forms of binding is chosen� so that while an initial binding is statically chosen� it can be dynamically modi�ed

at run�time to obtain better performances�

A completely static binding is followed by current HPF compilers to reduce interprocessor communications and

related overheads� Data distribution is suggested by programmers� while the compiler derives the mapping of the

iterations to the various processing elements according to a static rule� e�g� the owner computes rule� To specify data

mapping� programmers can choose between regular block and cyclic distributions� or a combination of both� The block

distribution assigns contiguous array elements to the local memory of the same processor� and thus generally allows

data locality to be exploited� Conversely� it may produce highly unbalanced workloads if contiguous elements have

similar costs� To achieve a better load balancing� a cyclic distribution for the arrays involved can be adopted� which

scatters data elements among the local memories of the various processors�

In dynamic approaches the actual binding of computations and data takes place at run�time� Run�time binding is

commonly exploited on Uniform Memory Access �UMA� shared�memory multiprocessors� All the loop iterations are

stored in a shared queue� and each processor self schedules them by accessing the central queue� The binding of data

to the local memory of each processor� i�e� the coherent local cache� is in this case implicit� and occurs at run�time

�

when a given data element is actually accessed� Many Self Scheduling policies have been proposed that are aimed at

reducing synchronizations and contention overheads while achieving a good load balance ����

� ��� Also on UMA

multiprocessors� however� dynamic iteration assignment should be guided not only by considering the load balance

goal� but also data reuse and locality exploitation �����

Dynamic approaches can also be adopted on distributed�memory� message passing machines� At run�time a centralized

dispatcher distributes loop iterations and related data� and a set of workers self�schedule them by asking the dispatcher

for further work� Hierarchical or distributed implementations of the dispatcher have been proposed to reduce overheads

and memory requirements ����

Finally� in hybrid binding approaches data and computations are �rst assigned at compile time� but this initial

assignment can be dynamically changed at run�time to mitigate load imbalance� The binding can change at �xed

instants� i�e� after a global synchronization on the basis of the costs measured for previous iterations� or asynchronously

on the basis of the decisions taken by the dynamic scheduling policy used� In the former case� possible variations in the

workload distribution may a�ect the e�ciency of the method� and communication latencies are harder to hide because

computation restarts only after the synchronization phase that redistributes processor workloads� In the latter case�

an asynchronous dynamic scheduling strategy is employed� which migrates computation and data on the basis of a

local knowledge of actual workloads� and does not introduce synchronization points� To some extent� this approach

can be considered as a completely distributed implementation of the centralized task queue mentioned before� Each

processor is simultaneously a dispatcher with respect to the local queue of the computations statically assigned to

it� and a worker� which self�schedules computations belonging to either its local queue or queues managed by other

processors�

In the rest of the paper we will compare alternative implementation strategies which can be used to balance the

workloads derived from the execution of non�uniform parallel loops� Due to the prohibitive memory requirements and

the high overheads involved� we will not consider completely dynamic approaches and we will concentrate our attention

on static and hybrid scheduling policies only� The application we consider as a benchmark is a two�dimensional �ame

simulation code� an irregular code where two parallel loops that access the same arrays must be executed several times

to carry out consecutive steps of the simulation� We will show that an asynchronous hybrid technique like the one

outlined above is the best one when employed to implement the �ame simulation benchmark on a Cray T�E� The

experiments were conducted by using synthetic input data sets that introduce a known level of load imbalance�

The paper is organized as follows� Section
 describes the kernel of the two�dimensional �ame simulation bench�

mark� while Section � presents the static and hybrid approaches experimented and gives some details on their imple�

mentation� The load imbalance model used to build the synthetic data sets used for the experiments is described in

Section �� which also presents the assumptions made to carry out the tests� The experimental results are reported

and discussed in depth in Section 	� Finally� Section � draws the conclusions�

	

C Loop on the time steps

DO k� ��K

C Convection phase over a structured mesh

FORALL �i� ��N���� j� ��N����

A�i�j� � A�i�j� 	 F�B�i�j�� B�i���j�� B�i�j����

B�i	��j�� B�i�j	��� C�i�j��

END FORALL

B � A

C Chemical reaction phase � No communications

FORALL �i� ��N�� j� ��N��

C�i�j� � Reaction�A�i�j��

END FORALL

END DO

Figure �� HPF�like code of a simpli�ed �ame modeling code�

� THE BENCHMARK

The benchmark we used to evaluate the various approaches� is derived from a class of scienti�c codes used to carry out

detailed �ame simulations ��	�� A code that performs a time�dependent multi�dimensional simulation of hydrocarbon

�ames is described in ����� and is also included in the HPF�
 draft ��� as one of its motivating applications� The study

of the structure� stability and dynamics of a variety of �ames and �res is accomplished by simulating �uid dynamics�

chemical reaction kinetics� di�usive transport of species� radiation� and other heat losses� Fig� � shows the HPF�like

code of the kernel of the simpli�ed two�dimensional �ame modeling program used as benchmark� The simulation is

split into two distinct computational phases executed at each time step� The �rst phase computes �uid Convection

over a structured mesh� The computation at each point has similar costs� and involves the point itself and the nearest

neighboring elements of the simulation mesh� Stencil communications are thus required at each time step to carry out

this phase on a distributed memory machine� The second phase simulates chemical Reaction and subsequent energy

releases represented by ordinary di�erential equations� The solution at each grid point only depends on the value of

the point itself� but its computational costs may vary signi�cantly since the chemical combustion proceeds at di�erent

rates across the simulation space� The Reaction phase globally requires more than half of the total execution time�

and most of this time is spent on a small fraction of the mesh points� Furthermore� the computation is adaptive since

the workload distribution evolves as the simulation progresses ����

The most interesting characteristic of this code is that� in order to e�ciently exploit a distributed�memory highly

parallel machine� two con�icting requirements have to be dealt with� the need to adopt a regular block partitioning

to take advantage of data locality during the �rst Convection phase� and� conversely� the need to exploit a di�erent

distribution or dynamic scheduling techniques in order to balance the highly variable workloads during the Reaction

phase�

�

� BENCHMARK IMPLEMENTATIONS

This section discusses four possible implementations of the �ame simulation code illustrated above� In particular� we

compare two static and two hybrid solutions for balancing the non�uniform workloads deriving from the execution of

the Reaction phase of the simulation�

CYCLIC� The �rst static solution adopts a regular cyclic data layout for both dimensions of the arrays involved� Data

locality� which should be exploited by the �rst Convection loop� is thus sacri�ced to the load balancing needs of the

second Reaction loop�

REDISTRIBUTION� In the second static approach the block layout used during the �rst loop is turned to cyclic

before executing the second Reaction loop� The block distribution must be restored at the end of each time step�

We still de�ne this approach as static because the binding of data and computations is still decided at compile�time�

although redistribution occurs at given instants during execution�

I�E� The �rst hybrid approach is based on the Inspector�Executor paradigm �
�� While a block distribution is used

during the �rst Convection loop� a partial redistribution takes place at every time step before entering the Reaction

phase� However� the actual binding of redistributed data and computations is decided dynamically� on the basis of

load information collected at run�time�

SUPPLE� The second hybrid approach exploits the SUPPLE support �SUPport for Parallel Loop Execution� ��
� ����

It adopts a statically �xed block distribution� but� during execution� chunks of iterations and associated data may be

dynamically migrated toward underloaded processors� In this case both the time instants when a possible migration

may occur� and the actual migration plan� are decided at run�time�

We implemented all the above solutions on a Cray T�E exploiting the same message�passing layer �MPI� and�

where possible� applying the same optimization techniques� This allowed us to evaluate and compare on the same basis

the e�ectiveness of the implementations� since the experimental results are not invalidated by incomparable factors

introduced by the use of di�erent tools�mechanisms�optimizations�

��� Implementation of the convection phase

The Convection loop is uniform and accesses data with a regular and constant Five�Point stencil �see Fig� ��� The

�rst solution discussed in this paper uses a cyclic data layout for this phase� while the others exploit a block data

layout to reduce the number of accesses to remote data needed to implement stencil references�

Block data layout provides that arrays A� B and C are aligned to each other and distributed in blocks of equal size on

the processor grid� For the array B� which is accessed by stencil data references� we allocate on each processor enough

memory to host the block partition� logically subdivided into an inner and a perimeter region� and a surrounding

ghost area� The ghost area is used to bu�er the parts of the perimeter areas of the adjacent partitions which are

owned by neighboring processors and are accessed through non local references� An equal fraction of loop iterations is

statically assigned to each processor according to the owner computes rule� and the loops executed by each processor

are localized� i�e� their boundaries and array references become relative to the local array block� Before executing the

�

loop� however� non local data accessed by stencil references must be fetched from the neighboring nodes� This means

that explicit communications must be inserted in the code� Several scheduling and communication optimizations can

be exploited to this purpose to reduce overheads and hide communication latencies ��� ���� Overhead minimization

is accomplished by avoiding sending several messages or replicated data to the same processor� i�e� by exploiting

message vectorization� coalescing� and aggregation optimizations� Moreover� to overlap communications with useful

computations� iterations are reordered� the iterations that assign data items belonging to the inner area and that refer

local data only� are scheduled between the asynchronous sending of the perimeter area to neighboring processors and

the receiving of the corresponding data into the ghost area�

The execution of the iterations that assign the elements lying on the inner area is also optimized� We group these

iterations into chunks of a �xed size� To this end� each inner block partition is statically tiled� Tiling is a useful

optimization to improve locality ���� and is also exploited by both the hybrid implementations of the non�uniform

Reaction loop� In fact to reduce load balancing overheads� chunks and associated data tiles instead of single iterations

are migrated on the basis of the workload distribution� Finally� since the results of remote chunk executions must be

returned to the owner of each tile� some forms of synchronization must be used before reusing data� to avoid accessing

non coherent data� This is the case of the array C� which is modi�ed by the second non�uniform Reaction loop� and is

read by the �rst Convection loop� To maintain data coherence� a full�empty �ag ��� is associated with each data tile�

If a chunk that modi�es a given tile is migrated� then the associated �ag is set� The �ag is unset when the updated

data tile is received back from the remote processor� This solution avoids the introduction of a barrier synchronization

at the end of the Reaction loop to wait for coherence to be restored� By checking full�empty �ags only when a tile

has to be read� we ensure data coherence and allow computations to be overlapped with communications�

The only solution where we used a di�erent technique to implement the Convection loop is the one where a �xed

cyclic data layout is adopted for both dimensions of the arrays involved� In this case too� the scheduling is static and

derived from the owner computes rule� No iteration reordering is possible� however� to overlap computations with

communications� In fact� a generic processor p that executes a loop iteration has to read a �ve point stencil of array

B� but all the points except the center of the stencil are owned by other processors� In particular� because in all our

experiments we exploited a logical two�dimensional processor grid� all remote points are owned by the four neighbors

of p� Instead of inserting explicit communications for remote data retrieval inside the parallel loop� a simple static

analysis of the source program allows one to determine that message vectorization and aggregation optimizations ���

can be applied to minimize communication overheads� As a consequence of these optimizations� at each time step�

before executing the Convection loop each processor ph�k� with position �h� k� in the two�dimensional logical grid�

sends its partition of the array B to its four neighbors ph���k� ph���k� ph�k��� ph�k��� and correspondingly receives from

them a copy of their partitions of B� At this point� ph�k can carry out the Convection loop by transforming each remote

stencil reference into a reference to the locally bu�ered copy of the corresponding adjacent partition� For example� the

remote reference B�i���j� performed by processor ph�k is transformed into a local reference to Bh���k� where Bh���k

is the partition of B that has been statically assigned to ph���k according to the cyclic distribution�

�

��� Implementation of the reaction phase

In this section we detail and compare the solutions adopted to implement the irregular part of our �ame simulation

benchmark� the non�uniform parallel loop performing chemical reaction�

CYCLIC� The simplest way to achieve a good workload balance is to give up the idea of exploiting data locality in

the Convection loop discussed above by scattering both dimensions of the simulation grid among the local memories

of the various processors� This solution allows one to adopt a simple inexpensive static policy for iteration scheduling

based on the owner computes rule� and to obtain in most cases almost equal completion times for the parallel loop

that implements the Reaction phase of the simulation�

REDISTRIBUTION� This solution tries to take full advantage of the possible static policies that can be adopted to

implement both the loops of the benchmark� A block layout is adopted for the �rst� regular Convection loop� and a

cyclic distribution is exploited for the non�uniform Reaction loop� Hence� an appropriate code performing block�to�

cyclic �cyclic�to�block� dynamic redistribution must be inserted at the end of the �rst �second� parallel loop� Dynamic

redistribution in this case requires all�to�all communications� To reduce the number of messages� data for transmission

to the same processor are aggregated� so that each processor sends only one message to each other processor� The

order in which messages are sent di�ers from processor to processor� thus preventing contention problems which might

arise if several processors simultaneously send messages to the same destination�

I�E� The solution to many problems whose irregularities prevent pure compile�time optimizations can be addressed by

exploiting Inspector�Executor �I�E� codes which collect information at run�time� and then use it to optimize subsequent

computations �
�
�� If we refer to the code in Fig� �� we can outline how an I�E approach can be exploited in this

case �
�� ����

�� During each iteration k of the outer loop� processors pro�le the Reaction loop execution and store iteration

costs� At the end of the loop each processor pi knows the costs of its own loop iterations and its total local load

TL�pi�� TL�pi� is then broadcast to all the other processors�

� Once received the locally computed loads from all the other processors� each processor autonomously decides if

balancing actions have to be taken� A simple heuristic method which measures the di�erence between the loads of

the most heavily and lightly loaded processors� and compares it with a �xed threshold is used for this purpose� If

a load imbalance is detected� all the processors independently execute a binpack algorithm �
�� to build the same

suboptimal workload migration plan� which establishes how much work should be moved from each overloaded

processor to each underloaded one to achieve load balance� Suppose that M is the average processor load� and

that there are m� � � m � P � overloaded processors p��� p
�

�� � � � � p
�

m��� and n� � � n � �P � m� underloaded

processors p�� p�� � � � � pn��� The algorithm� for each overloaded processor p�i generates a list of load amounts

�i�� �
i
�� � � � � �

i
n�� where �

i
j � is the amount of load that should be moved from p�i to pj � To e�ectively balance

the processor workloads� amounts �ij have to be chosen so that� for each p�i�
Pn��

j�� �
i
j � TL�p�i� �M � and� for

each pj �
Pm��

i�� �ij �M � TL�pj�� This is achieved by choosing a pair of processors �p�i� pj�� and by computing

the amount of load� i�e� max�TL�p�i��M�M�TL�pj��� that should be migrated from p�i to pj � If p
�

i�s workload is

�

greater than M also after this workload migration� another underloaded processor pj is chosen� and the process

is repeated� Conversely� if p�i�s workload is not su�cient to bring the load of pj up to M � the process is repeated

by choosing another overloaded processor p�i� To reduce the number of workload redistributions� a heuristic

policy which chooses the most overloaded and most underloaded processors �rst is used to select the processor

pairs involved in each workload migration�

�� On the basis of the workload migration plan built at the previous step� overloaded processors choose n bunches of

iterations �i�� �
i
�� � � � � �

i
n�� to be migrated� The costs of these bunches must be approximatively �

i
�� �

i
�� � � � � �

i
n���

To reduce the communication volume� the dimensions of the bunches have to be minimized� To this end� each

p�i sorts its iteration indexes on the basis of the costs previously measured� and chooses heavier iterations �rst to

�ll the bunches �ij � j � � �� � � � � n� �� The resulting n couples �pj � �
i
j� constitutes the communication schedule

of overloaded processors p�i�

�� At iteration k � �� overloaded processors use their communication schedule to balance the workloads that are

derived from the execution of the non�uniform loop� To this end� after the Convection phase of the simulation�

but before starting the Reaction phase� each p�i sends each bunch �ij � j � � �� � � � � n � �� to the respective

processor pj � Then p�i performs non�migrated� local iterations and waits for the results of migrated bunches�

Correspondingly� once both the Convection and Reaction phases of the simulation have been executed on the

owned block�partition� underloaded processors receive the bunches of migrated iterations from the overloaded

processors� They then execute the iterations of each bunch� and send back the results�

Since the computational costs may vary as simulation progresses� processors must continue pro�ling the non�

uniform parallel loop during all the simulation and recompute� if it is needed� a new workload migration plan and

communication schedule� Each outer loop iteration thus requires a collective communication to broadcast the current

processor loads� This global knowledge of processor loads� although it allows to minimize data and computation reallo�

cation� is expensive to maintain� In addition� the cost of building both the workload migration plan and communication

schedule is not negligible� To reduce this cost an O�n� algorithm for the approximate sorting of iteration costs was

proposed �
�� �see step � of the above implementation scheme�� However� we followed a di�erent direction which con�

sists in treating a chunk of iterations� rather than a single iteration� as the scheduling unit� This reduces considerably

not only the cost of sorting but also the costs related to loop execution pro�ling and communication schedule building�

To conclude our discussion of the I�E solution� it is worth noting that� unlike all the other approaches discussed in

this paper� an Inspector�Executor paradigm can be pro�tably exploited only if the non�uniform loop is iterated many

times and the workload distribution does not change� or changes very slowly� as the execution progresses� The �rst

execution of each loop is by necessity accomplished according to a static schedule� thus jeopardizing part of the bene�ts

of subsequent dynamic load balancing actions if the workload is very unbalanced and the parallel loop is executed

only a few times�

SUPPLE� SUPPLE is a run�time support for the implementation of both uniform and non�uniform parallel loops ��
�

���� It only supports block�distributed arrays to exploit the locality that derives from regular stencil references� The

innovative feature of SUPPLE is its e�cient support for non�uniform loops such as the Reaction loop in the �ame

�

simulation code� For this purpose� SUPPLE exploits a hybrid �static � dynamic� scheduling technique which adopts

local policies of imbalance detection to avoid global synchronizations� and hides most dynamic scheduling overheads

by overlapping communication with useful computations� Di�erently from other proposals ����� SUPPLE scheduling

policy is fully distributed and does not introduce bottlenecks which may jeopardize the e�ciency when many processors

are used�

At the beginning� to reduce overheads� iterations of the Reaction loop are scheduled statically� by sequentially

executing the iteration chunks stored in a local queue Q� Once a processor understands that its local queue Q is

becoming empty� the dynamic part of the scheduling policy begins� Exploiting a receiver initiated load balancing

technique ���
��� SUPPLE tries to balance the processor workloads by migrating chunks and corresponding data tiles

from overloaded to underloaded processors� Migrated chunks and data tiles are stored by each receiving processor in

a remote queue RQ� Dynamic scheduling decisions are taken on the basis of local information only as follows�

� During the initial static scheduling phase� each processor executes local chunks stored in Q and measures their

execution time to estimate the average cost of its own chunks� Moreover� when chunks are migrated toward

underloaded processors� their average cost is communicated as well� On the basis of this knowledge� processors

can thus estimate their own current load at any time by inspecting their queues Q and RQ�

� When the estimated current load becomes lower than a machine�dependent Threshold� each processor au�

tonomously starts the dynamic part of the scheduling technique and begins asking other processors for remote

chunks� Correspondingly� the processors which receive a chunk migration request will grant the request only if

their current load is higher than the same Threshold� Note that the Threshold parameter must be chosen high

enough to prefetch remote chunks� thus preventing underloaded processors from becoming idle while waiting for

chunk migrations� The processors that are asked for chunk migration are chosen on the basis of an inexpensive

local round�robin policy� In fact� it is often more important not to spend too much time in making a decision

than always making the best decision ���� However� to reduce the overheads which might derive from migration

requests which cannot be served� each processor� when its current load becomes lower than Threshold� broad�

casts a so�called termination message� These messages are used by the receiving processors to update their local

knowledge of the global status of the computation� The round�robin strategy used by underloaded processors to

select source processors skips those processors that have already communicated their termination�

� Once an overloaded processor decides to grant a migration request� it must choose the most appropriate number

of chunks that must be sent to the asking processor� SUPPLE uses a slightly modi�ed Factoring ��� scheme

to locally determine this number� an overloaded processor replies to a request for further work by sending k
��P

chunks� where k is the number of chunks currently stored in Q� and P is the number of processors�

The policy exploited by SUPPLE to manage data coherence and termination detection is fully distributed and

asynchronous� The full�empty �ag technique is used to asynchronously manage the coherence of migrated data tiles�

When processor pi sends a chunk b to pj � it sets a �ag marking the data tiles associated with b as invalid� The next

time pi needs to access the same tiles �in our case during the next execution of the Convection loop�� pi checks the �ag

and� if the �ag is still set� waits for the updated data tiles from node pj � Such a control of data consistency does not

��

entail waiting for coherence messages at the end of the Reaction loop execution� a new loop� in our case the Convection

loop of a new time step� can be started and useful computations can be overlapped with these communications� As

far as termination detection is concerned� the role of a processor in the parallel loop execution �nishes when it has

already received a termination message from all the other processors� and both its queues Q and RQ are empty�

� THE MODEL OF LOAD IMBALANCE

To experimentally evaluate the behavior of the implementation strategies discussed in the previous Section� we built

a set of synthetic input data sets for the �ame simulation benchmark whose skeleton is shown in Fig� �� The synthetic

data sets are �
� � �
� arrays� They represent possible states of the simulation grid characterized by di�erent

workload distributions� the per�point time needed to perform the Reaction phase �function Reaction� has been in

fact forced to be directly proportional to the value of the corresponding data set point�

Given �� the per�point execution time averaged over all the points of the simulation grid� the synthetic data sets

were built according to a model of load imbalance that assumes that the workload is not distributed uniformly� and

that the computational cost of a given point may be high �i�e� greater than �� or low �i�e� lower than ��� Moreover

the model assumes that d� � d � �� is the fraction of simulation grid points with high costs� while t� � t � �� is

the fraction of the total workload T equally distributed among the high�cost points� Clearly� since the time needed

to process high�cost points is greater than �� it follows that t � d� The high�cost points were positioned following

an exponential distribution with respect to two points of the simulation grid� Fig�
 shows a representation of a data

set characterized by d � �� in which high�cost �low�cost� points are displayed as black �white�� Since larger values

of t correspond to larger fractions of T concentrated on the two loaded regions� the workload imbalance is directly

proportional to t for a given value of d� Similarly� the imbalance is inversely proportional to d for a given value of

t� From these remarks� we can derive F � called the factor of imbalance� which is de�ned as F � t
d
� In the tests� we

employed data sets characterized by values of F ranging from � to �� where the fraction of loaded points is kept �xed

�d � ���� Note that the case F � � corresponds to a balanced data set since the computational cost associated with

each grid point is exactly equal to ��

It can be shown that F characterizes the associated data set by furnishing a upper bound to the possible slowdown

factor deriving from its unbalanced workload distribution when the data set is equally and statically distributed among

the processors� In fact� if S is the size of the data set and P is the number of processors employed� we have � � T
S
�

while the optimal completion time is equal to T
P
� � � S

P
� Considering that the high�cost points are d � S� their cost is

thus � � t�T
d�S

� F � T
S
� F � �� In the worst case all the points assigned to a given processor p have high cost� If this

is the case and the data set is equally distributed among the processors� the execution time of p in absence of load

balancing is � � S
P
� F � � � S

P
� F � T

P
� This time� which clearly dominates the overall program completion time� is

exactly F times the optimal completion time�

Note that our characterization of the workload imbalance is independent of P � Other measures of load imbalance�

such as the di�erence between the workloads of the most loaded and the most underloaded processors� depends not

only on the speci�c data set� but also on the number of processors exploited�

�

Figure
� Representation of a synthetic data set�

Table �� Per�point reaction cost time for some values of � and F

� F high�cost pts low�cost pts

����� msecs 	 ���
� msecs ����� msecs

��� msecs 	 ��� msecs ����� msecs

����� msecs ���� msecs ���	� msecs

��� msecs ��
 msecs ����� msecs

� EXPERIMENTAL RESULTS

All the benchmark implementations were coded in C by exploiting MPI as a message�passing layer� The tests were

conducted on �� Cray�T�E nodes arranged as a logical � � � processor grid� The same �
�� �
� synthetic data

sets were fed in input to the various versions of the benchmark so that a partition of �
�� �
� points is assigned to

each processor� The points of each partition are contiguous if a block distribution is exploited� and scattered� with a

constant stride of eight in both dimensions� when a cyclic data layout is adopted instead�

We assumed that one quarter of the total execution time is spent in the Convection phase of the �ame simulation

benchmark� while the Reaction phase takes the remaining three quarters� Hence� if � is the average execution time

to process a grid point during the Reaction phase� the average execution time per point during the Convection phase

0

50

100

150

200

250

0 10 20 30 40 50 60

W
or

kl
oa

d
(s

ec
)

Processor ID

BLOCK distribution, F=8 and µ=0.15 msec.

�a�

20

25

30

35

40

0 10 20 30 40 50 60

W
or

kl
oa

d
(s

ec
)

Processor ID

CYCLIC distribution, F=8 and µ=0.15 msec.

�b�

Figure �� Per�processor workload for block �a� and cyclic �b� distributions of the �
�� �
� simulation grid on the

�� � processor grid� case F � � and � � ��	 msecs�

��

is thus �
� � We conducted experiments with input data sets characterized by several values of � and� speci�cally� for

� � ��� msecs� ��	 msecs� ��	 msecs and � �� msecs� If we �x the number of simulation steps executed ��

in our experiments�� we can estimate the Optimal Completion Time �OCT� of the whole simulation �OCT equal to

����� ������ �
���� �	�	� secs� for � equal to ���� ��	� ��	� �� msecs� respectively�� This time� which does not

take into account any overheads� can be computed by multiplying the average time required to process a single point

of the simulation grid �������� times the number of points assigned to each processor ��
�� �
��� times the number

of simulation time steps ����

Table � reports some examples regarding the imbalance introduced by our synthetic data sets� In particular� it

shows the times needed to compute each point during the Reaction phase� and distinguishes between high and low�cost

points�

Fig� � shows the per�processor workloads that derive from block �Fig� ���a�� and cyclic �Fig� ���b�� distributions

of the simulation grid� The workload is expressed in seconds� and is relative to the execution of � time steps of the

simulation on the data set characterized by F � � and � � ��	msecs� As expected� the block data distribution results

in a huge load imbalance if a static scheduling policy is exploited� the processor workloads for the case considered

range from � to
�� seconds� On the other hand the workload distribution deriving from the cyclic data layout is

suboptimal� Processor workloads range� in this case� from ���	
 to ���	� secs �OCT � �
��� secs��

Figures � and 	 report the results of the experiments conducted to evaluate the four implementation strategies

discussed� Each plot regards a di�erent implementation and shows several curves related to distinct values of �� Each

curve plots the di�erence between the completion time of the slowest processor and the theoretical OCT as a function of

F � This di�erence can be considered as the sum of all overheads due to communications� residual workload imbalance�

and loop housekeeping� It also includes the time to send�receive messages that implement the stencil communications

of the �rst convection loop� All the implementations introduce a low overhead even in the balanced case �F � ��� and

the overhead tends to increase as data sets characterized by more unbalanced load distributions are processed�

In the case of the CYCLIC implementation the di�erences from the OCT shown in Fig� ���a� range from �

to ��� seconds for � � ��� msecs� and from �
� to ���� seconds for � � �� msecs� On the one hand� these

results show that the optimization techniques adopted really reduce the overheads of the communications needed to

implement the stencil references of the Convection parallel loop� The adoption of a cyclic distribution of the simulation

grid requires� in fact� that each processor sends at each time step its data partition to the four neighboring processors�

and correspondingly receives a copy of the four adjacent partitions� A huge amount of data �
� MB� is thus moved at

each time step� On the other hand� the slopes of the curves shown in Fig� ���a� indicate that the cyclic data layout

does not perfectly balance processor workloads� as already shown in Fig� ���b�� For F � �� the di�erences from the

OCT are equal to ���� �	�� ��
 and ���� secs for � equal to ���� ��	� ��	� �� msecs� respectively� A residual

imbalance thus still a�ects each execution of the Reaction parallel loop�

Similar considerations can be made for the REDISTRIBUTION implementation which dynamically redistributes

the simulation grid at each time step before and after the execution of the Reaction computations� The di�erences from

the OCT for this implementation are shown in Fig� ���b�� and range from ��� to ��� seconds for � � ��� msecs�

��

and from ��� to ���� seconds for � � �� msecs� In all the tests carried out� the completion times were larger than

the CYCLIC ones� a constant overhead is due to redistribute from block to cyclic the simulation grid at the end of

the Convection phase� and to restore the block distribution at the end of the reaction phase� The total per�time�step

communication volume is lower� in this implementation� than in the CYCLIC one �about �� MB instead of
� MB��

but the gains due to the lower communication volume and� especially� to the better data locality exploited by this

solution� do not counterbalance the overheads that derive from the communications which implement redistribution�

In the CYCLIC solution in fact� communications occur only among nearest�neighboring processors� while in the

REDISTRIBUTION case more expensive all�to�all communications are needed�

The experimental results obtained running the I�E implementation are reported in Fig� 	��a�� These results are

the worst we obtained� This is partially due to the small number of simulation steps executed in the tests� The I�E

implementation in fact is not able to balance the load during the �rst simulation step which is used to collect load

information� In real �ame simulations in which the number of time steps is very large� the greater cost of the �rst time

step becomes negligible and thus the behavior of the I�E implementation should be better� However� even neglecting

the �rst time step� the di�erences from the OCT range from ��
 to ��
� seconds for � � ��� msecs� and from ��

to ���� seconds for � � �� msecs� Two main factors jeopardize the e�ectiveness of the approach for the benchmark

considered� Firstly� only iteration execution is pro�led to derive processor workloads� The workload migration plan

thus represents an ideal workload redistribution which does not consider the overheads incurred in actually performing

the redistribution� Secondly� the communication schedule might not exactly respect the ideal workload migration plan

because iterations have discrete costs while the workload migration plan redistributes the workload according to a

continuous model�

Finally� the plot reported in Fig� 	��b� shows the result obtained by exploiting SUPPLE� One di�erence appears if

we compare these curves with the others� While the other implementations resulted in execution times characterized

by overheads which increase proportionally to � and F � the curves plotted in Fig� 	��b� are nearly �at up to a factor

of imbalance equal to �� and show an increase in the overheads only for F � �� The exploitation of the SUPPLE

support allows us to balance the processors� workloads with a completion time which is very close to the OCT� The

di�erences range from �
 to ��
 seconds for � � ��� msecs� and from ��� to ��� seconds for � � �� msecs�

With data sets characterized by a factor of imbalance equal to �� the di�erences from the OCT are only �
�� ���

��
 and ��� secs for � equal to ���� ��	� ��	� �� msecs� respectively� The increase in the overheads measured

for F � � is due to unavoidable output contention problems arising for truly highly unbalanced workloads that cause

the network interface of the few overloaded processors to be congested by too many migration requests�

� CONCLUSIONS

We have discussed four di�erent solutions for the implementation of a two�dimensional �ame simulation code� This

code was also included in the HPF�
 draft ��� as one of its motivating applications because its features� as it is claimed

in the draft� make the application hardly supported by HPF���compliant compilers� so that sophisticated adaptive

techniques should be required to deal with them�

�	

0

0.5

1

1.5

2

0 2 4 6 8 10

D
iff

. f
ro

m
 O

C
T

 (
se

c)

Factor of imbalance F

CYCLIC

µ=0.038
µ=0.075
µ=0.150
µ=0.300

�a�

0

0.5

1

1.5

2

0 2 4 6 8 10

D
iff

. f
ro

m
 O

C
T

 (
se

c)

Factor of imbalance F

REDISTRIBUTION

µ=0.038
µ=0.075
µ=0.150
µ=0.300

�b�

Figure �� Di�erences from the OCT for various values of � as a function of F for the CYCLIC �a�� and REDIST� �b�

implementations�

0
5

10
15
20
25
30
35
40
45
50

0 2 4 6 8 10

D
iff

. f
ro

m
 O

C
T

 (
se

c)

Factor of imbalance F

I/E

µ=0.038
µ=0.075
µ=0.150
µ=0.300

�a�

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

D
iff

. f
ro

m
 O

C
T

 (
se

c)

Factor of imbalance F

SUPPLE

µ=0.038
µ=0.075
µ=0.150
µ=0.300

�b�

Figure 	� Di�erences from the OCT for various values of � as a function of F for the I�E �a�� and SUPPLE �b�

implementations�

The �rst solution we tested is completely static� and adopts a cyclic data layout to balance the workloads� The

second implementation uses a block distribution during the �rst loop� but the arrays are redistributed according to a

cyclic layout before executing the unbalanced chemical reaction computation�

The third solution is based on the I�E paradigm� and can be classi�ed as a hybrid one since the initial static binding

of data and computations can be modi�ed at run�time to balance the workloads and obtain better performances�

More speci�cally� in this case the actual migration of part of data and computations is dynamically decided after a

synchronization carried out at �xed points to collect global workload information�

Finally� the fourth approach is also hybrid� and exploits our SUPPLE run�time support� SUPPLE exploits locality

by initially scheduling iterations according to a static scheduling policy and a block data layout� and asynchronously

Table
� Completion times �in seconds� of � simulation time steps for � � ��	 and various F

Version F � � F � 	 F � � F � � F � �

CYCLIC �	��� ���� ���	� ����� ����

REDIST	 ���	 ����� ����� ����
 ����

I
E �	��	 ��

 ����� ����� ��
�

SUPPLE �	��� ����	 ����
 ����� �����

��

migrates iterations only if an actual load imbalance is detected�

All the four solutions were implemented on the top of the same MPI message passing layer� while� where possible� the

same optimizations were applied� The experiments were conducted on a Cray T�E� a high�performance distributed�

memory architecture� We employed di�erent synthetic data sets built on the basis of a simple load imbalance model�

These data sets� fed in input to the �ame simulation code� introduce di�erent known workload imbalances�

The best results were obtained with the SUPPLE implementation of the benchmark� Quite good results were

also obtained by the static implementation� which simply exploits a cyclic data layout� thus proving that the use of

static compiler optimizations results to be e�ective even for an application that has been inserted in the HPF
 draft

to motivate the need of more complex and adaptive run�time supports like CHAOS �
�� Worse results were instead

achieved by the hybrid I�E implementation and by the static implementation which exploit array redistribution� A

summary of the completion times obtained with all the implementations for � � ��	 msecs and various F is reported

in Table
�

Particularly interesting are the results obtained by the two adaptive approaches� I�E and SUPPLE� The I�E solution

tries to reduce overheads by minimizing number and volume of messages required to balance the workloads� but it

does not allow communications to be overlapped with useful computations� and introduces synchronization points

between the execution of consecutive parallel loops� SUPPLE instead uses smaller messages to migrate work toward

underloaded processors because only local knowledge is exploited to make fast load balancing decisions� and some of the

decisions taken might result to be wrong if larger amounts of work were migrated� On the other hand� SUPPLE does

not introduce synchronization points� is fully distributed and asynchronous� and allows many techniques for hiding

communication latencies to be exploited� Moreover SUPPLE can be used for the implementation of non�uniform

parallel loops executed only once �non�uniform single iterated parallel loops are common in many high�level vision

and computer graphics applications�� or iterated loops where the workload distribution is highly varying� Conversely�

in order to apply the I�E paradigm� the same non�uniform parallel loop must be executed many times and� more

importantly� the load distribution has to vary very slowly between successive loop executions to e�ectively reuse the

historical load information�

In conclusion� hybrid scheduling techniques like the one adopted by SUPPLE can be pro�tably exploited in many

cases where locality exploitation and load imbalance are two contrasting goals� and the workload distribution is

unpredictable� Moreover� their use is valuable even for uniform computations executed on multiprogrammed or

heterogeneous parallel systems where the load imbalance is caused by variations in capacities of processing nodes �����

We believe that in all these cases the compilation model of data�parallel languages should be extended to exploit

SUPPLE�like techniques� which may modify the binding of part of computations and data at run�time� thus handling

unpredictable load imbalances�

References

��� R� Alverson et al� The Tera computer system� In Proc� of the ���� ACM ICS� pages ���� ���	�

�
� R� Das� M� Uysal� J� Saltz� and Y��S� Hwang� Communication optimizations for irregular scienti�c computations on distributed

memory architectures� JPDC�

�����
����� �����

��

��� High Performance Fortran Forum� High Performance Fortran Language Speci�cation� May ����� Ver� ��	�

��� High Performance Fortran Forum� HPF�� Scope of Activities and Motivating Applications� Nov� ����� Ver� 	���

��� S� Hiranandani� K� Kennedy� and C� Tseng� Compiling Fortran D for MIMD Distributed�Memory Machines� CACM� ���������	�

���
�

��� S� Hiranandani� K� Kennedy� and C� Tseng� Evaluating Compiler Optimizations for Fortran D� JPDC�
����
����� �����

��� S�F� Hummel� E� Schonberg� and L�E� Flynn� Factoring� A Method for Scheduling Parallel Loops� CACM� ������	��	�� ���
�

��� V� Kumar� A�Y� Grama� and N� Rao Vempaty� Scalable Load Balancing Techniques for Parallel Computers� JPDC�

��	���� �����

��� M� S� Lam� E� E� Rothberg� and M� E� Wolf� The cache performance and optimizations of block algorithms� In Proc� of the �th ACM

ASPLOS� pages ������ Santa Clara� CA� Apr� �����

��	� J� Liu and V� A� Saletore� Self�Scheduling on Distributed�Memory Machines� In Proc� of Supercomputing 	�
� pages �����
�� �����

���� E�P� Markatos and T�J� LeBlanc� Using Processor A�nity in Loop Scheduling on Shared�Memory Multiprocessors� IEEE TPDS�

���������		� Apr� �����

��
� S� Orlando and R� Perego� SUPPLE� an E�cient Run�Time Support for Non�Uniform Parallel Loops� Technical Report TR�������

Dip� di Mat� Appl� ed Informatica� Universit�a di Venezia� Dec� �����

���� S� Orlando and R� Perego� Scheduling Data�Parallel Computations on Heterogeneous and Time�Shared Environments� Technical

Report TR������� Dip� di Mat� Appl� ed Informatica� Universit�a di Venezia� Sept� �����

���� S� Orlando and R� Perego� A Support for Non�Uniform Parallel Loops and its Application to a Flame Simulation Code� In Proc� of

the �th Int� Symposium� IRREGULAR 	��� pages �������� Paderborn� Germany� June ����� LNCS �
��� Spinger�Verlag�

���� G� Patnaik� K� J� Laskey� K� Kailasanath� E� S� Oran� and T� A� Brun� Flic � a detailed two�dimensional �ame model� Memorandum

Report ����� Naval Research Lab�� Sept� �����

���� O� Plata and F� F� Rivera� Combining static and dynamic scheduling on distributed�memory multiprocessors� In Proc� of the ����

ACM ICS� pages �������� �����

���� C� Polychronopoulos and D�J� Kuck� Guided Self�Scheduling� A Practical Scheduling Scheme for Parallel Supercomputers� IEEE

Trans� on Computers� ���
�� Dec� �����

���� R� Ponnusamy� J� Saltz� A� Choudary� Y�S Hwang� and G� Fox� Runtime Support and Compilation Methods for User�Speci�ed

Irregular Data Distributions� IEEE TPDS� ������������ Aug� �����

���� D� A� Reed� L� M� Adams� and M� L� Patrick� Stencils and problem partitionings� Their in�uence on the performance of multiple

processor systems� IEEE Trans� on Computers� ������������� July �����

�
	� J� Saltz et al� Runtime and Language Support for Compiling Adaptive Irregular Programs on Distributed Memory Machines� Software

Practice and Experience�
���������
�� June �����

�
�� J� Saltz et al� Runtime Support and Dynamic Load Balancing Strategies for Structured Adaptive Applications� In Proc� of the ���

SIAM Conf on Par� Proc� for Scienti�c Computing� Feb� �����

�

� T�H� Tzen and L�M� Ni� Dynamic Loop Scheduling on Shared�Memory Multiprocessors� In Proc� of ICPP � Vol II� pages
���
�	�

�����

�
�� M�H� Willebeek�LeMair and A�P� Reeves� Strategies for Dynamic Load Balancing on Highly Parallel Computers� IEEE TPDS�

������������ Sept� �����

�
�� H�S� Zima and B�M� Chapman� Compiling for Distributed�Memory Systems� Proc� of the IEEE� pages
���
��� Feb� �����

��

Biographies

Salvatore Orlando received a Laurea degree cum laude and a Ph�D� degree in Computer Science from the University of Pisa in ����

and ����� respectively� He is currently an assistant professor at the University of Venice� His research interests include parallel languages�

parallel computational models� optimizing and parallelizing tools� parallel algorithm design and implementation�

Raffaele Perego received his Laurea degree in Computer Science from the University of Pisa in ����� He has been a contract

professor of computer science at the University of Pisa since ����� He is currently researcher at the Italian National Research Council� His

research interests include scheduling� parallel algorithm design� parallel languages and tools� high performance computing�

��

