
Efficient Java Code Generation
of Security Protocols specified in AnB/AnBx

Paolo Modesti

School of Computing Science, Newcastle University, UK
paolo.modesti@newcastle.ac.uk

Abstract. The implementation of security protocols is challenging and
error-prone. A model-driven development approach allows the automatic
generation of an application, from a simpler and abstract model that can
be formally verified. Our AnBx compiler is a tool for automatic genera-
tion of Java code of security protocols specified in the Alice&Bob nota-
tion. In contrast with existing tools, it uses a simpler specification lan-
guage and computes the consistency checks that agents have to perform
on reception of messages. Moreover, the tool applies various optimization
strategies to achieve efficiency both at compile and run time.

Keywords: security protocols, code generation, applied formal methods

1 Introduction

The implementation of security protocols is challenging and error-prone, as ex-
perience has shown [1] that even widely used and heavily tested protocols like
TLS and SSH need to be patched every year due to low-level implementation
bugs. The critical aspect is that the high-level security properties of a protocol
must be hard-coded explicitly, in terms of low-level cryptographic operations
and checks of well-formedness. To counter this problem, in this work we con-
sider a model-driven development approach that allows automatic generation of
an application, from a simpler and abstract model that can be formally veri-
fied. We present the AnBx Compiler and Code Generator1, a tool for automatic
generation of Java code of security protocols specified in the simple Alice&Bob
(AnB) notation [2], suitable for agile prototyping. Despite being intuitive, pro-
tocol narrations are in general semi-formal because they contain a lot of implicit
concepts. In particular, it does not say explicitly which (defensive) consistency
checks on the received data need to be performed to verify that the protocol is
running according to the specification. It is important to recognize that while
some checks on reception are trivially derived from the narrations (verification
of a digital signature, comparison of agent’s identities), others are more complex
and managing them can be a challenging task even for an expert programmer.

In addition to the main contribution of an end-to-end AnB to Java compiler,
we also present an improved way to compute the checks on reception with re-
spect to a previous solution proposed by Briais and Nestmann [3]. This allows

1 Available at http://www.dais.unive.it/~modesti/anbx/



2 Paolo Modesti

reducing the compilation time (in one case even from days to seconds), prevent-
ing space state explosion problems in the optimization phase, and increasing the
execution speed. The tool also supports the AnBx language [4], an extension of
AnB to be employed for a purely declarative modelling of distributed protocols.

2 The AnBx Compiler

The automatic Java code generation of security protocols comprises several
phases. A detailed description of the architecture of the tool, which is devel-
oped in Haskell, is given in [5] and can be summarized as follows:

Pre-Processing and Verification AnBx → AnB → (verification)
The AnBx protocol is lexed, parsed and then compiled to AnB , a format suitable
for verification with the external tool OFMC [6], a state of the art model checker.
The compiler can also read protocols directly in AnB . AnBx and its translation
to AnB have already been described in [4,7].

Front-end AnB → ExecNarr → Opt-ExecNarr
If the protocol is deemed safe by the model checker, the AnB specification can be
compiled into an executable narration (ExecNarr), a set of action that gives an
interpretation on how the protocol participants are expected to execute the pro-
tocol. The core of this phase is the automatic generation of the consistency checks
derived from the static information of protocol narrations. The optimized exe-
cutable narration (Opt-ExecNarr) goes further in this direction and applies some
optimization techniques, including common subexpression elimination (CSE),
which in general are useful to generate efficient code.

Back-end Opt-ExecNarr → (protocol logic) + (application logic) → Java
The final result of the compilation is the generation of the Java source code from
the Opt-ExecNarr . The previous phases are fully language independent and do
not require any adaptation in case another programming language is used. But
even in the back-end we postponed any language dependent decision in order to
increase the compiler’s portability and simplify the re-targeting.

3 Executable Narrations and Optimization

The computation of the checks on reception is done by extending and refining the
ideas proposed in [3]. In short, three kinds of checks are considered in formulas
on received messages: equality [E = F ] on expressions denoting the comparison
of two bit-streams, E and F ; well-formedness [E] denoting the verification of
whether the projections and decryption contained in E are likely to succeed;
inversion inv(E,F ) denoting the verification that E and F evaluate to inverse
messages. Since consistency checks operate on (message,expression) pairs, the
representation of the agent’s knowledge must be generalized. The underlying
idea is that a pair (M,E) denotes that an expression E is equivalent to the mes-
sage M . For this reason is it necessary to introduce the notion of knowledge sets,
and two operations on them: synthesis, reflecting the closure of knowledge sets



Efficient Java Code Generation of Security Protocols 3

using message constructors, and analysis, reflecting the exhaustive recursive de-
composition of knowledge pairs as enabled by the currently available knowledge.

The compilation of an action A→ B : M checks that M can be synthesized
by the agent A, instantiate a new variable x and adds the pair (M,x) to the
knowledge of agent B. The consistency formula Φ(A(K ′

B)) of the analysis of the
updated knowledge K ′

B defines the checks to be performed by B at run-time.

Performance issues A preliminary version of our compiler [7] implemented ver-
batim the method proposed in [3], extending only the analysis and synthesis
rules in order to support cryptographic functions which were not available in [3],
HMAC and Diffie-Hellman key agreements in particular. Unfortunately, espe-
cially with some industrial-size protocols, it turned out to be very inefficient. In
our experiments [Table 1 (a)], we found it challenging to work with the original
specification of the e-commerce protocols SET [8] (we considered the unsigned
variant denoted SETv2 in which the customer does not possesses asymmetric
keys) and 3KP [9]. A clear symptom of inefficiency was the fact that these pro-
tocols required very long time to be compiled (around 1 hr and 55 min for 3KP
and almost 6 days for SETv2 on a Windows 7 64-bit machine, CPU Intel Core
i7-3770 3.40 GHz, 8 GB RAM, JDK 7.0.45 64-bit, Haskell Platform 2013.0.0.2).
In contrast, the revised versions specified in AnBx performed better, thanks to
the fact that AnBx can express security properties at the channel level and this
implies, in the concrete implementation, a reduced number of nested encryption
layers and MACs, compared to the original specification.

Moreover, we noticed that some of the computed checks were failing anyway.
It turned out that the reason of this discrepancy was the different behavior, in the
abstract and concrete model, of the cryptographic primitives. In fact, given two
identical messages and encryption keys, a non-deterministic encryption scheme
returns two different ciphertexts which are indistinguishable by an observer. This
nice (in the real world) property was not properly captured by the model.

Optimization To address this issue, the key point is to observe that, if an agent
knows the correct decryption key, he will deconstruct the ciphertext using the
analysis rules. In this case, he will only store the decrypted message in his own
knowledge, forgetting the ciphertext. A significant exception is represented by
forwarding channels. For example, in SET and iKP the merchant must forward
a message originating from the customer but secret for the acquirer, and such
expression is stored in the knowledge as an encrypted term. Assuming a non-
deterministic cipher scheme, when an agent will need to build a new ciphertext
involved in an equality check, the check will fail because the term will differ
from the one to be compared with. Therefore, if we prevent the agent from
using the synthesis rules modelling encryption when computing the checks, we
basically avoid computing any check which requires synthesizing new terms using
symmetric and asymmetric encryption. It is important to underline that this does
not undermine the robustness of the application because we just prune checks
failing due to the over approximation of the abstract model.



4 Paolo Modesti

Protocol Compile Time (sec) Exec. Time (sec) Mem. usage* (MB)

(a) (b) (c) (a) (b) (c) (a) (b) (c)

2KP (orig) 97.75 2.80 2.25 1.08 0.97 0.81 3.46 4.80 8.24

2KP (AnBx) 1.03 0.17 0.13 1.01 1.17 0.95 0.91 1.06 0.88

3KP (orig) 6,945.43 13.23 13.20 100.85 1.34 0.83 411.52 16.08 33.64

3KP (AnBx) 8.88 0.16 2.25 1.26 1.44 0.91 1.05 1.03 1.04

SETv2 (orig) 513,827.20 2.89 3.04 4.05 3.94 1.11 262.07 5.93 7.91

SETv2 (AnBx) 0.84 0.06 0.05 1.08 1.25 0.89 0.74 0.80 0.83

H530 1.89 1.75 2.70 1.96 1.88 1.79 10.14 9.12 5.31

Google SSOv2 1.33 0.03 0.02 1.07 0.95 0.90 0.68 0.71 0.75

Kerberos PKinit 0.37 0.36 0.36 1.32 1.12 0.94 1.35 1.53 1.88

Table 1. Exp. results: (a) as in [3] w/o opt (b) opt (c) opt+cse (*at compile time)

From the practical point of view [Table 1 (b)], we were able to reduce the
compile time for 3KP, from 1 hr 55 min to just 13 sec, decreasing the peak
memory usage (measured by the Profiler of the Haskell Compiler 7.6.3) from
411 MB to just 16 MB. The execution time was also cut from 100 sec to just
1.34 sec. This large difference is explained by the fact that the standard algorithm
[3] computes more than 10,000 checks (but most of them are failing), while our
version generates about 50 checks. For the protocol SETv2, the good news is
that it can now be compiled in 3 sec while before it required almost 6 days. Peak
memory usage was also decreased from 262 MB to just 6 MB. The execution
time diminished just from 4.05 sec to 3.94 sec. This is interesting because in this
case the check set is not heavily pruned as in 3KP. Indeed our changes allows
detecting the checks more efficiently than before.

Common Subexpression Elimination (CSE) We identify the set of cryptographic
operations, which in general are computationally expensive, and optimize the
code to reduce the overall execution time, introducing variables storing partial
results, and making a reordering with the purpose of minimizing the number of
cryptographic operation performed. In terms of performance gain [Table 1 (c)],
CSE and reordering allowed us to cut further the execution time by 72% for
SETv2, 38% for 3KP, but less than 5% for H530.

4 Related Work and Conclusions

With respect to the tools proposed in the past, our compiler generates Java
code which includes the checks on reception. We think this is very important for
building defensive implementations of security protocols and it has a practical
impact. However, this makes difficult to compare the compile time performance
with other tools because in [10,11,12] the checks must be written manually. In



Efficient Java Code Generation of Security Protocols 5

[13] a notion of “receivability” is used, which only models the ability to decrypt
the received messages but does not compute other checks. In contrast to the tools
that require process calculi as input language [10,11,12], we use a more intuitive
language AnB , making our tool suitable for a larger audience of developers.
In addition, our abstract specification is the most compact. Using SPI requires
long specification files [11] and type annotations, [13] requires type annotations
as well. Instead, we use a simple naming convention to make the protocol specifi-
cation extremely succinct and the tool delegates the duty to generate well-typed
code to the type system. Future work could take several directions. It would be
important to make a formal proof of the soundness of the translation process
along with extending the tool to generate interoperable code.

Acknowledgments Part of this work was carried out while the author was a
Ph.D. candidate at Università Ca’ Foscari Venezia, under the valuable supervi-
sion of Prof. Michele Bugliesi. This work was partially supported by the EU FP7
Project n. 318424, “FutureID: shaping the Future of Electronic Identity”. The
author wishes to thank Thomas Groß for his helpful discussions and comments.

References

1. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol imple-
mentations: a survey. Formal Aspects of Computing 26(1) (2014) 99–123

2. Mödersheim, S.: Algebraic properties in Alice and Bob notation. In: International
Conference on Availability, Reliability and Security (ARES 2009). (2009) 433–440

3. Briais, S., Nestmann, U.: A formal semantics for protocol narrations. Theoretical
Computer Science 389 (2007) 484–511

4. Bugliesi, M. and Modesti, P.: AnBx-Security protocols design and verification. In:
ARSPA-WITS 2010. (2010) 164–184

5. Paolo Modesti: Efficient Java code generation of security protocols specified in
AnB/AnBx. Technical Report CS-TR-1422, Newcastle University (2014)

6. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for
security protocols. Int. Journal of Information Security 4(3) (2005) 181–208

7. Paolo Modesti: Verified Security Protocol Modeling and Implementation with
AnBx. PhD thesis, Università Ca’ Foscari Venezia (Italy) (2012)

8. Bella, G., Massacci, F., Paulson, L.: Verifying the SET purchase protocols. Journal
of Automated Reasoning 36(1) (2006) 5–37

9. Bellare, M., et al.: Design, implementation, and deployment of the iKP secure
electronic payment system. IEEE JSAC 18(4) (2000) 611–627

10. Pozza, D., Sisto, R., Durante, L.: Spi2Java: Automatic cryptographic protocol Java
code generation from spi calculus. In: Proceedings of the 18th AINA, IEEE (2004)

11. Backes, M., Busenius, A., Hriţcu, C.: On the development and formalization of
an extensible code generator for real life security protocols. In: NASA Formal
Methods. Springer (2012) 371–387

12. Tobler, B., Hutchison, A.: Generating network security protocol implementations
from formal specifications. Cert. and Security in Inter-Org. E-Service (2005) 33–54

13. Millen, J., Muller, F.: Cryptographic protocol generation from CAPSL. Technical
Report SRI-CSL-01-07, SRI International (2001)


