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Abstract. Confidence in a system’s security is a key requirement for
its deployment and long-term maintenance. Checking if a vulnerability
exists and is exploitable requires extensive expertise. The research com-
munity has advocated for a systematic approach with formal methods to
model and automatically test a system against a set of desired security
properties. As verification tools reach conclusions, their applicability is
limited unless expertly analysed. We propose a code generation approach
to automatically build both a specification and an implementation of a
Dolev-Yao intruder from an abstract attack trace, bridging the gap be-
tween theoretical attacks discovered by formal means and practical ones.
Through our case studies, we focus on attack traces from the OFMC
model checker, Alice&Bob specifications and Java implementations. We
introduce a proof-of-concept workflow for concrete attack validation that
allows to conveniently integrate user-friendly feedback from formal meth-
ods results into a Model-Driven Development process.

Keywords: Attack analysis · Code generation · Model-Driven Development ·
Formal methods for security 1

1 Introduction

With the rise of large-scale automated vulnerability exploitation, security ex-
perts advocate for enhancing existing design practices [24,12], to avoid discov-
ering and fixing security flaws in protocols embedded into deployed systems. To
this end, Model-Driven Development and formal methods allow for a systematic
and reliable vulnerability discovery process, while working on a simplified high-
level model of a protocol. Once model checking is completed, an implementation
phase translates the model into a concrete system. However, the implementation
process can be particularly costly and error-prone, which is why an automatic
code generation approach can be beneficial for quick prototyping.

In this paper, we accommodate the designer’s vision, as the interpretation
of an attack trace is particularly subtle, often requiring expertise in the attack
trace format and verification tool’s inner mechanisms. Our proof-of-concept re-
constructs an attack trace into a protocol in the same format as the original

1 Software available at https://paolo.science/anbx/download/plas2022.zip
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specification. Next, we automatically generate an executable implementation of
the exploit.

This can also be pedagogically beneficial to introduce learners to formal
modelling and verification [20] of security protocols. They can then transfer
the security notions of the abstract model to the concrete implementation in a
standard programming language, like Java in this paper. In this context, students
can work with known vulnerable protocols, understand the nature of the attacks,
both in the abstract model and concrete system, test and fix them.

Moreover, we investigate the possible discrepancies between the concrete sys-
tem’s security and what can be modelled and verified with a high-level speci-
fication language. In reality, an attack trace on the model might exploit over-
simplified protocol features and constitute a false positive. It should be noted
that the investigation of false negatives is out of the scope of this work, as at-
tacks that occurs only in the implementation but not in the abstract model are
not something that the formal methods considered here could capture.

The proposed approach can also be of interest for the verification of protocols
that have not been formally tested, giving a fast and intuitive prototyping and
verification toolchain to developers with limited knowledge or resources. In this
case, the main initial effort would be to write a model of the protocol in a simple
and intuitive language for protocol narration. Our automated workflow can be
used from there.

However, even security researchers who use formal methods as one of their
investigation tools to model existing systems can benefit from the automated
generation of proof-of-concept attacks in a concrete target language. In fact, end
users will be more convinced that their systems are at risk if an attack can be
demonstrated on a real (or realistic) system.

In essence, our approach injects an explicit Dolev-Yao intruder [13] into an
Alice&Bob (AnB [17]) protocol narration. For the purpose of this paper, we
use the OFMC model checker [5] (a component of the AVISPA toolkit), which
performs both protocol falsification and bounded session verification. It lever-
ages the lazy symbolic intruder representation and constraint differentiation as
a general search-reduction technique. We choose OFMC because its verification
is sound and complete, allows to specify the number of concurrent sessions, and
accepts AnB as an input language. It also produces attack traces in a format
that shares similarities with AnB , making its traces convenient to explain. The
AnBx compiler [19] is used as a code generator to implement attacks in Java
[8,18] and we extend its capabilities with this contribution.

As in this research we aim at providing a proof-of concept of the applica-
bility of the proposed approach, our experiments target specific tools and lan-
guages that allow to clearly demonstrate the workflow in operation. However,
the methodology is general and could be applied to other targets of interest for
potential end users.

Outline of the paper Section 2 introduces previous works on the interpretation
of verification results, the essentials of the AnB notation for protocol specifi-
cation, and the formalism used to represent attack traces. Section 3 states our
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methodology, presenting the main concepts of our approach for concrete attack
prototyping and the workflow of the proposed solution. In Sections 4 and 5, we
detail how the intruder’s knowledge is modelled and the attack trace processed.
The experimental results and correctness aspects are discussed in Section 6.
Finally, we present our conclusions in Section 7.

2 Background

In this section, we introduce the main notions and formalisms used in the present
paper and applied to the proposed approach. Moreover, we discuss the work
undertaken by other researchers in this area.

2.1 Related Work

Several previous works investigated the trustworthiness of a formal attack trace.
For instance, over-approximation may lead ProVerif [6] to report false attacks.
Other modelling formalisms might introduce various kinds of false positives,
depending on their internal assumptions. Despite being sound and complete,
even OFMC can find attacks which are not concretely applicable in certain
implementation contexts. For example, it does not distinguish ciphertexts from
random numbers and allows them to be substituted by an attacker.

One major validation technique uses the De Bruijn criterion [4], where proof
objects are independently checked by several tools, giving more certainty on a
conclusion for the abstract model, but without application on a concrete system.

Armando et al. [1] have considered the applicability of abstract attack traces
in protocols specified at the HTTP level. They bind a model to its concrete
implementation and generate executable program fragments if an attack is found.
Their prototype is tested, among others, against the Google Single Sign-On
service.

A recent application to air traffic control is devised in [16], focusing on a much
more concrete system description than what AnB expresses. It also translates
security counterexamples to test cases, modelling aircraft landing behaviour with
the communicating sequential processes (CSP) language.

Verification and test-case generation has been achieved from high-level HLPSL
[15,11] or ASLan++ [7] models, as well as annotated sequence diagrams [9], but
requiring pre-existing implementations to attack, while we can also generate the
concrete system from the model. These approaches introduce faults in models
through mutations, run model checking to obtain attack traces, and then simu-
late them on real communication channels.

Contributions on web applications also introduced similar concepts. With
the AUTHSCAN framework [2], web authentication protocols specifications are
automatically recovered from existing implementations and then verified. Sim-
ilarly, Bansal et al. translate JavaScript and PHP to applied pi-calculus with
semi-automatic ProVerif trace reconstruction [3]. The MobSTer framework [21]
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introduces a user interface for the modelling and verification of web applica-
tion, and attacks are automatically translated to HTTP requests. The SPaCIoS
project [23] focuses on the Internet of Services, also automatically generating
test cases for the system under validation, based on its formal description.

We start from a high-level AnB description of the system and use model
checking for test case generation. We concretely validate attacks, while also en-
abling the user to see them described in AnB . The studied system’s implementa-
tion is entirely generated, so we do not require a manual effort of implementing
a system and tying it to a model.

2.2 Security properties and types of attacks

When looking at a vulnerability, it is important to precisely define its nature
in order to assess the possible consequences. We consider two main classes of
security violations: authentication and secrecy.

On authentication, we refer to Lowe’s injective and non-injective agreements
[14]. For a non-injective agreement to succeed between two agents A and B on
some term M , A must complete a protocol run believing to have been communi-
cating with B. They agree that M was exchanged, with B believing to have been
talking to A. The injective agreement adds a freshness requirement, where every
run of A corresponds to a unique run of B. With an authentication violation, the
intruder would deceive an agent into believing that it talks to someone honest.

Secrecy for a term M is usually specified with respect to a set of agents
meant to know the secret, of which the intruder is absent. In terms of verification
technique, secrecy is expressed as a reachability problem, where a reachable state
of the system in which the intruder knows M represents an attack. It is worth
noting that the secrecy of M between two agents A and B stipulates that A and
B must share the same value M .

2.3 Protocol specification notation

The AnB notation is an abstract, intuitive, and compact specification language
in which a designer can declare communicating agents, functions, and literals.
It defines a sequence of actions performed by each honest participant in the
protocol. A protocol step is denoted as a channel exchange, like A → B : Msg,
specifying that an agent playing the role A sends a message Msg to another
agent playing the role B. For the sake of brevity, we refer to the agents directly
by their roles in the rest of the paper.

In these actions, an agent can send messages composed of built-in and custom
functions applications, or fresh or constant values. This knowledge is formed by
what the agent has sent or received so far, as well as its initial knowledge, the
set of terms known before performing any action.

We use the AnBx language [8], an extension of AnB that notably provides
type signatures and forwarding channels, enforcing security guarantees from the
message originator to the final recipient along a chain of intermediate agents.
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In AnB , desired security properties are specified as predicates in the Goals
section. A goal is violated if there exists a corresponding reachable attack state
for a Dolev-Yao intruder. While in our experiments we also considered large
protocols, for the sake of clarity we use Woo-Lam as a running example, as it is
simple and highlights interesting behaviours.

Using AnBx , we can model the Woo-Lam protocol, which is a one-way au-
thentication of the initiator A to a responder B. It involves a trusted third-party
server s with whom A and B share long-term symmetric keys shk(A, s) and
shk(B, s). The server extracts a random number NB (generated by B) from the
ciphertext {|A,B,NB|}shk(A, s) and sends it back to B. B compares NB from
s with the one it sent to A. If they match, then B knows that the initiator of
the protocol is indeed A since it knows that A and s communicate securely. In
essence, the goal of this protocol is that B authenticates A on NB.

Protocol: Woo -Lam

Types:

Agent A,B,s;

Number NB;

Function [Agent ,Agent ->* SymmetricKey] shk

Knowledge:

A: A,B,s,shk(A,s);

B: A,B,s,shk(B,s);

s: A,B,s,shk(A,s),shk(B,s)

Actions:

A -> B: A

B -> A: NB

A -> B: {|A,B,NB|}shk(A,s)

B -> s: {|A,B,{|A,B,NB|}shk(A,s)|}shk(B,s)

s -> B: {|A,B,NB|}shk(B,s)

Goals:

B authenticates A on NB

2.4 Attack trace and reached state information

The verification tool OFMC reasons with states that represent what every agent
knows at each step of a protocol execution. The final knowledge each honest
agent possesses is summarised in the Reached State section of an OFMC attack
trace. Let A be an honest agent’s role in the trace. Its reached state maps roles
to subjective concrete identities of the form xY , Y ∈ N. After executing n
steps of the trace related to the agent, its local knowledge is listed. This final
knowledge Kn is a set of terms composed of what the agent initially knows, and
what it received or freshly generated during its protocol run. This happens in a
numbered session σ. With a [A 7→ x23] mapping, x23 being A’s identity from its
own point of view, we obtain:

state rA(x23, n,Kn, σ)
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The above Woo-Lam specification is vulnerable to an attack that OFMC
outputs as follows, where i is the intruder:

ATTACK TRACE:

i -> (x501 ,1): x502

(x501 ,1) -> i: NB(1)

i -> (x501 ,1): NB(1)

(x501 ,1) -> i: {|x502 ,x501 ,NB(1)|}_(shk(x501 ,s))

i -> (x501 ,1): {|x502 ,x501 ,NB(1)|}_(shk(x501 ,s))

% Reached State:

% request(x501 ,x502 ,pBANB ,NB(1) ,1)

% state_rB(x501 ,3,shk(x501 ,s),s,x502 ,NB(1),NB(1) ,{|x502 ,x501 ,

NB(1)|}_(shk(x501 ,s)) ,{|x502 ,x501 ,NB(1)|}_(shk(x501 ,s))

,1)

% state_rA(x20 ,0,shk(x20 ,s),s,x31 ,1)

% state_rs(s,0,shk(x34 ,s),shk(x35 ,s),x34 ,x35 ,1)

In this trace, A knows its own identity x20, reached step 0 as not being
involved in the attack, knows the shared key with the server shk(x20, s), followed
by s and x31, then believed to be B. Finally, this knowledge is constituted in
session number 1, the same session as the other agents.

To break authentication, the intruder gets around encryption by deceiving
B with a potentially fraudulent A identity and some message formatting tricks:

1. To start the attack, the intruder sends an identity x502 to B, which is not
necessarily A’s true identity, as A defines itself as x20.

2. B creates and sends NB, as specified originally.
3. The intruder sends back NB, when B expects {|A,B,NB|}shk(A, s).
4. B creates a ciphertext with the key shk(B, s), in which the last received

message NB is the third variable.
5. The intruder then obtains {|A,B,NB|}shk(B, s), and sends it back to B.

The intruder does not need to know what is encrypted, only to forward it.
B expects {|A,B,NB|}shk(B, s) as the final message, and assumes it is coming
from A and decrypted by s, without an actual guarantee.

Formally, events annotations are used to guide the goal verification. The
event request(x501, x502, pBANB,NB(1), 1) with B = x501, states that B
believes to have been talking to A with identity x502, and received NB in this
session. As per the authentication goal, this should have been accompanied by
a corresponding witness event where A intends to run the protocol with B and
agree on NB. A is never active in the protocol, so no agreement is achieved
between A and B.

2.5 Intermediate format for protocol implementation

Before generating concrete code from an AnBx specification, we need to consider
that this formalism describes the ideal execution of a protocol from the point
of view of an external observer. Therefore, for a concrete implementation, we
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need to use an intermediate format allowing to explicitly represent actions and
consistency checks on reception from the viewpoint of each participating agent.

We use existing functionalities in the AnBx compiler to convert the proto-
col specification into such an intermediate format, called Executable Narration
(ExecNarr) [19]. This notation can capture a large number of formalisms, as it
is used by the AnBx compiler to generate code in ProVerif, Java, VDM-SL, etc.

Let us consider a very simple protocol with a single action: A → B : A. We
suppose that B already knows A. It can be compiled to an ExecNarr as follows:

A: send(B;A) # Insecure

B: R0 := receive () # <- A Insecure

B: eq(A,R0)

Here, R0 would be what B receives from an insecure channel supposedly from
A, but under Dolev-Yao assumptions, B would have no guarantee that variable
R0 contains the value A. B does an equality check against R0, but it checks
that it is equal to its subjective expectation of A, based on its initial knowledge.
However, as the intruder controls the network, such a check is not sufficient to
determine if its vision of A matches who the sender really is.

3 Methodology

In our approach, we provide a viable automated solution to the onerous and
error-prone manual process of expressing an attack in a high-level notation or in
concrete code. A fast prototyping workflow also allows to catch false positives
resulting in a failure of the attack in the concrete generated code.

From a developer’s standpoint, one of the main objectives is to be able to
conveniently reason on an abstract representation of the protocol without losing
control of the concrete implementation. A high-level of abstraction is convenient,
but iterative development with immediate feedback involving the concrete code
can provide advantages in terms of security testing and low-level insights. With
this goal in mind, we propose the following workflow (Fig. 1):

1. Specify the protocol in a high-level specification language, like AnBx .
2. Use formal verification tools to exhibit potential vulnerabilities.
3. If one is found, rewrite the attack trace as a protocol in the same format

used for the specification of the original protocol.
4. Generate the attack implementation in a concrete programming language

(e.g. Java) and run it.

More in detail, we consider a security protocol P specified in a formal lan-
guage L, vulnerable to an attack described by an attack trace Atk. Atk specifies
the state reached by the system with a violated goal, including the agents’ knowl-
edge and a list of actions needed to achieve it. In every action, the intruder acts
either as the sender or recipient of a message. Such a list describes the steps that
the intruder has to perform in order to successfully complete the attack.
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Protocol Model P

Model Checking

Attack Trace Atk

Attack to Model

Protocol Model PAtk

Splitting

Protocol
Model split(P )

Model to ExecNarr

ExecNarr split(P )X

Model to ExecNarr

ExecNarr PX
Atk Active Intruder Injection

Merged ExecNarr

ExecNarr to Implementation

Concrete Ex-
ploit Code

unsafe

Fig. 1: Workflow of attack reconstruction and implementation

We first need to apply a transformation on P , called split, to explicitly add
the intruder in a Dolev-Yao style. Therefore, we split every action of P in two,
denoting the presence of a man-in-the-middle agent called Intr. In AnBx , this
consists, for example, in transforming the action A → B : Msg into two con-
secutive actions A → Intr : Msg and Intr → B : Msg. Intr here has its own
knowledge according to Dolev-Yao rules as discussed in Section 4, and corre-
sponds to a passive intruder. This new protocol is called split(P ).

Then, we reconstruct the attack trace Atk into a protocol PAtk encoding
Atk in the same language L as P (procedure Attack to Model in Fig. 1). This
enables the user to observe the attack in a side-by-side comparison with P .
This particular reconstruction requires two inputs (the protocol split(P ) and
the attack trace Atk) and is described in Section 5.
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As discussed in the previous section, the construction of an implementa-
tion requires to compute the ExecNarr of a protocol. We denote with PX the
ExecNarr of the protocol P .

However, we cannot directly generate an attack implementation from PAtk,
as PX

Atk does not include the information about the checks on reception per-
formed by the honest agents in the original protocol P . In fact, in the attack
implementation, honest agents will run their standard code, while the intruder
will follow the actions specified in PAtk. Therefore, we need to merge PX

Atk with
PX (Active intruder injection procedure in Fig. 1).

In Atk, the intruder can be active. In split(P )X , Intr’s actions would then be
replaced by their counterparts in PX

Atk. If there are inactive agents in PAtk, their
actions can be omitted in the merged ExecNarr, for the final code generation.

A simple example of the merging procedure Active intruder injection is given
in Fig. 2: by explicitly adding the man-in-the-middle for the protocol P with one
action A→ B : A discussed in Section 2.5, we obtain case (a).

A: send(Intr;A)

Intr: R0 := receive ()

Intr: send(B;R0)

B: R1 := receive ()

B: eq(A,R1)

(a) split(P ) ExecNarr

Intr : send(B ; Intr)
B : R1 := receive()
B : eq(Intr ,R1)

(b) PAtk ExecNarr

Intr : send(B ; Intr)
B: R1 := receive ()

B: eq(A,R1)

(c) merged ExecNarr

Fig. 2: Active intruder injection: merging process of Executable Narrations for a
protocol with a (a) passive and (b) active intruder; (c) is the merged ExecNarr

The other case (b) is PX
Atk, where the intruder sends its own identity to B.

This is the explicit impersonation of A.

Injecting Intr’s action from PX
Atk into split(P )X – case (c), Fig. 2 – displays

the same check on reception as in case (a).

Let us consider that, for example, the goal of the protocol is for the recipient
to authenticate the message received from the sender. In this case, the goal fails
as the intruder can send any value, and decide whether the check performed by B
fails or succeeds, preventing B to detect the attack in the latter case. This leaves
the entirety of the honest code untouched, following the philosophy that honest
agents correctly execute the protocol, but are betrayed by their environment.

With this merged ExecNarr, we can generate concrete code to investigate
the applicability of Atk in a target environment, bridging the gap between Atk
as an abstract model and its concrete execution. We should consider here two
scenarios where attacks can be detected or not by honest agents. We assume
that an honest agent who detects an anomaly would abort the protocol run or
at least give notice of the attack. A designer can look at what part of the code
mitigated the attack, identifying how careful an implementation has to be. Some
of those insights are given in Section 6.2 and Appendix B.
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In this workflow, protocols can be specified, verified and run. The validity
of the theoretical attack can be empirically tested and the entire workflow is
automated. The developer only needs to adjust the first specification. This ap-
proach allows a non-expert to swiftly check the presence of the attack in an au-
tomatically generated implementation, and compare two protocol models, both
specified in an easy-to-understand notation.

Along with the design and automation of the entire workflow, the specific
contribution of this work includes the development of the Attack to Model and
Active intruder injection procedures shown in Fig. 1.

4 Intruder knowledge and subjective identities

A Dolev-Yao intruder can deceive honest agents. As such, the intruder must
know what is publicly obtainable by the honest agents, or known by some agent
about another one. To mimic an honest behaviour, the intruder knows its own
derivations of what honest agents know about themselves. For example, if A
knows its public and private key pair pk(A), inv(pk(A)), as well as a shared key
with s shk(A, s), the intruder knows pk(Intr), inv(pk(Intr)) and shk(Intr, s).

Some ground rules exist to limit the intruder’s capabilities:

– Constant agents, like trusted servers, cannot be impersonated, and their
knowledge cannot be extracted.

– For variable agents, the knowledge they have about themselves can only be
known by the intruder if another variable agent knows it as well.

Formally, the initial knowledge of the honest agents specified in theKnowledge
section is a mapping of n agent roles to n knowledge sets [a1 7→ k1, a1 7→
k2, . . . , an 7→ kn] that we denote as know(Ag) given a protocol role Ag. Given
the predicate var(Ag), true if Ag is a variable agent, and our declared honest
agents Ags, the intruder’s knowledge know(Intr) is defined as the union of the
knowledge of variable agents, where each agent’s own name is replaced by Intr:⋃

Ag∈{a|a∈Ags∧var(a)}

know(Ag)[Ag 7→ Intr]

In the Woo-Lam example, the intruder can know B because B is in the initial
knowledge of another variable agent A and the same logic applies to A and s.
The last pieces of the initial knowledge of A and B are the shared symmetric keys
between A, B and s. As A and B can be impersonated, the term shk(Intr, s)
is available to Intr. This models Intr sharing a key with the server s as any
other agent. However, shk(A, s) and shk(B, s) cannot be known by the intruder
because A and B only know their own keys, and honest agent s has a protected
knowledge. The rationale is that Intr should have the combined capabilities of
all variable agents that can be impersonated/compromised by an attacker.

Thus, given the original honest initial knowledge presented in Section 2.3,
the intruder’s initial knowledge is:
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Intr: Intr ,A,B,s,shk(Intr ,s);

This initial knowledge is consistent with the AVISPA Intermediate Format IF
[17] initialisation iknows facts. IF is internally used by OFMC for the verification
process. The iknows facts for Woo-Lam include:

iknows(i).iknows(shk(i,s)).iknows(s).iknows(B11).iknows(A21).

B11 is a subjective B identity, so B can be impersonated. The initial knowl-
edge of an agent can be compromised, and every identity known throughout
the protocol is purely subjective, except for constant agents. To understand it,
consider the IF code produced by OFMC from the Woo-Lam AnB specification:

initial_state init1 :=

state_rA(A11 ,0,shk(A11 ,s),B11).

state_rB(B21 ,0,shk(B21 ,s),A21).

& A11/=i & B21/=i

In this initial knowledge, the agents know themselves, with two additional
constraints that enforce that no honest agent is the intruder. A21 is B’s vision of
B while A11 is A’s vision of itself, but they do not have to be equal. A21 could
be the intruder, since no identity is confirmed yet at the start of the protocol.

5 Attack trace processing and protocol reconstruction

We detail here how to reconstruct an OFMC attack trace into an AnBx protocol.
The actions and reached state parts of Atk are both analysed, removing session
and step numbers, and extra parenthesis and underscores from the trace. This
corresponds to the Attack to Model procedure in Fig. 1, divided into three steps:

1. Replace the concrete identities with the agents’ roles in the trace.
2. Replace impersonated agents’ roles in the initial knowledge.
3. Identify forgeries and generate the appropriate declarations and messages.

5.1 Actions coupling and impersonation

Discrepancies between the intended protocol and the attack trace can only be
highlighted if we compare the correct corresponding actions. We then need to
have a proper coupling between the actions in split(P ) and in Atk.

It should be noted that the first and last actions in Atk do not necessarily
correspond to the first and last actions of split(P ). To locate exactly where
the attack happens, we must find an anchor point in the specification. In the
OFMC reached state introduced in Section 2.4, each agent reached a certain step
number corresponding to the last action it is a sender in or, when the number
goes higher, the last it is a receiver in. In this Woo-Lam example, B reached step
3, and we have two actions with B as sender. The last action has B as receiver,
so this is the anchor point that we will use.

With numbered actions, we show in Fig. 3 which trace actions correspond
to which original actions. Starting from the last action of the last honest agent
(here x501 with B = x501), simple comparisons of senders and receivers allow us
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to precisely determine what is the correct coupling for actions between split(P )
and Atk. We removed session and step numbers annotations for clarity. We
remind that here the ciphertext {|A,B,NB|}shk(A, s) is replaced by NB in the
attack, as explained in Section 2.4. This is possible as in OFMC a ciphertext
and a random number are indistinguishable, unless the receiving agent knows
the decryption key.

A->Intr:A

Intr ->B:A

1 B->Intr:NB

Intr ->A:NB

A->Intr:{|A,B,NB|}shk(A,s)

Intr ->B:{|A,B,NB|}shk(A,s)

2 B->Intr: {|A,B,{|A,B,NB|}

shk(A,s)|}

shk(B,s)

Intr ->s:{|A,B,{|A,B,NB|}

shk(A,s)|}

shk(B,s)

s->Intr:{|A,B,NB|}shk(B,s)

3 Intr ->B:{|A,B,NB|}shk(B,s)

(a) actions in split(P )

i->x501:x502

1 x501 ->i:NB

i->x501:NB

2 x501 ->i:{|x502 ,x501 ,NB|}

_(shk(x501 ,s))

3 i->x501:{|x502 ,x501 ,NB|}

_(shk(x501 ,s))

(b) actions in Atk

Fig. 3: Matching result between actions from split(P ) and Atk

The semantic differences that exist between those two versions denote a de-
viation from the intended specification. Determining what data has changed in
Atk is crucial to precisely define how we will model it in AnB.

As we are considering a fully compromised environment, any unconfirmed
identity in the reached state such as x502 for A in Section 2.4 is considered as
the intruder. Thus, PAtk’s actions are specified as follows:

Intr -> B: Intr

B -> Intr: NB

Intr -> B: NB

B -> Intr: {|Intr ,B,NB|}shk(B,s)

Intr -> B: {|Intr ,B,NB|}shk(B,s)

5.2 Forgery

When the intruder tampers with the protocol run, it can replace messages with
new forged ones. In the OFMC attack trace, forged terms are represented by
variables of the same xY format as the agents’ identities.
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We map those terms with their counterparts in P . Given a non-agent term
xY substituting a term of type T in P , we generate a fresh variable XY of type
T in PAtk’s Types section. We detail special cases as follows.

Exponentiation forgery
With the exponentiation function exp, the base can be well-known constant.

In this case, we consider that the intruder only forges the exponent. One example
of this situation is a violation of Diffie-Hellman secrecy in a specification safe
for weak authentication only. In the obtained attack trace, the intruder replaces
the symmetric key exp(exp(g, Y ), X) by exp(x304, X).

Since g is publicly known, the intruder can compose it. Consequently, we can
rewrite the expression as exp(exp(g,X304), X) and preserve the original key
structure. Using another base would lead to detection, as honest agents use g.

Mimicking encrypted messages
An attack can exploit the fact that an agent uses encrypted data that it

is not able to decrypt. An intruder sending random data could deceive such an
agent, given that the encryption method provides ciphertext indistinguishability.
Noise sending or bit padding cannot be expressed in a classical AnB notation,
so we use a clone of the honest message with respect to its format, types and
encryption scheme, but with entirely forged contents.

We could have a message {|NB,A|}shk(A, s) where NB and A are respec-
tively of type Number and Agent. They are encrypted with a symmetric key
shared between A and s, so another agent B could not decrypt it. Using arbi-
trary data, the intruder can replace the message with {|Xxx, Intr|}Key where
Xxx and Key are freshly generated and respectively of type Number and
SymmetricKey. Thus, type-checking would not enable B to detect the forgery.

An advantage of this approach is its genericity. Assuming that honest agents
can distinguish between a ciphertext and a random number, and even iden-
tify what encryption scheme is used, the attack would still go undetected. This
reconstruction addresses the worst-case scenario corresponding to a Dolev-Yao
intruder having perfect knowledge of the executing protocol behaviour.

6 Evaluation

In our evaluation of the proposed technique, we reconstruct 56 attack traces
in total from 27 vulnerable protocols shown in Table 1. The test suite includes
complex protocols as the e-commerce iKP and SET payment systems along with
smaller components, like Diffie-Hellman, used in larger protocols to perform tasks
as key establishment.

We limit the scope of this paper to attacks occurring in the same session,
without reconstructing replay attacks that work in two or more parallel sessions.
Our protocols are taken from AnB and AnBx case studies. Most are available
through the OFMC distribution and tutorials [22], and some like SET and iKP
are studied in [8].
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6.1 Reconstruction correctness

As we reconstruct an attack trace Atk on a protocol P to an AnBx protocol
PAtk, the correctness of the procedure needs to be assessed. For that purpose,
we devise a cross-validation strategy in which we use OFMC to verify PAtk.

We obtain a second attack trace Atk2, and if the actions of Atk2 are a sub-
sequence of those of Atk, bar variables α-renaming, then the sequence of actions
in PAtk that lead to a compromised goal in Atk2 has an isomorphism in Atk. We
express such a relationship between Atk and Atk2 as Atk2 = IsoSubSeq(Atk).

To attain it often requires to amend violated security goals, to reflect how the
verification should target the new network exchanges. The goals are rewritten
as follows.

With an authentication or secrecy goal on a term Payload, we replace it with
a term sent by Intr, i.e. what agents in the goal believe to be Payload in Atk.
We denote the result as PayloadAtk. As for the agents in the goal:

– In secrecy goals as “PayloadAtk secret between AgentSet”, we remove any
agent who does not know PayloadAtk at the end of PAtk.

– In authentication goals as “Agent1 authenticates Agent2 on PayloadAtk” , if
Agent2 is inactive or does not know PayloadAtk, we apply [Agent2 7→ Intr].

For example, the Woo-Lam protocol exhibits the same attack trace discussed
in Section 2.4 with a modified goal “B authenticates Intr on NB”.

i -> (x501 ,1): x502

(x501 ,1) -> i: NB(1)

i -> (x501 ,1): NB(1)

(x501 ,1) -> i: {|x502 ,x501 ,NB(1)|}_(shk(x501 ,s))

i -> (x501 ,1): {|x502 ,x501 ,NB(1)|}_(shk(x501 ,s))

% Reached State:

% request(x501 ,x502 ,pBIntrNB ,NB(1) ,1)

% state_rB(x501 ,3,shk(x501 ,s),s,x502 ,NB(1) ,{|x502 ,x501 ,NB(1)

|}_(shk(x501 ,s)) ,1)

% state_rA(x33 ,0,shk(x33 ,s),s,x34 ,1)

% state_rIntr(x20 ,0,shk(x20 ,s),s,x31 ,x32 ,1)

% state_rs(s,0,shk(x37 ,s),x37 ,1)

The reached state includes the new agent Intr in the request part, reflecting
the new goal. As expected, our new intruder replaces Intr in the trace.

As it can be observed in the experimental results summarised in Table 1, there
are cases where the second trace is semantically different from the first one, or
even shows no attack at all. In our case studies, these differences are justified
by the impossibility of having the same attack behaviour, or the existence of
multiple ways to perform an attack that were available from the start.

We detail the AndrewSecureRPC case below, and give more examples in
Appendix A. At the end of the day, we found no case of flawed reconstruction
from an OFMC attack trace to AnBx in our cross-validation process.
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Protocol
Authentication Secrecy Cross- Java attack

attacks attacks validation success

AnBx Xor NSL 1 2 1|2|0/3 X
AndrewSecureRPC 1 0 0|0|1/1 X*

Diffie-Hellman auth 0 1 X X
Ebook 0 2 X X
EMV Visa k3 1 1 X X
EPMO 1 0 X X
Goss 0 2 X X
GSM 1 1 X X
ISO4Pass 1 0 X X
ISO5Pass 2 0 X X
ISOCCFT2PassMutualAuth 1 0 X X
Kerberos PKINIT 1 0 X X
KeyEx1 2 1 X X
KeyEx2 2 1 X X
KeyEx3 2 0 X X
KeyEx5 2 0 X X
MS-CHAPv2 0 1 X X
NSPK 1 2 1|2|0/3 X
Orig 1KP 2 1 X X*

Orig 1KP Fixed 0 1 X X*

Orig 2KP 2 1 X X*

Orig 2KP Fixed 0 1 X X*

Orig 3KP 2 1 X X*

Orig 3KP Fixed 0 1 X X*

SET Orig Signed 2 3 2|1|2/5 X*

SET Orig Unsigned 2 3 2|2|1/5 X*

TMN 0 1 X X
Woo-Lam 1 0 X ×

Authentication/Secrecy - x: the studied protocol exhibits x attacks of this type.
Cross-validation - X: all verifications exhibit Atk2 = IsoSubSeq(Atk).

x|y|z/N : out of N trace reconstructions:
x are successfully cross-validated - as with X.
y are partially cross-validated, i.e. with Atk2 denoting a
behaviour that would have been possible in Atk.
z fail to cause a violation of their goal.

Java attack success - X: all processes pass the sanity checks and terminate.
X*: attempted checks succeed, but some agents’ runs do not
terminate, because the OFMC attack trace does not contain
sufficient information to terminate the protocol run.
×: the attack fails in Java.

Table 1: Comparison of reconstructed protocols attacks

It is worth to remind that our approach is not strictly bound to the languages
and tools presented in this paper. In particular, we have verified our original and
reconstructed protocols generating ProVerif specifications from AnBx (see foot-
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note 1). We reproduced the relevant steps of the workflow and observed that the
results are consistent with the AnBx/OFMC configuration. With AndrewSe-
cureRPC, ProVerif could not terminate the verification because of internal loops
caused by message symmetries. This kind of behaviour, discussed in the ProVerif
manual, is not unexpected. In summary, the verification results in ProVerif did
not contradict the ones presented in Table 1. The only exception is with Woo-
Lam which has no attack in ProVerif because numbers and ciphertexts can be
modelled with distinguishable data types unlike with OFMC.

AndrewSecureRPC cross-validation
AndrewSecureRPC as specified below is vulnerable to a reflection attack.

A -> B: A,{|NA|}shk(A,B)

B -> A: {|succ(NA),NB|}shk(A,B)

A -> B: {|succ(NB)|}shk(A,B)

B -> A: {|NB2|}shk(A,B)

The function succ increments a number. Here, A tries to authenticate B on
NB2. In the trace, the last action is decisive, with A = x601, B = x602:

i -> (x601 ,1): {|NA(1)|}_(shk(x601 ,x602))

This attack assumes the lack of a freshness check on A’s side, who could have
otherwise noticed that it received the same message as it sent. As the intruder
never knows NA, the original goal “A authenticates B on NB2” cannot be
rewritten in a way that preserves its intended meaning.

6.2 Generated code execution

Concretely testing an attack found on the model would enhance the confidence
and understanding in our results. This investigation is conducted in Java, using
the AnBx compiler as a code generator and the AnBxJ library [18] as a common
cryptographic and communication API.

Checks on message reception are automatically generated for every agent.
As faulty or absent checks can lead to critical vulnerabilities like the OpenSSL
Heartbleed bug [10], a model-driven approach helps to ensure consistency be-
tween high and low-level specifications of security properties.

Impersonation in the initial knowledge is handled through a configuration
file. In practice, an agent would look up a table for known identities. We permit
it, without any modification to the honest identity checks. Every agent records
the other agents’ identities and roles. Replacing an honest identity with another
one achieves transparent impersonation while being faithful to the philosophy
that honest agents are betrayed by their environment.

With the results compiled in Table 1, we conclude that the attacks given
by OFMC are mostly applicable in a concrete environment. There are a few
exceptions, where some honest agents’ runs do not terminate as detailed in
Appendix B, or where type-checking fails. Both might lead to attack detection,
but the implementations could be hardened with freshness checks on received
values, as demonstrated by the AndrewSecureRPC and Woo-Lam examples. The
attack on Woo-Lam fails in the generated Java, as explained below:
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Woo-Lam Java attack mitigation
The attack trace for the Woo-Lam protocol is a clear example of how a

reasonable implementation can be more defensive than what a verification tool
assumes. The message {|A,B,NB|}shk(A, s) is swapped with NB, which has
a different type. As a result, an error occurs during type-checking on B’s side.
This attack could be successful if the received data was only ever treated as
type Object, but mitigated by minimal measures. Another fix could be to have
freshness checks on NB, and B would notice that it received what it just sent.

Thus, the low-level type checks automatically generated by the AnBx com-
piler do not permit an undetected round-trip of NB, as B expected a ciphertext.
This confirms the need of checking if attacks on the model occur in the concrete
implementation, which is one of the main motivations of this work.

6.3 Performance

The execution time of the trace reconstruction and Java generation is by far
inferior to the time required to verify a protocol with OFMC as the state-space
grows. This shows that the overhead introduced in the workflow is minimal, if
not negligible. In fact, it takes less than 10 seconds to reconstruct every attack
and generate its Java code for the entire test suite.

This is conducted with a single-threaded process on a laptop i5-5200U CPU,
and leads to a real-time workflow. The peak RAM usage is under 50MB and
we compile the results in Fig. 4. We use a logarithmic scale to highlight the
reconstruction component, and note that the Java generation performance is
tied to code independent of the specific contribution presented in this paper.

A
n
B
x

X
o
r

N
S
L

0
1

A
n
B
x

X
o
r

N
S
L

0
2

A
n
B
x

X
o
r

N
S
L

0
3

A
n
d
r
e
w
S
e
c
u
r
e
R
P
C

D
if
fi
e
-H

e
ll
m

a
n

a
u
t
h

E
b
o
o
k

0
0

E
b
o
o
k

0
1

E
M

V
V
is
a

k
3

0
1

E
M

V
V
is
a

k
3

0
2

E
P
M

O
G

o
s
s

0
0

G
o
s
s

0
1

G
S
M

0
0

G
S
M

0
1

IS
O

4
P
a
s
s

IS
O

5
P
a
s
s

0
0

IS
O

5
P
a
s
s

0
1

IS
O

C
C
F
2
P
a
s
s
M

u
t
u
a
lA

u
t
h

K
e
r
b
e
r
o
s

P
K

IN
IT

K
e
y
E
x
1

0
0

K
e
y
E
x
1

0
1

K
e
y
E
x
1

0
2

K
e
y
E
x
2

0
0

K
e
y
E
x
2

0
1

K
e
y
E
x
2

0
2

K
e
y
E
x
3

0
0

K
e
y
E
x
3

0
1

K
e
y
E
x
5

0
0

K
e
y
E
x
5

0
1

M
S
-C

H
A
P
v
2

N
S
P
K

0
0

N
S
P
K

0
2

N
S
P
K

0
3

O
r
ig

1
K

P
0
6

O
r
ig

1
K

P
0
8

O
r
ig

1
K

P
1
2

O
r
ig

1
K

P
F
ix

e
d

1
2

O
r
ig

2
K

P
0
6

O
r
ig

2
K

P
0
8

O
r
ig

2
K

P
1
2

O
r
ig

2
K

P
F
ix

e
d

O
r
ig

3
K

P
0
6

O
r
ig

3
K

P
0
8

O
r
ig

3
K

P
1
2

O
r
ig

3
K

P
F
ix

e
d

S
E
T

O
r
ig

S
ig

n
e
d

0
3

S
E
T

O
r
ig

S
ig

n
e
d

0
7

S
E
T

O
r
ig

S
ig

n
e
d

1
1

S
E
T

O
r
ig

S
ig

n
e
d

1
2

S
E
T

O
r
ig

S
ig

n
e
d

1
5

S
E
T

O
r
ig

U
n
s
ig

n
e
d

0
3

S
E
T

O
r
ig

U
n
s
ig

n
e
d

0
7

S
E
T

O
r
ig

U
n
s
ig

n
e
d

1
1

S
E
T

O
r
ig

U
n
s
ig

n
e
d

1
2

S
E
T

O
r
ig

U
n
s
ig

n
e
d

1
5

T
M

N
W

o
o
-L

a
m

0.01

0.1

1

10

Protocol

S
ec

o
n
d
s

Trace reconstruction

Trace reconstruction+Java generation

OFMC verification (1 session)

Fig. 4: Execution times needed for our workflow compared to OFMC verification
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7 Conclusion and future work

In this paper, we explore a new angle of a Model-Driven Development approach
with both abstract and concrete feedback to analyse verification results. Given
an insecure protocol, we automatically reconstruct its abstract attack trace to
the same notation used to specify the protocol (e.g. the user-friendly AnBx ). We
also generate an executable Java implementation of the entire attacked protocol,
including the intruder’s code.

Our solution provides a fully automated workflow suitable for real-time trace
reconstruction and assessment of the applicability of an abstract attack trace in
a concrete system. We showed examples where common mechanisms in low-level
systems would prevent an abstract OFMC attack from being undetected, or even
executable.

We plan to reconstruct a broader class of attacks in future work, notably with
replay and session manipulation. Besides, we could cover other target languages,
as allowed by the Executable Narration intermediate representation.
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23. Viganò, L.: The spacios project: Secure provision and consumption in the internet
of services. In: Sixth IEEE International Conference on Software Testing, Verifi-
cation and Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013.
pp. 497–498. IEEE Computer Society (2013), https://doi.org/10.1109/ICST.

2013.75

24. Walden, J., Frank, C.E.: Secure software engineering teaching modules. In: Pro-
ceedings of the 3rd Annual Conference on Information Security Curriculum De-
velopment. pp. 19–23. InfoSecCD ’06, ACM, New York, NY, USA (2006), http:
//doi.acm.org/10.1145/1231047.1231052

A Cross-validation of OFMC traces

This appendix details the reasons why some attack trace reconstructions cannot
be cross-validated according to our criteria in Section 6.1.

AnBx Xor NSL
This protocol has two secrecy violations on the terms M and N , where the

second traces denote different intruder behaviours than the first, that would
though have been possible in the first ones. Both second traces display the same
behaviour, and we detail the M case here. With “M secret between A,B” being
violated, the original actions are:

A -> B: {N,A}pk(B)

B -> A: {M,xor(N,ag2xor(B))}pk(A)

A -> B: {M}pk(B)

The first trace, where A = x20, B = x30 ends with:

(x20 ,1) -> i: {M(2)}_(pk(i))

i -> (x30 ,1): {M(2)}_(pk(x30))

The intruder impersonated B, and A sent M encrypted with the wrong key,
allowing M to be known by the intruder. The AnBx reconstruction ends with:

A -> Intr: {M}pk(Intr)

Intr -> B: {M}pk(B)

The second trace for “M secret between A,B”, where A = x32, is:

(x32 ,1) -> i: {N(1),x32}_(pk(i))

i -> (x32 ,1): {x305 ,N(1) XOR x306}_(pk(x32))

(x32 ,1) -> i: {x305}_(pk(i))

Here, x305 replaces M . The intruder chose to swap the message instead of
forwarding the original one. While this behaviour is different, it could have been
done as well in the first trace, and B is still impersonated here. Note that N is
also known by the intruder here, violating its associated secrecy goal.

NSPK
NSPK is specified as below, and NxNB should be secret between A and B:

A->B: {NxNA ,A}pk(B)

B->A: {NxNA ,NxNB}pk(A)

A->B: {NxNB}pk(B)
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The first trace with A = x20, B = x30 ends with:

(x20 ,1) -> i: {NxNB (2)}_(pk(i))

i -> (x30 ,1): {NxNB (2)}_(pk(x30))

The reconstructed actions for “NxNB secret between A,B” end with:

A -> Intr: {NxNB}pk(Intr)

Intr -> B: {NxNB}pk(B)

And the second trace has A = x31, without B appearing:

(x31 ,1) -> i: {NxNA (1),x31}_(pk(i))

i -> (x31 ,1): {NxNA (1),x305}_(pk(x31))

(x31 ,1) -> i: {x305}_(pk(i))

In both traces, B is impersonated. Like with AnBx Xor NSL, data is swapped
and not forwarded, but the two behaviours are possible in both cases. The other
secrecy goal on NxNA is also violated with the exact same trace.

SET Orig Signed/Unsigned
Those two versions of SET are vulnerable to the same attack on the goal

“C authenticates a on NxAuthCode”. The last two original actions are:

a -> M: {{C,..., NxAuthCode}inv(sk(a))}pk(M)

M -> C: {C,..., NxAuthCode}inv(sk(M))

In the trace where C = x601, the intruder impersonates M and skips the
action with a, to jump to the last action, with x511 replacing NxAuthCode:

i -> (x601 ,1): {x601 ,..., x511}_inv(sk(i))

The attack on the new goal “C authenticates Intr on X511” disappears,
because there is no more possible short-circuiting. Similarly, a first goal
“C authenticates M on NxAuthCode” could not have been violated.

Both SET versions also fail to satisfy “C authenticates a on Contract”,
which would have been satisfied if M was to be authenticated like previously, so
short-circuiting is also part of those attacks. For the signed version, the attack
is not reproducible, for the same reasons as with NxAuthCode.

The unsigned one, on its third action, is of the form:

C -> M : hash(PIData) ,...

Here, hash(PIData) is a component of Contract. This action is followed by
exchanges between a and M before M talks to C. The first trace focuses on
bypassing a and M , ending with this, where C = x601:

(x601 ,1) -> i: hash(PIData) ,...

i -> (x601 ,1): {x601 ,...} _inv(sk(i))

Components of PIData are included in the last action but do not origi-
nate from a or M . Short-circuiting a is no longer possible, but on the second-
to-last action, hash(PIData) is not signed with C’s private key, so it can be
swapped in transit. In the second trace, this is what we observe for the goal
“C authenticates Intr on Contract”, with C = x901, Intr = x902:

(x901 ,1) -> i: hash(PIData) ,...

i -> (x902 ,1): x712 ,...
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x712 replaces hash(PIData), and Intr has a different version of hash(PIData)
than C. We encode it as hash(X712) for type consistency in AnBx . Intr does
not know some components of PIData, so it cannot realise that it received an
arbitrary hash. Furthermore, hash(PIData) is not sent back to C for confir-
mation, so the agreement on the same value is not verified. This attack would
have worked on M in the first trace, but a simple bypass of a and M was chosen.

The goal “NxAuthCode secret between C,M, a” sees a last discrepancy be-
tween traces. NxAuthCode is transmitted only encrypted with the private key
of a, thus not ensuring its confidentiality. In the first trace, the intruder is purely
passive. The second time, it bypasses C and produces its own intermediate pro-
tocol values, but this is not necessary to the attack.

B Attack detection in Java

This part explains why some attack traces’ behaviours could be detected by the
honest agents.

AndrewSecureRPC
Here, all checks are passing, but the trace stops involving B before the end

of B’s original actions. The trace ends as follows, with A = x601, B = x602:

(x601 ,1) -> i: {|succ(NB(2))|}_(shk(x601 ,x602))

i -> (x601 ,1): {|NA(1)|}_(shk(x601 ,x602))

B never receives {|succ(NB)|}shk(A,B) and could notice something. The
intruder ignored the actions for B after the third step. Yet, two actions could be
introduced in the narration before the last one, allowing B to terminate its run:

Intr -> B: {|succ(NB)|}shk(A,B)

B -> Intr: {|NB2|}shk(A,B)

On top of it, A could easily notice that it received the same NA as it sent.

Orig iKP
The iKP reconstructions do not terminate when: “Auth secret between C,M, a”

is violated. Auth is transmitted in plaintext during the last two original actions:

a -> M: Auth ,...

M -> C: Auth ,...

However, the last trace action involves a sending the message to the intruder.
The forwarding to M and then C is absent from the trace, which would have
been possible because the attack does not require an active intruder.

SET Orig Signed/Unsigned
The three secrecy violations occur with a purely passive intruder. In those

traces, C and sometimes M do not complete their last actions, because the
intruder does not carry the messages to them. Having OFMC print the entire
protocol narration would have been sufficient to ensure termination.
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