
Formal Modeling and Security Analysis of
Security Protocols

Paolo Modesti and Rémi Garcia

2

This is an accepted manuscript of a book chapter published by CRC Press in
Handbook of Formal Analysis and Verification in Cryptography
pp. 213–274, 1st edition, CRC Press, 2023
eBook ISBN: 9781003090052
published on 19 September 2023

Available online:
https://doi.org/10.1201/9781003090052-5 (Chapter)
https://doi.org/10.1201/9781003090052 (Book)

Cite as:
@incollection{books/crc/23/Modesti023,
author = {Paolo Modesti and R{\’{e}}mi Garcia},
editor = {Sedat Akleylek and Besik Dundua},
title = {Formal Modeling and Security Analysis of Security Protocols},
booktitle = {Handbook of Formal Analysis and Verification in Cryptography},
pages = {213--274},
publisher = {{CRC} Press},
year = {2023},
doi = {10.1201/9781003090052-5},
}

1 Formal Modeling and
Security Analysis of Security
Protocols

1.1 INTRODUCTION
The Covid-19 pandemic has offered an incredible opportunity for cybercrime to

thrive with millions of people working from home using digital devices secured by
accidental circumstances rather than by design. Many organizations were notoriously
under-prepared. Cyberattacks are more than just technical events, they are attacks on
the very foundations of the modern information society. The Center for Strategic and
International Studies estimated the worldwide monetary loss from cybercrime to be
around $945 billion in 2020 [102]. This has clearly exposed the gap between the
practices adopted by the software industry and the stark reality. Crucially, designing
secure and dependable systems is fundamental to protect digital resources and reduce
the attack surface. Therefore, experts [110, 51] recommend investing more resources
on enhancing the design of secure systems rather than just fixing vulnerabilities in
existing systems when they are discovered.

In particular, security protocols are critical components for the construction of se-
cure Internet services and distributed applications, but their design and implement-
ation are difficult and error-prone. Some vulnerabilities in very popular protocols
like TLS and SSH [97, 55], which are both expertly built and rigorously tested, have
been undetected for years. The core reasons of this situation need to be investigated
and novel approaches explored. In this context, techniques for formal modeling and
analysis of security protocols could support software engineers, but there is reluct-
ance to embrace these tools outside the research settings because of their complexity
[59]. Most practitioners find such methodologies complex and incompatible with
their work requirements (e.g. difficulty to write the formal specification, steep learn-
ing curve, need to understand the underlying advanced theoretical computer science
notions [108, 99]). Therefore, vulnerable software is still deployed, with tens of thou-
sands of new vulnerabilities being discovered in major products each year. Such de-
fective software has a serious negative impact on both individuals and organizations
utilizing vulnerable systems every day.

In this chapter, we focus on an approach to formal modeling and verification that
can be adequate to the practitioner’s skills and needs. In fact, we can bridge the gap
between formal representation and actual implementation with a framework adopting
a conceptual model aligned with the level of abstraction used for the symbolic (high-
level) representation of cryptographic and communication primitives. This would

3

4 Formal Modeling and Security Analysis of Security Protocols

make formal methods and tools more accessible to students and practitioners [90].

Outline of the chapter
In Section 1.2, we consider modeling and verification in the context of security

protocol development, and we introduce the fundamentals like the attacker model
and security properties. Then, in Section 1.3, we discuss the theoretical and practical
challenges in automated verification. Different specification languages and verifica-
tion tools are considered in Section 1.4 to address different levels of user expertise
and complexity of the protocols under analysis. Section 1.5 includes case studies,
demonstrating the practical applicability of these tools in two different application
fields: e-payments and blockchain.

1.2 MODELING FUNDAMENTALS
This section details the foundational concepts used in security protocol verific-

ation. We present how protocols are modeled in a formal framework, and what a
dishonest entity represents when searching for vulnerabilities. The different proper-
ties that are commonly checked appear in this section, as well as how the verification
tools can capture the behavior of cryptographic primitives. We also discuss the prob-
lem of abstraction and its pedagogic implications.

A typical workflow for the development of security protocols is shown in Fig-
ure 1.1. Similar workflows have been proposed for example in [58, 90]. The process
usually starts by identifying a set of software requirements specifying the expec-
ted behavior of the protocol, including the security goals that the application aims to
achieve. There may be two different scenarios: 1) New protocols: the definition of the
requirements is entirely under the control of the protocol designer; 2) Existing pro-
tocols: the requirements, and sometimes a reference implementation, already exist;
the developer needs to consult the documentation to extract the relevant information.

The specification of a protocol typically includes the roles of agents involved in
the protocol, the information they possess prior to the protocol run (initial know-
ledge), the specification of the messages exchanged between agents (actions) dur-
ing the protocol execution and the security goals (e.g. secrecy, authentication) that
should hold at the end of the protocol run.

While in software engineering having both explicit and implicit requirements is
generally common, in formal modeling implicit requirements are particularly prob-
lematic. In fact, even something that may be obvious and unambiguous for a human
needs to be defined precisely and explicitly to be interpreted by a machine. There-
fore, implicit requirements can be a source of ambiguity or incompleteness, that can
lead to the development of a formalized model that does not reflect the reality of the
system under consideration.

Requirements can be expressed in different ways: informally, formally or semi-
formally. Informal requirements are usually described in a natural language, and
though common in human communication, may be ambiguous or refer to implicit
concepts that may lead to different interpretations by different people. This is quite

Formal Modeling and Security Analysis of Security Protocols 5

Requirements and
Specifications

Modelling

Formal Protocol Model

Automated Verification

Model Revision

Code Generation

Source Code Security Library API

Application TemplatesManual Coding

Compilation

Binary Code

Runtime Environment Cryptographic LibrariesConfig File: network
and crypto params

safe
safe

unsafe

Specification Revision

API

Figure 1.1 Development of security protocols workflow

usual in software engineering as end-users and developers need not only to build a
common understanding of the application domain, but also a mutually intelligible
communication language. Instead, formal requirements use mathematics-based spe-
cification languages to describe in rigorous terms the desired properties of the system
under development. Unfortunately, the required formalism is often too complex, not
only for the end-users but also for the software developers. Therefore, the adoption
of specification languages that can be used by practitioners is extremely important as
we will see in Section 1.4.

In the initial phase of the modeling process, there are a few essential aspects that
need to be considered. First of all, the specification of the model requires defining
not only the actions performed by the agents, but also their initial knowledge. If this
is omitted, the protocol may be ambiguous or not even executable. Another crucial
aspect is the specification of the security goals that protocols are meant to achieve.
This is an often neglected activity as many informal descriptions of protocols used in
the industry fail to give a rigorous definition of the security goals. Instead, they use
the natural language to describe them. This is the case, for example, of the ISO/IEC

6 Formal Modeling and Security Analysis of Security Protocols

9798 standard for entity authentication [72] and the EMV payment protocol [58].
It is worth to mention that there are attempts at automatic formalization of re-

quirements from natural languages. Such approaches include Natural Language Pro-
cessing, AI-based interpretation of specification documents and computational lin-
guistics. However, their adoption by the industry is extremely limited [59].

Once the model is formalized, it may be tested with one or more verification
tools. Various tools are available, and they differ not only from the specification
language but also from the different security properties they can verify. Section 1.3
presents an overview of such tools, along with theoretical and practical challenges in
automated verification.

The verification process, if it terminates, will indicate if the protocol satisfies the
expected security goals (safe protocol) or not (unsafe). In the latter case, the tools
usually provide an attack trace: a list of actions that the attacker (aka intruder) has
to perform to violate one or more security goals. Additionally, the tools can report
about the reached state, i.e. the knowledge of agents at the end of the attack trace.

This output can lead the next design and implementation steps. Unsafe protocols
may require an iterative process of revision and verification of the model until the
protocol is successfully verified. In some cases, even the requirements may need a
revision if they are ambiguous or ill-formed. Although users can employ a verifica-
tion tool as a black-box security oracle, the attack trace provides elements that help
to understand why the protocol fails in satisfying the security goals. Such iterative
process is quite standard in formal design of security protocols, and it is aimed at
capturing design errors in the very early phases of software development.

After modeling and verification, manual coding or automatic code generation
can be used to build an implementation of the protocol. Code generation can be very
effective, as this is a phase where implementation errors typically occur [55]. Addi-
tionally, code generation often relies on application templates to define the common
structure of a program, and on an existing security library API that allows the gen-
erated source code to be compiled. Application execution support is provided by the
runtime environment of the target platform, including relevant cryptographic librar-
ies and configuration files.

1.2.1 THE DOLEV-YAO MODEL

To model communications in an adversarial environment, the Dolev-Yao model
[53] has been proposed to provide a formal framework of the intruder’s capabilities
over the network and the honest agents, also called honest principals. In this model,
the intruder has complete control over the network. It can overhear and intercept any
message, as well as generate its own, following specific rules allowed in a case-by-
case basis.

Figure 1.2 shows the intruder rules, and the fact ik(m) denotes that the intruder
knows the term m. Since every communication between honest agents is assumed
to be mediated by the intruder, it happens through ik(·) facts. The model assumes
the existence of a set of function symbols (with an associated arity) partitioned into
two subsets of public and private symbols. The first rule describes both asymmetric

Formal Modeling and Security Analysis of Security Protocols 7

ik(M).ik(K) ⇒ ik({M}K) Asymmetric
Encryptionik({M}K).ik(inv(K)) ⇒ ik(M)

ik({M}inv(K)) ⇒ ik(M)

ik(M).ik(K) ⇒ ik({|M|}K) Symmetric
Encryptionik({|M|}K).ik(K) ⇒ ik(M)

ik(M).ik(N) ⇒ ik(M,N) Tupling

ik(M,N) ⇒ ik(M).ik(N) Projection

ik(M1). · · · .ik(Mn) ⇒ ik(f (M1, . . . ,Mn)) Function Application
Figure 1.2 Dolev-Yao intruder rules

encryption and signing ({·}), while the second one models that a ciphertext can be
decrypted if the corresponding decryption key is known. inv(·) is a private function
symbol representing the secret component of a given key-pair. The third rule allows
the attacker to learn the payload of any known signed message. Symmetric encryp-
tion ({| · |}) can be modeled similarly to the first two rules, but in this case the same
key is employed for both encryption and decryption. Additionally, there are rules for
tupling and projecting tuple elements, and a rule for the application of public func-
tion symbols to known messages. Constants, including agent identities, are modeled
as public functions with zero-arity.

1.2.2 SECURITY PROPERTIES

We introduce here the most common security properties considered in protocol
verification: secrecy and authentication. We also discuss equational theories that al-
low to model important functions and their algebraic properties, like exponentiation
used in the Diffie-Hellman key agreement or the xor operator used in various cryp-
tographic protocols.

1.2.2.1 Secrecy
When honest agents communicate, the confidentiality of the core payloads is

essential to avoid eavesdropping on sensitive information. A term is said to be secret
for a given agent when it cannot be derived from the intruder’s knowledge at any
point in the protocol execution. It should be noted that secrecy is subjective: an agent
receiving a message which has been produced by the intruder may accept it as a
legitimate one. This can be, for example, if a simple message is sent encrypted with
a public key. The intruder just needs to encrypt its own forged message with the same
public key and fool the receiving agent. The term sent at first will still be confidential,
but the received one will not, for the honest receiver.

Stronger definitions can include forward secrecy. With this property, any message
exchanged between non-compromised agents will remain secret after they fall victim

8 Formal Modeling and Security Analysis of Security Protocols

to an attack. A common way to implement it is to use one-time keys, preventing
information leakage of message history when long-term keys are compromised.

1.2.2.2 Authentication
Authentication properties follow Lowe’s definition [77], where they correspond

to agreement observations. Two kinds of authentication can arise: non-injective and
the stronger injective.

With non-injective agreement, we can have two honest agents A and B, with B
wanting to agree with A on a certain message Msg. A is then supposed to send Msg
to B and be authenticated by Msg. The agreement is successful when there exists
two observations in the protocol execution: B completed a protocol run as receiver,
getting Msg from apparently A, and A completed it as well as initiator, sending Msg
to apparently B.

Injective agreement introduces a notion of freshness to avoid replay attacks. The
above conditions need to be satisfied, but for each run of B as receiver of Msg from
apparently A, there must exist only one run of A as initiator sending Msg to apparently
B. With this guarantee, an intruder could not reuse Msg in another session in order
to impersonate A.

1.2.2.3 Equational Theories
In every formal system, some axioms and symbols are defined, as well as the

logic of the relations every symbol implies. The set of formulas that can be coherently
derived from the axioms form a global theory of the system.

On a local level, every operator or symbol can have its own theory. Equational
theories are expressed in quantifier free first-order logic with an equality relation.
Formally, an equation is an atomic formula of the form x = y. Taking the example
of the classical addition, a purely additive equation admits commutativity and asso-
ciativity for its terms, i.e. x+ y = y+ x and (x+ y)+ z = x+(y+ z).

There are however limits to what can be admissible with this kind of theories in
a verification tool. For example, an equational theory must have the Finite Variant
Property [44], stating that given any term t, t must be rewritable into a finite number
of most general variants t1, . . . , tn. A variant can be considered as a pattern describing
the canonical form of instances of a term. With this property, an infinite number of
possible rewritings for a given term can be expressed using finitely many terms and
substitutions.

1.2.3 ABSTRACTIONS AND PEDAGOGY

When applying formal methods, particularly in a practitioner context, we should
consider how such techniques can be learned and used correctly. This is a general
problem in Computer Science Education (CSE), and learning theories can be useful
to understand the challenges newcomers may face. The constructivist learning the-
ory [109, 35] claims that knowledge is acquired by combining sensory data (gathered
from experience) with existing knowledge to create new cognitive structures. This

Formal Modeling and Security Analysis of Security Protocols 9

process is applied recursively to generate new knowledge. Additionally, new know-
ledge is built reflecting on the existing one. To be effective, learning must be active,
and the teacher must guide and support students in their endeavours.

Authors promoting a constructivist perspective in CSE [69, 27] indicate the im-
portance of understanding both abstract and concrete concepts. Ben Ari [27] under-
lines that the application of constructivism must consider that “a (beginning) com-
puter science student has no effective model of a computer”, and that “the computer
forms an accessible ontological reality”. The latter concept manifests itself when
students interacting with a computer can immediately realize the effect of the ap-
plication of their mental models. In other words, the results of misconceptions are
discovered instantly. Rightly, Ben Ari [27] notes that “there is not much point nego-
tiating models of the syntax or semantics of a programming language”. Tools used
by learners, like compilers used in programming activities, have implications for
building mental models.

In formal methods for security, abstractions play a fundamental role. The form-
alization of a model requires not only a good understanding of the concrete system,
but also the ability to identify what elements are relevant, and what can be neglected
for the purpose of formal verification. This requires a viable abstract representation
of the system, suitable for verification.

There is no general consensus on when abstractions need to be introduced.
Object-Oriented Programming is a good example. Adams [5] opposes the idea of
postponing teaching OOP until late in the course of studies because at that time it
is difficult to have an impact on the learners’ low-level model, but he also believes
that OOP should not be taught too early when students are not mature enough to
assimilate properly the related concepts. Ben Ari [27] remarks that “advocates of an
objects-first approach seem to be rejecting Piaget’s view that abstraction (or accom-
modation) follows assimilation”. This seems to be confirmed by the fact that practi-
tioners who use abstractions usually have a fairly good knowledge of the underlying
concrete model.

An initial crucial question is: what is the appropriate model of the “system”?
While in the domain of security protocols there are two main approaches, computa-
tional and symbolic, the latter one seems to be more appropriate from a pedagogic
point of view. Haberman and Kolikant [68] found that a blackbox-based approach
can be used effectively to introduce programming concepts to novices. An important
characteristic of the symbolic model is its simplicity, and according to the construct-
ivist approach, the model must be taught explicitly [28, 74].

Along with the adversary model (e.g. Dolev-Yao), it is necessary to learn how to
represent cryptographic primitives in the symbolic model and model their properties,
to allow the learner to understand the actions that honest agents perform during the
protocol execution. At this point, we should recall the recommendation given by
[27] regarding the need to explicitly present a viable model one level beneath the
one we are teaching. Therefore, learners of tools and techniques for modeling and
verification of security protocols cannot ignore the construction of such protocols in
a real programming language.

We can exemplify this with a conceptual framework (Figure 1.3). It consists of

10 Formal Modeling and Security Analysis of Security Protocols

Channels Channel Abstractions

Cryptography DY Symbolic Cryp-
tographic Model Cryptographic Library (API)

Network Dolev-Yao Attacker Model TCP/IP, Sockets

Abstract Model Concrete Model

Figure 1.3 Abstract and concrete models

both an abstract and concrete models with three different layers: Network, Crypto-
graphy and Channels. At the network level, the concrete network protocols run onto,
where the adversary has full control of the communication medium, is abstracted
by the Dolev-Yao adversary model. The concrete cryptographic primitives are of-
ten available through an application programming interface (API), simplifying the
access to a set of standard network and cryptographic primitives required to build se-
curity protocols implementations. In the abstract model, the symbolic representation
of Dolev-Yao intruder rules provides an abstraction of the concrete cryptographic
functions.

Abstracting from low-level details where most implementation errors occur
[104], the developer can focus on the application design and its security properties.
For this reason, the formal methods research community [3, 38, 19] has advocated
for the specification of security protocols with high-level programming abstractions,
suited for security analysis and automated verification. Alexandron et al. [7] sug-
gest that when programmers can work with a less detailed mental model, it becomes
easier to work with high-level abstractions. Concretely, we can abstract from crypto-
graphic details at the channel level, using for example a language like AnBx [37], an
extension of the AnB language, where actions are presented in the popular Alice and
Bob [83] narration style.

Users can model protocols and reason about their security properties using tools
for the verification of security protocols in the symbolic model. In a nutshell, the user
can specify the security protocol and its security goals and then verify whether the
protocol satisfies these goals, or if an attack may occur, with an attack trace being
provided in this case.

It should be noted that, with the specification of security goals, the users describe
the expectations regarding the security properties of the protocol that reflects their
mental model. Running the verification tools provides feedback on the correctness
of their mental model and helps to build their own knowledge autonomously. The
analysis of errors is therefore an opportunity for individual reflection.

Formal Modeling and Security Analysis of Security Protocols 11

1.3 THEORETICAL AND PRACTICAL CHALLENGES
To precisely formulate a conclusion on whether a security property holds or not,

verification tools have to face certain challenges and inherent limitations. Giving a
definite and trustworthy answer about non-trivial protocol verification is not always
possible, or unreasonably resource-intensive in some cases. The interactions between
such processes raise additional concerns in the proof effort, as well as how to repro-
duce abstract attacks in the real world.

1.3.1 DECIDABILITY

In the protocol verification effort, a major obstacle is the undecidability of se-
curity properties. Requirements for a program usually include knowing whether a
result will eventually arise, which is unfortunately often equivalent to the undecid-
able halting problem [105]. In practice, a tool will fail to reach a conclusion or will
not terminate in this case. Despite this general limitation, protocol verification can
be successfully completed in many cases, under very broad conditions. It has been
proven that the security problem is decidable in co-NP time in a Dolev-Yao model
of intruders with a bounded number of concurrent sessions [98], including when
the intruder is allowed to guess low-entropy messages [6] like passwords instead of
random numbers. However, the general case with an infinite number of sessions is
undecidable [57], even with a bounded message length [82]. Another undecidabil-
ity factor with unbounded sessions is the presence of nonces in a protocol. They are
fresh values generated by honest agents to prevent replay attacks between concurrent
sessions. If the same value appears in two different sessions, it can safely be ignored
since we have either an intruder reusing this value, or an honest agent not following
the protocol guidelines. Their existence adds complexity to the verification problem,
making it undecidable even with a bounded number of nonces [10].

The decidability of a security property also heavily depends on how the crypto-
graphic primitives are considered. In the classic Dolev-Yao model, we assume per-
fect cryptography and abstract the cryptographic operations as black-box functions.
An encrypted message is then akin to random data, and the algebraic properties it
exhibits are ignored. While it is true that many attacks exploit design flaws in a pro-
tocol more than its underlying cryptographic schemes, a concrete implementation
might be vulnerable. Attacks relying on some properties of the encryption function
might be missed under the perfect cryptography assumption, and existing results are
summarized in a survey [46]. The authors highlight how recent works investigate
possible refinings on cryptographic primitives abstraction, in order to allow for a
more thorough protocol verification.

1.3.2 VERIFICATION TRUSTWORTHINESS

Whenever a formal result is provided, the trustworthiness of the underlying pro-
cess needs to be assessed. In fact, a poorly modeled system would lead to an unusable
verification result, but the verification in itself should be questioned too. As the ef-
fort nowadays is largely automatic, how can we be sure that the verification tools

12 Formal Modeling and Security Analysis of Security Protocols

we use are reliable? BAN-logic [40] and its assumptions over the intruder’s behavior
was found insufficient by Lowe on the Needham-Schroeder protocol [76]. Model
checkers then introduced different logics, putting the emphasis on automation.

Doing so, they are complex tools with a large and often complicated codebase,
which itself is not necessarily free from bugs. We have then to rely on the program-
mer’s skill and the regular testing of the tool over time to bring us confidence about
the verification correctness. Even with a supposedly correct proof system, Gödel
second incompleteness theorem [62] states that such a system could not prove its
own correctness. Soundness, completeness and level of certification are key elements
in the verification process.

Formally, let Σ be a set of hypotheses and Φ a statement. Σ |= Φ, means that
Σ logically implies Φ, i.e., in every circumstance in which Σ is true, Φ also holds.
Another relation, Σ ⊢ Φ, states that we can derive Φ starting from Σ , or that Φ is
provable from Σ .

A formal deduction system is said sound where every conclusion that can be
reached in the proof system derives from its premises. Nothing that violates Σ can
be proven as true in a sound system. Formally, if Σ ⊢Φ, then Σ |= Φ.

A complete system allows every statement to be provable with our hypotheses.
Here, Σ |= Φ implies Σ ⊢Φ. If Φ is true given Σ , then we can prove Φ from Σ .

In practice, some tools are sound but not complete, like ProVerif [33]. Here, if
the tool states that a security property is true then the property is indeed true in the
Dolev-Yao attacker model. However, not all true properties may be provable by the
tool.

A way to confidently verify a set of properties is to implement a very small
amount of verified mathematics. A theorem prover takes logical statements as an
input and tests them against an axiomatically accepted set of inference and equival-
ence rules that can be defined in a trusted kernel. This is the Logic for Computable
Functions (LCF) [81] paradigm, where theorems are an abstract data type, and con-
structors enforce the underlying logic. With a strong typing enforcement, every user-
specified proof step is essentially a composition of the kernel’s rules. Modern proof
assistants like HOL4 [101] or Isabelle/HOL [93] opt for Higher-Order Logic (HOL).
HOL allows passing functions as arguments and returning functions, with arbitrary
nesting. This extends First-Order Logic, where only quantified variables and sets of
variables can be considered. Some assistants also apply the De Bruijn criterion [23],
and generate independently checkable proof objects.

1.3.3 STATE EXPLOSION

Usually, a verification tool explores the realm of possibilities for a given protocol
execution. Due to the interleaving between actions and possible messages, the total
number of possible traces can be unacceptably high [48] or even infinite. Most sys-
tems are represented as state-transition, where the knowledge of an agent is given
at each step of a protocol. Great execution complexity can cause the state explosion
problem, along with potentially enormous time or memory resources needed for pro-
tocol verification, which can be limited with various approaches.

Formal Modeling and Security Analysis of Security Protocols 13

Bounded Model Checking is one of the most popular techniques for critical sys-
tems verification. Here, the state-transition system is finite and there is a bound on
how many transitions the model checker is allowed to explore. Some states are called
error or attack states, and the purpose of the model checker is to try to find a series
of transitions which leads to such states. This approach then works by finding a
counterexample or bug in the system. Given a bound k, the model checker will typ-
ically encode the problem in a propositional Boolean formula in conjunctive normal
form (A∨B)∧ (C∨D . . .)∧ With respect to the bound k, the formula is only al-
lowed to contain k conjunctions at most, which denotes a state-space exploration of
paths of maximal length k. A SAT solver will in turn test if there is a possible valu-
ation of the literals such as the formula holds true, as does the SATMC [15] tool. If
no path of length k in the transition system leads to an unsafe state, then the tested
security property is true, given this bound k. Even if it loses precision compared to an
exhaustive state-space exploration, a bounded proof can generalize to the unbounded
case [78], like when the bound is greater or equal to the diameter of the transition
system, i.e. the smallest number of transitions needed to reach all reachable states.

Binary Decision Diagrams (BDDs) [36] are other representations of interest to
explore a state-space efficiently. Instead of listing every possible state individually,
this approach allows for state grouping, yielding potentially exponential time and
memory savings. A BDD represents a Boolean function with a rooted and directed
acyclic graph, where redundant tests of Boolean variables are omitted. Only two
leaves exist as Boolean values, and every other node is a Boolean variable. Every
non-terminal node represents a variable and has two children, denoting the outcomes
of its true and false valuations. With a brute-force checking process for a Boolean
function, every input has to be tested, which equates to 2n cases with n the number of
variables. For example, the expression A∧B has four possible valuations. However,
having A valued as false makes the expression unsatisfiable, and testing B would be
useless. In this case, we can omit a B node between A and the false Boolean value,
so only two variable nodes are required. Tools like OFMC [84] or Tamarin [80] can
greatly benefit from this search space reduction.

When the complete model to verify is composed of several asynchronous pro-
cesses, some of them might be independent of each other. The interleavings between
them are then not relevant to the property at hand and could be ignored safely. This
simplification is called Partial Order Reduction [61]. It makes the precedence re-
lations between events explicit in a dependency graph. If it is found that, from a
given state, several paths leading to another state denote equivalent behaviors, then
only one representative path must be explored. With this technique, paths can be
tested for independence on the fly, one local component at the time, saving consider-
able memory resources. Recent studies show that independence can be tested quasi-
optimally in polynomial time [47], avoiding the execution of all possible traces. Sim-
ilarly to BDDs, this technique can be applied to state-transition-based verification.

Another technique to reduce the state-space size is to work on an abstraction of
our model. Distinct levels of abstraction exhibit different levels of detail, and the goal
is to find the most abstract model that does not omit relevant details with respect
to the tested property. The search of the adequate level of abstraction is then con-

14 Formal Modeling and Security Analysis of Security Protocols

ducted by successive refinements, where a highly abstracted model is verified first.
This technique is named counterexample-guided abstraction refinement (CEGAR)
[43]. A counterexample denotes a bug or vulnerability, which is executed against
the concrete system once found. If the execution fails, then the counterexample is
called spurious, and more detail must be added to the model. The first non-spurious
counterexample will then embody a genuinely problematic behavior in the concrete
model. Hajdu and Micskei introduced the efficient THETA framework [70], along
with a survey of other state-of-the-art CEGAR implementations.

1.3.4 COMPOSITIONALITY IN VERIFICATION

As we have seen, in many cases verification tools can automatically provide an
answer about the security of a protocol in isolation, even when multiple concurrent
sessions are considered. However, in the real-world, protocols do not run in isolation.
They are typically components of more complex systems, where they are executed
along with different protocols. Several examples have demonstrated that protocol
composition is not secure in general (e.g. [11, 65]), even if individual components
are secure in isolation. Therefore, researchers have investigated both the verifica-
tion of complex systems and the identification of sufficient conditions for the safe
composition of protocols which are secure in isolation.

While Partial Order Reduction introduces a formalism of asynchronous com-
ponents, only their execution order is used to devise a simpler proof. In complex
protocols, ordered small components can be truly valid in regard to their security
properties. Proving the correctness of a multitude of small models would lead to a
greatly simplified proof effort, but demonstrating the compositionality of a protocol
is non-trivial. A divide and conquer framework was introduced in [11] where large
protocols are expressed as multiple smaller ones. In the same spirit, identifying how
encryption between protocols can be non-overlapping is presented in [67]. A non-
decomposable process is referred to as atomic [42]. When protocols are allowed to
interact between each other in a stateful way i.e. having access to information from
previous sessions, secure composition is still possible as outlined in [71]. When com-
ponents can be isolated and tested separately, we talk about sequential, parallel or
vertical compositionality.

Sequential Composition In a sequentially composed security protocol, one
component’s output is another one’s input. To ensure a secure execution, processes
are annotated with pre- and post-conditions. When such invariants are satisfied, the
protocols’ steps are considered securely usable in their composed form. A common
application of this philosophy is to have one key-establishment protocol, and another
one after it that uses this key for message exchange over a secure channel like in [85].
A sequence of message transmissions and receptions for an agent is called a strand,
and the relationships between strands for every agent form a graph: the strand space
[103]. Figure 1.4 shows the strand space for a challenge-response where agents A and
B agree on a number N using a private symmetric key KAB. The protocol is then con-
sidered correct when every subgraph, or bundle, contains at least one honest agent

Formal Modeling and Security Analysis of Security Protocols 15

behavior, and when injecting an intruder leads to a strand space that is isomorphic
to the original one.

A B{N}KAB

{N}KAB

Figure 1.4 Example of strand space in communications

Parallel Composition Parallel composition is the situation when different pro-
tocols run in parallel. The first notion to be considered is protocol independence.
According to Guttman and Thayer [67], two protocols are independent if the achieve-
ment of goals in one protocol does not depend on the other protocols being in use.
They proved a theorem that holds even if the protocols share public key certific-
ates and secret key "tickets" (e.g. Kerberos). In general, interdependence can arise
when protocols share a piece of data, like long-term keys. Furthermore, if an honest
agent is confused about what protocol is being executed, the intruder might exploit
it. To ensure that the received messages are sufficiently distinguishable, Cortier et
al. opt for a tagging approach [45]. A tagged message includes an identifier of the
protocol it comes from. For example, adding the protocol’s name to an encrypted
payload avoids using a ciphertext that was intended for another protocol. This way,
even if the two messages are encrypted with the same key, an intruder could not make
an honest agent running a protocol accept a message intended for another protocol.
Generalizing beyond secrecy goals to the entire geometric fragment proposed by
Guttman [66], it is possible to perform secure parallel composition without tagging.
This result was presented in [8] where two main syntactic conditions are checked: if
a given protocol is type-flaw-resistant and if the protocols in a given set are pairwise
parallel-composable. Moreover, requirements are more relaxed: it is sufficient that
non-atomic subterms are not unifiable unless they belong to the same protocol and
have the same type.

Vertical Composition The last two compositions can be named horizontal, as
vertical composition [65] focuses on protocol encapsulation, like when an applica-
tion runs on top of a secure TLS channel. While such a composition is reasonable
most of the time with disjoint protocols at each layer [85, 42], the self-composition
case is more complicated. If the same channel is to be re-used in the protocol stack,
stronger conditions must be satisfied. According to Mödersheim and Viganò, mes-
sage formats disjointness and uniqueness of each payload usage context constitute
sufficient conditions [86] for such vertical composition, satisfied in practice by a
large class of protocols. A stronger result is presented in [63], where the number
of transmissions a channel is allowed to carry is unbounded, and with support for
stateful protocols.

16 Formal Modeling and Security Analysis of Security Protocols

1.4 SPECIFICATION LANGUAGES AND TOOLS
To tackle the challenges of security protocols verification, several approaches and

tools have been adopted in the past decades. Popular notations like Alice and Bob
narrations enable high-level specification, while other languages trade simplicity for
expressivity. Every concrete tool handles a specific set of behavioral properties and
this section presents some of the most widespread or promising frameworks.

1.4.1 ANB LANGUAGE

In the most classical AnB (Alice and Bob) notation [83], a protocol is specified
by a list of steps (or actions), each representing a message exchange between two
honest agents like A→ B : Msg. This notation makes the encoding of security proto-
cols considerably simpler (and more compact) than their equivalents in other formal
languages (e.g. process calculi [4, 1]) or real-world programming languages. This in-
tuitive language allows learners to build their own models of security protocols and
experiment with them using tools that support such a notation like the model checker
OFMC [84] and Tamarin [100].

An example of an AnB protocol is displayed in Figure 1.6. The main goal of
the protocol is to achieve authentication (precisely the injective agreement defined in
[77]) on the message Msg. The recipient B should have evidence that the message has
been endorsed by A and is a fresh message. The goal is achieved using asymmetric
encryption and a challenge–response technique with a nonce exchange. The abstract
functions pk and sk are used to model asymmetric encryption, mapping agents to
their public keys for encryption and signature respectively, while inv is a private
function modeling the private key of a given public key. It should be noted that private
function symbols are used to symbolically represent a notion. They are not concrete
functions that can be computed [83].

The succinctness of the AnB notation comes with an expressivity drawback. The
specification relies on implicit assumptions on how a receiver processes a message or
how agents handle errors with unexpected messages. Therefore, it is potentially am-
biguous for a novice unaware of such implicit assumptions. Some research focuses
on extending its expressivity with explicit message formats [9] and user-specified
equational theories [24].

1.4.2 ANBX LANGUAGE

In this spirit, the AnBx language (formally defined in [37]) is built as an ex-
tension of AnB [83]. The main peculiarity of AnBx is to use channels as the main
abstraction for communication, providing different authenticity and confidentiality
guarantees for message transmission, including a novel notion of forwarding chan-
nels, enforcing specific security guarantees from the message originator to the fi-
nal recipient along a chain of intermediate forwarding agents. The translation from
AnBx to AnB can be parametrized using different channel implementations, by means
of different cryptographic operations. It also supports private function declarations,

Formal Modeling and Security Analysis of Security Protocols 17

Protocol: Example_AnBx

Types:

Agent A,B;

Certified A,B;

Number Msg;

SymmetricKey K;

Function [Agent ,Number -> Number] log

Knowledge:

A: A,B,log;

B: B,A,log

Actions:

A -> B, @(A|B|B): K

B -> A: {|Msg|}K

A -> B: {|hash(Msg),log(A,Msg)|}K

Goals:

K secret between A,B

Msg secret between A,B

A authenticates B on Msg

B authenticates A on K

B authenticates A on Msg

Figure 1.5 AnBx protocol example

useful for example when two honest agents want to share a secret shared key func-
tion. It can be explicitly excluded from the intruder’s knowledge with a signature as
[ParamTypes→∗ ReturnType].

Figure 1.5 shows an example protocol in which two agents want to exchange se-
curely a message Msg, using a freshly generated symmetric key K, i.e. a key that is
different for each protocol run. If K is compromised, neither previous nor subsequent
message exchanges will be compromised, only the current one. This is similar to
what happens in TLS where a symmetric session key is established (using asym-
metric encryption) at the beginning of the exchange. It should also be noted that
this setting is more efficient, as symmetric encryption is notoriously faster than the
asymmetric kind. Therefore, if the size of the message is significant, using symmetric
encryption should be preferable.

The Types section includes declarations of identifiers of different types and func-
tions declarations, while the Knowledge section denotes the initial knowledge of each
agent. An optional section, Definitions, can be used to specify macros with paramet-
ers. In the Actions section, the action A→ B,@(A|B|B) : K means that the key K is
generated by A and sent on a secure channel to B. The notation @(A|B|B) denotes
the properties of the channel: the message originates from A, it is freshly generated
(@), verifiable by B, and secret for B. How the channel is implemented is delegated
to the compiler. The designer can choose between different options, or simply use
the default one. This simplifies the life of the designer, who does not need to be in
charge of low-level implementation details. A translation to AnB is shown in Figure
1.6: in this case the channel is implemented using a challenge-response technique,
where B freshly generates a nonce (the challenge) encrypted with pk(A), the public

18 Formal Modeling and Security Analysis of Security Protocols

Protocol: Example AnB

Types:

Agent A,B;

Number Msg ,Nonce;

SymmetricKey K;

Function pk,sk,hash;

Function log

Knowledge:

A: A,B,pk,sk,inv(pk(A)),inv(sk(A)),hash ,log;

B: A,B,pk,sk,inv(pk(B)),inv(sk(B)),hash ,log

Actions:

A -> B: A

B -> A: {Nonce ,B}pk(A)

A -> B: {{Nonce ,B,K}inv(sk(A))}pk(B)

B -> A: {|Msg|}K

A -> B: {|hash(Msg),log(A,Msg)|}K

Goals:

K secret between A,B

Msg secret between A,B

A authenticates B on Msg

B authenticates A on K

B authenticates A on Msg

inv(pk(A)) secret between A

inv(sk(A)) secret between A

Figure 1.6 AnB protocol example

key of A along with the sender name ({·} denotes the asymmetric encryption). This
guarantees that only A would be able to decrypt the incoming message.

The response, along with the challenge, includes the symmetric key K. The re-
sponse is digitally signed with inv(sk(A)), the private key of A and then encrypted
with pk(B), the public key of B. This will allow B to verify the origin of the message
and that K is known only by A and B.

It should be noted that in AnBx, we abstract from these cryptographic details,
and we simply denote the capacity of A and B to encrypt and digitally sign using
a Public Key Infrastructure (PKI) with the keyword Certified. This reflects the cus-
tomary practice of a Certification Authority to endorse public keys of agents, usually
issuing X.509 certificates, allowing every agent to verify the identity associated with
a specific public key. Moreover, in AnBx, keys for encryption and for signature are
distinguished by using two different symbolic functions, pk and sk respectively.

Once the symmetric key K is shared securely between A and B, then B can send
the payload Msg secretly ({| · |} denotes the symmetric encryption). Finally, A ac-
knowledges receipt, replying with a digest of the payload computed with the hash
function (a predefined function available in AnBx), and with a value computed with
the log function.

The section Goals denotes the security properties that the protocol is meant to
satisfy. They can also be translated into low-level goals suitable for verification with
various tools. Supported goals are as follows:

Formal Modeling and Security Analysis of Security Protocols 19

1. Weak Authentication goals have the form B weakly authenticates A on Msg
and are defined in terms of non-injective agreement [77].

2. Authentication goals have the form B authenticates A on Msg and are defined
in terms of injective agreement on the runs of the protocol, assessing the fresh-
ness of the exchange.

3. Secrecy goals have the form Msg secret between A1, . . .An and are intended
to specify which agents are entitled to learn the message Msg at the end of a
protocol run.

In the example protocol (Figure 1.5), the desirable goals are the secrecy of the
symmetric key K and of the payload Msg that should be known only by A and B.
There are also authentication goals: B should be able to verify that K originates from
A and that the key is freshly generated. Finally, two goals express the mutual au-
thentication between A and B regarding Msg, including the freshness of the message.
In summary, this protocol allows two agents to securely exchange a message, with
guarantees about its origin and freshness.

1.4.3 OFMC MODEL CHECKER

In the cases studies presented in Section 1.5, the OFMC model checker [84]
is used for the verification of abstract models. OFMC employs the AVISPA Inter-
mediate Format IF [21] as “native” input language, defining security protocols as
an infinite state-transition system using set-rewriting. Notably, OFMC also supports
the more intuitive language AnB [83], and the AnB specifications are automatically
translated to IF.

OFMC performs both protocol falsification and bounded session verification by
exploring the transition system in a demand-driven way. If a security goal is viol-
ated, an attack trace is provided. The two major techniques employed by OFMC are
the lazy intruder, a symbolic representation of the intruder, and constraint differen-
tiation, a general search-reduction technique that combines the lazy intruder with
ideas from Partial Order Reduction.

1.4.3.1 Channels as Assumptions
In general, along with the usual insecure channel, the AnB language supported by

OFMC allows specifying three other types of channels: authentic, confidential, and
secure, with variants that allow agents to be identified by a pseudonym rather than
by a real identity. The supported standard channels are:

1. A→ B : M, an insecure channel from A to B, under the complete control of a
Dolev-Yao intruder [53].

2. A•→B : M, an authentic channel from A to B, where B can rely on the facts
that A has sent the message M and meant it for B.

3. A→•B : M, a confidential channel, where A can rely on the fact that only B
can discover the message M.

4. A•→•B : M, a secure channel (both authentic and confidential).

20 Formal Modeling and Security Analysis of Security Protocols

Pseudonymous channels [85] are similar to standard channels, with the exception
that one of the secured endpoints is logically tied to a pseudonym instead of a real
name. The notation [A]ψ represents that an agent A is not identified by its real name
A, but by the pseudonym ψ . Usually, ψ can be omitted, simplifying the notation to
[A], when the role uses only one pseudonym for the entire session, as it is in our case
and in many other protocols.

For example, [A]•→B : M1 denotes an authentic channel from A to B, where B
can rely on the facts that an agent identified by a pseudonym has sent a message
M1 and that this message was meant for B. If during the same protocol run, another
action like [A]•→B : M2 is executed, B can rely on the facts that the same agent
(identified by the same pseudonym) has also sent M2 and again that the message was
meant for B.

Assuming that B does not already know the real name of A, the execution of
these two actions does not allow B to learn the real identity of A (unless this inform-
ation is made available during the protocol execution), but B has a guarantee that it
was communicating with the same agent during both message exchanges. The term
sender invariance is used to refer to this property, and the most common example is
the TLS protocol without client authentication.

1.4.4 ANBX COMPILER AND CODE GENERATOR

The AnBx Compiler and Code Generator [89] is an automatic Java code generator
for security protocols specified in AnBx or AnB. The AnBx compiler can be used in
the context of Model Driven Development. Provided that a model has been validated
with OFMC, the user can automatically generate a Java implementation. Along with
this immediate benefit, in a learning context [90] this is useful to familiarize oneself
with the software engineering approach of Model Driven Development, but also to
compare a manual implementation with a generated one. The main features of the
compiler are:

• Automatic computation of the defensive checks that an agent has to perform
on incoming messages.

• Optimization of cryptographic operations in order to minimize the number
of computational steps and reduce the overall execution time [88].

• Mapping of abstract types and API calls to the concrete ones provided by
the AnBxJ library.

• A set of template files is used to generate the code. Template files can be
customized, for example, to integrate the generated application in larger
systems.

Since the compiler translates the intermediate format to the applied pi-calculus
[1], the verification of the protocol logic used for the code emission phase can be
performed with the protocol verifier ProVerif [30].

Formal Modeling and Security Analysis of Security Protocols 21

Informal Specification
and Requirements

Modelling

AnBx Protocol Model

AnBxC Front-EndAnBx Channel Mode

AnB Protocol Model

OFMC

Model Revision

AnBxC Back-End

Java Code AnBxJ Security Library

Java Templates

javac + java

Java Runtime
Environment

Java Cryptography
Architecture

Config File: network
and crypto params

AnB-IF verification

safe

unsafe

Specification Revision

API

Figure 1.7 Model driven development with AnBx (manual automatic)

1.4.4.1 AnBx Compiler Architecture
In this section, we introduce the development methodology (Figure 1.7) and

provide an overview of the architecture of the AnBx compiler (Figure 1.8), a tool
built in Haskell, which is one of the key components of this methodology. Other
tools, included in the toolkit, are the OFMC symbolic model checker [84] and the
cryptographic protocol verifier ProVerif [30]. All components are integrated in the
AnBx IDE [60], an Eclipse plug-in for the design, verification and implementation of
security protocols. Along with the integration of the back-end tools, the IDE includes
many features meant to help programmers to increase their productivity, like syntax
highlighting, code completion, code navigation and quick fixes.

22 Formal Modeling and Security Analysis of Security Protocols

1.4.4.2 Development Methodology
As seen in Section 1.2, the work of a developer usually begins from gathering

the available specification documentation and build a model that can be verified and
then used to construct an implementation. Expressing requirements in a simple but
formalized language for the specification of security protocols that is amenable for
the verification of the model is a key aspect of the approach presented here. Although
formal languages like the SPI [4] and applied pi-calculus [2] have been created to
model and verify security protocols, their usage among software developers in the
industry remains limited due to their complexity. On the contrary, protocol narrations
in the Alice & Bob style are much closer to the familiar way software engineers use
to describe security protocols. Therefore, this methodology adopts the simple AnB
notation [83] and its extension AnBx [37].

One of the main advantages of such languages, which share common traits but
are syntactically different, is that they can be quickly learned by developers as they
are rather intuitive. Their syntax is similar to the informal or semi-formal languages
used in the documentation software engineers are familiar with, but their semantics
are formally defined so there are no ambiguities in the way the system interprets
them. We have direct experience of students developing a few person-month projects,
being able to learn effectively the specification language in a few days or less.

Once the protocol specification has been completed, it is possible to use the AnBx
compiler to translate the input file to AnB, a format which can be verified with the
OFMC model checker [84]. It should be underlined that the translation from AnBx
can be parametrized using different channel implementations that convey the security
properties specified at the channel level, by means of different cryptographic opera-
tions [37]. The compiler can also directly process protocols in AnB. In all cases, the
compiler will perform a number of sanity and type checks to ensure that the input
provided to OFMC is fully sanitized. This is important, because OFMC lacks an AnB
type checker, and there are situations where the model checker accepts (and might
deem secure) protocols which are ill-typed.

If OFMC finds an attack, i.e. a security goal can be violated by the intruder, the
developer can manually (and iteratively) revise the model until the model checker
concludes on a safe model. If necessary, changes can be backported to the original
standard. It should be noted that if the user is developing a brand-new protocol, this
is an effective way to iteratively prototype security protocols. In that respect, AnBx,
given the channel abstractions, can also be considered as a design language along to
its nature of specification language.

When OFMC verifies the protocol as secure, the AnB specification can be passed
to the compiler back-end (described later in this section) and generated to Java source
code. In practice, the compilation is fully automated from AnBx to Java (Figure 1.7).
The compiler uses application template files, customizable by the user and written
in the target language, to integrate the generated code in the end-user application.
The templates are instantiated by the compiler with the information derived from the
protocol specification.

The run-time support is provided by the cryptographic services offered by the

Formal Modeling and Security Analysis of Security Protocols 23

AnB Protocol Model

Checks & Optim.

Optimized
Executable Narration

Type EnrichmentType System

Typed Optimized
Executable Narration

ProVerif Transl.

ProVerif

Model Revision

Code Generation

Java Code

Java Templates

generation of checks on reception

check set refinement (CSE)

type inference

type checking

abstract types and API calls

applied pi-calculus verification
unsafe

AnBx Protocol Modelling

safe

concrete types and API calls

Figure 1.8 Compiler back-end: Type system, code generator, verification (manual
automatic)

Java Cryptography Architecture (JCA) [64, 96]. In order to connect to the JCA, a
security API (called AnBxJ library) wraps, in an abstract way, the JCA interface and
implements the custom classes necessary to encode the generated Java programs.
The AnBxJ library guarantees a high degree of generality and customization, since
the API allows to write code that does not commit to any specific cryptographic
solution (algorithms, libraries, providers). This code can be instantiated at run-time
using a configuration file that allows the developer to customize the deployment of
the application at the cryptographic (key store location, aliases, cipher schemes, key
lengths, etc.) and network level (IP addresses, ports, etc.) without needing to regen-
erate the application. The library also gives access to the communication primitives
used to exchange messages in the standard TCP/IP network environment, includ-
ing secure channels like TLS. Communication and cryptographic run-time errors are
handled at this level, and exceptions are raised accordingly.

24 Formal Modeling and Security Analysis of Security Protocols

1.4.4.3 AnBx Compiler Back-End
The second phase of the compilation process (Figure 1.8) begins with the trans-

lation of AnB to an (Optimized) Executable Narration, a set of actions that opera-
tionally encodes how the different agents are expected to execute the protocol. The
core of this step is the automatic generation of the consistency checks derived from
the static (implicit) information included in the model specification. The checks are
defined as consistency formulas; some simplification strategies can be applied to re-
duce the number of generated formulas and speed up the application. A further step
in this direction is the application of other optimization techniques [88], including
common sub-expression elimination (CSE), which in general are useful to generate
efficient code. In particular, our compiler considers a set of cryptographic operations,
which are computationally expensive, to reduce the overall execution time by storing
partial results and reordering instructions with the purpose of minimizing the overall
number of cryptographic operations.

The next stage is the construction of the Typed Optimized Executable Narration,
a typed abstract representation of the security-related portion of a generic procedural
language supporting a rich set of abstract cryptographic primitives. For that purpose,
a type system infers the types of expressions and variables, ensuring that the gener-
ated code is well-typed. It has the additional benefit of detecting at run-time whether
the structure of the incoming messages is equal to the expected one, according to
the protocol specification. This step is necessary, as the type system of AnB is too
simple, and unsuitable to represent the complexity of a complete implementation of
a protocol, in Java for example.

The Typed Optimized Executable Narration can be translated into applied pi-
calculus and verified with ProVerif [30]. To generate applied pi-calculus, AnB secur-
ity goals need to be analyzed at the initial phase and specific annotations modeling
the security properties need to be generated and preserved along the compilation
chain. The verification with ProVerif is preliminary to the code emission which is
performed by instantiating the protocol templates. It is worth noting that only at this
final stage, the language-specific features and their API calls are actually bound to
the typed abstract representation of the protocol built so far. To this end, two map-
pings are applied by the compiler. One between the abstract and the concrete types,
the other one between the abstract actions and the concrete API calls.

In summary, the AnBx compiler allows for a one-click code generation of a
widely configurable and customizable ready-to-run Java application from an AnBx
or AnB specification. In addition to the Java classes and the configuration file, an Ant
[13] build file is also generated to easily build and run the application. It is also im-
portant to underline that the application templates are generic, i.e. independent of the
specific protocol, and can be modified by the user in order to integrate the generated
code in the required application domain.

1.4.5 PROVERIF

ProVerif [30] is an automated verifier for cryptographic protocols, modeling the
protocol and the attacker according to the Dolev-Yao [53] symbolic approach. Differ-

Formal Modeling and Security Analysis of Security Protocols 25

ently from model checkers, ProVerif can model and analyze an unbounded number
of parallel sessions of the protocol, by using Horn clauses to model a protocol. How-
ever, like model checkers, ProVerif can reconstruct a possible attack trace when it
detects a violation of the intended security properties. It can check equivalence prop-
erties, which consists in determining that two processes are indistinguishable, from
a third-party point of view.

ProVerif may report false attacks, but if a security property is reported as satis-
fied, then this is true in all cases, so it is necessary to analyze the results carefully
when attacks are reported. The checks honest agents should perform on received
messages must be explicitly stated, increasing the risk of user error. A recent devel-
opment [32] enables support for axioms, lemmas and restrictions, allowing users to
declare intermediate properties helping ProVerif to complete proofs. Those axioms
can now be used to handle global mutable states, particularly useful for contract sign-
ing protocols [14]. To verify protocols in the computational model, a variant called
CryptoVerif [31] exists.

1.4.5.1 Horn Clauses and Applied pi-calculus
Horn clauses were firstly used by Weidenbach [111] in protocol verification as a

sound abstraction technique, overestimating the attacker’s possible knowledge. Usu-
ally, trying to prove a security property is convenient with Horn clauses, as one would
have to test its negation and check for a contradiction later in the proof. A Horn clause
is a disjunction of terms such as at most one might be true. There are three types of
Horn clauses:

• Definite clause with exactly one true term among false ones. The clause
would read as ¬p∨¬q∨ r which, rewritten with an implication would be
p∧q⇒ r. This means that r holds as long as p and q are true. This clause
is then used for deduction.

• Fact clause with a true term only. A lone variable p is equivalent to assum-
ing that p is true.

• Goal clause with only false terms. ¬p∨¬q∨¬r would mean that the prop-
erties encoded by all three variables hold when the expression is unsatis-
fiable.

As an example, we can take a Dolev-Yao attacker, which then knows the network
and what transits on it. We obtain an initial knowledge fact attacker(network). A
plaintext message exchange is then performed as A→ B : Msg and Msg is sent over
the network, which is another fact we can write as send(network,Msg). The classical
eavesdropping attacker rule follows as send(x,y)∧attacker(x)⇒ attacker(y). With
this rule, we can derive the attacker’s knowledge attacker(Msg), proving that Msg is
not secret in this case.

ProVerif uses the applied pi-calculus [1], suited to specify the behavior of con-
current processes, emphasized around communicating agents. In applied pi-calculus,
each participant of the protocol is represented by a process and the messages ex-
changed by processes are the messages of the protocol. For example, the exchange:

26 Formal Modeling and Security Analysis of Security Protocols

“The first process sends a on channel c, the second one inputs this message, puts it in
variable x and sends x on channel d” is encoded by out(c, a) || in(c, x).out(d, x). The
core feature of ProVerif is to translate it to Horn clauses, but only an approximation
of a translation is possible sometimes, which can lead to non-termination.

1.4.6 IDENTIFICATION OF ATTACKS

A protocol can have multiple desired properties that must be verified, as ex-
pressed in the AnB Goals section. A verification tool or framework should be able
to tell the user exactly what failed and in what circumstances. OFMC, while provid-
ing one of the simplest attack traces, only outputs one failing goal, the one which
failed first. ProVerif prints every one of them, but it is easy to have an unverified goal
passing the verification because of some user specification error. To have an intuitive
visualization of failing goals, the AnBx IDE [60] provides a convenient workflow for
individual goal verification.

1.4.7 OTHER TOOLS AND COMPARISON

Tamarin [80] is a state-of-the-art symbolic verifier supporting both automatic and
interactive modes. The user then has the option to manually guide the proof process
with user-specified lemmas.

The Scyther tool [50] shares a backward reasoning approach based on patterns
with Tamarin and has guaranteed termination. Maude-NPA [56] shares a lot of char-
acteristics with Tamarin, with a notable exception of not supporting global mutable
states and the fact that Maude-NPA models protocols by strands other than multiset
rewriting.

Verifpal [73] is a recent tool which focuses on providing an easy to use and to
understand design framework. Its specification language resembles an AnB protocol
narration, and it uses heuristics to limit the state explosion.

In the AVISPA tool suite [17], OFMC is used in conjunction with two other back-
ends: CL-AtSe [106] and SATMC [15]. CL-AtSe takes as input a service specified
as a set of rewriting rules, and applies rewriting and constraint solving techniques to
model all reachable states. SATMC uses SAT solvers to perform a bounded analysis
with propositional formulas. Those three tools are now part of the AVANTSSAR
platform [16], extending AVISPA capabilities to Service-Oriented Architectures.

A comprehensive survey of recent advances in verification can be found in [22],
of which we use the comparison criteria in Table 1.1.

1.4.7.1 Supported Properties
All tools except the back-ends from the AVISPA/AVANTSSAR suite support

unbounded verification, accepting undecidability in some cases. ProVerif, Tamarin
and Maude-NPA can check diff-equivalence properties [52], testing if protocols have
the same structure and differ only by the messages they exchange. Verifpal can test
some equivalence queries, but limited to any protocol scenario which can be derived
such that some shared secrets are not equivalent to one another.

Formal Modeling and Security Analysis of Security Protocols 27

Tool Unbounded Equiv Eq-thy State Link
ProVerif [30] G# #

Tamarin [80] #

Verifpal [73] G# G# G#

OFMC [84] # # G# #

CL-AtSe [106] # # #

SATMC [15] # # # #

Maude-NPA [56] # #

Scyther [50] # # # #

Table 1.1
Comparison between tools for symbolic security analysis

Tamarin, CL-AtSe and Maude-NPA are the only ones to allow for user-defined
equational theories with the Finite Variant Property in general [54], CL-AtSe be-
ing however limited to subterm-convergent equational theories [20]. ProVerif and
OFMC only permit such theories without associative-commutative axioms, Verifpal
is limited to specifying simple equations for signature or public-key establishment
like with Diffie-Hellman, and the other ones have fixed or no equational theories.

A global mutable state is useful to model databases like key servers or shared
memory in general [75, 106], but Maude-NPA and Scyther lack support for it.

The last criterion is about linking the model to an implementation, providing
executable protocols exhibiting symbolic security properties. Verifpal can generate
Coq implementations of its models, with Go code generation planned as well, while
now being usable as a Go library.

1.5 CASE STUDIES
We present here some practical examples of verification and re-engineering of

security protocols. The purpose of these case studies is to give a practical demonstra-
tion, within the context of an approach of formal methods for security, of modelling
and design techniques that can be applied by practitioners working with real-world
protocols. We first consider the formal modelling and verification of the Bitcoin pay-
ment protocol BIP70 (originally presented in [91]) and then we present the mod-
elling, verification and re-engineering of the iKP e-commerce protocols (originally
presented in [39, 87]). A similar approach (originally presented in [37]) can be used
for SET, an e-commerce protocol that for its complexity is considered as a bench-
mark for protocol analysis.

The specification languages considered here are AnB and its extension AnBx.
These are intuitive languages that can be learned relatively quickly by practitioners.
The verification tools are the model checker OFMC (for iKP, SET and BIP70) and
the cryptographic protocol verifier ProVerif (for iKP and SET), that can accept the
aforementioned languages directly or by translation using the AnBx compiler.

28 Formal Modeling and Security Analysis of Security Protocols

Transaction A’s identification hash,
Transaction A’s output index,
Script (signature, public key)

Script (Bitcoin address),
Number of Bitcoins

Output 1

Transaction A Transaction B

Output 1

Output 2

Input 1Input 1

Input 2

Block X Block ZBlock Y

Figure 1.9 Information stored in Bitcoin transactions (courtesy [91])

1.5.1 BITCOIN PAYMENT PROTOCOL

Before describing the formal modelling technique used in [91] to specify the
payment protocol, let us introduce some key concepts of the Bitcoin cryptocurrency.

A Bitcoin address in a Bitcoin network is the hash of an Elliptic Curve (EC)
public key used as an identifier. The address is a pseudonym associated to the user
possessing the corresponding private key. Such private key can be used to claim
bitcoins sent to a user and authorize payments to other parties using ECDSA, the
Elliptic Curve Digital Signature Algorithm. As the probability of collision is negli-
gible considering the length of the output of the hash function, it is possible to safely
assume that these identifiers are unique within the network.

A transaction records the transfer of bitcoins. It includes one or more inputs,
specifying the origin of bitcoins being spent, and one or more outputs, specifying the
new owner’s Bitcoin address and the amount of the transaction (see Figure 1.9). To
authorize the payment, the sender must specify an input consisting of the previous
transaction’s identification hash and an index to one of its outputs, and provide the
corresponding public key and a valid digital signature. The inputs and outputs are
controlled by means of scripts in a Forth-like language specifying the conditions to
claim the bitcoins. The pay-to-pubkey-hash is the most common script to authorize
the payment, requiring a single signature from a Bitcoin address.

The blockchain holds the entire transaction history of the network with a secure
time-stamp [92] and is organized in blocks of transactions. The ledger is an append-
only data structure stored in a distributed way by most users of the network. Solving
a proof of work puzzle allows to append a new transaction to the blockchain. The
nodes that solve proofs of work are called miners, and they are rewarded in bitcoins
for their computational effort. A proof of work problem is computationally difficult
to solve but easy to verify when a solution is provided.

Formal Modeling and Security Analysis of Security Protocols 29

1.5.1.1 Formal Modelling Approach and Formalization
The formal modelling and security analysis of the BIP70 Payment Protocol

presented in [91] involves the symbolic model checker OFMC, and the specification
language AnB. An important reason for adopting this approach is that this toolkit
allows modelling communication channels as abstractions conveying security goals
like authenticity and/or secrecy, without the need to specify the concrete implement-
ation used to enforce such goals. It is therefore possible to rely on the assumptions
provided by such channels. The result is a simpler model that is tractable by the
verifier and can be analysed more efficiently, mitigating the state explosion problem.

Interestingly in AnB channels, agents can be identified by pseudonyms (e.g. eph-
emeral public keys) rather than by their real identities, as in secure channels like TLS
without client authentication. Therefore, the capability of OFMC to verify a range of
different channels specified in AnB makes the tool suitable for this verification effort.
It should be noted that, as discussed in [91], BIP70 runs on top of abstract channels
providing security guarantees, and the specific implementation of the underlying pro-
tocol is not part of the BIP70 specification. Thus, the analysis should be performed
under the assumption that the sufficient conditions for vertical composition (e.g. in
[86]) are satisfied.

The BIP70 Payment Protocol [12] was proposed in 2013 by Andresen and Hearn
and later adopted by the Bitcoin community as a standard. The goal of the protocol
is presented as follows:

“This BIP describes a protocol for communication between a merchant
and their customer, enabling both a better customer experience and bet-
ter security against man-in-the-middle attacks on the payment process.”

The communication channel between the customer and the merchant is strongly
recommended being over HTTPS with the merchant authentication based on a X.509
certificate issued by a trusted Certificate Authority.

The actions performed and messages exchanged during the protocol run are
shown in Figure 1.10. The protocol initiates with the customer clicking on the ‘Pay
Now’ button on the merchant’s website. This generates a Bitcoin payment URI that
enables to open the customer’s Bitcoin wallet and download the Payment Request
from the merchant’s website. The digital signature on the Payment Request can be
verified by the wallet application with the public key of the merchant, checking the
validity of the associated certificate. Provided the previous step is completed suc-
cessfully, the bitcoin amount requested is shown to the customer requesting for au-
thorization of the payment, along with the merchant’s name extracted from the X.509
certificate’s ‘common name’ field. If the user authorizes the payment, the wallet com-
putes a payment transaction and broadcasts such information to the Bitcoin network.
Moreover, transaction and refund addresses within a Payment message are sent back
to the merchant. The merchant then sends back a Payment Acknowledgement to the
customer wallet. Finally, the customer receives a confirmation of the payment when
the transaction is detected on the blockchain.

30 Formal Modeling and Security Analysis of Security Protocols

Click: “Pay Now”

PaymentRequest

Authorise?

Click: “OK”

Payment

transaction

PaymentACK
(optional)
message transactions

Customer Wallet App Merchant Server
Bitcoin P2P

Network

Figure 1.10 BIP70 Payment Protocol overview (courtesy [91], adapted from [12])

Modelling BIP70
This model considers a BIP70 protocol with n (n≥ 1) customers C1, . . . ,Cn and

a single merchant M, as the standard specifies that a transaction may involve more
customers. These agents should be able to trade over Bitcoin, and they should know
the identity of the merchant. Strictly speaking, since multiple customers can cooper-
ate in the payment of a single merchant, the model requires that at least one of the
customers knows the merchant’s name at the beginning of the protocol. However, it
is not required that the merchant knows the identity of the customers. In fact, there
is no provision of a communication mechanism between agents and merchants that
explicitly discloses the real identity of the client. Such one-way authentication can
be customarily achieved using HTTPS, as recommended in BIP70. In this case, the
client has the guarantee that messages are exchanged with the authenticated server,
but the server is only guaranteed that the communication channel is shared with the
same pseudonymous agent. The pseudonym of the agent C1 during the protocol run
is represented by [C1].

The model also assumes that C1 is the only agent that communicates directly with
the merchant, while other agents communicate with C1 to jointly set up the order
for the merchant, using a secure channel (or out-of band). This is in accordance
with the scenario in which payments may be made from multiple pseudonymous
Bitcoin addresses, belonging to one or different entities. It is up to the customer
communicating with the merchant to compose the payment transaction, coordinating
with all the Bitcoin address holders. The model employs two kinds of channels:

• [C1]•→•M represents a secure (secret and authentic) channel between the
client C1 and the merchant M; M can bind the other end point to a pseud-
onym [C1] rather than to the real identity of C.

Formal Modeling and Security Analysis of Security Protocols 31

Identifier Description
BM Merchant Bitcoin address for the current transaction, a public

key freshly generated by M with the corresponding private key
denoted by inv(BM)

BCi Customer Ci Bitcoin address for the current transaction, a
public key freshly generated by Ci, with the corresponding
private key denoted by inv(BCi)

RCi Refund address of customer Ci
B Number of Bitcoins for the current transaction

BCi Number of Bitcoins to be refunded to RCi in case of a refund
t1, t2* Timestamps indicating Payment Request creation and expiry

times, resp.
mM* mC*,

m′M*
Memo messages included in the Payment Request (by M),
Payment (by C), and Payment Acknowledgement (by M)
messages

uM* Payment URL
zM* Payment id provided by the merchant

Table 1.2
Identifiers used to denote the data exchanged (* optional parameters)

• Ci •→•C j represents a secure channel between the clients Ci and C j.

The identifiers used in the messages exchanged during the protocol run are shown
in Table 1.2. Additionally, theH symbol represents the hash function used to gener-
ate Bitcoin addresses and the following definitions are used in the message specific-
ation:

• ωi = BCi ,H(BCi): the previous transaction outputs for customer Ci.
• τCi = tr (ωi): the previous transaction for customer Ci. Future transactions

depend only on unspent/spendable transaction outputs; the function tr that
returns a transaction is parameterized on the output used by Ci in the current
transaction.

• πCi = signinv(BCi)
(H(τ ′Ci),BCi): the transaction input endorsed by Ci.

• π = πC1 , ...,πCn : the transaction input, a list of transaction inputs endorsed
by the customers.

• PaymentRequest = signinv(sk(M))(H(BM),B, t1, t2,mM,uM,zM): the Pay-
ment Request, a message digitally signed with inv(sk(M)), the private key
of M. The associated public key utilized to verify the digital signature, that
we denote as sk(M), is certified by a Certificate Authority and stored in a
X.509 certificate.

• RACi = (RCi ,BCi): the refund address and amount for customer Ci.
• τC = π,(H(BM),B): one or more valid transactions, where π represents the

inputs, and (H(BM),B) represents the output.

32 Formal Modeling and Security Analysis of Security Protocols

Agents’ Initial Knowledge
To keep the model simple, the initial knowledge of a single merchant M and two

customers C1,C2 can be represented as:

• C1 : C1,C2,M,H, tr,sk,paynow;
• C2 : C1,C2,H, tr,sk;
• M : M,H, tr,sk, inv(sk(M)),paynow, t1, t2

Each agent has an identity and access to the hash functionH, the symbolic func-
tion tr and a symbolic function sk for modelling digital signatures. In particular, the
sk function allows customers Ci to retrieve sk(M) the public key of agent M from a
repository, and verify the corresponding X.509 certificate, provided that they know
the name of M.

inv(sk(M)) denotes the private key of M and is known only by M. We should note
that in the AnB language, inv is a private function. Therefore, neither other agents nor
the intruder can use inv to retrieve any agent’s private key.

Initially, M does not know the identities of C1 and C2, while C1 and C2 know
each other as they need to collaborate to build the transaction. However, only C1
knows C2 since C1 will be the only customer interacting with the merchant. Finally,
various constants (t1, t2,paynow) are available to agents.

The initial knowledge can be easily generalized for n customers; it should be
noted that a customer does not need to know all other customers prior to the protocol
run, but at least one. As customers can coordinate as they wish (including out-of-
band communication), only one customer needs to interact with the merchant.

Security Goals
The following security goals are expected to hold after the protocol completion:

• Goal 1: Refund Addresses Authentication. M has a guarantee that all refund
addresses RCi , for all i = 1..n are provided by and linked to the customers
involved in the transaction. In AnB, we denote the goal as:
M weakly authenticates Ci on RCi ,BCi (for all i = 1..n).

• Goal 2: Refund Address Agreement and Secrecy. All refund addresses RCi

are secret and known only by the merchant and the customers involved in
the transaction. In AnB, we denote the goal as:
(RC1 , . . . ,RCn) secret between M,C1, . . . ,Cn.

As the Payment Protocol is built on top of the core Bitcoin protocol and block-
chain, a question that should be considered is whether the Payment Protocol is secure
assuming the core Bitcoin protocol is secure. In this exercise, the security goals that
are expected to be guaranteed by the core Bitcoin protocol and blockchain, such as
the double-spending prevention, are assumed to be satisfied. This is a reasonable as-
sumption as the security properties of the core Bitcoin protocol and blockchain have
been formally proven in previous works [18, 41]. Similarly, we do not explicitly con-
sider the security issues at the lower layers of the networking stack since the formal-
ized model only encompasses the application layer and assumes that protocols such

Formal Modeling and Security Analysis of Security Protocols 33

signinv(sk(M))(H(BM),B| , t1, t2,mM, uM, zM)

zM, τC, (RAC1
, . . . ,RACn

),mC

where RACi
= (RCi

,B| Ci
)

PaymentRequest =

Payment =

PaymentACK =
Payment,m′

M

Click ‘Pay Now’

Broadcast τC

Customer C Merchant M

Detect τC

Figure 1.11 Expanded message contents for the Payment Protocol for C and M. Messages
are sent over an HTTPS communication channel. signinv(sk(M))(X) denotes both the message
X and the digital signature on the message by the private key inv(sk(M)) (courtesy [91]).

as TLS are secure. The approach of considering the security properties of different
layers in isolation is sound, provided that the conditions of the vertical composition
theorem [86] (see 1.3.4) are satisfied. It should be noted that the secrecy goal (2)
prevents eavesdropping, and that known prediction and fixation vulnerabilities have
been addressed by more recent versions of TLS [29, 49].

Protocol Actions
Agents are involved in a sequence of message exchanges over the designated

channel. On the sender’s side, agents should have enough information to compose
the message, based on their initial knowledge and the new knowledge acquired dur-
ing the protocol execution. On the recipient’s side, every agent must decompose the
incoming messages (e.g, decrypting the message or verifying a digital signature) ac-
cording to their current knowledge. For the sake of simplicity, it is assumed that all
public keys are available, at a certain point of the protocol execution, to the intruder
and protocol participants.

[C1]•→•M : paynow C1 clicks ‘Pay Now’
M•→• [C1] : PaymentRequest Payment Request
C1 •→•C2 : RC1M,PaymentRequest,BC1 C1,C2 cooperate -
C2 •→•C1 : RC2 ,πC2 - to build a transaction
[C1]•→•M : zM,τC,RAC1 ,RAC2 ,mC Payment
M•→• [C1] : zM,τC,RAC1 ,RAC2 ,mC,m′M PaymentACK

Protocol Message Details
The format of the Payment Request, Payment, and Payment Acknowledgement

messages is specified by the BIP70 standard. While the documentation only recom-
mends running the protocol over HTTPS, this verification exercise assumes HTTPS
is used. Moreover, although the standard supports payment via multiple transactions,

34 Formal Modeling and Security Analysis of Security Protocols

the details of the messages considered here are for the case where the customer pays
through a single transaction. The formalization and verification results can be easily
extended to the case where a payment is made through multiple transactions. The
protocol messages are modelled as follows:

• The Payment Request consists of the recipient’s Bitcoin address H(BM),
requested Bitcoin amount B, timestamps t1, t2 corresponding to the request
creation and expiry times, a ‘memo’ field mM for a note showed to the cus-
tomer, the payment URL uM where the payment message should be sent,
and an identifier zM for the merchant to link subsequent payment messages
with this request. All the fields are collectively signed by the merchant us-
ing their private key denoted by inv(sk(M)), corresponding to their X.509
certificate public key.

• The Payment message consists of the merchant’s identifier zM, the payment
transaction τC, a list of pairs of the form RACi = (RCi ,BCi) each containing
the refund address RCi , the amount to be paid to that address BCi in case of
refund, and an optional customer ‘memo’ field mC.

• The Payment Acknowledgement consists of a copy of the Payment message
sent by the customer and an optional ‘memo’ m′M to be shown to the cus-
tomer.

The Payment Protocol messages are shown Figure 1.11. Note that the Payment
message, and especially the refund addresses provided therein, are not signed by the
customer, and although protected by HTTPS, they can be subsequently repudiated by
the customer. This is an underlying weakness that allows the Silkroad Trader attack
discovered by McCorry et al. [79].

1.5.1.2 Main Results of BIP70 Security Verification
The formal model presented in [91] is encoded in the AnBx language [37], an

extension of the AnB language supported by OFMC, allowing for macro definitions,
functions type signatures and stricter type checking. The model was not tested with
ProVerif because this tool does not support pseudonymous channels.

The tests were run on a Windows 10 PC, with Intel Core i7 4700HQ 2.40 GHz
CPU with 16 GB RAM and the model was verified for a single session in OFMC in
the classic and typed mode. As a result, the model demonstrated that both authentic-
ation and secrecy goals were violated. The attack was found in 2.34 seconds.

The authentication goal M weakly authenticates Ci on RCi ,BCi states that for all
customers (i= 1..n), the merchant can have a guarantee of endorsement of the refund
addresses and amounts.

In particular, the goal is violated because it is not possible to verify the non-
injective agreement [77] between the construction of RACi = (RCi ,BCi) done by Ci
and the corresponding values received by M. This is possible because the customers
are not required to endorse the value (RCi ,BCi) using digital signatures. Therefore, a
compromised or dishonest client can easily manipulate the refund address and per-
form the Silkroad Trader attack [79], where a customer can route Bitcoin payments

Formal Modeling and Security Analysis of Security Protocols 35

through an honest merchant to an illicit trader and later deny their involvement.
The secrecy goal (RC1 , . . . ,RCn) secret between M,C1, . . . ,Cn is also violated.

The definition of secrecy used in the model implies that all members of the secrecy
set know the secret values and agree on them. But in this case, due to a lack of
authentication, the customer who is communicating with the merchant can convince
other customers that the refund address it is using is different from the one sent to
the merchant. For example, RC2 , the refund address of the second customer can be
easily replaced with a different address by C1 before being communicated to M.

It should be noted that, in general, with the automated verification, it is not pos-
sible to validate a specific attack trace known a priori, and the analysis usually aims
at assessing the absence or presence of at least an attack trace that leads to a vi-
olation of a security goal. In particular, in order to verify the protocol, the model
checker OFMC builds a state-transition system, and given the initial configuration,
analyses the possible transitions in order to see if any attack state is reachable in the
presence of an active attacker. Therefore, the presence of a specific attack trace is not
automatically confirmed, rather such automated verification helps to decide whether
any attack trace is present or absent, where an attack trace is defined as a sequence
of steps leading to a violation of a given security goal. In order to verify a protocol’s
security, the most important thing is to guarantee the absence of any attack trace.

1.5.2 E-COMMERCE PROTOCOLS

We consider here the specification of a wide and interesting class of protocols,
namely e-payment protocols, showing how AnBx naturally provides all the necessary
primitives to reason about the required high-level security. The case studies we con-
sider are the iKP and SET e-payment protocols, showing how AnBx lends itself to a
robust and modular design that captures the increasing level of security enforced by
the protocols in the family, depending on the number of agents possessing a certified
signing key. Interestingly, as a by-product of these design and verification efforts, a
new flaw was identified in the original iKP specification and a fix proposed.

1.5.2.1 A Basic e-Payment Scheme

The figure above shows an outline of a bare-bones specification of an e-payment
protocol: this abstraction allows us to introduce here many concepts which are com-
mon to both of the examples considered.

We assume three agents: a Customer C, a Merchant M and an Acquirer A, i.e. a
financial institution entitled to process the payment. In the model, each agent starts
with an initial knowledge, which may be partially shared with other participants. In-
deed, since most e-payment protocols describe only the payment transaction and do
not consider any preliminary phase, we assume that the Customer and the Merchant

36 Formal Modeling and Security Analysis of Security Protocols

have already agreed on the details of the transaction, including an order description
(desc) and a price. We also assume that the Acquirer shares with the Customer a
customer’s account number (can) comprised of a credit card number and the related
PIN. The initial knowledge of the three parties can thus be summarized as follows:
C knows price, desc, can; M knows price, desc; and A knows can.

The transaction can be decomposed into the following steps:

1. C→M : Initiate
2. C←M : Invoice

(In steps 1 and 2 the Customer and the Merchant exchange all the information
which is necessary to compose the next payment messages.)

3. C→M : Payment Request
4. M→ A : Authorization Request

(In steps 3 and 4 the Customer sends a payment request to the Merchant. The
Merchant uses this information to compose an authorization request for the
Acquirer and try to collect the payment.)

5. M← A : Authorization Response
6. C←M : Confirm

(In steps 5 and 6 the Acquirer processes the transaction information, and then
relays the purchase data directly to the issuing bank, which actually authorizes
the sale in accordance with the Customer’s account. This interaction is not part
of the narration. The Acquirer returns a response to the Merchant, indicating
success or failure of the transaction. The Merchant then informs the Customer
about the outcome.)

Interestingly, steps (4) and (6) involve forwarding operations, since the Customer
never communicates directly with the Acquirer. Still, some credit-card information
from the Customer must flow to the Acquirer through the Merchant to compose a
reasonable payment request, while the final response from the Acquirer must flow to
the Customer through the Merchant to provide evidence of the transaction.

Besides some elements of the initial knowledge, other information needs to be
exchanged in the previous protocol template. First, to make transactions unequivoc-
ally identifiable, the Merchant generates a fresh transaction ID (tid) for each different
transaction. Second, the Merchant associates a date to the transaction or any appro-
priate timestamp. Both pieces of information must be communicated to the other
parties. The transaction is then identified by a contract, which comprises most of the
previous information: if Customer and Merchant reach an agreement on it, and they
can prove this to the Acquirer, then the transaction can be completed successfully.
The details on the structure of the contract vary among different protocols. At the
end of the transaction, the authorization auth is then returned by the Acquirer, and
communicated to the two other participants.

We note that two main confidentiality concerns arise in the previous process: on
the one hand, the Customer typically wishes to avoid leaking credit-card information
to the Merchant; on the other hand, the Customer and the Merchant would not let
the Acquirer know the details of the order or the services involved in the transaction.
Specific protocols address such an issue in different ways, as we detail below.

Formal Modeling and Security Analysis of Security Protocols 37

Message Formats
In the case studies, a message M may be a name m, a tuple of messages (M̃), or a

message digest. Much in the spirit of the AnBx channel abstractions, in fact, it turns
out that we can abstract from most explicit cryptographic operations in the examples.
Namely, the only transformation on data which we need to consider is the creation
of a digest [M] to prove the knowledge of a message M without leaking it.

We also consider digests which are resistant to dictionary attacks, hence presup-
pose an implementation based on a hashing scheme that combines the message M
with a key shared only with the agent which must verify the digest. We note with
[M:A] a digest of a message M which is intended to be verified only by A; hash and
hmac functions can be used to implement this in a standard way.

Protocol goals
A first goal we would like to satisfy for an e-payment system is that all the agents

agree on the contract they sign. In terms of security goals, this corresponds to re-
quiring that each participant can authenticate the other two parties on the contract.
Moreover, the Acquirer should be able to prove to the other two parties that the pay-
ment has been authorized and the associated transaction performed: in OFMC this
can be represented by requiring that M and C authenticate A on the authorization
auth.

A stronger variant of the goals described above requires that, after completion of
a transaction, each participant is able to provide a non-repudiable proof of the effect-
ive agreement by the other two parties on the terms of the transaction. In principle,
each agent may wish to have sufficient proofs to convince an external verifier that the
transaction was actually carried out as it claims. The lack of some of these provable
authorizations does not necessarily make the protocol insecure, but it makes disputes
between the parties difficult to settle, requiring to rely on evidence provided by other
parties or to collect off-line information.

In summary, the authentication goals we would like to achieve are the following:

1. M authenticates C on [contract], to give evidence to M that C has authorized
the payment to M.

2. C authenticates M on [contract], to give evidence to C on the terms of the
purchase that M has settled with C.

3. A authenticates C on [contract], to give evidence to A that C authorized A to
transfer the money from A’s account to M.

4. A authenticates M on [contract], to give evidence to A that M has requested
the transfer of the money to M’s account.

5. C authenticates A on [contract],auth, to give evidence to C that A authorized
the payment and performed the transaction.

6. M authenticates A on [contract],auth, to give evidence to M that A authorized
the payment and performed the transaction.

Finally, we are also interested in some secrecy goals, like verifying that the Cus-
tomer’s credit card information can is kept confidential, and transmitted only to the

38 Formal Modeling and Security Analysis of Security Protocols

Acquirer. In general, we would like to keep the data exchanged secret among the
expected parties. All validated protocol goals are reported for each case study.

1.5.3 IKP PROTOCOL FAMILY

mode/step → 1KP 2KP 3KP
η1 C→M (−|−|−) (−|−|M) @(C |M |M)
η2 C←M (−|−|−) @(M |C |−) @(M |C |C)
η3 C→M (−|−|A) (−|−|A) (C |A |A)
η4a M→ A (−|−|A) (−|−|A) (C |A |A)
η4b M→ A (−|−|A) @(M |A |A) @(M |A |A)
η5 M← A @(A |C,M |−) @(A |C,M |M) @(A |C,M |M)
η6 C←M (A |C,M |−) (A |C,M |−) (A |C,M |C)

certified
agents

A M,A C,M,A

Table 1.3
Exchange modes for the revised iKP e-payment protocol

1KP 2KP 3KP
Goal O R O R O R
can secret between C,A + + + + + +
A weakly authenticates C on can – – – – + +
desc secret between C,M + + + + + +
auth secret between C,M,A – – – – – +
price secret between C,M,A – – – + – +
M authenticates A on auth +* + +* + +* +
C authenticates A on auth + + + + + +
A authenticates C on [contract] – – – – w +
M authenticates C on [contract] – – – – + +
A authenticates M on [contract] – – + + w +
C authenticates M on [contract] – – +* + +* +
C authenticates A on [contract],auth + + + + + +
M authenticates A on [contract],auth +* + +* + +* +

* goal satisfied only after fixing the definition of SigA as in [39]
w = only weak authentication

Table 1.4
Security goals satisfied by Original and Revised iKP

Formal Modeling and Security Analysis of Security Protocols 39

The iKP protocol family was developed at IBM Research [26, 95] to support
credit card-based transactions between customers and merchants (under the assump-
tion that payment clearing and authorization may be handled securely off-line). All
protocols in the family are based on public-key cryptography. The idea is that, de-
pending on the number of parties that own certified public key-pairs, we can achieve
increasing levels of security, as reflected by the name of the different protocols (1KP,
2KP, and 3KP).

1.5.3.1 Protocol Narration
Despite the complexity of iKP, by abstracting from cryptographic details, we can

isolate a common communication pattern underlying all the protocols of the family.
Namely, a common template can be specified as follows:

1. C→M,η1 : [can:A], [desc:M]
2. C←M,η2 : price, tid,date, [contract]
3. C→M,η3 : price, tid,can, [can:A], [contract]
4. M → A (decomposed into two steps to specify different communication

modes)

a. M→ A,η4a : price, tid,can, [can:A], [contract]
b. M→ A,η4b : price, tid,date, [desc:M], [contract]

5. M← A,η5 : auth, tid, [contract]
6. C←M,η6 : auth, tid, [contract]

with contract = (price, tid,date, [can:A], [desc:M]).
By instantiating the exchange modes η j in the previous scheme, one may gener-

ate the AnBx variants of the different protocols in the iKP family, achieving different
security guarantees: this is exactly what is shown in Table 1.3. Notice that all the
considered protocols rely on blind forwarding at step 4 to communicate sensitive
payment information from the Customer to the Acquirer, without disclosing them to
the Merchant. Moreover, a forwarding operation is employed at step 6 to preserve
the authenticity of the response by the Acquirer.

1.5.3.2 Main Results of iKP Security Verification
The AnBx protocols described above were verified in [39, 37] and a correspond-

ing analysis of the original specifications of {1,2,3}KP, as amended in [94], was
carried out. Below, we refer to this amended version as the “original” iKP, to be
contrasted with the “revised” AnBx version in Table 1.3. In both cases, the tests were
run assuming that the Acquirer is trusted, i.e. encoded as a concrete agent a rather
than as a role A; this is often a reasonable assumption in e-payment applications.
As mentioned earlier, the AnBx specifications are not just more scalable and remark-
ably simpler, but they also provide stronger security guarantees, which are detailed
in Table 1.4 and commented further below.

The AnBx specifications of iKP (and SET, see 1.5.4) were compiled into their
respective cryptographic implementations with the AnBx compiler. We then verified

40 Formal Modeling and Security Analysis of Security Protocols

the generated CCM translation with OFMC [84] against the described security goals.
The authors also encoded and verified the original versions of iKP, and compared the
results with those of the revised versions.

The tests with OFMC were done with one and two symbolic sessions. This
bounds how many protocol executions the honest agents can engage in, while the in-
truder is left unbounded thanks to the symbolic lazy intruder technique in OFMC, but
with two sessions it was not possible to complete the full verification due to search
space explosion. However, by translating the AnBx specification with the AnBx com-
piler to ProVerif (see [89]), it is possible to verify the protocol for an unbounded
number of sessions.

During the analysis of the original 2KP and 3KP, a new flaw was found [39]. It is
related to the authenticity of the Authorization response auth that is generated by the
Acquirer and then sent to the other agents at steps 5 and 6. In particular, the starred
goals in Table 1.4 are met only after changing the protocol by adding the identities of
Merchant and Customer inside the signature of the Acquirer in the original specifica-
tion. In 2KP, since the Customer is not certified, this can be done with an ephemeral
identity derived from the credit card number. It is worth noting that, after the com-
pletion of the revised and the amended original 3KP, each party has evidence of
transaction authorization by the other two parties, since the protocol achieves all the
authentication goals that can ideally be satisfied, according to the number of certified
agents. Moreover, the revised 3KP, with respect to the original version, provides the
additional guarantee of preserving the secrecy of the authorization response auth.

In contrast, the original 3KP protocol, the strongest proposed version, fails in two
authentication goals: A can only weakly authenticate M and C on [contract]. Luckily,
if the transaction ID tid is unique, this is only a minor problem, since [contract]
should also be unique, i.e. two different contracts cannot be confused.

1.5.4 SET PURCHASE PROTOCOL

Secure Electronic Transaction (SET) is a family of protocols for securing credit
card transactions over insecure networks. This standard was proposed by a consor-
tium of credit card and software companies led by Visa and MasterCard and in-
volving organizations like IBM, Microsoft, Netscape, RSA and Verisign. The SET
purchase protocol specification considered here is the one described in [25], where
signed and unsigned variants of SET are presented: in the former all the parties pos-
sess certified key-pairs, while in the latter the Customer does not. We describe here
the AnBx models of both variants of the original SET protocol, and show how, us-
ing the notion of AnBx channels, it is possible to re-engineer the protocol and obtain
stricter security guarantees than in the original specification.

1.5.4.1 Protocol Narration
Given the complexity of SET, to ease the comparison with other works on such a

protocol, in this presentation the information exchanged by the agents is denoted with
the names commonly used in SET specifications. We introduce some basic concepts

Formal Modeling and Security Analysis of Security Protocols 41

of the protocol by simply providing a mapping of the exchanged data to the corres-
ponding information in the bare-bones specification presented in Section 1.5.2: this
should clarify the role of most of the elements.

We can identify PurchAmt with price, OrderDesc with desc, pan with can and
AuthCode with auth. The initial knowledge of the three parties can then be summar-
ized as follows: C knows PurchAmt, OrderDesc and pan; M knows PurchAmt and
OrderDesc; A knows pan.

During the protocol run, the agents generate some identifiers: LIDM is a local
transaction identifier that the Customer sends to the Merchant, while the Mer-
chant generates another session identifier XID; we denote the pair (LIDM,XID) with
TID. Finally, we complete the abstraction by stipulating OIdata = OrderDesc and
PIdata = pan; we let HOD = ([OIdata:M], [PIdata:A]). The latter contains the evid-
ence (digest) of the credit card that the Customer intends to use, and the evidence of
the order description that will later be forwarded to the Acquirer.

In the model, HOD plays the role of the dual signature, a key cryptographic
mechanism applied in SET, used to let the Merchant and the Acquirer agree on the
transaction without needing to disclose all the details. More precisely, the Merchant
does not need the customer’s credit card number to process an order, but only needs to
know that the payment has been approved by the Acquirer. Conversely, the Acquirer
does not need to be aware of the details of the order, but just needs evidence that a
particular payment must be processed.

Although many papers on SET [25, 34, 107] focus on the signed version of the
protocol, we note that both versions expose a common pattern which allows for an
easy specification in AnBx. The following narration allows to expose the common
structure of the protocols:

1. C→M,η1 : LIDM
2. M→C,η2 : XID
3. C→M (decomposed in two steps to specify different communication modes)

a. C→M,η3a : TID,HOD
b. C→M,η3b :TID,PurchAmt,HOD,PIdata

4. M→ A (decomposed in two steps to specify different communication modes)

a. M→ A,η4a : TID,PurchAmt,HOD,PIdata
b. M→ A,η4b : TID,PurchAmt,HOD

5. A→M,η5 : TID,HOD,AuthCode
6. M→C,η6 : TID,HOD,AuthCode

Table 1.5 shows the communication modes we specify to instantiate the previous
protocol template with the revised unsigned and signed versions of SET.

1.5.4.2 Main Results of SET Security Verification
The AnBx specifications of the SET purchase protocol were verified with OFMC

and ProVerif. With OFMC, the models were verified for 2 sessions, by incrementing
the depth of the search space, up to the available RAM (16Gb). ProVerif allows

42 Formal Modeling and Security Analysis of Security Protocols

mode/step → unsigned SET signed SET
η1 C→M (−|−|M) @(C |M |M)
η2 C←M @(M |C |−) @(M |C |C)
η3a C→M (−|−|M) @(C |M |M)
η3b C→M (−|−|A) (C |A |A)
η4a M→ A (−|−|A) (C |A |A)
η4b M→ A @(M |A |A) @(M |A |A)
η5 M← A @(A |C,M |M) @(A |C,M |M)
η6 C←M @(A |C,M |−) @(A |C,M |C)

certified
agents

M,A C,M,A

Table 1.5
Exchange modes for the revised SET e-payment protocol

unsigned SET signed SET
Goal O R O R
pan secret between C,A + + + +
A weakly authenticates C on pan – + + +
OrderDesc secret between C,M + + + +
PurchAmt secret between C,M,A – – + +
AuthCode secret between C,M,A – – – +
M authenticates A on AuthCode + + + +
C authenticates A on AuthCode – + – +
C authenticates M on AuthCode +* + +* +
A authenticates C on contract w + w +
M authenticates C on contract – + + +
A authenticates M on contract – + – +
C authenticates M on contract + + + +
C authenticates A on contract,AuthCode – + – +
M authenticates A on contract,AuthCode + + + +
* goal satisfied only after fixing step 5 as in [25]
w = only weak authentication
for Revised SET: contract = PriceAmt,T ID, [PIData:A], [OIData:M]
for Original SET: contract = PriceAmt,T ID,hash(PIData),hash(OIData)

Table 1.6
Security goals satisfied by Original and Revised SET purchase protocol

to verify an unbounded number of sessions, but in some cases the goals cannot be
proved, due to the internal mechanisms of ProVerif and the fact that, in general,

Formal Modeling and Security Analysis of Security Protocols 43

verifying protocols for an unbounded number of sessions is undecidable.
The results show that the revised versions of the protocols satisfy stronger secur-

ity guarantees than the original ones [25], as reported in Table 1.6. It is worth noting,
in particular, that the revised versions do not suffer from two known flaws affecting
the original SET specification. The first flaw [25] involves the fifth step of the pro-
tocol, where it is not possible to unequivocally link the identities of the Acquirer and
the Merchant with the ongoing transaction and the authorization code. Namely, the
original message should be amended to include the identity of the merchant M, oth-
erwise the goal “C authenticates M on AuthCode” cannot be satisfied. In the revised
version, the exchange at step 5 is automatically compiled into a message including
the identities of both the Merchant and the Customer, so the problem is solved.

The same implementation also prevents the second flaw, presented in [34]. In that
paper, the specification of the protocol is more detailed than in [25], as it introduces
an additional field AuthRRTags, which includes the identity of the Merchant. We
tested the version of SET presented in [34] with OFMC and verified the presence
of the flaw, namely an attack against the purchase phase, which exploits a lack of
verification in the payment authorization process. It may allow a dishonest Customer
to fool an honest Merchant when collaborating with another dishonest Merchant.
The attack is based on the fact that neither LIDM nor XID can be considered unique,
so they cannot be used to identify a specific Merchant. Therefore, the customer can
start a parallel purchase with an accomplice playing the role of another merchant, and
make the Acquirer authorize the payment in favour of the accomplice. Here again,
the goal “C authenticates M on AuthCode” fails.

During the analysis, we also verified that both the original specifications [25, 34]
fail to verify the goals “C authenticates A on AuthCode” and “C authenticates M
on contract,AuthCode”. To overcome this problem, the protocol must be fixed in
the sixth (and final) step, as already outlined in [107]. This issue arises from the
fact that the Customer does not have any evidence of the origin of AuthCode by the
Acquirer and instead has to rely only on information provided by the Merchant. For
example, giving to the Customer a proof that the Acquirer authorized the payment
requires a substantial modification of the sixth step of the protocol. In fact, instead of
letting the Merchant sign a message for the Customer, we exploit the AnBx forward
mode to bring to the Customer the authorization of the payment signed directly by
the Acquirer. It is worth noticing that, employing a fresh forward mode in the sixth
step, we can achieve the desired strong authenticity goal on the pair, even though the
transaction identifier is not unique.

The results confirm what is outlined in [107], in showing that, while iKP meets
all the non-repudiation goals, the original specification of SET does not. It is import-
ant to notice that, to achieve non-repudiation, each participant must have sufficient
proofs to convince an external verifier that the transaction was actually carried out
as it claims. A way to obtain this is to assume that the authentication is obtained
by means of digital signatures computed with keys which are valid within a Public
Key Infrastructure and are issued by a trusted third party (Certification Authority).
Although this limits the way authentic channels in AnBx could be implemented, in
practice it does not represent a significant restriction, since in the considered proto-

44 Formal Modeling and Security Analysis of Security Protocols

cols, digital signatures are the standard means of authentication.

1.6 CONCLUSION
In this chapter, we consider the formalization of security protocols with the pur-

pose of automatically verifying if they satisfy their expected security goals. We also
discussed theoretical and practical challenges in automated verification, along with
different specification languages and verification tools available. The case studies
demonstrated the practical applicability of some of these tools and techniques to
real-world security protocols.

REFERENCES
1. Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure commu-

nication. In Chris Hankin and Dave Schmidt, editors, Conference Record of POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, January 17-19, 2001, pages 104–115. ACM, 2001.

2. Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communica-
tion. ACM SIGPLAN Notices, 36(3):104–115, 2001.

3. Martı́n Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of chan-
nel abstractions. Information and Computation(Print), 174(1):37–83, 2002.

4. Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
Spi calculus. In CCS ’97, Proceedings of the 4th ACM Conference on Computer and
Communications Security, Zurich, Switzerland, April 1-4, 1997, pages 36–47. ACM,
1997.

5. Joel C Adams. Object-centered design: a five-phase introduction to object-oriented
programming in cs1–2. In ACM SIGCSE Bulletin, volume 28, pages 78–82. ACM,
1996.

6. Pedro Adão, Paulo Mateus, and Luca Viganò. Protocol insecurity with a finite number
of sessions and a cost-sensitive guessing intruder is np-complete. Theoretical Com-
puter Science, 538:2–15, 2014.

7. Giora Alexandron, Michal Armoni, Michal Gordon, and David Harel. Scenario-based
programming: reducing the cognitive load, fostering abstract thinking. In Compan-
ion Proceedings of the 36th International Conference on Software Engineering, pages
311–320. ACM, 2014.

8. Omar Almousa, Sebastian Mödersheim, Paolo Modesti, and Luca Viganò. Typing and
compositionality for security protocols: A generalization to the geometric fragment. In
Computer Security - ESORICS 2015 - 20th European Symposium on Research in Com-
puter Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part II, pages
209–229, 2015.

9. Omar Almousa, Sebastian Mödersheim, and Luca Viganò. Alice and Bob: Reconciling
formal models and implementation. In Chiara Bodei, Gian-Luigi Ferrari, and Corrado

Formal Modeling and Security Analysis of Security Protocols 45

Priami, editors, Programming Languages with Applications to Biology and Security:
Essays Dedicated to Pierpaolo Degano on the Occasion of His 65th Birthday, volume
9465 of Lecture Notes in Computer Science, pages 66–85. Springer International Pub-
lishing, 2015.

10. Roberto M. Amadio and Witold Charatonik. On name generation and set-based ana-
lysis in the dolev-yao model. In Lubos Brim, Petr Jancar, Mojmı́r Kretı́nský, and
Antonı́n Kucera, editors, CONCUR 2002 - Concurrency Theory, 13th International
Conference, Brno, Czech Republic, August 20-23, 2002, Proceedings, volume 2421 of
Lecture Notes in Computer Science, pages 499–514. Springer, 2002.

11. Suzana Andova, Cas Cremers, Kristian Gjøsteen, Sjouke Mauw, Stig Fr. Mjølsnes, and
Sasa Radomirovic. A framework for compositional verification of security protocols.
Inf. Comput., 206(2-4):425–459, 2008.

12. G. Andresen and M. Hearn. BIP 70: Payment Protocol. Bitcoin Improvement Pro-
cess, July 2013. https://github.com/bitcoin/bips/blob/master/bip-0070.
mediawiki.

13. Apache Foundation. The Apache Ant Project, 2019. http://ant.apache.org.

14. Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark Dermot Ryan. Statverif: Veri-
fication of stateful processes. Journal of Computer Security, 22(5):743–821, 2014.

15. A. Armando and L. Compagna. SATMC: A SAT-based model checker for security
protocols. Lecture Notes in Computer Science, pages 730–733, 2004.

16. Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto
Calvi, Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, et al. The AVANTSSAR platform for the automated validation of trust
and security of service-oriented architectures. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 267–282. Springer, 2012.

17. Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca Com-
pagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko,
Jacopo Mantovani, et al. The AVISPA tool for the automated validation of internet
security protocols and applications. In Computer Aided Verification, pages 281–285.
Springer, 2005.

18. Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model
of bitcoin transactions. In Meiklejohn and Sako, editors, Financial Cryptography and
Data Security (FC 2018), volume 10957 of LNCS, pages 541–560. Springer, 2018.

19. Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. Formal verification of security pro-
tocol implementations: a survey. Formal Aspects of Computing, 26(1):99–123, 2014.

20. Tigran Avanesov, Yannick Chevalier, Michaël Rusinowitch, and Mathieu Turuani. In-
truder deducibility constraints with negation. decidability and application to secured
service compositions. Journal of Symbolic Computation, 80:4–26, 2017.

21. AVISPA. Deliverable 2.3: The Intermediate Format. Available at www.

avispa-project.org, 2003.

46 Formal Modeling and Security Analysis of Security Protocols

22. Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. Sok: Computer-aided cryptography. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 777–795. IEEE, 2021.

23. Henk Barendregt and Herman Geuvers. Proof-assistants using dependent type sys-
tems. In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 1149–1238. Elsevier and MIT Press, 2001.

24. David A. Basin, Michel Keller, Sasa Radomirovic, and Ralf Sasse. Alice and bob meet
equational theories. In Narciso Martı́-Oliet, Peter Csaba Ölveczky, and Carolyn L.
Talcott, editors, Logic, Rewriting, and Concurrency - Essays dedicated to José Meseg-
uer on the Occasion of His 65th Birthday, volume 9200 of Lecture Notes in Computer
Science, pages 160–180. Springer, 2015.

25. G. Bella, F. Massacci, and L.C. Paulson. Verifying the SET purchase protocols. Journal
of Automated Reasoning, 36(1):5–37, 2006.

26. M. Bellare, JA Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik,
E. Van Herreweghen, and M. Waidner. Design, implementation, and deployment of the
iKP secure electronic payment system. IEEE Journal on Selected Areas in Communic-
ations, 18(4):611–627, 2000.

27. Mordechai Ben-Ari. Constructivism in computer science education. Journal of Com-
puters in Mathematics and Science Teaching, 20(1):45–74, 2001.

28. Mordechai Ben-Ari and Tzippora Yeshno. Conceptual models of software artifacts.
Interacting with Computers, 18(6):1336–1350, 2006.

29. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In 2017 IEEE Sym-
posium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages
483–502. IEEE Computer Society, 2017.

30. Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Computer Security Foundations Workshop, IEEE, pages 0082–0082. IEEE Computer
Society, 2001.

31. Bruno Blanchet. A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

32. Bruno Blanchet, Vincent Cheval, and Véronique Cortier. ProVerif with Lemmas, In-
duction, Fast Subsumption, and Much More. In 43RD IEEE Symposium on Security
and Privacy (S&P’22), San Francisco, United States, May 2022.

33. Bruno Blanchet et al. Modeling and verifying security protocols with the applied pi
calculus and proverif. Foundations and Trends® in Privacy and Security, 1(1-2):1–
135, 2016.

34. S. Brlek, S. Hamadou, and J. Mullins. A flaw in the electronic commerce protocol
SET. Information Processing Letters, 97(3):104–108, 2006.

35. Jerome S Bruner. The Process of Education. Harvard University Press, 2009.

Formal Modeling and Security Analysis of Security Protocols 47

36. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

37. Michele Bugliesi, Stefano Calzavara, Sebastian Mödersheim, and Paolo Modesti. Se-
curity protocol specification and verification with anbx. Journal of Information Secur-
ity and Applications, 30:46–63, 2016.

38. Michele Bugliesi and Riccardo Focardi. Language based secure communication. In
Computer Security Foundations Symposium, 2008. CSF’08. IEEE 21st, pages 3–16,
2008.

39. Michele Bugliesi and Paolo Modesti. AnBx-Security protocols design and verification.
In Automated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security: Joint Workshop, ARSPA-WITS 2010, pages 164–184. Springer-Verlag, 2010.

40. Michael Burrows, Martı́n Abadi, and Roger M. Needham. A logic of authentication.
ACM Transactions on Computer Systems, 8(1):18–36, 1990.

41. Kaylash Chaudhary, Ansgar Fehnker, Jaco van de Pol, and Mariëlle Stoelinga. Mod-
eling and verification of the bitcoin protocol. In van Glabbeek, Groote, and Höfner,
editors, Proceedings Workshop on Models for Formal Analysis of Real Systems,
MARS 2015, volume 196 of EPTCS, pages 46–60, 2015.

42. Ştefan Ciobâcă and Véronique Cortier. Protocol composition for arbitrary primitives.
In Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, July 17-19, 2010, pages 322–336. IEEE Computer
Society, 2010.

43. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
1994.

44. Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How to
get rid of some algebraic properties. In Jürgen Giesl, editor, Term Rewriting and Ap-
plications, 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005,
Proceedings, volume 3467 of Lecture Notes in Computer Science, pages 294–307.
Springer, 2005.

45. Véronique Cortier and Stéphanie Delaune. Safely composing security protocols.
Formal Methods in System Design, 34(1):1–36, 2009.

46. Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of algebraic
properties used in cryptographic protocols. Journal of Computer Security, 14(1):1–43,
2006.

47. Camille Coti, Laure Petrucci, César Rodrı́guez, and Marcelo Sousa. Quasi-optimal
partial order reduction. Formal Methods in System Design, 57(1):3–33, 2021.

48. C. Cremers and P. Lafourcade. Comparing state spaces in automatic security protocol
verification. In Proceedings of the 7th International Workshop on Automated Verific-
ation of Critical Systems (AVoCS’07), Oxford, UK, September, pages 49–63. Citeseer,
2007.

48 Formal Modeling and Security Analysis of Security Protocols

49. Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe.
A comprehensive symbolic analysis of TLS 1.3. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2017), pages 1773–
1788. ACM, 2017.

50. Cas JF Cremers. The scyther tool: Verification, falsification, and analysis of security
protocols. In Computer Aided Verification, pages 414–418. Springer, 2008.

51. Melissa Dark, Steven Belcher, Matt Bishop, and Ida Ngambeki. Practice, practice,
practice... secure programmer! In Proceeding of the 19th Colloquium for Information
System Security Education, 2015.

52. Stéphanie Delaune and Lucca Hirschi. A survey of symbolic methods for establish-
ing equivalence-based properties in cryptographic protocols. Journal of Logical and
Algebraic Methods in Programming, 87:127–144, 2017.

53. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on
Information Theory, 2(29), 1983.

54. Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf Sasse. Beyond subterm-
convergent equational theories in automated verification of stateful protocols. In Mat-
teo Maffei and Mark Ryan, editors, Principles of Security and Trust - 6th International
Conference, POST 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10204 of Lecture Notes in Computer Science, pages 117–140. Springer,
2017.

55. Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al. The
matter of heartbleed. In Proceedings of the 2014 Conference on Internet Measurement
Conference, pages 475–488. ACM, 2014.

56. Santiago Escobar, Catherine A. Meadows, and José Meseguer. Maude-npa: Crypto-
graphic protocol analysis modulo equational properties. In Alessandro Aldini, Gilles
Barthe, and Roberto Gorrieri, editors, Foundations of Security Analysis and Design V,
FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer
Science, pages 1–50. Springer, 2007.

57. Shimon Even and Oded Goldreich. On the security of multi-party ping-pong protocols.
In 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona,
USA, 7-9 November 1983, pages 34–39. IEEE Computer Society, 1983.

58. Leo Freitas, Paolo Modesti, and Martin Emms. A Methodology for Protocol Veri-
fication applied to EMV. In Formal Methods: Foundations and Applications - 21th
Brazilian Symposium, SBMF 2018, Salvador, Brazil, November 28-30, 2018, Proceed-
ings, volume 11254 of Lecture Notes in Computer Science. Springer, 2018.

59. Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. The 2020 expert survey on
formal methods. In Maurice H. ter Beek and Dejan Nickovic, editors, Formal Methods
for Industrial Critical Systems - 25th International Conference, FMICS 2020, Vienna,
Austria, September 2-3, 2020, Proceedings, volume 12327 of Lecture Notes in Com-
puter Science, pages 3–69. Springer, 2020.

Formal Modeling and Security Analysis of Security Protocols 49

60. Rémi Garcia and Paolo Modesti. An IDE for the design, verification and implement-
ation of security protocols. In 2017 IEEE International Symposium on Software Re-
liability Engineering Workshops, ISSRE Workshops 2017, Toulouse, France, October
23-26, 2017, pages 157–163, 2017.

61. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer, 1996.

62. Kurt Gödel. On formally undecidable propositions of principia mathematica and re-
lated systems. The undecidable. Hew, 1964.

63. Sébastien Gondron and Sebastian Mödersheim. Vertical composition and sound pay-
load abstraction for stateful protocols. In 34th IEEE Computer Security Foundations
Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pages 1–16. IEEE,
2021.

64. L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Platform Security: Architecture,
Api Design, and Implementation. Addison-Wesley, 2003.

65. Thomas Groß and Sebastian Mödersheim. Vertical protocol composition. In Proceed-
ings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-
la-Ville, France, 27-29 June, 2011, pages 235–250. IEEE Computer Society, 2011.

66. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal of
Computer Security, 22(2):203–267, 2014.

67. Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint en-
cryption. In Proceedings of the 13th IEEE Computer Security Foundations Workshop,
CSFW ’00, Cambridge, England, UK, July 3-5, 2000, pages 24–34. IEEE Computer
Society, 2000.

68. Bruria Haberman and Yifat Ben-David Kolikant. Activating ”black boxes” instead of
opening ”zipper”- a method of teaching novices basic cs concepts. In Proceedings of
the 6th Annual Conference on Innovation and Technology in Computer Science Edu-
cation, ITiCSE ’01, pages 41–44, New York, NY, USA, 2001. ACM.

69. Said Hadjerrouit. A constructivist framework for integrating the java paradigm into
the undergraduate curriculum. In ACM SIGCSE Bulletin, volume 30, pages 105–107.
ACM, 1998.

70. Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model checking.
Journal of Automated Reasoning, 64(6):1051–1091, 2020.

71. Andreas V. Hess, Sebastian Alexander Mödersheim, and Achim D. Brucker. Stateful
protocol composition. In Javier López, Jianying Zhou, and Miguel Soriano, editors,
Computer Security - 23rd European Symposium on Research in Computer Security,
ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I, volume
11098 of Lecture Notes in Computer Science, pages 427–446. Springer, 2018.

72. ISO/IEC. ISO/IEC 9798-1:2010. Information technology – Security techniques – En-
tity authentication – Part 1: General, 2010.

50 Formal Modeling and Security Analysis of Security Protocols

73. Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Cryptographic pro-
tocol analysis for the real world. In Karthikeyan Bhargavan, Elisabeth Oswald, and
Manoj Prabhakaran, editors, Progress in Cryptology - INDOCRYPT 2020 - 21st Inter-
national Conference on Cryptology in India, Bangalore, India, December 13-16, 2020,
Proceedings, volume 12578 of Lecture Notes in Computer Science, pages 151–202.
Springer, 2020.

74. Herman Koppelman and Betsy van Dijk. Teaching abstraction in introductory courses.
In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’10, pages 174–178, New York, NY, USA, 2010.
ACM.

75. Steve Kremer and Robert Künnemann. Automated analysis of security protocols with
global state. Journal of Computer Security, 24(5):583–616, 2016.

76. G. Lowe. An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters, 56(3):131–133, 1995.

77. Gavin Lowe. A hierarchy of authentication specifications. In CSFW’97, pages 31–43.
IEEE Computer Society Press, 1997.

78. Gavin Lowe. Towards a completeness result for model checking of security protocols.
Journal of Computer Security, 7(1):89–146, 1999.

79. Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. Refund attacks on bitcoin‘s
payment protocol. In 20th Financial Cryptography and Data Security Conference,
2016.

80. Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In Natasha Sharygina and
Helmut Veith, editors, Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 696–701. Springer, 2013.

81. Robin Milner. Logic for computable functions: description of a machine implementa-
tion. 1972.

82. J Mitchell, A Scedrov, N Durgin, and P Lincoln. Undecidability of bounded security
protocols. In Workshop on Formal Methods and Security Protocols. Citeseer, 1999.

83. Sebastian Mödersheim. Algebraic properties in Alice and Bob notation. In Interna-
tional Conference on Availability, Reliability and Security (ARES 2009), pages 433–
440, 2009.

84. Sebastian Mödersheim and Luca Viganò. The open-source fixed-point model checker
for symbolic analysis of security protocols. In Alessandro Aldini, Gilles Barthe, and
Roberto Gorrieri, editors, Foundations of Security Analysis and Design V, FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer Sci-
ence, pages 166–194. Springer, 2009.

Formal Modeling and Security Analysis of Security Protocols 51

85. Sebastian Mödersheim and Luca Viganò. Secure pseudonymous channels. In Michael
Backes and Peng Ning, editors, Computer Security - ESORICS 2009, 14th European
Symposium on Research in Computer Security, Saint-Malo, France, September 21-23,
2009. Proceedings, volume 5789 of Lecture Notes in Computer Science, pages 337–
354. Springer, 2009.

86. Sebastian Mödersheim and Luca Viganò. Sufficient conditions for vertical composition
of security protocols. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’14, pages 435–446, New York,
NY, USA, 2014. ACM.

87. Paolo Modesti. Verified Security Protocol Modeling and Implementation with AnBx.
PhD thesis, Università Ca’ Foscari Venezia (Italy), 2012.

88. Paolo Modesti. Efficient Java code generation of security protocols specified in An-
B/AnBx. In Security and Trust Management - 10th International Workshop, STM 2014,
Proceedings, pages 204–208, 2014.

89. Paolo Modesti. AnBx: Automatic generation and verification of security protocols im-
plementations. In 8th International Symposium on Foundations & Practice of Security,
volume 9482 of LNCS. Springer, 2015.

90. Paolo Modesti. Integrating formal methods for security in software security education.
Informatics in Education, 19(3):425–454, 2020.

91. Paolo Modesti, Siamak F. Shahandashti, Patrick McCorry, and Feng Hao. Formal mod-
elling and security analysis of bitcoin’s payment protocol. Comput. Secur., 107:102279,
2021.

92. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, November 2008.
https://bitcoin.org/bitcoin.pdf.

93. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

94. K. Ogata and K. Futatsugi. Formal analysis of the iKP electronic payment protocols.
Lecture Notes in Computer Science, pages 441–460, 2003.

95. D. O’Mahony, M. Peirce, and H. Tewari. Electronic payment systems for e-commerce.
Artech House Publishers, 2001.

96. M. Pistoia, N. Nagaratnam, L. Koved, and A. Nadalin. Enterprise Java 2 Security:
Building Secure and Robust J2EE Applications. Addison Wesley, 2004.

97. Erik Poll and Aleksy Schubert. Verifying an implementation of SSH. In WITS,
volume 7, pages 164–177, 2007.

98. Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with a finite number
of sessions, composed keys is np-complete. Theoretical Computer Science, 299(1-
3):451–475, 2003.

99. Rupert Schlick, Michael Felderer, Istvan Majzik, Roberto Nardone, Alexander Ras-
chke, Colin Snook, and Valeria Vittorini. A proposal of an example and experiments
repository to foster industrial adoption of formal methods. pages 249–272, 2018.

52 Formal Modeling and Security Analysis of Security Protocols

100. Benedikt Schmidt, Sebastian Meier, Cas Cremers, and David Basin. Automated ana-
lysis of Diffie-Hellman protocols and advanced security properties. In Computer Se-
curity Foundations Symposium (CSF), 2012 IEEE 25th, pages 78–94. IEEE, 2012.

101. Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aı̈t Mo-
hamed, César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order
Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-
21, 2008. Proceedings, volume 5170 of Lecture Notes in Computer Science, pages
28–32. Springer, 2008.

102. Zhanna Malekos Smith and Eugenia Lostri. The hidden costs of cybercrime. Technical
report, 2020.

103. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191–230, 1999.

104. K. Tsipenyuk, B. Chess, and G. McGraw. Seven pernicious kingdoms: a taxonomy of
software security errors. IEEE Security Privacy, 3(6):81–84, 2005.

105. A. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of The London Mathematical Society, 41:230–265, 1937.

106. M. Turuani. The cl-atse protocol analyser. Lecture Notes in Computer Science,
4098:277, 2006.

107. E. Van Herreweghen. Non-repudiation in SET: Open issues. Lecture Notes in Com-
puter Science, pages 140–156, 2001.

108. J Voas and K Schaffer. Whatever happened to formal methods for security? Computer,
49(8):70, 2016.

109. Barry J Wadsworth. Piaget’s Theory of Cognitive and Affective Development: Found-
ations of Constructivism. Longman Publishing, 1996.

110. James Walden and Charles E. Frank. Secure software engineering teaching modules.
In Proceedings of the 3rd Annual Conference on Information Security Curriculum De-
velopment, InfoSecCD ’06, pages 19–23, New York, NY, USA, 2006. ACM.

111. Christoph Weidenbach. Towards an automatic analysis of security protocols in first-
order logic. In Harald Ganzinger, editor, Automated Deduction - CADE-16, 16th Inter-
national Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceed-
ings, volume 1632 of Lecture Notes in Computer Science, pages 314–328. Springer,
1999.

