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Abstract

Many real systems can be modelled as networks, being characterized by a set of items and
links between them. Systems taking the form of networks, also called graphs, appear in
a wide range of scenarios, varying from biological to technological domains. Illustrative
examples abound and include neural networks, protein-protein interactions, metabolic re-
action networks, social networks, coauthorship and citation relations, road maps, financial
market stock correlations and the World Wide Web.

In the last decade network theory has proven to be a very useful instrument to model
the structure of systems, albeit not sufficient to cover all issues in the scope of structural
analysis. For this reason it has arisen the need of drawing on ideas from fields such as
physics which actually helped in gaining new insight for a relevant class of problems.

In this thesis, we address matters encountering in graph structural analysis by exploit-
ing new approaches based on quantum processes and the von Neumann entropy. In partic-
ular, we focus on the characterization aspects of graphs concerning structural properties,
as well as on processes underlying network evolution. We commence by investigating
spectral generative models for learning structural representations. Then we move on to
quantum models, specifically quantum walks, and the von Neumann entropy character-
ization. Finally, we introduce a novel thermodynamic method to model time evolving
networks.
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1
Introduction

Networks are well-known frameworks that use the node-link paradigm to depict data re-
lationships. Graphs, their mathematical counterpart, embody an optimal interface for
dealing with objects and phenomena coming from a wide range of scenarios, regard-
less of each domain characteristics. Over the last decades, we have thus witnessed the
growing adoption of the graph-based representation by researchers of diverse areas of
study, to manage, organize and solve a vast variety of problems. Especially in the com-
puter science field, graphs have been extendedly exploited, thanks to their representation
power and flexibility. This kind of representation certainly carries considerable advan-
tages when it comes to characterizing objects, at the same time it involves difficulties in
terms of treatability though. In this sense, the main challenge lies in devising solutions to
extract knowledge from graph structures, in the same way as standard analysis techniques
capture salient properties from vectorial data.

In this thesis, we address different matters encountering in the structural analysis
scope, by investigating a broad array of novel approaches for facing them. We focus
both on the characterization aspects of graphs concerning structural properties and on
processes underlying networks evolution. Chapter 3 is intended as an overture to the
structural analysis study. Here we present a spectral generative model for learning struc-
tural representations. We then move on to the heart of our research starting from Chapter
4 which covers a wider topic, the structural analysis based on quantum concepts. More
to the point, we explore the use of the von Neumann entropy as a means to characterize
diverse structural aspects of a graph. In addition, through quantum walks, we probe graph
structures with a view to measuring the similarity between graphs. Finally, in Chapter
5 we shift our attention to evolving structures, by introducing a novel thermodynamic
method to model time-varying networks.
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Learning Graph Structure

Graph models are pervasive for describing information across many scientific areas where
complex information is used. However, when abstracted in this way, structured data be-
comes more difficult to manipulate than pattern vectors. Despite considerable progress
in characterizing data using graph structures, dealing with graphs is still a long-standing
problem. Basically, graphs are non-Euclidean and this feature implies the impossibil-
ity of using well-established standard methods for analysing, comparing and matching
graphs. This aspect affects many pattern recognition approaches including those about
learning over graphs, such as generative models. Generative approaches are well known
in the domain of statistical pattern recognition for the many attractive properties, first
and foremost the ability to naturally establish explicit correspondences between model
components and features. They also provide solutions for handling missing values (on
the contrary of most of the discriminative approaches) and are robust to occlusion, al-
lowing unsupervised learning in clutter [87]. Generative models typically describe the
probability distribution of patterns in a vector space. However, without a straightforward
vectorial representation, even the simplest statistical quantities, such as mean and vari-
ance, result difficult to define for a group of graphs. Two main reasons are behind the
limited methodology available for learning structural representations. First, the lack of
explicit correspondences between nodes of different graphs and second the variability
of the graphs structure, e.g., variations in edge connectivity, node composition, node at-
tributes, etc. [197]. Therefore, even supposing to correctly encode the graph in a vectorial
fashion, we may end up with vectors of different lengths.

In Chapter 3 we consider the problem of learning over graphs, by defining a novel
model of structural representation based on the spectral decomposition of the Laplacian
matrix which lifts the one-to-one node correspondence assumption. In particular, we fol-
low White and Wilson [195] in defining separate models for eigenvalues and eigenvectors,
but cast the eigenvector model in terms of observation over an implicit density function
over the spectral embedding space, and we learn the model through non-parametric den-
sity estimation. The eigenvalue model, on the other hand, is assumed to be log-normal,
due to consideration similar to [16]. In particular we show how the method is also suitable
for non-rigid 3D shape retrieval application.

Graph Structure Analysis

The task of analyzing graph structures has been an integral objective for a number of years
in many research fields, ranging from chemistry to computer science. The leading chal-
lenge probably lies in capturing the various quantitative or qualitative aspects of a graph,
through some sort of summarising descriptors, so that to handle problems involving struc-
tured data properly and possibly with standard techniques. Many basic parameters allow
us to have a partial insight of the graph topology, such as the degree distribution, the
clustering coefficient, the average path length, the diameter, the betweenness centrality, to
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mention only a few. Later, by focusing on some parameters/measures, it has been under-
stood there exists and it is possible to identify certain rather universal features shared by
structures within a given class. One of the most famous examples concerns the power-law
degree distribution for scale-free networks [22]. However, with the recent surge of in-
terest in complex networks in different areas, many other methods have been proposed to
characterize the structural properties of graphs, with attention towards single elements but
at the same time oriented to some macroscopic level definition. In other words, instead of
focusing on several aspects in detail, an alternative could be trying to obtain a concurrent
representation of all its characteristics. Efforts to characterise complexity in networks in
this direction have gathered pace since the dawn of the Internet. Quantum information
and quantum computation met somehow the need of finding a new way to investigate
structured data. Although they come with a plethora of inner issues, at the same time
provide research topics and ideas suitable for tackling graphs [66]. For instance, quantum
walks have been shown to be very sensitive to topological features, such as symmetries,
and changes as well. This property has meant that many researchers started to further
investigate, then making the walks play a fundamental role in the analysis of the structure
and dynamical processes in networks.

Chapter 4 shows how the quantum approach to structural analysis can be an effec-
tive choice. Here, we present an edge centrality index rooted in quantum information as
well as we propose an investigation over the von Neumann entropy in terms of structural
patterns and variants formulations. Beside, we introduce a work in progress about graph
similarity through quantum walks and divergences, which is an expansion of a previous
study by Rossi et al. [154].

Graph Evolution
As a framework for representation, networks help us to simplify and view the world as
objects of pure structure whose properties are fixed in time, while the phenomena they are
supposed to model are actually often changing [146]. Nevertheless, initially, the majority
of effort in network theory just focused around a static view of the structure, thus aiming
at developing only ways to describe networks [65] rather than studying the dynamics of
these structures. However, recently, evolving network analysis has started to attract more
attention. Examples of networks giving rise to structures that change with time are not
so uncommon: neural networks, financial networks, citation networks, communications
networks, to name but a few. Essentially, the main focus has shifted to how the struc-
ture affects the network performance and how the network evolves with time to respond
to such needs [65]. In particular, the analysis of the processes underlying network evo-
lution has acquired an increasingly crucial role in network science even if capturing the
large-scale properties of a time evolving graph has proven to be a challenging problem.
From the perspectives of both static and dynamic network analysis, many researchers
have recognized that drawing on ideas from fields such as physics, may yield promising
results. Especially, the use of analogies based on quantum thermodynamics, relating the
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behaviour of microscopic particles to the macroscopic properties of a system [90,95,124],
has proved singularly successful.

Chapter 5 introduces a novel method to characterize the behaviour of the evolving
systems based on a thermodynamic framework for graphs. This framework aims at re-
lating the major structural changes in time evolving networks to thermodynamic phase
transitions. We start from a recent quantum-mechanical characterization of the structure
of a network to derive the network entropy. Then we adopt a Schrödinger picture of the
dynamics of the network to obtain a measure of energy exchange through the estimation
of a hidden time-varying Hamiltonian from the data.



2
Literature Review

In this Chapter we attempt to provide, as far as possible, a thorough overview of the
current literature covering the principal subjects of this thesis. Note, nevertheless, that the
Sections of this Chapter are not intended to give also a comprehensive survey of the state-
of-art techniques in the corresponding topic. However, wherever necessary, references to
more accurate reviews will be indicated or provided within the concerning Chapter. In
Section 2.2 we introduce some basic notions of Spectral Theory while Section 2.3 will
concern the generative models but for the structural representations niche. Section 2.5 is
devoted to an introduction to quantum computation and in particular focused on quantum
walks and von Neumann entropy. In fact, the latter will be the key concept of the entire
Chapter 4. Finally, in Section 2.6 we present the main studies undertaken in graph analysis
exploiting thermodynamic analogies and concepts, as a preamble for Chapter 5.

2.1 Graph Representation

Roughly speaking, a graph is a collection of points and lines, which connect some sub-
set of points. Mathematically speaking, these points are called vertices while the lines
linking the vertices are known as edges. Despite this very poor introduction, graphs are
actually an excellent and powerful tool to model and characterize countless objects and
phenomena. Generally nodes may represent an object, agents, financial entities or even
a brain region. Instead edges tend to indicate causal relations or interactions between
objects, i.e., nodes. These links can be directed or undirected. In the last decades, the
graph-based representation, which also includes sequences and trees as special cases, has
increasingly become utilized by an extensive number of disciplines. This success stems
from the fact the classical vectorial manner, amply exploited in the past, at a certain point
has resulted no longer able to satisfy the increasing need of modelling relationships and
dynamics exhaustively. In other words, those systems best defined in terms of intercon-
nection or topological structure [93,97,100,164] have found in the graph based represen-
tation the ultimate solution for the characterization problem. Data that can be regarded as
structural graphs belongs to both nature and man-made sphere. Examples include RNA
structures [59], natural language texts [121], biological sequences, semi structured data
such as HTML and XML [7], phylogenetic trees, to name but a few.
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Figure 2.1: The Delaunay graph representation - a set of rotated objects. During the
rotation, the set of interest points which are subjected to the Delaunay triangulation varies
and as a result the structure of the graphs changes.

As regards the computer science field, in particular the areas of computer vision and
pattern recognition, the graph-based representation has covered a particular role. In the
literature there are many examples of application to different tasks, such as shape match-
ing [164], object recognition [202], image segmentation [162], shape representation [17],
just to cite the best-known ones.

The ability in concisely capturing the relational arrangement of object primitives, in a
way that can be invariant to changes in object viewpoint [175], is probably the most allur-
ing trait of this type of representation. In spite of the plenty possibilities of employment,
graph-based representation presents some drawbacks in terms of handling data though.
Especially, dealing with data not structured by default requires a preprocessing step where
usually features are extracted from the object under analysis. For instance, converting an
image into a graph involves first the feature points extraction and then their arrangement,
in a structural way. That means the extracted features will become the nodes, while the
edge structure will be placed so that to preserve the general layout. One of the first meth-
ods facing this problem was invented by Boris Delaunay [56] (1934), who attempted to
turn feature points into graphs via the so called the Delaunay triangulation. An example is
depicted in Fig. 2.1. The main property of this method is that it maximizes the minimum
angle of all the angles of the triangles in the triangulation. Other famous graph representa-
tion methods include the Gabriel graph [75] and the K-nearest neighbour graphs [61]. In
the Gabriel graph, two points are linked by an edge when there are no other points in the
circle whose diameter is the line segment jointing the two points. The nearest neighbor
graph representation, as its name obviously suggests, connects each node to its K-nearest
neighbour nodes.

2.2 Spectral Graph Theory

A graph structure is defined by its adjacency relation, usually expressed in the form of
a matrix. This standard encoding modality first allows handling any size structures but
mainly may yield valuable information about graphs. Spectral graph theory studies the
relationships between the eigenvalues of diverse matrices, e.g., adjacency matrix, asso-
ciated to a graph and the graph itself. It belongs to the branch of mathematics called
algebraic graph theory, which investigates graphs by means of matrix algebraic proper-
ties [39]. Similarly, the leading goals in graph theory is to deduce the structure and key
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properties of a graph from its graph spectrum.
Formally speaking, a graph is denoted by G = (V ,E), where V is the set of nodes and

E ⊆V ×V is the set of edges. A = (ai j ) defines its adjacency matrix where

ai j =
{

1, vi ∼ v j ,
0, otherwise.

The degree d of a node is the number of edges incident to the node and it can be repre-
sented through the degree matrix D = (di j ) which is a diagonal matrix with di i =∑

j ai j .
Starting from these two matrix representations of a graph, we derive the Laplacian matrix,
which is defined as the difference between the degree matrix D and the adjacency matrix
A 2.1. It can be also interpreted as a combinatorial analogue of the discrete Laplace-
Beltrami operator [99].

L = D − A (2.1)

Similarly the normalized Laplacian matrix L̃ is defined as

L̃ = D− 1
2 L D− 1

2

The Laplacian has been extensively used to provide spectral representations of struc-
tures [113]. The spectral representation of the graph can be obtained from the Laplacian
via eigendecomposition. Given a Laplacian L, its decomposition is

L =ΦΛΦT

where Λ= di ag (λ1,λ2, ...,λ|V |) is the matrix whose diagonal contains the ordered eigen-
values, while Φ = (φ1|φ2|...|φ|V |) is the matrix whose columns are the ordered eigenvec-
tors. The Laplacian matrix is symmetric and positive semi-definite; its properties are quite
interesting and convenient where appropriate. For instance, its eigenvalues are positive
and the smallest eigenvalue is zero with multiplicity equal to the number of connected
components in G .

0 =λ1 <λ2 < ·· · <λ|V |
Moreover, the zero eigenvalue is associated with all-ones vector. On the other hand, the
eigenvector associated with the second smallest eigenvalues is the Fiedler vector.
Interestingly, the eigendecomposition is unique up to a permutation of the nodes of the
graph, a change of sign of the eigenvectors, or a change of basis over the eigenspaces
associated with a single eigenvalue, i.e., the following properties hold:

L ' PLP T = PΦΛ(PΦ)T

L = ΦΛΦT =ΦSΛSΦT

L = ΦΛΦT =ΦBλΛBλΦ
T

where ' indicates isomorphism of the underlying graphs, P is a permutation matrix, S is a
diagonal matrix with diagonal entries equal to ±1, and Bλ is a block-diagonal matrix with
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the block diagonal corresponding to the eigenvalues equal to λ in Λ and is orthogonal
while all the remaining diagonal blocks are equal to the identity matrices.
There are many reasons, from several points of view, behind the intense study of the
Laplacian spectra. For instance, the eigenvalues are a remarkable natural invariant which
acts perfectly under operations such as disjoint union and Cartesian product. Being often
related to other invariants, such a relationship can usually provide good approximations
to less tractable computations. Moreover, there are a number of aspects in which the
eigenvalues of a graph operate like the spectrum of a compact Riemannian manifold [48,
49].
From a practical perspective, there have been a number of useful applications of spec-
tral approaches, for instance in image segmentation and graph matching. Remarkable the
work of Shi and Malik [162], where they handled an image segmentation problem as a
graph partitioning problem by introducing the normalized cut criterion to segment graphs.
Through optimizing of such a formulation, they found out that the second smallest eigen-
value of the affinity matrix can be used to bipartition the graph. Another quite famous
algorithm is the pioneer work for matching problem of Umeyama [183], aimed at finding
a permutation matrix very close to the optimum one by means the outer product of the left
eigenvector matrices of two graphs. However, the literature presents a myriad of other
work in this area of interest. For instance Robles-Kelly and Hancock [147, 148] have
used both a standard spectral method [147] and a more sophisticated one based on ideas
from graph seriation [148] to covert graphs to strings to compares structures. Wilson and
Zhu [198] by means of the Euclidean distance between spectra of graphs, measured the
distance of graphs in classification and clustering tasks. Note that although graph spec-
tra provide a convenient way of characterising graphs, their interpretation in terms of the
underlying structure can prove to be opaque.

2.3 Graph Generative Models
Generative and discriminative approaches are two common but at the same time diverse
techniques employed for classification tasks. Broadly speaking, generative approaches
learn a model of the joint probability p(x, y) of the input x and the label y , make prediction
by applying Bayes rules to obtain p(x|y), and then pick the most likely label y . Instead,
discriminative approaches model the posterior p(x|y) directly from the data, or learn a
direct map from input x to the class labels.

Although there are many compelling reasons in favour of the use of discriminative
classifiers, for instance superior performance, as far as graph domain is concerned, gen-
erative approaches seem to be more attractive. Probably, the crucial feature lies in their
ability to capture the modes of structural variation of graphs, a process which has proved
to be elusive and cumbersome in the past. However, even other properties are supportive
to the generative choice. Indeed, having explicit hypotheses on the location and structure
of the signal in the training set, they can also learn in presence of clutter, occlusion or
missing data.
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We may observe different types of structural variations, which can involve either the
nodes or edges, or even both, other than attributes over them. In the contest of variations
over node or edge attributes, Bayesian networks or general relational models [40, 73, 74],
attempted to deal with the problem by associating random variables with the nodes of
the structure and using a structural learning process to infer the stochastic dependency
between these variables. In particular, Wong et al. [199], have introduced a first order
random graphs for structural-based classification. In their model, edges and nodes are
linked to discrete random variables, taking values over the attribute domain of the graphs.
Unfortunately, discrete densities make difficult the learning process and in turn the prac-
tical application. The first order random graphs idea has been extended by Bagdanov
and Worring in [18], where they opted for a continuous Gaussian distributions to model
the densities of random variables in the graphs. The choice allowed to overcome many
computational issues and speedup the classification process.

As regards the modelling of variations in node and edge composition, for the restricted
class of trees, Torsello and Hancock [180] define a superstructure called tree-union that
captures the relations and observation probabilities of all nodes of all the trees in the
training set. The structure is obtained by merging the corresponding nodes and is critically
dependent on the order in which trees are merged.

Still focusing on the class of trees Torsello and Hancock [181] investigated a method
for estimating a structural archetype for a set of trees. They embedded the trees in a vector-
space with fixed length, where the dimensions correspond to principal modes of structural
variation. Then, from a set of trees a super-tree is built, from which each tree may be
obtained by edit operations of node and edge removal. Although the initial promising
results, the approach seems to fail in case of large databases containing several shape
classes.

In [173] by Todorovic and Ahuja, we see how the tree-union approach can be also
applied to object recognition based on a hierarchical segmentation of image patches and
lifted the order dependence by repeating the merger procedure several times and picking
the best model according to an entropic measure. While these approaches do capture
the structural variation present in the data, the model structure and model parameter are
tightly coupled, which forces the learning process to be approximated through a series of
merges, and all the observed nodes must be explicitly represented in the model, which
then must specify in the same way proper structural variations and random noise.

Similar to previous work, Torsello and Dowe [177] addressed the problem of learn-
ing archetypal structural models from examples. They proposed an approach where the
initial assumption is simplified though. Indeed each observation over a node or edge is
independent from all others and the existence of a vertex or an edge is modelled as a
Bernoulli trial. They learned the model using an EM-like approach where they alternated
the estimation of the node correspondences with the estimation of the model parameters,
obtained within a Minimum Message Length framework. However the approach can be
only used to choose from different learned structures since it has no way to change the
complexity while learning the model.

In the scope of learning edge-connectivity, Xiao and Hancock [201] constructed a
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generative model for graphs in a vectorial format by performing the Young-Householder
decomposition on the heat kernel matrix, and describing the distribution of the coordinates
of the nodes using a Gaussian distribution. The covariance matrix of the embedded node
coordinates resulted to capture the variations in graph structure instead the reconstruction
step from these representations turned out to be difficult. White and Wilson [195] have
explored the use of a probabilistic model over the spectral decomposition of the graphs to
produce a generative model of their structure. Similarly to [201], Luo et al. [117] build a
generative model over a set of graphs by stacking the elements of the adjacency matrices
of each sample graph. Once at hand vectorial data, statistical techniques are used. In
order to align graphs they applied the algorithm of Luo and Hancock [116]. They also
pad smaller graphs with dummy vertices to overcome graph size differences. Finally,
variations in the resulting vector space is analysed by using principle component analysis
(PCA), allowing to sample new graphs using their model. In more recent work [176,182]
Torsello and co-workers proposed a generalization for graphs which allowed to decouple
structure and model parameters and used a stochastic process to marginalize the set of
correspondences. The process however still requires a (stochastic) one-to-one relationship
between model and observed nodes and could only deal with size differences in the graphs
by explicitly adding a isotropic noise model for the nodes.

2.4 Graph Structure Analysis
In principle, structure and function of a network should be intrinsically correlated. How-
ever, learning about the function performed by a network from its structure or understand-
ing if changes in structure reflect changes in function are both a demanding task. This is
particularly hard above all when we do not properly know how to exploit the network char-
acterization at hand with a view to analyse these relationships. Then, the quantification of
the intrinsic complexity of graphs and networks has attracted significant attention due to
its practical importance, not only in network analysis but also in other areas such as pat-
tern recognition and control theory. Actually, when it comes to complexity over graphs,
there emerges a dichotomous distinction. On the one hand randomness complexity aims
to quantify the degree of randomness or disorganisation of a combinatorial structure. This
approach addresses to characterise an observed graph structure probabilistically and com-
pute its associated Shannon entropy. One of the earliest contributions was Mowshowitz
complexity index [127] which links the complexity to the entropy of the distribution of or-
bits in the structure’s symmetries. Recently, the quantum entropy [35,140], applied to the
graphs domain by mapping discrete Laplacians and quantum states, has been introduced
as measure able to distinguish different structures. For instance it is maximal for random
graphs, minimal for complete ones and takes on intermediate values for star graphs. The
main drawback of randomness complexity is that it does not capture properly the corre-
lations between vertices. On the other hand statistical complexity aims to overcome this
problem by measuring regularities beyond randomness and by characterising a combina-
torial structure using statistical features such as node degree statistics, edge density or
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the Laplacian spectrum. For example Song et al. [168] have recently explored the use of
the Laplacian energy [81], i.e., the sum of absolute differences between the eigenvalues
and the average vertex degree, as a complexity measure for graphs. In a regular graph,
the Laplacian energy is equal to the energy of the graph. The Laplacian energy is also
low for graphs associated to polygons. A relevant recent supplement to the graph-spectral
literature is Estrada’s network heterogeneity index [64]. The index gauges differences in
degree for all pairs of connected vertices. It also can be expressed as a quadratic form of
the Laplacian and it is equal to zero for regular graphs and random ones and equal to one
for the star graph. Another measure taking on low values for both random and ordered
systems is the thermodynamic depth, which relies on the causality of heat flow. In [63],
Escolano and Hancock have devised a characterisation of network complexity using the
phase transitions in thermodynamic depth. The obtained measure called flow complex-
ity is being then utilized to analyse graphs and networks in terms of the thermodynamic
depth.

It is clear that nowadays there is an increasingly voiced need to understand the be-
haviour of the system as a whole. Along this route, understanding the topology of the
interactions between the components is unavoidable. Although physics has provided an
arsenal of successful means to analysing the behaviour of a system as a whole, other
paradigms anyhow attempted to reach the same goal. In particular, in the past, the defini-
tion of a model fitting the behaviour of real-world networks has prompted many studies
towards that direction. In other words, scientists attempted to understand if the organiz-
ing principles displayed by networks were somehow encoded in their topology as well.
Especially, they tried to provide at least a simpler representation. Simpler representations
of possibly very complex structures have many advantages. They can gain insight into
how networks form and how they grow, may allow mathematical derivation of certain
properties, can serve to explain certain properties observed in real networks, can predict
new properties or outcomes for networks that do not even exist and finally can serve as
benchmarks for evaluating real networks.

The first work about large scale networks was proposed by Erdös and Rényi [62], who
designed a model for networks with no apparent design principles, the so called random
graphs. Even if it is very unlikely that real networks actually form like this, yet, the
model can predict a surprising number of interesting properties. There are two definitions
of a random network. In the G(N ,L) model N nodes are connected with L randomly
placed links. Erdös and Rényi used this definition in their string of papers on random
networks. On the other hand, in the G(N , p) model, each pair of N nodes is connected
with probability p, a model introduced by Gilbert [79]. Hence, the G(N , p) model fixes
the probability p that two nodes are connected whereas the G(N ,L) model fixes the total
number of links L. This fundamental model then has lead to further investigate other kind
of networks behaviour, resulting in the formulation of the scale–free model [22] and the
small–world model [194].

A common feature of real world networks is the presence of hubs, which are the most
striking difference between a random and a scale-free network. Hubs are those few nodes
that are highly connected to other nodes in the network. The presence of hubs will give
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the degree distribution a long tail, indicating the presence of nodes with a much higher
degree than most other nodes. The recognition that growth and preferential attachment
coexist in real networks has inspired a minimal model called the Barabási-Albert model
(also known as the BA model or the scale-free model or preferential attachment) which
can generate scale-free networks [22].

Watts and Strogatz in [194] propose a model for networks between order and chaos.
The small world model describes the fact that in many networks there is a relatively
short path between any two nodes but high clustering coefficients. The most popular
manifestation of small worlds is the six degrees of separation concept, uncovered by the
social psychologist Stanley Milgram (1967), who concluded that between most pairs of
people in the United States there was a path of about six acquaintances. The small world
model seems to characterize most complex networks. Even if the model is intriguing, it
is not an index of a particular organizing principle. In fact, Erdös and Rényi have proved
that random graphs are small worlds as well since the average distance between any two
nodes in a random graph scales as the logarithm of the number of nodes.

A fundamental task in structural analysis is characterizing a graph locally, that means
measuring the importance of any single element. To this end, various centrality indices
have been introduced in the literature [65], since different aspects and different subjects
imply different measures. Common examples usually refer to graph vertex, even if also
edge centralities have been studied recently. The most intuitive notion of centrality fo-
cuses on degrees, the degree centrality. It can be interpreted as a measure of immediate
influence, a measure of popularity or alternatively, as the risk of a node being infected in
a disease spreading scenario.

The degree centrality [71] is defined as the number of edges incident upon a node.
Given a graph G with n nodes and adjacency matrix A, the degree centrality of u is

DC (u) =
n∑

v=1
A(u, v) (2.2)

The closeness centrality links the importance of a vertex to its proximity to the re-
maining vertices of the graph. Then, if the farness of a vertex is the sum of the lengths of
the geodesics to every other vertex, its reciprocal is the closeness centrality [72]. Thus a
node is considered important if it is relatively close to all other nodes. More precisely, the
closeness centrality is defined as the as the inverse of the sum of the distance of a vertex
to all other nodes of the graph,

CC (u) = n −1

s(u)
(2.3)

where s(u) denotes the sum of the distances from u to all the other nodes of the graph,
i.e.,

s(u) =
n∑

v=1
d(u, v) (2.4)

where d(u, v) denotes the distance between u and v .
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The betweenness centrality [134] tells us how influential a node is in communicating
between node pairs.In practice it measures the number of times a shortest path between
nodes v1 and v2 travels through a node u whose centrality is being measured. It is a
measure of the extent to which a vertex lies on the paths between others, where the path
may be either the shortest path or a random walk between the nodes.

If sp(v1, v2) denotes the number of shortest paths from node v1 to node v2, and
sp(v1,u, v2) denotes the number of shortest paths from v1 to v2 that go through u, the
betweenness centrality of u is

BC (u) =
n∑

v1=1

n∑
v2=1

sp(v1,u, v2)

sp(v1, v2)
(2.5)

Note that this definition assumes that the communication takes place along the shortest
path between two vertices. A number of measures have been introduced to take into
account alternative scenarios in which the information flows through different paths [65,
71, 72, 134].

The flow centrality is also known as random-walk betweenness centrality [134]. The
flow centrality measures the importance of an edge proportionally to the expected number
of times a random walk passes through the edge e when going from u to v . The name
flow centrality comes from the analogy between the graph and an electrical circuit where
one is interested in measuring the amount of current that flows through e, averaged over
all source nodes u and target nodes v .

2.5 Quantum Computation

Quantum mechanics is a mathematical framework or set of rules for the construction of
physical theories. Ever since its discovery, quantum mechanics has been applied with
enormous success to everything under and inside the Sun [135]. For instance, modern
technology has exploited quantum effects both to our benefit, e.g., laser technology and
detriment, e.g., the atomic bomb [102]. However, not only did mere applied sciences
take advantage of this framework but also the pure ones. Indeed, the interest of obtaining
complete control over single quantum systems allowed for the development of quantum
computation and quantum information. In both cases, the basic objective is studying the
information processing tasks through quantum mechanical systems. For example, quan-
tum information theory has attracted intense interest because of the possibilities of em-
ploying its formalizations to devise tools of surprising power [135]. This fruitful axis of
research has uncovered many new opportunities, such as quantum cryptography [92] or
quantum computation. In the last years, quantum computing has especially merited con-
sideration because of the potential for considerable speed-ups over classical algorithms.
In that regard, it suffices to recall Peter Shor [163], in 1994, who discovered a quantum al-
gorithm to factor numbers efficiently, namely polynomially with the length of the number
to be factored. Needless to say, a wave of activity across a wide array of fields of study
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has been unleashed. However, in the next Sections we will concentrate on the pertinent
literature on quantum walks and the von Neumann entropy.

2.5.1 Quantum Walks
In the last decades, formulations based on quantum walks to model novel quantum algo-
rithms [12, 45, 102, 157] on graph structures have become part of the mainstream.

A classical random walk on a graph corresponds to a quantum walk on a graph with
the difference the latter is addressed by the quantum mechanical viewpoint. A continuous
time classical random walk on a graph models a Markovian process over the nodes of the
graph [23], where a step only occurs if two vertices are connected by an edge. Similarly,
a quantum random walk is defined as a dynamical process over the vertices of a graph.

However a quantum random walk presents a substantial distinction in terms of char-
acterization. Basically, the behaviour of quantum walks is governed by unitary matri-
ces [203] rather than stochastic ones. In other words, the state-vector is composed of
complex numbers rather than probabilities. Such an aspect cannot be overlooked, because
it actually typifies the quantum walk. The unitary evolution also renders the quantum walk
reversible, implying so the walks are is non-ergodic and do not have limiting distribution.

Nonetheless, many algorithms are based on classical random walks, so it is natural to
ask which properties make the quantum walks more appealing.

In general, in the quantum case, interference and entanglement lead to interesting phe-
nomena, not present in classical case. For instance, quantum walks have been shown to
outperform their classical counterparts in a wide range of tasks, leading to speedups over
classical computation [69, 159]. That seems to be due to the constructive and destructive
interference effects of quantum processes. As far as the graph topology is concerned,
their use has been broadly investigated over a wide variety of graphs [103, 128], such as
the infinite line, cycles, regular lattices, star graphs and complete graphs. In addition,
quantum walks have been shown to better discriminate between different structures than
their classical counterparts [21, 154].

Quantum walks on graphs have both continuous time and discrete time and variants.
The first type was initially investigated by Farhi and Gutmann [69] They devised an algo-
rithm based on a continuous-time Hamiltonian to move through decision trees, building
a correspondence between nodes and quantum states. More precisely, they took two co-
joined n-level binary trees linked by their leaves and ran a quantum walk starting from
the root of the first tree. They were among the first to prove the potential for speed-up
over classical algorithms. Indeed, in their work, they have shown how the quantum walk
can hit the root of the second tree exponentially faster than a similarly defined classical
random walk, without relying on the quantum Fourier transform.

In the last decades, more and more researchers have started to exploit the continuous-
time quantum walk as well as the discrete-time quantum walk approach. For the discrete-
time quantum walk, an exponential speed-up for the hitting time was observed by Kempe
[102]. Instead Aharonov et al. provided a lower bound on the possible speed up by
quantum walks for general graphs [8] Similar results to [102] were presented by Childs et
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al. [46] but for continuous-time quantum walks on graphs. By following Childs et al. [46]
Kempe also took in consideration the walk on the n-dimensional hypercube, showing that
the hitting time from one node to the one opposite is polynomial in n [101] whereas
Ahmadi et al. [9] studied continuous time quantum walks in an N -cycle. Also Moore
and Russell [126] worked on a n-dimensional hypercube, but they analyzed both the
continuous-time and a discrete-time quantum walk.

Recently, various authors have investigated the evolution of continuous-time quan-
tum walks over graphs along with the notion of the quantum Jensen-Shannon diver-
gence [120], to diverse aims. In [155], Rossi et al. studied the connection between
quantum walks and graph symmetries, showing that the quantum divergence between the
evolution of two quantum walks with certain initial states is maximum when the graph
presents symmetries. In the field of structural classification, Torsello et al. [178] general-
ized a structural kernel based on the Jensen Shannon divergence between quantum walks
over structures, by introducing a novel alignment step. Instead Rossi et al. in [154],
proposed a quantum inspired kernel for unattributed graphs where they gauge the simi-
larity between graphs through continuous-time quantum walks. More specifically, they
compute the divergence between two suitably defined quantum states. We extend upon
the results of Rossi et al. [154] to include different Hamiltonians, kernel signature and
directed graphs. More details about this work in Section 4.3.

2.5.2 Von Neumann entropy
Entropy is a key concept of quantum information theory and it is mainly known as a
measure of uncertainty. For instance, the Shannon entropy measures the uncertainty as-
sociated with a classical probability distribution. However, if we generalize the definition
of the Shannon entropy, by replacing probability distributions with density operators, we
have to refer to a different type of entropy, the so called quantum entropy. That step is
possible because quantum states are described in a similar fashion to probability distri-
butions. John von Neumann defined the von Neumann entropy in his principal work in
quantum mechanics, as far back as 1955 [130]. Nevertheless, the von Neumann entropy
(or quantum entropy) is still an outstanding tool in quantum information theory [135,136].
In this section we attempt to review the leading approaches which have involved the von
Neumann entropy as concerns the graph-based representation universe.

The ability to measure the complexity of a structure plays a central role in structural
analysis. Intuitively, the complexity of a graph should capture the level of organization of
its structural features, e.g., the scaling behaviour of its degree distribution. To this end, a
number of entropic complexity measures have been proposed in the past years [13,14,30,
55, 63, 140].

The von Neumann entropy of a network was introduced by Braunstein et al. [34] and
then analyzed further in a number of later work [13, 14, 50, 51, 58, 140, 166]. The intu-
ition behind this measure is that of associating graphs to density matrices and measuring
the complexity of the graphs in terms of the von Neumman entropy of the corresponding
density matrices. This in turn is based on the mapping between quantum states and the
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combinatorial graph Laplacian proposed by Braunstein et al. [34]. In [140], Passerini and
Severini briefly investigated the use of the normalized Laplacian, although their analysis
mainly focused on the unnormalized version. In both cases, a necessary step is the com-
putation of the eigenvalues of the (normalized) graph Laplacian. This has computational
complexity quadratic in the number of nodes of the network, thus making the application
to large networks unfeasible.

Han et al. [82] sought to overcome this by looking at the second order polynomial ap-
proximation of the Shannon entropy. They considered the von Neumann entropy obtained
from the normalized graph Laplacian and they showed that its quadratic approximation
can be computed in terms of degree statistics. A similar result was obtained by Lockhart
et al. [114] for the graph Laplacian. With this approximation to hand, the von Neum-
mann network entropy has found applications in the analysis of several real-world net-
works [82, 149, 206] as well as in pattern recognition [20, 196]. More recently, Simmons
et al. showed that the von Neumann entropy can be used as a measure of graph centraliza-
tion [166], i.e., the extent to which a graph is organized around a number of central nodes.
Unfortunately, due to the spectral nature of this measure, it remains unclear how differ-
ent structural patterns influence its value. Despite several attempts, a general structural
interpretation of the von Neumann entropy remains an open problem.

2.6 Graph Thermodynamics
From the perspectives of both static and dynamic network analysis, many researchers have
recognized that drawing on ideas from fields such as physics, may yield promising results.
For instance, the use of analogies based on statistical mechanisms [11, 67, 90, 95, 138],
thermodynamics [63, 204, 205] as well as quantum information [14, 35, 140] provides
an excellent framework for describing complex systems. Among these the approaches
based on thermodynamic analogies, relating the behaviour of microscopic particles to the
macroscopic properties of a system [90, 95, 124], have proved remarkably successful.

For example, the heat bath analogy from thermodynamics described in [68] allows
us to define physical measures of communicability and balance in networks. When the
network is described by a partition function, thermodynamic quantities, such as entropy,
energy and temperature can be straightforwardly derived from it [57]. Usually the Hamil-
tonian is obtained from the adjacency matrix or Laplacian matrix of the network and their
eigenvalues. Clearly the type of partition function not only governs how the different en-
ergy levels are populated and how thermodynamic quantities charactering a network are
computed. For instance in [204] the partition function is computed from a characteristic
polynomial. Here the authors use the Maxwell-Boltzmann partition function to describe
a thermalized network. However, in [26], the Bose Einstein partition function models a
Bose gas over a network. In this case the process of Bose-Einstein condensation pro-
vides some deep insights into low temperature network behaviour and the coalescences
of particles into the lowest energy states.

In network analysis and especially for those methods based on statistical physics
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analogies, most approaches adopted to study complex structures are based on concepts
from spectral graph theory [49]. For instance, in the heat bath analogy utilized to charac-
terize networks, the energy states of a network are captured using the eigenvalues of the
matrix representation of the network [189]. Here, in particular, global network charac-
teristics, including the entropy, can be computed by using the Maxwell-Boltzmann par-
tition function. By contrast, in [190, 193] energy states are occupied according to either
Bose-Einstein or Fermi-Dirac statistics. For time evolving structures, thermodynamic
approaches and spectral analysis have also proved to be extremely useful as tools for
characterizing dynamic networks. For instance the von Neumann entropy of a network
was firstly introduced by Braunstein [35] and analysed further in a number of subse-
quent works [14, 140]. The idea underpinning this measure is that the combinatorial
graph Laplacian can be interpreted as the density matrix of a quantum system. In [205]
the spectrum of the normalized Laplacian are used to define the microstates of a com-
plex system, and the associated microstate occupation probabilities are used to define the
thermodynamic entropy of the network. Additionally, the authors show how to compute
thermodynamic variables in terms of node degree statistics. Similarly, in [192] the au-
thors investigate the variation of entropy in time evolving networks and show how global
modifications of network structure are determined by correlations in the changes in degree
statistics for nodes connected by edges.

Thus, thermodynamic approaches can not only be used to characterize networks uti-
lizing classical measures, such as entropy or energy, but can also be used to develop new
measures of network complexity. For instance in [63], for the case of graph representa-
tion of complex networks, a flow complexity measure is presented and a thermodynamic
characterization is developed based on the variation of local histories over graphs.
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3
Generative Models

Graph-based representations have been used with considerable success in computer vi-
sion, for instance in the abstraction and recognition of object shape. Non-rigid 3D shape
retrieval is a crucial research topic in content-based object retrieval. Often this problem is
cast in terms of the shapes intrinsic geometry because of its invariance to a broad array of
non-rigid deformations.

In this Chapter we present a generative model devised in collaboration with Andrea
Gasparetto for shape retrieval. This study is thus intended as a specific application and
extension of the method presented in a previous work [77], designed for structural rep-
resentations and based on the spectral decomposition on the graph Laplacian. Despite
this, even for the shapes domain, the generative model relies on a spectral approach but
in this case takes into account the Laplacian of a mesh. The peculiarity of this approach
is given by the possibility of avoiding the pervasive correspondence issue by turning the
eigenvectors of the Laplacian into a density in the spectral-embedding space which is es-
timated non-parametrically. We show that this model can accurately be learned from a
set of 3D meshes. The experimental outcomes on the SHREC’14 benchmark demonstrate
the effectiveness of the approach compared to the state-of-the-art.

3.1 Literature Survey

Non-rigid 3D shape retrieval is an active and crucial research topic in content based object
retrieval. 3D models are widely-used in many application areas, such as computer aided
design, medical modelling, bioinformatics, and a large number of 3D models have become
available on the web. A shape retrieval algorithm can be interpreted as a query executor
where, given a shape, the result set is the collection of shapes which belong to the same
class. Moreover, the shapes returned should be ordered by decreasing similarity to the
query shape. Various approaches have been introduced to address the non-rigid shape
retrieval problem. Depending on the paradigm adopted to represent the objects, there are
view based methods and model based methods.

The view based methods attempt to exploit the fact that similar 3D shapes look akin
from the same perspective. Hence, many 2D projections have been employed to represent
the shape, e.g., silhouettes [44]. On the contrary, model based techniques make use of the
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3D shape directly. Both structural and topological techniques and geometric techniques
belong to this class of approaches.

Structural and topological techniques take into account structural properties like con-
nected components or the holes in the shape. An example of such approach is the Surface
Penetration Map by Yu et al. [208], where topological information is extracted from a
model by morphing it into a sphere.

Finally, geometric techniques utilize the quantitative properties of the shapes that
could be used to characterize the shape either globally or locally. Global methods aim
at capturing the features of the shape as a whole and tend to be more computationally
efficient. As an example, Zhang and Chen [209] propose several methods to compute
efficiently global features and use them for 3D shape retrieval purpose.

Features are also employed indirectly in the methods which exploit the distributions
of those measurements in place of the value of the feature itself [137]. With respect to
global methods, local approaches can be used for partial matching, but they are usually
less computationally efficient. These methods consider local properties around the neigh-
bourhoods of points on the surface, such as curvature, volume and area [98].

One of the most popular approach within the geometric techniques involves the def-
inition of an invariant representation of a shape capable of capturing its geometrical and
topological properties, but at the same time being insensitive to transformations like bend-
ing and stretching, and robust to acquisition resolution or noise. On top of that, storage
and computational costs of the representation should be taken into account.

For these reasons, a widely used approach to define shape descriptors is through spec-
tral shape analysis. Research efforts have recently resulted in many spectral descrip-
tors [16, 144, 170] usually based on the spectral decomposition of the Laplace-Beltrami
operator, due to its invariance to isometries. In particular, the mesh-Laplacian, the discrete
counterpart of the Laplace-Beltrami operator applied to surfaces, has been extensively
used to provide spectral representations of structures [113]. Reuter et al. [145] suggest to
use the sequence of eigenvalues (spectrum) of the Laplace-Beltrami operator of a surface
as fingerprints, while Jain and Zhang [94] propose to use the eigenvalues of the geodesic
distance matrix of a 3D object in order to build the associated shape descriptor. Huang
et al. [91], on the other hand, build the signature directly over local features, selecting
discriminative volumetric features over pre-aligned shapes.

The aggregation of local descriptors to build a global descriptor is a general thread
in the literature. For this purpose, the Bag-of-Features (BoF) paradigm is quite popular
and has been successfully applied to 3D shape description [37, 109, 115, 174]. Li and
Hamza [109] used the BoF paradigm combining the exploitation of hierarchical struc-
tures of the shape, such as pyramid matching [80] and spatial relationship [37]. They
proposed to adopt the eigenfunction associated with the second-smallest eigenvector of
the Laplace-Beltrami operator in order to build a global surface coordinate system which
is insensitive to shape deformation, showing that the introduction of global spatial con-
text could improve the effectiveness of their descriptor in 3D shape recognition. Spatial
pyramid [109, 115], is the term used to identify this approach. Other approaches inspired
by text-analysis have been proposed. For instance, in [27, 86] the authors adopt higher-
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order models defining relations between ‘geometric words’. Within the bag of features
model, features quantization is generally performed through unsupervised learning. De-
parting from this approach, Litman et al. [112] recently proposed a new supervised BoF
framework mapping the discriminative training directly into the dictionary construction
step. Finally, methods which aim at finding the correspondences between two or more
shapes have been utilized for shape retrieval, employinf the correspondences found as a
similarity measure between shapes and classifying the query shape accordingly [25, 42].

3.2 Background

A surface is a smooth compact 2-manifold S without boundary isometrically embedded
in the Euclidean space R3 with geometry induced by the embedding. With shape, we
denote the quotient group of surfaces modulo isometries. Finally, we define a mesh as
a discrete representation of a surface embedded in R3. In order to address the shape re-
trieval task, we define an invariant representation of a shape obtained as the result of a
data-driven process. To this end, let us define the discrete Laplacian as the discretization
of the continuous Laplace-Beltrami operator on the mesh. The Laplacian operator is a dif-
ferential operator which stores intrinsic geometry information (vertex-wise) about a mesh,
allowing to preserve the relationship among vertices when isometric transformations are
applied. Several approaches have been proposed to compute the Laplacian matrix from
a mesh. In this work we adopt the algorithm proposed by Belkin et al. [24] which offers
point-wise convergence guarantees and was experimentally shown to be quite robust. In
particular, it approximates the Laplace operator of a surface from a mesh with point-wise
convergence and they show that it converges (for fine meshes) to the Laplace-Beltrami op-
erator. The Laplacian matrix is computed as L = A−1∗W , with A the area elements on the
diagonal and W a symmetric weight matrix. L is not symmetric but satisfies ΦT A Φ= I

(I the identity matrix). By setting Ψ = A
1
2Φ and LN = A1/2L A− 1

2 = A− 1
2 ∗W A−1/2, the

normalised Laplacian matrix LN has the same eigenvalues as L and its eigenvectors Ψ
are a discrete approximation of the eigenfunctions by taking integrals over the area el-
ements rather than point samples over the vertices as in Φ. Indeed LN is symmetric,
positive definite and its eigenvectors are robust with respect to changes in sampling den-
sities. The spectral representation of a mesh can be computed from the Laplacian via
spectral decomposition. In particular, given a discrete Laplacian L , its eigendecomposi-
tion is L =ΦΛΦT , where Λ= di ag (λ1,λ2, ...,λ|V |) is the matrix whose diagonal contains
the ordered eigenvalues, while Φ = (φ1|φ2|...|φ|V |) is the matrix whose columns are the
ordered eigenvectors.
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3.3 Spectral Generative Model
The leading contribution of the proposed work consists in the definition of a generative
model based on the spectrum of the Laplacian matrices associated to a set of meshes rep-
resenting the same shape. The defined model is able to capture the structural variations
between the meshes that belong to the same class, and it takes into account all the invari-
ances of the spectral representation. Let M be a mesh, and let LM = ΦMΛMΦ

T
M be the

eigendecomposition of the associated Laplacian matrix. In the definition of our model,
we follow [195], by building two separate and independent models for the eigenvalues
and eigenvectors of the Laplacian1

P (M |Θ) = P (ΛM |ΘΛ)P (ΦM |ΘΦ) (3.1)

whereΘ is the shape model divided into its eigenvalue-model componentΘΛ and eigenvector-
model component ΘΦ.

As regards to the eigenvalue model ΘΛ, we follow Aubry et al. [16] for the choice
of the distribution to be used. In their work, they showed empirically that the eigenener-
gies of an articulated shape are log-normally distributed random variables due to stability
considerations derived from matrix perturbation theory. As a result, we model the set
of eigenvalues as a series of independent log-normal distributions, one for each of the
d eigenvalues involved in the construction of the model. More formally, we define the
posterior probability (relative to the eigenvalue component) of a mesh M to belong to the
class modelled by ΘΛ as

P (ΛM |ΘΛ) = (2π)
d
2

d∏
i=1

1

λiσi
e

−(lnλi −µi )2

2σ2
i (3.2)

where µi and σi are model parameters to be learned from data and d is the number of
eigenvalues/eigenvectors used in the model, i.e., the embedding dimension. Note that the
log-normal distribution concerns corresponding eigenvalues among the different meshes
of the training set.
On the other hand, the eigenvector component is modelled as an unknown distribution F

on the d-dimensional spectral embedding space Ωd ⊆Rd . The d-dimensional embedding
of the eigenvector matrix is obtained from a simple sub-sampling operation over the ma-
trix ΦM , taking the first d columns (first d non-constant eigenvectors) of the matrix or, in
other words, taking the first d non-constant eigenvectors which are associated with the d
smallest non-trivial eigenvalues. The resulting n ×d matrix is assumed to be a collection
of n d-dimensional points that belong to the embedding space Ωd . Eigenvectors are often
assumed to be of unit Euclidean norm. Unfortunately, this results in a compression of the
value of the components of the spectral embedded points as the number of the vertices
of the mesh (or alternatively, the n points of our representation) increases. To overcome

1The lack of eigenvalue modulation in the spectral embedding is compensated by a data driven modelling
of the variation in each spectral dimension through non-parametric density estimation.
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this issue, we scale the d eigenvectors which belong to the embedding by multiplying for
the number of vertices of the mesh n. So, let Φ̂M = (

Φ̄M
) ·n, with Φ̄M ∈ Rn×d , be the

resulting embedded eigenvector matrix. Note that we are not assuming nor requiring the
meshes to have the same number of vertices. Indeed, the number of vertices of the meshes
belonging to the datasets used in the experimental section are different.

With this model we cast the learning phase into a non-parametric density estimates of
the distribution of the spectral embedding points φM

1 , . . . ,φM
n . Under these assumptions,

the eigenvector model parameter ΘΦ is constituted of a collection of N d-dimensional
vectors θΦ1 , . . . ,θΦN corresponding to samples from the unknown density function F . In
the learning phase, the parameter ΘΦ is obtained by aligning and stacking (and eventu-
ally sub-sampling) all those spectral embedding points together from the sample meshes
which belong to the same class, or in other words, all the meshes that belong to the
training set and represent the same shape. The density model allows us to avoid the
vertex-alignment problem allowing many-to-many relations among vertices from differ-
ent meshes and the separation of eigenvector and eigenvalue constrains the set of isome-
tries of the embedding space to the discrete set of sign changes. However, sampling noise
and approximate isometries of the surfaces result in mixing of the eigenspaces, especially
between those with similar eigenvalues. We address this by adopting a kernel Procrustes
alignment approach, locally optimizing over the orthogonal group O(d). Then, the poste-
rior probability P

(
ΦM |ΘΦ)

can be computed solving the problem:

max
O∈O(d)

max
S∈{±1}d

(N hd )−n
n∏

i=1

N∑
j=1

e−
‖OSφM

i −θΦj ‖2

2h2 (3.3)

expressing the optimization problem in terms of the product of Parzen-Rosenblatt kernel
density estimators. In particular, φM

i is one of the sample points obtained taking the first
d components of the i -th row of the eigenvector matrix associated to the mesh M , while
θΦj is the j -th component (still a d-dimensional row vector) of the eigenvector model ΘΦ.
Here the eigenvector model is assumed to be a collection (an array) of samples taken from
the training set during the learning phase. Furthermore, in order to minimize the variance
between all the eigenvector matrices of the meshes of the training set (and simultaneously
increasing the variance with the eigenvector matrices which does not represent the same
shape), we introduce two alignment steps. In particular, the matrix O that appears in the
optimization problem 3.3 represents an orthogonal transformation used to align as much
as possible all the points of our representation, while S is a matrix containing just ±1 used
to solve the sign ambiguity problem.

In the computation of the kernel density estimator, a rule of thumb must be chosen in
order to estimate the bandwidth h of the kernel. In this work, we employ the Silverman’s
rule of thumb for the multivariate case [165] and we estimate the bandwidth as

h =
(

N
d +2

4

)− 1
d+4

σ (3.4)

where d is the embedding dimension, N is the number of meshes employed in the con-



26 3. Generative Models

struction of the model ΘΦ (i.e., the dimension of the training set) and σ is the standard
deviation computed as the squared root of the mean variance (the trace of the covariance
matrix Σ divided by the n nodes of the model) of the eigenvector model

σ=
√

1

n
Tr (Σ) (3.5)

Note that we are not assuming that the eigenfunctions are independent. Indeed, we
build our eigenvector model as a point cloud. Given an eigenvector matrix (as columns),
each point is given by a row of this eigenvector matrix. We assume those points to be
independent observations of an unknown underlying distribution which we estimate non
parametrically. For this reason we state that our model is independent of the sampling,
since even if we prune out part of those points, the underlying distribution remains the
same. Robustness analysis presented in section 3.3.3 confirms the assumption. A more
practical analysis about the construction of such model is demanded to section 3.3.1.

3.3.1 Model Learning

In order to address the retrieval task, we define two separate phases. The first one is the
learning phase. The main goal of the learning process is to estimate the model parameters
for both the eigenvector model and the eigenvalue model. Before estimating the param-
eters, the training dataset must undergo a pre-processing phase. Given a set of meshes
S = {M1, M2, . . . , MN } representing the same shape S in different poses (training set), the
first step involves the computation of the Laplacian matrix associated to each mesh Mi ,
obtaining the set {L1,L2, . . . ,LN }. Applying a singular valued decomposition to each
Laplacian matrix, we obtain the eigendecomposition Li =ΦiΛi ,ΦT

i where the diagonal
elements of Λi are in ascending order and we remove the trivial eigenvalue and the corre-
sponding eigenvector (which results to be constant). Finally, we are not interested in the
whole Laplacian eigendecomposition, but just an embedding of it. In other words, given
d as the embedding dimension, we keep the first d eigenvalues and the first d eigenvec-
tors of the eigendecomposition of the Laplacians. As a result of this pre-processing phase,
we obtain the set {(Λi ,Φi )}i=1,...,N , where Λi ∈ Rd×d and Φi ∈ Rni×d (ni the number of
vertices of the mesh i ).

Then, the eigenvector model of the class S , denoted as ΦS , is defined as

ΦC =


φ1

1 φ1
2 . . . φ1

d
φ2

1 φ2
2 . . . φ2

d
...

...
...

...
φm

1 φm
2 . . . φm

d


where φi

j denotes the j -th non-trivial eigenvector (still a column vector) of the i -th mesh
of the training set. In other word, we perform a vertical concatenation of all the eigenvec-
tors matrices of the meshes that belong to class S . Therefore, the final dimension of the
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model ΦS can be expressed as
(∑N

i=1 ||Mi ||
)×d , with ||Mi || the number of vertices of the

i -th mesh.

3.3.1.1 Estimating the Eigenvector Sign-Flips

Figure 3.1: The red curve is the pdf of the i -th eigenvector of matrix A (reference mesh),
calculated with the kernel density estimation, and the blue curve is the pdf of the i -th
eigenvector of matrix B. On the right, the green curve represents the pdf after the sign
flip.

The eigenvector matrix is unique up to a sign factor. Since our method characterizes
every vertex of a mesh with a feature vector, a sign disambiguation is mandatory. There
are diverse ways that allow to detect and solve this ambiguity, like using the correlation
between two functions (i.e., probability density functions). If the correlation grows after a
flip, then the eigenvector sign should be flipped. Unfortunately, with increasing size, this
method becomes computationally heavy.

For such a reason, we have to employ an heuristic-based method in order to solve the
sign-ambiguity problem. However, being heuristic, it does not guarantee the detection of
all the correct signs.

Given the eigenvector matrices ΦA and ΦB , computed via the eigendecomposition of
the Laplacian of two meshes MA and MB (representing the identical shape but in different
poses), let φA

i and φB
i be the i -th eigenvector. We assume the eigenvectors to be random

variables whose probability density functions are unknown. In addition, we assume all
i -th eigenvectors associated to each mesh representing the same shape to share a similar
probability density function (up to a linear transformation). Such linear transformation
does not influence the shape of the pdf, but it influences the sign of the peak of such
function. In other words, if the sign of the peaks disagree, a sign flip occurs. More
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Figure 3.2: An example of the effect of Orthogonal transformation over the eigenvector
matrix. In the left-hand side panel a) the reference mesh - the graph below the mesh
shows the plot of the first three non trivial eigenvectors of the reference mesh whereas on
the right of the mesh there is the kernel density estimation computed on the eigenvector
matrix. In the middle panel b) the mesh to be aligned according to a). Finally, in the
right-hand side panel c) the result of the optimization process.

formally, after the selection of a mesh as reference mesh (for example A), we define our
heuristic approach to the sign ambiguity solution as

φB
j =


φB

j (−1) if x A∗
j < 0 and xB∗

j ≥ 0 ,

φB
j (−1) if x A∗

j ≥ 0 and xB∗
j < 0 ,

φB
j otherwise.

(3.6)

The pdf s of each eigenvector are estimated using kernel density estimation. The den-
sity estimates are evaluated at 100 points covering the range of the eigenvectors. Those
evaluations are then used to find the peaks, more precisely the related independent vari-
ables x A∗

j and xB∗
j of the functions.

Hence, before the construction of the eigenvector model ΦS , we randomly select a
mesh M j as the reference mesh. Then we flip the eigenvector matrices associated to the
other meshes according to 3.6. The main drawback of the proposed solution is its non-
robustness to multiplicity of eigenvalues. Furthermore, similar eigenvalues could result
in mixing of the eigenspaces. The problem is addressed through an additional alignment
step, which is explained in detail in the next section.

3.3.1.2 Estimating the Eigenvector Orthogonal Transformation

The alignment step introduced in the previous section acts as an orthonormal transforma-
tion and thus it does not violate the orthogonality of the basis. Nevertheless, an isomet-
ric difference between the eigenvector matrix of the reference mesh and the eigenvector
matrix of an another mesh is expected. In order to overcome the misalignment and con-
sequently to minimize distances between feature vectors of the two matrices, a further
alignment step is employed. From this viewpoint, the formulation of such optimization
problem is similar to the Orthogonal Procrustes Problem (OPP), that is solving for the
optimal orthogonal matrix that maps the first set of points into the second one. However,
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our algorithm differs from the standard OPP since we seek for the orthonormal transfor-
mation which maximizes a certain probability. In particular, we define the probability
density in terms of Parzen-Rosenblatt kernel density estimator (Gaussian kernel)

Ph(x) = 1

n ·h

n∑
j=1

e− 1
2

‖x−y j ‖2

h2 (3.7)

By integrating the constraints of the optimization problem into our definition of prob-
ability density, we get

argmax
O∈O(d)

m∏
i

n∑
j

e− 1
2

‖Oxi −y j ‖2

h2 (3.8)

where m is the number of vertices of the mesh we want to align to the reference mesh y
and the parameter h is the bandwidth computed according to equation 3.4.

In order to solve 3.8, we firstly have to calculate the gradient with respect to an in-
cremental variation and later compute iteratively the orthonormal transformation. The
log-likelihood of the problem, after the introduction of the additive rotation T , is given
by

`L (y |x) =
m∑
i

log

(
n∑
j

e− 1
2

‖T Oxi −y j ‖2

h2

)
(3.9)

Let αi , j be defined as αi , j = e− 1
2

‖Oxi −y j ‖2

h2 . Then, by deriving the function in 3.9, with
respect to the additional rotation T , we get

∂`L

∂T
=∑

i

∑
j αi j

(
−1

2

∂
∂T ‖T Oxi−y j ‖2

h2

)
∑

j αi j
(3.10)

In particular, the partial derivative obtained by deriving with respect to the identity I

(T = I ), results

∂

∂T
‖T Oxi − y j‖2 = −2y j (Oxi )T (3.11)

= −2y j xT
i OT (3.12)

We can rewrite 3.10 as

∂`L

∂T
=

(∑
i

∑
j αi j h−2 y j xT

i∑
j αi j

)
︸ ︷︷ ︸

A

OT = AOT (3.13)
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In order to find the maximum, we want to project the gradient to the null space. T

is an orthogonal rotation matrix, hence it belongs to the Lie group O(d) (with d the em-
bedding dimension). The tangent space (which we compute through the gradient of the
log-likelihood 3.13) at the identity element of a Lie group is its Lie algebra, which rep-
resents the skew-symmetric matrices space. Since the skew-symmetric component of a
matrix B is given by B−B T

2 , in order to nullify such component, we want to make B sym-
metric. More precisely, in order to find the maximum we want to make AOT symmetric
(which means AOT = (AOT )T . Indeed

AOT − (AOT )T

2
= 0 (3.14)

Treating the problem as an Orthogonal Procrustes Problem, the rotation matrix O

which symmetrizes AOT is computed through singular value decomposition of the matrix
A. The decomposition yields svd(A) =U LV T , while we can compute the rotation matrix
as O =UV T . It is easy to see that O symmetrizes the gradient defined above, indeed

AOT = (U LV T )(V U T ) =U LU T (3.15)

To summarize, the computation of the rotation matrix O is achieved using the follow-
ing algorithm.

1. Initialize O = I

2. Compute αi j (??) for each i = 1, . . . ,n (n the number of vertex of a mesh) and
j = 1, . . . , N (N the number of points of the model)

3. Compute the matrix A (according to 3.13)

4. svd(A) =U LV T

5. O =UV T

6. If the convergence is achieved, i.e., A ≈ AT , or the maximum number of iterations
allowed is reached, end the algorithm, otherwise repeat from 2

Once both the alignment steps are computed on the spectral decomposition of each
mesh belonging to the training set, we are able to build the matrixΦS through the stacking
operation mentioned at the beginning of this section. We decide to not combine the two
alignment steps (the sign disambiguation and the orthonormal transformation) since the
former represents just a coarse alignment, while the latter represents a fine alignment step
which is effective only for smaller and local alignments.
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3.3.1.3 Estimating the Eigenvalue Model

The second independent model involved in the proposed method regards the eigenvalues
computed on the Laplacian of each mesh of the training set S (see section ??). The
eigendecomposition produces the set of pairs {(Λi ,Φi )}i=1,...,N . Especially, Λi contains the
first d non-trivial eigenvalues of the i -th mesh of the training set as its diagonal elements.
Let ΛS be a N ×d matrix whose rows are the eigenvalues extracted from the Λi s.

ΛS =


di ag (λS

1 )
di ag (λS

2 )
...

di ag (λS
N )

=


λS

11,1
· · · λS

1d ,d

λS
21,1

· · · λS
2d ,d

... . . . ...
λS

N1,1
· · · λS

Nd ,d


We assume that all the j -th eigenvalues of ΛS , with j = 1, . . . ,d , are distributed as a

log-normal distribution (see equation 3.2). In order to learn the model parameters µ (the
mean) and σ2 (the variance), we do a maximum likelihood estimation using

µ̂=
∑

i ln xi

N
, σ̂2 =

∑
i (ln xi − µ̂)2

N
(3.16)

As a result of this learning phase, we compute a pair of parameter (µ,σ2) for each of
the d eigenvalues of the model. Hence, the eigenvalue model for a particular shape S is
represented by the set ΘΛ = {

(µi ,σ2
i )

}
i=1,...,d .

3.3.2 Prediction

The learning phase of the proposed method produces two separate models, both referring
to a shape S . The eigenvector model ΘΦ contains the embedded eigenvector matrices
stacked together after the two alignment steps introduced in section 3.3.1.1 and 3.3.1.2,
while the eigenvalue model ΘΛ contains the parameters set learned on the eigenvalues
of the training set. Once both models are computed, we can combine them to compute
the posterior probability of a new mesh M∗ (whose spectral decomposition is (Φ∗,Λ∗))
with respect to the model representing a mesh S . Assuming the independence of the two
models, we can define the conditional probability as

P (S | M∗) = P (Φ∗ |ΘΦ)P (Λ∗ |ΘΛ) (3.17)

Since both P (Φ∗ |ΘΦ) and P (Λ∗ |ΘΛ) come from a log-derivation, equation 3.17 can
be rewritten as

log P (S | M∗) = `L (Φ∗ |ΘΦ)+`L (Λ∗ |ΘΛ) (3.18)

where the eigenvector model log-likelihood is defined as
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Figure 3.3: Examples of Shapes in SHREC’14 Humans dataset

`L (Φ∗|ΘΦ) =
n∏

i=1
P (xi ) =

n∑
i=1

logP (x̄i |ΘΦ) (3.19)

Here, n is the number of vertices of the mesh M∗, while x̄i is a d-dimensional row vec-
tor representing the i -th feature vector of the mesh. Note that the eigenvector matrix as-
sociated to M∗ undergoes the same alignment steps defined in section 3.3.1.1 and 3.3.1.2.
On the other hand, the eigenvalue model log-likelihood is defined as

`L (Λ∗|µΘi ,σΘi ) =
d∏

i=1
P (λi ) =

d∑
i=1

logP (λi ) (3.20)

where µΘi and σΘi are the mean and the variance parameters learned according to 3.16.
The posterior probability is computed against each model of each shape contained in the
dataset. As a decision rule, we classify a certain mesh as representing the shape whose
model yields the highest probability. Even though we employ the proposed method as a
classifier, the output of the approach is still a probability value which can be employed as
a similarity score.

3.3.3 Experiments
In this section we show the performance achieved by the proposed method while address-
ing a classification task. The evaluation is based on the comparison of the results obtained
by our method with respect to the current state-of-the-art on a very popular shape retrieval
benchmark,i.e., SHREC’14 benchmark. The efficacy of the method is evaluated in terms
of mean classification accuracy. Besides, we test the robustness and its sensitiveness to
sub-sampling, showing the retrieval performance with different amount of data employed
in the learning process and with different embedding dimensions. Finally, a short perfor-
mance analysis (in terms of execution time) is proposed at the end of the section.
SHREC’14 Humans [142] is a dataset containing a large number of meshes which rep-
resent 55 different shapes. It consists of two different sub-sets. The first one (synthetic)
contains 15 different human models each in 20 different poses, while the second one
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Method Synthetic Scanned
ISPM [108] 90.2 25.8
DBN [142] 84.2 30.4
R-BiHDM [207] 64.2 64.0
HAPT [78] 81.7 63.7
ShapeGoogle (VQ) [37] 81.3 51.4
Unsupervised DL [112] 84.2 52.3
Supervised DL [112] 95.4 79.1
NPSR 95.0 79.0

Table 3.1: Comparison of different retrieval methods in terms of average retrieval preci-
sion on the SHREC’14 Humans datasets.

contains scans of 40 human subjects, each in 10 different poses. All shapes were down-
sampled to have about 6×103 triangles for efficiency purpose. Both datasets are extremely
challenging, as they contain geometrically similar human shapes. We employed a 10-fold
test over the datasets resulting respectively in 2 positives and 28 negatives per query for
the synthetic dataset and 1 positive and 39 negatives for the scanned dataset. The process
was repeated for each possible subset of the datasets and the whole test was averaged over
100 iterations. We compare our approach with the most accurate methods that participate
to the SHREC’14 benchmark: Histograms of Area Projection Transform (HAPT) [78],
Deep Belief Network (DBN) [142], Intrinsic Spatial Pyramid Matching (ISPM) [108],
Reduced Bi-harmonic Distance Matrix (R-BiHDM) [207] and to a group of approaches
based on the Bag-of-Features paradigm ( [37, 112]). Table 3.1 shows the results yielded
by those methods. The proposed method performs well and is competitive with the cur-
rent state-of-the-art. We are able to achieve high retrieval accuracies in both the synthetic
and scanned datasets, while the differences with respect to the current state-of-the-art are
not statistically significant.

Finally, we present a robustness analysis of the proposed method. The random sub-
sampling has been performed directly on the Laplacian matrices of the meshes which
belong to the same training set. Indeed, performing the sub-sampling after the model
construction through the elimination of some feature vectors (which means, taking out
some rows from the model ΘΦ) could lead to biased results since both the alignment steps
employed in our learning phase would have benefited from the contribution of data that
would no longer be available in the next steps. Figure 3.4 shows the average precision
while both the embedding dimension and the sampling percentage vary. As you can see,
for the lowest level of sub-sampling (respectively, 75% and 100% of data used in the
learning process) we were not able to produce the results with respect to all the embed-
ding dimensions due to the dimension of the model. Even so, it is easy to see that the
performance achieved are consistent at every sub-sampling level. In particular, the results
show that the defined model is robust with respect to the sub-sampling of points. This
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Figure 3.4: Robustness analysis of the proposed method in both Real (top) and Synthetic
(bottom) datasets. The marks represent the average precision obtained with a certain em-
bedding dimension. Different lines represent different sub-sampling percentage, e.g., the
red line represents the average accuracy with respect to different embedding dimensions
after removing 75% of the data on the model (i.e., keeping only 25% of the data).

allows to greatly reduce the dimension of the model itself and consequently increasing
the performance of the whole pipeline.

3.4 Conclusion

The work here introduced, investigates over the application of a generative model for
shapes retrieval task. The model, originally devised for graph structures, is grounded on
the spectral decomposition of the Laplace-Beltrami operator. In particular, it is based



3.4. Conclusion 35

on the definition of two separated models, one for the eigenvalues and the other for the
eigenvectors. The former ones are assumed to be log-normal distributed whereas there is
no assumption for the eigenfunctions. Indeed, in this case, a kernel density estimation is
employed.

Outcomes prove that the approach is easily adaptable to any graph based represen-
tation and actually, for the 3D shape retrieval task, the method is able to compete with
the current state-of-the-art algorithms. Besides, by robustness analysis viewpoint, the
approach also seems to ensure sampling, that means a better computation efficiency is
achievable by removing data from the models without affecting the accuracy.
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4
Structural Analysis via Quantum

Processes

In this Chapter, we address some of the main issues encountering in the wide subject of
structural analysis. Despite the differences in contents between the various matters taken
into account, a common denominator, or better say a fil rouge, actually binds all these
studies together. Specifically, the quantum approach adopted in each work allowed us to
undertake a path of analysis rich in novel tools but at the same time rooted in quantum
information theory framework.

We commence in 4.1 by attempting to shed light on the meaning of the von Neumann
entropy by the structural patterns interpretation viewpoint. We also investigate the po-
tential relationships between the two variants, one based on the Laplacian matrix and the
other on the normalized Laplacian matrix. Still concerning the two variants, we seek to
estimate the quadratic approximations quality of both.

In 4.2 we turn our attention to a novel centrality index for edges. Even in this case
we refer to a well known quantum information theoretical measure, the Holevo quantity.
More to the point, we define the influence of an edge in terms of the contribution to the
Von Neumann entropy of the graph.

Finally, in 4.3 we extend a previous work measuring the similarity between two struc-
tures. This algorithm makes use of a kernel on undirected graphs and evaluates the sim-
ilarity through continuous-time quantum walks and the quantum Jensen-Shannon diver-
gence. We contribute by investigating different Hamiltonian choices and the application
to directed graphs.

4.1 On the von Neumann Entropy of Graphs

The von Neumann entropy of a graph is a spectral complexity measure that has recently
found applications in complex networks analysis and pattern recognition. Two variants
of the von Neumann entropy exist based on the graph Laplacian and normalized graph
Laplacian, respectively. Due to its computational complexity, previous works have pro-
posed to approximate the von Neumann entropy, effectively reducing it to the computation
of simple node degree statistics. Unfortunately, a number of issues surrounding the von
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Neumann entropy remain unsolved to date, including the interpretation of this spectral
measure in terms of structural patterns, understanding the relation between its two vari-
ants, and evaluating the quality of the corresponding approximations.

In this Section we aim to answer these questions by first analysing and comparing
the quadratic approximations of the two variants and then performing an extensive set of
experiments on both synthetic and real-world graphs. In particular we intend to: 1) shed
light on the relation between the structure of a network and its von Neumann entropy,
both for the version based on the graph Laplacian and the normalized Laplacian, thus also
2) deepening our understanding of the difference between these two entropies; 3) evaluate
the quality of the quadratic approximation. Han et al. [82] also briefly analysed the accu-
racy of the quadratic approximation, but only for the version of the von Neumann entropy
based on the normalized Laplacian. As explained in 4.2.4, their analysis is also strongly
influenced by the use of datasets with graphs of varying size, whereas our experimental
evaluation is on datasets of fixed graph size. We are also particularly interested in look-
ing at how different edges contribute to the overall graph entropy, revealing additional
inaccuracies introduced by the quadratic approximation.

The rest of this work is organized as follows: in 4.1.1 the necessary mathematical
and physical background is being introduced. Then in 4.1.2 the quadratic approximation
of the two variants of the von Neumann entropy considered in this paper are presented.
In 4.2.4 we empirically compare the exact and approximated entropies. Finally, we dis-
cuss in 4.2.5 the results of our investigation.

4.1.1 Background
In quantum mechanics, a system can be either in a pure state or a mixed state. Using
the Dirac notation, a pure state is represented as a complex-valued column vector

∣∣ψi
〉
.

A mixed state, on the other hand, is a statistical ensemble of pure states
∣∣ψi

〉
, each with

probability pi . Density matrices are trace-one positive semidefinite matrices introduced
to describe mixed state systems [131]. For such a system, ρ =∑

i pi
∣∣ψi

〉〈
ψi

∣∣, where
∣∣ψi

〉
is a pure state and pi is the probability associated to it. Density matrices play a pivotal
role in quantum mechanics and are linked with the observables of quantum systems, e.g.,
the expectation value of the measurement of an observable O is 〈O〉 = Tr(ρO).

4.1.1.1 The von Neumann entropy

Given a quantum mechanical system described by a density matrix ρ, its von Neumann
entropy [131] is defined as

S(ρ) =−Tr(ρ lnρ), (4.1)

where Tr denotes the trace operator and ln denotes the matrix logarithm. The von Neu-
mann entropy of ρ can also be computed as the Shannon entropy of the spectrum of ρ,
i.e.,

S(ρ) =−
n∑

i=1
λi lnλi (4.2)
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where λi denotes the i -th eigenvalue of ρ, with the convention 0ln0 = 0.
The von Neumann entropy measures the maximum amount of classical information

that we can extract from a mixture of pure states [186]. It has also been extensively used in
the literature to study correlated systems and to define entanglement and distinguishability
measures [120, 135, 136]. Finally note that the von Neumann entropy of a pure state
ρ = ∣∣ψi

〉〈
ψi

∣∣ is always zero. On other hand, a mixed state always has non-zero entropy.
Therefore, the von Neumann entropy S(ρ) can also be seen as a measure of how close ρ
is to being a pure state.

4.1.1.2 Graph density matrices

Let G be an undirected graph with vertex set V and edge set E ⊆ V ×V . Recall that the
adjacency matrix of the graph G is the symmetric matrix with elements

Auv =
{

1 if (u, v) ∈ E
0 otherwise (4.3)

Let D be the diagonal matrix with elements du = ∑n
v=1 A(u, v), where du is the degree

of the node u. Then L = D − A is the graph Laplacian, the combinatorial analogue of the
Laplace-Beltrami operator [99].

Braunstein et al. [34] proposed to use the graph Laplacian to map graphs to quantum
states. More specifically, let G be a graph with Laplacian L, then its density matrix is
defined as ρ(L) = L

Tr(L) = L
2m , where m denotes the number of edges of G . Passerini and

Severini [140] proposed an alternative version of the von Neumann entropy for graphs
based on the normalized Laplacian L = D−1/2LD−1/2. Given a graph G with n nodes and
normalized Laplacian L , they define the density matrix of G as ρ(L ) = L

Tr(L ) = L
n .

4.1.2 The von Neumann entropy of a Graph
With the density matrix of a graph to hand, one can compute its von Neumann entropy
using either Eq. 4.1 or Eq. 4.2. In the remainder of this paper, we refer to the von Neumann
entropies computed on ρ(L) and ρ(L ) as the Laplacian entropy and normalized Laplacian
entropy, respectively.

A number of previous works have made steps toward a general interpretation of
the Laplacian entropy, although this remains an open problem [13, 14, 50, 51, 58, 140].
Passerini and Severini [140] have observed that the Laplacian entropy of a graph tends
to grow with the number of connected components, long paths and nontrivial symme-
tries. They have also shown that the Laplacian entropy of a graph G is upper bounded
by ln(n − 1), where n denotes the number of nodes of G , and that this upper bound is
saturated by both complete graphs and regular graphs (for large n), suggesting that the
Laplacian entropy can be interpreted as a measure of regularity. Du et al. [58] proved
that the same bound holds also for Erdös-Rényi random graphs, highlighting a connec-
tion between randomness and regularity. In [13], the authors showed that for scale free
networks the Laplacian entropy of a graph is linearly related to the Shannon entropy of the
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graph ensemble [13]. More in general, Anand et al. observed in [14] that for graphs with
heterogeneous degree distributions there exists a correlation between these entropies.

De Beaudrap et al. have shown that the Laplacian entropy of a graph can be inter-
preted as a measure of the amount of entanglement between a system corresponding to
the vertices and a system corresponding to the edges of the graph [51]. This in turn al-
lows them to identify cospectral graphs (i.e., graphs having the same graph spectrum) as
graphs with local unitarily equivalent pure states [51]. Finally, Dairyko et al. [50] show
that adding an edge to a graph can result in a decrease of its Laplacian entropy, i.e., the
Laplacian entropy does not satisfy the subadditivity property [53]. More recently, Sim-
mons et al. [166] have proved that the Laplacian entropy of a graph is related to both the
graph Theil index and the graph Jain fairness index, highlighting an interesting connection
between the Laplacian entropy and the level of centralization across a graph.

4.1.2.1 Quadratic approximation of the von Neumann entropy

While the von Neumann entropy of a graph has found many applications in the analysis
of real-world networks [20, 82, 196, 206], a major drawback of this entropic measure is
the fact that it requires the computation of the eigenvalues of the (normalized) graph
Laplacian. This has computational complexity which is cubic in the number of nodes of
the network, thus making the application to large networks unfeasible.

For this reason, a number of researchers resorted to a quadratic approximation of the
entropy [82, 114, 206]. Although this only captures simple degree statistics of the graph,
Han et al. [82] show that for Erdös-Rényi, scale-free, and Delaunay graphs this is a suf-
ficiently good approximation. However their analysis is limited to the normalized Lapla-
cian entropy, and does not consider the unnormalized version. In fact, to the best of our
knowledge, no previous study has investigated the difference between the Laplacian and
the normalized Laplacian entropies. Interestingly, despite a lack of evidence suggesting
that one formulation should be preferred to the other, most works in the literature make
use of the normalized version [20, 82, 196, 206].

One of the main aims of this paper is indeed that of shedding light on the differ-
ences between these two formulations. To this end, we rewrite the Shannon entropy
−∑

i λi ln(λi ) using the second order polynomial approximation k
∑

i λi (1−λi ), where
the value of k depends on the dimension of the simplex. Given a graph G , let ρ(G) denote
its associated density matrix, i.e., ρ(G) is either ρ(L) or ρ(L ). We obtain

S(ρ) =−Tr
(
ρ lnρ

)≈ Tr
(
ρ(In −ρ)

)
, (4.4)

where n is the number of nodes of G , In is the n ×n identity matrix and we ignored the
node set size-dependent factor |V | ln(|V |)

|V |−1 .
In the next subsections we look at the specific form of these approximations in the

case of the Laplacian and normalize Laplacian entropies. We also derive the expressions
for the change in approximated entropy when a single edge is added to the graph, which in
turn allows us to shed light on the type of structures that lead to maximal entropy changes.
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4.1.2.1.1 Laplacian We start by considering the Laplacian entropy. Recall that in this
case ρ(L) = L

2m , where m denotes the number of edges of G . Using simple algebra, we
can rewrite Eq. 4.4 as

S(ρ(L)) ≈ 1− 1

2m
− 1

4m2

∑
v∈V

d 2
v (4.5)

In other words, the quadratic approximation of the Laplacian entropy can be expressed in
terms of simple degree statistics. More interestingly, this allows us to probe into the be-
haviour of the (approximated) Laplacian entropy as the edge set of the graph grows. This
was already investigated numerically in Passerini and Severini [140], but the quadratic
approximation allows us to get a deeper analytical insight, although dependent on the
approximation.

Let ∆(ρ(L)) = S(ρ(L∪(x,y)))−S(ρ(L)) be the increment in entropy when a new edge is
added to a graph G . From Eq. 4.5, we see that

∆(ρ(L)) ≈ 1

2m
+ 1

4m2

∑
v∈V

d 2
v −

1

2(m +1)
− 1

4(m +1)2

( ∑
v 6=x,y

d 2
v + (dx +1)2 + (dy +1)2

)

= 1

2m(m +1)
− 1

4m2(m +1)2

(
(m +1)2

∑
v∈V

d 2
v −m2

( ∑
v 6=x,y

d 2
v + (dx +1)2 + (dy +1)2

))
= 1

2m(m +1)
− 1

4m2(m +1)2

(
(2m +1)

∑
v∈V

d 2
v −2m2(dx +dy +1)

)
= 1

2m(m +1)
− 2m +1

(m +1)2

(
1− 1

2m
− S̃(ρ(L))

)
− dx +dy +1

2(m +1)2

=− dx +dy

2(m +1)2
− 1+ (2m +1)(1− S̃(ρ(L))

(m +1)2
, (4.6)

where S̃(ρ(L)) denotes the approximated Laplacian entropy. Eq. 4.6 indicates that edges
connecting low degree nodes produce the maximum increment in the graph entropy, while
connecting high degree nodes has the opposite effect. This in turn suggests that highly
regular graphs with low average degree will be assigned higher values of the approximated
Laplacian entropy. This is also the case for the exact version of the Laplacian entropy, as
shown in Section 4.2.4.

Note, however, that this does not explain the emergence of structures such as long
paths, connected components, and non-trivial symmetries observed by Passerini and Sev-
erini in the Laplacian entropy [140] and confirmed in our experimental evaluation. In-
deed, the quadratic approximation provides an interesting but incomplete picture of the
structural patterns captured by the Laplacian entropy.

4.1.2.1.2 Normalized Laplacian We now consider the normalized Laplacian entropy.
In this case ρ(L ) = L

n , where n denotes the number of nodes of G . We can rewrite Eq. 4.4
as

S(ρ(L )) ≈ 1− 1

n
− 1

n2

∑
(u,v)∈E

1

dudv
, (4.7)
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as previously observed by Han et al. [82]. As for the Laplacian entropy, the quadratic
approximation is based on simple degree statistics. Unlike the approximated Laplacian
entropy, however, Eq. 4.7 shows that the approximated normalized Laplacian entropy is
defined in terms of degree statistics for pairs of nodes that are connected by edges.

As in the previous subsection, we now turn our attention to the increment in entropy
when the edge set of G grows. Let ∆(ρ(L )) = S(ρ(L∪(x,y)))− S(ρ(L )) denote this in-
crement. Then let Nx and Ny denote set of vertices connected to x and y in G (before
introducing the edge (x, y)), respectively. We have that

∆(ρ(L )) ≈− 1

n2

( ∑
v∈Nx

1

dv (dx +1)
+ ∑

v∈Ny

1

dv (dy +1)
+ 1

(dx +1)(dy +1)

− ∑
v∈Nx

1

dv dx
− ∑

v∈Ny

1

dv dy

)

=− 1

n2

(
dx − (dx +1)

dx(dx +1)

∑
v∈Nx

1

dv
+ dy − (dy +1)

dy (dy +1)

∑
v∈Ny

1

dv
+ 1

(dx +1)(dy +1)

)

= 1

n2

(
1

dx(dx +1)

∑
v∈Nx

1

dv
+ 1

dy (dy +1)

∑
v∈Ny

1

dv
− 1

(dx +1)(dy +1)

)

= 1

n2

(
1

(dx +1)H(dNx )
+ 1

(dy +1)H(dNy )
− 1

(dx +1)(dy +1)

)
, (4.8)

where H(dNx ) and H(dNy ) denote the harmonic means of the degrees of the vertices in
Nx and Ny , respectively. Compared to Eq. 4.6, Eq. 4.8 shows a more complex relation
between the node degrees and the graph entropy. The third term of the last line of Eq. 4.8
drives the entropy change in the opposite direction of Eq. 4.6, as maximizing (minimiz-
ing) the entropy requires establishing connections between high (low) degree nodes. The
first two terms, on the other hand, highlight the importance of the neighbourhood of the
nodes being connected, with the connection of pairs of low degree nodes with low average
degree neighbourhoods yielding the maximum increment in the entropy of the graph.

4.1.2.2 Discussion

The analysis of the quadratic approximations of the two entropies suggests that these may
be only weakly correlated, if not perhaps negatively correlated, depending on the topol-
ogy of the underlying graphs. Note that simply looking at Eq. 4.5 and Eq. 4.7 one may
conclude that the correlation between the quadratic approximations of the Laplacian and
normalized Laplacian entropies should be negative. However the actual relation is more
subtle, and it is better understood through Eqs. 4.6 and 4.8. In fact, note that while Eq. 4.5
involves a summation over the nodes of the graph, Eq. 4.7 involves a summation over
its edges, thus making the relation between the two quantities more complex. Indeed,
the negative correlation suggested by Eqs. 4.5 and 4.7 is also observed when examining
Eqs. 4.6 and 4.8, though the second pair of equations reveals a more subtle relation be-
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(a) Min LE (b) Max LE (c) Min ALE (d) Max ALE

Figure 4.1: Evolution of the edge structure of a path graph over 8 nodes when we itera-
tively add edges that (a) minimize and (b) maximize the Laplacian entropy (LE). (c) and
(d) show similar results for the approximate Laplacian entropy (ALE).

tween the two entropies, with the degree distribution of the nodes neighbourhoods playing
an important role.

As for the exact version of the entropies, it is harder to draw any conclusion on their
relation as we do not know what type of structural information (beyond simple degree
statistics) is being lost in the approximation. In the next section we aim to answer the
following questions: 1) are the Laplacian and normalized Laplacian capturing similar
structural patterns? and 2) can we rely on the quality of their quadratic approximations
when the high computational complexity of the exact version becomes an issue? To an-
swer this questions, in the next section we run an extensive set of numerical experiments
on both synthetic and real-world graphs.

4.1.3 Experiments

In the previous sections we have introduced the concepts of (normalized) Laplacian en-
tropy of a graph and its quadratic approximation. This in turn provided us with a partial
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(a) Min NLE (b) Max NLE (c) Min ANLE (d) Max ANLE

Figure 4.2: Evolution of the edge structure of a path graph over 8 nodes when we iter-
atively add edges that (a) minimize and (b) maximize the normalized Laplacian entropy
(NLE). (c) and (d) show similar results for the approximate normalized Laplacian entropy
(ANLE).

intuition of the relation between graph structure and entropy. In this section we aim to
validate these initial intuitions with an extensive set of experiments and to investigate fur-
ther the relation between the normalized and unnormalized Laplacian entropies, as well
as the quality of their quadratic approximation.

4.1.3.1 Entropy-driven Graph Evolution

We commence by investigating how the structure of a graph changes as we add new nodes
and edges to it. To this end, we introduce a simple growth model where new connections
are established if they maximise (minimise) the graph entropy. We perform the same
experiment for both the Laplacian and the normalized Laplacian entropy, as well as their
quadratic approximations.
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(a) Erdös-Rényi (b) Scale-free (c) Small world

Figure 4.3: Average accuracy when predicting the edge whose addition maximizes the
Laplacian entropy when using four different heuristics, i.e., choose (1) the pair of nodes
with minimum degree sum; (2) the pair of nodes with maximum geodesic distance; (3)
the pair of nodes with minimum degree sum and maximum geodesic distance; (4) a pair
of nodes u and v picked at random, with (u, v) ∉ E .

4.1.3.2 Edge Growth Model

We first consider the case where the number of nodes is fixed and new edges are iteratively
added to the graph. Fig. 4.1 shows the first four stages of the evolution of a graph with
eight nodes where the growth process is driven by the Laplacian entropy. Each column
of Fig. 4.1 corresponds to a different choice of the process (maximization or minimiza-
tion) and entropy (exact or approximated). Similarly, Fig. 4.2 shows the results for the
normalized Laplacian entropy.

Figs. 4.1(c) and (d) confirm what already observed when looking at the quadratic
approximation of the Laplacian entropy. Indeed, edges that maximize the approximate
Laplacian entropy are edges that connect low degree nodes, as shown in Fig. 4.1(d). In
contrast to Fig. 4.1(b), where we maximize the exact entropy, in Fig. 4.1(d) all pairs of
nodes with minimum degree sum have the same probability of being connected. This
is not the case in Fig. 4.1(b), where, given two pairs of nodes with equal sum of their
degrees, the pair of nodes with the highest geodesic distance1 leads to a higher increment
in the entropy. As a result of this, each new edge added in the Fig. 4.1(b) seems to act
as an axis of symmetry. While it would be tempting to argue that the latter is evidence
of structural symmetries being picked up by the exact Laplacian entropy as opposed to
its approximated version, a quick numerical investigation proves that this hypothesis is
incorrect.

It is also not true, for a general graph, that the pair of nodes being connected is always
one with minimum degree sum and maximum distance. However the distance between
the nodes being connected clearly plays a role, together with a number of yet unspecified
structural properties. To show this, we perform the following experiment. Starting from
a random graph G , we use four different heuristics to predict what edge will lead to the

1Recall that the geodesic distance between two nodes u and v is the number of edges in the shortest
path connecting u and v .
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maximum increment of the Laplacian entropy. Each of the four heuristics selects the pairs
of nodes that optimize the following measures, respectively: (1) the pair of nodes with
minimum degree sum (which corresponds to the structural information contained in the
approximated Laplacian entropy); (2) the pair of nodes with maximum geodesic distance;
(3) the pair of nodes with minimum degree sum and maximum geodesic distance; (4)
a pair of nodes u and v picked at random, with (u, v) ∉ E . The prediction accuracy of
a heuristic is computed as the fraction of edges it identified correctly. Fig. 4.3 shows
the results for the different random graph models, the Erdös-Rényi model, the Watts–
Strogatz model, and the Preferential Attachment model [22] (see Section 4.1.3.4 for a
detailed description of the models and their parameters). In all cases, the addition of the
path length information leads to a significant increment in the accuracy of the heuristic
which solely looks for the pair of nodes with minimum degree sum. In other words, both
degree statistics (captured by the quadratic approximations) and path length information
are important structural patterns captured by the exact version of the Laplacian entropy.
Note also that as the graphs becomes denser (which, given a fixed number of nodes, for
the three random models considered correspond to increasing values of p, m, and k,
respectively) the path length information loses importance. This is due to the fact that for
sufficient higher densities all pairs of nodes lie at the same distance from each other.

We also compute a number of statistics that capture different structural properties
of the graph during its evolution, namely the average shortest path length, the index of
dispersion of the degree distribution, and the average clustering coefficient, as shown in
Fig. 4.4. Recall that the index of dispersion of a distribution measures the ratio of its vari-
ance to its mean, and the clustering coefficient quantifies the degree to which nodes in a
graph tend to cluster together. Fig. 4.4 highlights once again the differences between the
structural information captured by the Laplacian and the normalized Laplacian entropy, as
well as their quadratic approximations. The tendency of the process which maximizes the
exact Laplacian entropy to connect low degree nodes is particularly evident in the plots
of the index of dispersion. As explained above, maximizing the (approximated) Lapla-
cian entropy tends to create connections between low degree nodes. This in turn tends to
create a regular structure where each node has the same degree, thus keeping the index of
dispersion of the degree distribution low throughout the graph evolution. Note that this
does not happen when maximizing or minimizing the (approximated) normalized Lapla-
cian entropy. The difference between the exact Laplacian entropy and its approximated
version is instead clear by looking at the average clustering coefficient. By connecting
nodes that have both low degree sum and high distance, maximizing the exact Lapla-
cian entropy keep the clustering coefficient as it effectively attempts to avoid creating
triangles, at least in the first stages of the evolution. This however does not happen for
the approximated Laplacian entropy, where the connection of two nodes with a common
neighbour introduces a new triangle and thus increases the value of the average clustering
coefficient.
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Figure 4.4: Top-to-bottom: Average path length, index of dispersion, and average cluster-
ing coefficient at different steps of the temporal evolution of the graphs in Fig. 4.1.

4.1.3.3 Node Growth Model

We also consider the case of graph where the both the number of nodes is not fixed over
time. Instead, at each time step we add a new node and we connect it to the m nodes
that lead to a maximal increment of the entropy. Each column in Fig. 4.5 corresponds to
a different choice of the process (maximization or minimization) and entropy (exact or
approximated). Similarly, we show the results of the same experiment for the normalized
Laplacian entropy in Fig. 4.6. In both cases we start from a clique over three nodes. We
only show the results for m = 1, as we observe the same behaviour for larger values of
m. In contrast to the edge growth model, here maximizing (minimizing) the exact and
approximated entropies yields the same structural evolution. Interestingly, while mini-
mizing the (approximated) Laplacian entropy yields the formation of hubs, minimizing
the (approximated) normalized Laplacian entropy leads to the formation of a long tail of
low degree nodes. We observe opposite behaviour when maximizing the (approximated)
Laplacian and normalized Laplacian entropy, respectively.
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(a) Min LE (b) Max LE (c) Min ALE (d) Max ALE

Figure 4.5: Evolution of the graph structure when we iteratively add a new node and we
connect it to the graph so as to (a) minimize and (b) maximize the Laplacian entropy (LE).
(c) and (d) show similar results for the approximate Laplacian entropy (ALE). Here the
seed graph is a clique over 3 nodes.

4.1.3.3.1 Experiments on Random Graphs While the previous experiments gave us
some first interesting insights in the nature of the structural pattern captured by the (ap-
proximated) Laplacian and normalized Laplacian entropies, in this section we aim to
perform a more thorough analysis of the two entropies and their approximated versions
on a large set of synthetically generated graphs.

4.1.3.4 Datasets

We perform our experiments on synthetic networks generated by three well-known ran-
dom graph models: 1) the Erdös-Rényi model, 2) the Watts–Strogatz model and 3) the
Preferential Attachment model [22]. For each model we vary its parameters as explained
below, except from the number of nodes, which is fixed to n = 100 in all three cases.
This is to control for the well-known dependency between the value of the von Neumann
entropy of a graph and its vertex set size, which would otherwise skew the results of our
correlation study. This is particularly evident when our results are compared to those of
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(a) Min NLE (b) Max NLE (c) Min ANLE (d) Max ANLE

Figure 4.6: Evolution of the graph structure when we iteratively add a new node and we
connect it to the graph so as to (a) minimize and (b) maximize the normalized Laplacian
entropy (NLE). (c) and (d) show similar results for the approximate normalized Laplacian
entropy (ANLE). Here the seed graph is a clique over 3 nodes.

Figure 4.7: We choose the optimal value of p in order to generate graphs displaying the
small-world property [172].

Han et al. [82], where no such control was introduced.

Erdös-Rényi model: the graphs in this dataset are generated by varying the parameter
p, namely the probability of connecting two nodes, between 0.1 and 0.9. Unless other-
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wise stated, for each choice of p we generate 100 instances, for a total of 900 graphs.

Preferential Attachment model: the parameter of this model is m, i.e. the number
of edges to add from a new node to the existing nodes, at each temporal iteration. We
let m vary from 2 to 10, and, unless otherwise stated, we generate 100 instances for each
choice of m, for a total of 900 graphs.

Watts–Strogatz model: here the model parameters are k and p. Starting from a ring
graph where each node is connected to its k nearest neighbours, we rewire each edge
with probability p. When p = 0, the graph is regular. As p increases the graph structure
becomes more random. We follow the quantitative metric presented in [172] to measure
the small-worldness of a graph and we select the value of p = 0.1, as shown in Fig. 4.7.
More precisely, in [172] the authors propose a way to measure the small-worldness of
a network based on the original model described by Watts and Strogatz, comparing the
network clustering coefficient to an equivalent lattice network and the path length to a ran-
dom network. This in turn ensure that the generated graphs display the small-worldness
property [172], i.e., they simultaneously have high clustering coefficient and low path
length. As for the parameter k, we let it vary from 2 to 10. Unless otherwise stated, we
generate 100 instances for each choice of k, for a total 900 graphs.

4.1.3.5 Correlation Analysis

With the synthetic graph datasets to hand, we perform a correlation study between the
various version of the von Neumann entropy considered so far. More specifically, we
measure the Pearson correlation coefficient (denoted as ρ in Figs. 4.8-4.11) between 1)
the approximate and exact Laplacian entropy, 2) the approximate and exact normalized
Laplacian entropy, 3) the exact Laplacian entropy and the exact normalized Laplacian en-
tropy, and 4) the approximate Laplacian entropy and the approximate normalized Lapla-
cian entropy. Note that, for each model and each choice of the model parameters (see
Section 4.1.3.4), we generate 1000 graphs.

Fig. 4.8 shows the results of the correlation analysis on the Erdös-Rényi graphs. The
first column refers to the Laplacian entropy, the second one to the normalized Laplacian
entropy, whereas the third and fourth columns concern the approximate and exact formu-
lation. Here, we consider three choices of p. We first observe that there exists a strong
correlation between the exact and approximate versions of each entropy. On the other
hand, when we compare the normalized Laplacian entropy and unnormalized Laplacian
entropy, both in their exact and approximate forms, the correlation becomes weaker. In-
deed, as observed in the previous section, we expect the quadratic approximations of the
two entropies to show a weak positive, or potentially negative, correlation. We posit that
the weak positive correlation observed for Erdös-Rényi graphs is a consequence of the
degree distribution of the nodes neighbourhoods being close to uniform. Interestingly,
here we observe that this result holds also for the exact versions of the entropies. This in
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Figure 4.8: Entropies correlations on the Erdös-Rényi graphs for p = 0.1 (top), p = 0.4
(middle), and p = 0.7 (bottom).
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Figure 4.9: Correlation between entropy and number of edges for Erdös-Rényi graphs
with p = 0.1.

turn suggests that the structural patterns captured by the two entropies are not necessarily
the same. This is an important observation, as it implies, for example, that when using
the von Neumann entropy in pattern recognition applications swapping one entropy for
the other is likely not to give the same result.

As for the strong correlation observed between the exact and approximate version of
the normalized Laplacian entropy, this is likely to be due to the tight relationship with the
number of edges of a graph and its normalized Laplacian entropy, as shown in Fig. 4.9.
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Figure 4.10: Entropies correlation on the scale-free graphs for m = 1 (top), m = 3 (mid-
dle), and m = 5 (bottom).

More precisely, in Fig. 4.9 we show the correlation between the number of edges of a
graph and its entropy for Erdös-Rényi graphs with p = 0.1. Indeed, Eq. 4.7 suggests a
strong dependency between the number of edges of a graph and the quadratic approxima-
tion of the normalized Laplacian entropy. Note however that we do not observe a strong
correlation between the (approximate) Laplacian entropy and the number of edges.

We then continue the correlation study on the set of scale-free graphs generated by
the Preferential Attachment model. The results are shown in Fig. 4.10. On the one hand,
when we consider the relationship between the approximate and the exact versions of the
entropies, we observe a similar behaviour to that seen for the Erdös-Rényi graphs, with a
strong correlation for both the Laplacian and the normalized Laplacian entropy with their
quadratic approximations. Note that in this case, given a pair of values for n and m, the
number of edges of the generated graphs does not vary, so the observed effect cannot be
explained by a varying edge set size.

On the other hand, in this case we observe a negative correlation between the two en-
tropies, both in their exact and approximated versions. The correlation is stronger between
the approximated entropies. Indeed, in Eq. 4.5 the term −∑

u∈V d 2
u prevails, whereas in

Eq. 4.7 the leading term is −∑
(u,v)∈E

1
du dv

. In other words, when a graph contains very
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Figure 4.11: Entropies correlation on the small-world graphs for k = 2 (top), k = 4 (mid-
dle), and k = 6 (bottom).
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Figure 4.12: Average predictability error (± standard error) on Erdös-Rényi graphs.

high degree nodes, the Laplacian entropy becomes very small while the normalized coun-
terpart tends to increase.

We conclude this correlation study on the small-world graphs generated by the Watts–
Strogatz model. As for the scale-free graphs, note for a choice of the parameters n and
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k the number of edges in the generate graphs does not vary. Fig. 4.11 shows a stark
contrast between the results obtained for k > 2 and those obtained for k = 2. To understand
why this happens, recall that k controls the number of neighbours for each node in the
initial ring graph. The higher the value of k, the more robust the graph structure is to
the edge flips that turn the ring into a small-world graph by reducing the average path
length. The result is a quasi-regular ring lattice structure with relatively uniform degree
where the approximate entropy. Since the approximated entropies only capture simple
degree statistics, they are unable to capture the structural differences observed by the exact
entropies, which go beyond structural information at degree level. As a consequence,
the correlation between the exact entropies and the approximated ones decreases as k
increases, until the two are practically uncorrelated. However this does not happen when
k = 2. In fact, in this case the regularity of the initial ring graph is easily disrupted by the
noise addition process, with the removal and addition of a few edges causing significant
deviations from the initial lattice structure.

4.1.3.6 Edge Predictability

From the previous analyses it is clear that the quality of the quadratic approximations of
exact entropies depend on the topology of the underlying graphs. We have also seen that
the Laplacian and the normalized Laplacian entropies generally capture different types
of structural information. We now take our investigation one step further and we look at
entropic contribution of a single edge, when either the approximate entropy or the exact
entropy ares used. Previous works [114] have looked at the entropic content of an edge as
a way to measure its centrality. More in general, our interest is again to understand how
well the quadratic approximations of the Laplacian and normalized Laplacian entropies
are able to capture the contributions of single edges to the overall graph entropy.

We generate three sets of synthetic graphs as described in 4.1.3.4. Let G = (V ,E) be
one such graph with edge set E ⊆ V ×V , where V denotes the node set. For each edge
not in E , we calculate the increase in entropy obtained by adding that connection to the
graph, both for the exact and the approximate form of the entropy. Let l i stE and l i stA

be two edge-indexed lists containing the values of the exact and the approximate entropic
increases, respectively. Given l i stA , we choose the index i M of the edge that leads to the
maximum entropic increment, and the index i m of the edge that leads to the minimum
entropic increment. With these indices to hand, we select the corresponding value of the
entropic increment for the same edges in the exact case, i.e., l i stE

i M and l i stE
i m . Then, we

define the predictability error for the edge that leads to the maximum entropic increment
as

Pr dM = 1− l i stE
i M

max(l i stE )
. (4.9)

Similarly, we define the predictability error for the edge that leads to the minimum en-
tropic increment as

Pr dm = 1− min(l i stE )

l i stEi m
(4.10)
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Figure 4.13: Average predictability error (± standard error) on scale-free graphs.

In both cases, the smaller the predictability error the better we are able to approximate the
exact maximum using the quadratic entropy.

Figs. 4.12, 4.13, and 4.14 show how the error changes as we vary the model parame-
ters of the Erdös-Rényi, Preferential Attachment Watts-Strogatz model, respectively. We
observe that in general, regardless of the model, the error tends to decrease. In other
words, as graphs become denser the number of non-existing edges decreases and thus it
becomes easier to correctly identify the edges associated to the maximum (minimum) en-
tropic increment. The only exception is that of the Watts-Strogatz model, where the error
first increases and then decreases, as shown in Fig. 4.14(a). Note that this fits with our
previous observation of a higher correlation between the approximate and exact entropies
for this type of graphs when k = 2. However while in the correlation study we observe
that for k > 2 the correlation decreases, in this case the graph densification appears to
dominate and to lead to a decrease of the observed predictability error.

Interestingly, we see that the predictability error is significantly lower when we are
trying to approximate the Laplacian entropy as opposed to the normalized Laplacian en-
tropy, with the only exception being that of scale free graphs. This is probably due to
an ambiguity created by the approximate version. Indeed, according to Eq. 4.6, in or-
der to maximize the approximate Laplacian entropy, two nodes with low degree should
be linked. However, when we take into account networks whose degree distribution fol-
lows a power law, the choice gets nearly random. More specifically, the formula does
not consider the node neighbourhood and thus two nodes belonging to the same hub or
two nodes belonging to different hubs may be indistinctly connected. However, the ex-
act version could be making a distinction and favouring the connection between nodes
belonging to different hubs. This in turn could be explained as an effort to connect dis-
tant nodes, already observed in Fig. 4.3. Such an ambivalence between the approximate
and exact Laplacian entropy eventually leads to a poor predictability. On the other hand,
Fig. 4.13(b) shows no substantial difference between the two entropies because there is
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(a) Maximization (b) Minimization

Figure 4.14: Average predictability error (± standard error) on small-world graphs.

less uncertainty in choosing which pair of nodes (with high degree) to connected.

4.1.3.7 Experiments on Real-world Networks

We conclude our analysis by considering networks extracted from real-world complex
systems.

4.1.3.8 Datasets

Dataset 1: the USSM dataset is extracted from a database consisting of the daily prices
of 431 companies in 8 different sectors from the New York Stock Exchange (NYSE) and
the Nasdaq Stock Market (NASDAQ). To construct the dynamic network, 431 stocks with
historical data from January 1995 to December 2016 are selected. The dataset is arranged
to be around 5500 trading days. In order to build an evolving network, a time window
of 28 days is used and it is moved along time to obtain a sequence (from day 29 to day
5500); in this way, each temporal window contains a time-series of the daily return stock
values over a 28 day period. Afterward, trades among the different stocks are set as a
network. For each time window, we compute the cross correlation coefficients between
the time-series for each pair of stocks and create connections between them if the abso-
lute value of the correlation coefficient exceeds a threshold. The result is a stock market
network which changes over the time, with a fixed number of 431 nodes and varying edge
structure for each of trading days.
Dataset 2: this dataset collects protein-protein interaction PPI networks related to histi-
dine kinase 2. Histidine kinase is a key protein in the development of signal transduction.
The graphs describe the interaction relationships between histidine kinase in different

2Lars J Jensen, Michael Kuhn, Manuel Stark, Samuel Chaffron, Chris Creevey, Jean Muller, Tobias
Doerks, Philippe Julien, Alexander Roth, Milan Simonovic, et al. String global view on proteins and their
functional interactions in 630 organisms. Nucleic acids research 2009
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Figure 4.15: Correlation between the entropies (top) and entropy and number of edges
(bottom) on the USSM dataset.

species of bacteria. If two proteins (graph nodes) have direct (physical) or indirect (func-
tional) association, they are connected by an edge. PPIs are collected from 5 different
kinds of bacteria with the following evolution order (from older to more recent): 4 PPIs
from Aquifex aelicus and 4 PPIs from Thermotoga maritima, 52 PPIs from Gram-Positive
Staphylococcus aureus, 73 PPIs from Cyanobacteria Anabaena variabilis and 40 PPIs
from Proteobacteria Acidovorax avenae.

4.1.3.9 Correlation Analysis

The USSM dataset contains a time-evolving complex network consisting of graphs hav-
ing components of different sizes. Thus, we selected only some defined instances among
the available ones. Specifically, we chose 707 samples. Each sample has to satisfy two
requirements: a) being a connected graph, b) having maximum size (431 nodes). The
correlation plots between the entropies are shown in Fig. 4.15 (top), where ρ denotes the
Pearson correlation coefficient. We first observe that the correlation is always strong. This
is presumably due to the fact all instances belong to the same time-varying process, mak-
ing them intrinsically correlated to each other. However, it is worth recalling that another
factor may be causing this dependence. We have already stressed that the entropy can be
influenced by the volume of a graph (i.e., the number of node it contains) as well as by
its density (i.e., the number of edges it contains). While in this case the volume is fixed,
the density changes over time. Indeed, in Fig. 4.15 (bottom) we see that the normalized
Laplacian entropy of is highly correlated with the graphs density, in accordance to what
already observed in Fig. 4.8.

The PPI dataset consists of connected graphs with varying number of nodes. Due to
the limited number of graphs in the PPI dataset, we prefer not to restrict our analysis to
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Figure 4.16: Correlation between entropies (top), entropy and number of nodes (middle)
and edges (bottom) on the PPI dataset.

same size graphs. Fig. 4.16 (top) shows the correlation plots for the PPI dataset. Once
again, we observe a high (Pearson) correlation between all pairs of entropies. With the
exception of the Laplacian entropy, this appears to be largely due to the correlation be-
tween the entropy of a graph and its number of edges and nodes (Fig. 4.16, middle and
bottom). Finally, note that in Fig. 4.16 σ denotes the Spearman rank correlation coeffi-
cient. Indeed, we observed the existence of a non-linear relation between the entropy and
the number of edges (nodes).

4.1.4 Conclusion
In this Section we have investigated two variants of the von Neumann entropy of a graph,
based on the normalized and unnormalized Laplacian, respectively. With their quadratic
approximations to hand, we have studied the entropic change as the new edges are added
to the graph, giving new insight in the type of structural patterns that influence the value
of the (approximated) entropy.

We performed an extensive set of experiments which showed that 1) the Laplacian
and the normalized Laplacian entropies capture the presence of related yet different struc-
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tural patterns, 2) the quadratic approximation fail to explain the emergence of non-trivial
structures, in particular for the case of the Laplacian entropy, and that in general 3) the
quality of the quadratic approximation, as well as which variant of the von Neumann
entropy is better approximated, depends on the topology of the underlying graph. Our
results suggest that the quadratic approximation of the von Neumann entropy can be an
efficient way to measure the complexity of large networks, however the quality of this
approximation depends on the topology of the network being studied. In particular, with
the exception of small world networks, we find that the Laplacian entropy is easier to
approximate. The normalized Laplacian entropy, on the other hand, can be approximated
better for Erdös-Rényi and scale-free networks with low edge density.

Our analysis shows that:

• the two versions of the von Neumann entropy based on the Laplacian and normal-
ized Laplacian (respectively) are connected to the presence of similar structural
patterns, although with some significant differences;

• the correlation between these two entropic measures ranges from weakly positive
to strongly negative, depending on the underlying graph structure;

• the quadratic approximations fail to explain the presence of non-trivial structures
observed when the growth is driven by the exact entropies;

• the quality of the approximations, as well as which variant of the von Neummann
entropy is better approximated, depends on the topology of the underlying graph;
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4.2 Edge Centrality via the Holevo Quantity
In the study of complex networks, vertex centrality measures are used to identify the most
important vertices within a graph. A related problem is that of measuring the centrality
of an edge. In this section, we propose a novel edge centrality index rooted in quantum
information. More specifically, we measure the importance of an edge in terms of the
contribution that it gives to the Von Neumann entropy of the graph. We show that this can
be computed in terms of the Holevo quantity, a well known quantum information theoret-
ical measure. While computing the Von Neumann entropy and hence the Holevo quantity
requires computing the spectrum of the graph Laplacian, we show how to obtain a sim-
plified measure through a quadratic approximation of the Shannon entropy. This in turns
shows that the proposed centrality measure is strongly correlated with the negative degree
centrality on the line graph. We evaluate our centrality measure through an extensive set
of experiments on real-world as well as synthetic networks, and we compare it against
commonly used alternative measures.

4.2.1 Introduction
The study of complex networks has recently attracted increasing interest in the scien-
tific community, as it allows to model and understand a large number of real-world
systems [65]. This is particularly relevant given the growing amount of available data
describing the interactions and dynamics of real-world systems. Typical examples of
complex networks include metabolic networks [97], protein interactions [93], brain net-
works [169] and scientific collaboration networks [132].

One of the key problems in network science is that of identifying the most rele-
vant nodes in a network. This importance measure is usually called the centrality of
a vertex [105]. A number of centrality indices have been introduced in the literature
[29, 65, 71, 72, 134, 153], each of them capturing different but equally significant aspects
of vertex importance. Commonly encountered examples are the degree, closeness and
betweenness centrality [71, 72, 134]. A closely related problem is that of measuring the
centrality of an edge [33, 105]. Most edge centrality indices are developed as a variant
of vertex centrality ones. A common way to define an edge centrality index is to apply
the corresponding vertex centrality to the line graph of the network being studied. Recall
that, given a graph G = (V ,E), the line graph L (G) = (V ′,E ′) is a dual representation of
G where each node uv ∈ V ′ corresponds to an edge (u, v) ∈ E , and there exists and edge
between two nodes of L (G) if and only if the corresponding edges of G share a vertex.
By measuring the vertex centrality on L (G), one can map it back to the edges of G to
obtain a measure of edge centrality. However, as observed by Koschützki et al. [105], this
approach does not yield the same result as the direct definition of the edge centrality on
G . Moreover, the size of the line graph is quadratic in the size of the original graph, thus
making it hard to scale to large networks when the chosen centrality measure is computa-
tionally demanding.

Here, we introduce a novel edge centrality measure rooted in quantum information
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theory. More specifically, we propose to measure the importance of an edge in terms of
its contribution to the Von Neumann entropy of the network [140]. This can be measured
in terms of the Holevo quantity, a well known quantum information theoretical measure
that has recently been applied to the analysis of graph structure [154, 155]. We also show
how to approximate this quantity in the case of large networks, where computing the
exact value of the Von Neumann entropy is not feasible. This in turns highlights a strong
connection between the Holevo edge centrality and the negative degree centrality on the
line graph. Finally, we perform a series of experiments to evaluate the proposed edge
centrality measure on real-world as well as synthetic graphs, and we compare it against a
number of widely used alternative measures.

4.2.2 Quantum Information Theoretical Background

4.2.2.1 Quantum States and Von Neumann Entropy

In quantum mechanics, a system can be either in a pure state or a mixed state. Using the
Dirac notation, a pure state is represented as a column vector

∣∣ψi
〉
. A mixed state, on the

other hand, is an ensemble of pure quantum states
∣∣ψi

〉
, each with probability pi . The

density operator of such a system is a positive unit-trace matrix defined as

ρ =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣ . (4.11)

The von Neumann entropy [135] S of a mixed state is defined in terms of the trace and
logarithm of the density operator ρ

S(ρ) =−Tr(ρ lnρ) =−∑
i
λi ln(λi ) (4.12)

where λ1, . . . ,λn are the eigenvalues of ρ. If
〈
ψi

∣∣ρ ∣∣ψi
〉= 1, i.e., the quantum system is a

pure state
∣∣ψi

〉
with probability pi = 1, then the Von Neumann entropy S(ρ) =−Tr(ρ lnρ)

is zero. On other hand, a mixed state always has a non-zero Von Neumann entropy asso-
ciated with it.

4.2.2.2 A Mixed State from the Graph Laplacian

Let G = (V ,E) be a simple graph with n vertices and m edges. We assign the vertices of
G to the elements of the standard basis of an Hilbert space HG , {|1〉 , |2〉 , ..., |n〉}. Here |i 〉
denotes a column vector where 1 is at the i -th position. The graph Laplacian of G is the
matrix L = D−A, where A is the adjacency matrix of G and D is the diagonal matrix with
elements d(u) =∑n

v=1 A(u, v). For each edge ei , j , we define a pure state

∣∣ei , j
〉

:= 1p
2

(|i 〉− ∣∣ j
〉

). (4.13)
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Then we can define the mixed state { 1
m ,

∣∣ei , j
〉

} with density matrix

ρ(G) := 1

m

∑
{i , j }∈E

∣∣ei , j
〉〈

ei , j
∣∣= 1

2m
L(G). (4.14)

Let us define the Hilbert spaces HV
∼= CV , with orthonormal basis av , where v ∈ V , and

HE
∼= CE , with orthonormal basis bu,v , where {u, v} ∈ E . It can be shown that the graph

Laplacian corresponds to the partial trace of a rank-1 operator on HV ⊗HE which is
determined by the graph structure [51]. As a consequence, the Von Neumann entropy of
ρ(G) can be interpreted as a measure of the amount of entanglement between a system
corresponding to the vertices and a system corresponding to the edges of the graph [51].

4.2.2.3 Holevo Quantity of a Graph Decomposition

Given a graph G , we can define an ensemble in terms of its subgraphs. Recall that a
decomposition of a graph G is a set of subgraphs H1, H2, ..., Hk that partition the edges of
G , i.e., for all i , j ,

⋃k
i=1 Hi =G and E(Hi )∩E(H j ) =;, where E(G) denotes the edge set

of G . Notice that isolated vertices do not contribute to a decomposition, so each Hi can
always be seen a subgraph that contains all the vertices. If we let ρ(H1),ρ(H2), ...,ρ(Hk )
be the mixed states of the subgraphs, the probability of Hi in the mixture ρ(G) is given by
|E(Hi )|/|E(G)|. Thus, we can generalise Eq. 4.14 and write

ρ(G) =
k∑

i=1

|E(Hi )|
|E(G)| ρ(Hi ). (4.15)

Consider a graph G and its decomposition H1, H2, ..., Hk with corresponding states
ρ(H1),ρ(H2), ...,ρ(Hk ). Let us assign ρ(H1),ρ(H2), ...,ρ(Hk ) to the elements of an alpha-
bet {a1, a2, ..., ak }. In quantum information theory, the classical concepts of uncertainty
and entropy are extended to deal with quantum states, where uncertainty about the state
of a quantum system can be expressed using the density matrix formalism. Assume a
source emits letters from the alphabet and that the letter ai is emitted with probability
pi = |E(Hi )|/|E(G)|. An upper bound to the accessible information is given by the Holevo
quantity of the ensemble {pi ,ρ(Hi )}:

χ(
{

pi ,ρ(Hi )
}
) = S

(
k∑

i=1
piρ(Hi )

)
−

k∑
i=1

pi S(ρ(Hi )) (4.16)

4.2.3 Holevo Edge Centrality
We propose to measure the centrality of an edge as follows. Let G = (V ,E) be a graph
with |E | = m, and let He and He denote the subgraphs over edge sets {e} and E \ {e},
respectively. Note that S(ρ(He )) = 0 and

m −1

m
ρ(He )+ 1

m
ρ(He ) = ρ(G). (4.17)
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Then the Holevo quantity of the ensemble {(m −1/m, He ), (1/m, He )} is

χ

({(
m −1

m
, He

)
,

(
1

m
, He

)})
= S

(
ρ(G)

)− m −1

m
S

(
ρ(He )

)
(4.18)

Definition 1. For a graph G = (V ,E), the Holevo edge centrality of e ∈ E is

HC (e) =χ
({(

m −1

m
, He

)
,

(
1

m
, He

)})
(4.19)

When ranking the edges of a graph G , the scaling factor (m − 1)/m is constant for
all the edges and thus can be safely ignored. The Holevo edge centrality of an edge e is
then a measure of the difference in Von Neumann entropy between the original graph and
the graph where e has been removed. In other words, it can be seen as a measure of the
contribution of e to the Von Neumann entropy of G . From a physical perspective, this
can also be interpreted as the variation of the entanglement between between a system
corresponding to the vertices and a system corresponding to the edges of the graph (see
the interpretation of the graph Laplacian in Section 4.2.2).

4.2.3.1 Relation with Degree Centrality

In this subsection we investigate the nature of the structural characteristics encapsulated
by the Holevo edge centrality. Let G = (V ,E) be a graph with n nodes, and let In be
the identity matrix of size n. We rewrite the Shannon entropy −∑

i λi ln(λi ) using the
second order polynomial approximation k

∑
i λi (1−λi ), where the value of k depends on

the dimension of the simplex. We obtain

S(ρ(G)) =−Tr
(
ρ(G) lnρ(G)

)≈ |V | ln(|V |)
|V |−1

Tr
(
ρ(G)(In −ρ(G))

)
(4.20)

By noting that ρ(G) = L(G)/(2m) and using some simple algebra, we can rewrite Eq. 4.20
as

S(ρ(G)) ≈ |V | ln(|V |)
|V |−1

(
1− 1

4m2

∑
v∈V

(
d 2(v)+d(v)

))
(4.21)

where d(v) denotes the degree of the vertex v . This in turn allows us to approximate
Eq.4.19 as

HC (e) = S(ρ(G))−S(ρ(He )) ≈−|V | ln(|V |)
|V |−1

d(u)+d(w)

2m2
(4.22)

where e = (u, w), we omitted the scaling factor (m −1)/m and we made use of the fact
that 1/(4m2) ≈ 1/(4(m −1)2).

Eq. 4.22 shows that the quadratic approximation of the Holevo centrality is (almost)
linearly correlated with the negative edge degree centrality (see Section 4.2.4). This in
turn gives us an important insight into the nature of the Holevo edge centrality. However,
the quadratic approximation captures only part of the structural information encapsulated
by the exact centrality measure. In particular, Passerini and Severini [140] suggested that
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(a) Exact (b) Approximated

Figure 4.17: The Holevo edge centrality and its quadratic approximation on a barbell
graph. Here the edge thickness is proportional to the value of the centrality. In (a) the
blue edges have a higher centrality than the red edges, but in (b) all these edges (blue)
have the same degree centrality.

those edges that create longer paths, nontrivial symmetries and connected components
result in a larger increase of the Von Neumann entropy. Therefore, such edges should have
a high centrality value, higher than what the degree information alone would suggest.

Fig. 4.17 shows an example of such a graph, where the central bridge has a high value
of the exact Holevo edge centrality, but a relatively low value of the approximated edge
centrality. In Fig. 4.17(b), the blue edges have all the same degree centrality, i.e., they are
all adjacent to four other edges. However, from a structural point of view, the removal of
the edges connecting the two cliques at the ends of the barbell graph would have a higher
impact, as it would disconnect the graph. As shown in Fig. 4.17(a), the Holevo centrality
captures this structural difference, i.e., the weight assigned to the two bridges (blue) is
higher than that assigned to the edges in the cliques (red).

4.2.4 Experimental Evaluation

In the previous sections we have derived an expression for the Holevo edge centrality, both
exact and approximated. Here, we first evaluate this measure on a number of standard
networks, and we compare it against other well known edge centralities. We also analyse
the behaviour of the proposed centrality measure when graphs endure structural changes.

4.2.4.1 Experimental Setup

We perform our experiments on two well known real-world networks, the Florentine fam-
ilies graph and the Karate club network. We consider as edge centrality measures the
Degree Centrality, the Betweenness Centrality and the Flow Centrality (more details in
2.4).

Degree Centrality: the centrality of an edge e is computed as the degree of the cor-
responding vertex in the line graph. The idea underpinning the vertex degree centrality
is that the importance of a node is proportional to the number of connections it has to
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(a) Degree (b) Betweenness (c) Flow (d) Holevo

(e) Degree (f) Betweenness (g) Flow (h) Holevo

Figure 4.18: Edge centralities on the Florentine families network (a-d) and the Karate
club network (e-h). A thicker edge indicates a higher value of the centrality.

B
C

D
C FC H
C

BC

DC

FC

HC

1.000 0.314 0.848 0.151

0.314 1.000 0.451 -0.813

0.848 0.451 1.000 -0.210

0.151 -0.813 -0.210 1.000

(a) Florentine Families (b) Karate Club

Figure 4.19: Correlation matrices for the centrality measure on the Florentine family net-
work and the karate club network. DC, BC, FC, and HC denote the degree, betweenness,
flow and Holevo centralities, respectively.

other nodes. This is the simplest edge centrality measure, but also the one with the lowest
computational complexity.

Betweenness Centrality: the centrality of an edge e is the sum of the fraction of all-pairs
shortest paths that pass through e, i.e., EBC (e) = ∑

u,v∈V
σ(u,v |e)
σ(u,v) where V is the set of

nodes, σ(u, v) and σ(u, v |e) denote the number of shortest paths between u and v and
the number of shortest paths between u and v that pass through e, respectively [33]. An
edge with a high betweenness centrality has a large influence on the transfer of informa-
tion through the network and thus it can be seen as an important bridge-like connector
between two parts of a network. Note that the implementation we use does not rely on the
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(a) Degree (b) Holevo

Figure 4.20: Toy example showing the difference in the structural information captured
by the degree and Holevo centralities.

line graph, but measure the centrality of an edge directly on the original graph.

Flow Centrality: this centrality measure is also known as random-walk betweenness
centrality [134]. While the betweenness centrality measures the importance of an edge e
in terms of shortest-paths between pairs of nodes that pass through e, the flow centrality
is proportional to the expected number of times a random walk passes through the edge
e when going from u to v . Similarly to the betweenness centrality, here we measure the
flow centrality directly on the original graph.

4.2.4.2 Edge Centrality in Real-world Networks

In order to compare the Holevo edge centrality with the measures described in the previ-
ous subsection, we compute, for each network, the correlation between the Holevo quan-
tity and the alternative measures. Fig. 4.18 shows the value of these centralities on the
Florentine families graph and the Karate club network. In these plots, the thickness of an
edge is proportional to the magnitude of the centrality index. Fig. 4.19, on the other hand,
shows the correlation matrix between the different centralities. Here DC, BC, FC and HC
denote the degree, betweenness, flow and Holevo centrality, respectively.

The Holevo centrality is always strongly negatively correlated with the degree central-
ity. This is in accordance with the properties discussed in 4.2.3. However, there are some
significant differences. In general, the Holevo centrality is higher on edges that connect
low degree nodes. In this sense, it can be seen as a measure of peripherality, rather than
centrality. However, when two edges have the same degree centrality, edges that would
disconnect the network or break structural symmetries are assigned a higher weight, as
Fig. 4.17 shows. Similarly, in Fig. 4.20(a) the three edges highlighted in blue have the
same degree centrality, but the same edges in Fig. 4.20(b) have different Holevo centrali-
ties. In fact, the removal of the red edge does not result in significant structural changes,
while the removal of one of the blue edges increases the length of the tail.

4.2.4.3 Robustness Analysis

We then investigate the behaviour of the Holevo edge centrality when the graph undergoes
structural perturbations. To this end, given an initial graph, we gradually add or delete
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Figure 4.21: Perturbation process: on the left, adjacency matrix and plot of the starting
graph; in the middle, the edited graph; on the right, the differences between initial and
modified graph are highlighted.

edges according to an increasing probability p. Fig. 4.21 shows an instance of the noise
addition process. Starting from a randomly generated graph, we compute the Holevo edge
centrality for all its edges. Then, we perturb the graph structure with a given probability p
and again we recompute the Holevo edge centrality for all the graph edges. We compute
the correlation between the Holevo centrality of the edges of the original graph and its
noisy counterpart. More specifically, we measure the correlation between the centralities
of the edges that belong to the intersection of their edge sets. In other words, we analyse
how the centrality changes during the perturbation process, with respect to the starting
state.

Since we are interested in the variation of the Holevo centrality as the graph structure
changes, we use three different random graph models to generate the initial graph: 1)
the Erdös-Rényi model, 2) the Watts–Strogatz model and 3) the Preferential Attachment
model. For each model, we generate a starting graph with the same number of nodes n
and we create 100 noisy instances as p varies from 0.01 to 0.3. We perform the same
experiment for both the Holevo centrality and the betweenness centrality.

Fig. 4.22 shows the average correlation as we perturb the graph structure, for both the
Holevo and betweenness centrality. As expected, in both cases the correlation decreases
as the similarity between the original graph and the edited one decreases. However, while
the correlation for centrality measures decreases rapidly in the case of Erdös and Rényi
graphs, on scale-free graphs our centrality measure decreases linearly with the value of p,
while the betweenness centrality drops significantly more quickly. On the other hand, we
observe the opposite behaviour on small-world graphs. This can be explained by noting
that in small-world graphs there exist multiple alternative paths between every pair of
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(a) Erdös-Rényi
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(b) Watts-Strogatz
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(c) Preferential Attachment

Figure 4.22: Average correlation between the centrality of the edges of the original graph
and those of increasingly noisy version of it. The different columns refer to different
starting graphs: (a) Erdös-Rényi, (b) Watts-Strogatz and (c) Preferential Attachment.

nodes, and thus the betweenness centrality is less affected by structural modifications.
On the other hand, in scale-free graphs most shortest-paths pass through a hub, and thus
adding a random edge can create shortcuts that greatly affect the value of the betweenness
centrality. The Holevo centrality, however, assigns large weights to long tails and leaves,
which are less affected by the structural noise.

4.2.5 Conclusion
In this section we have introduced a novel edge centrality measure based on the quantum
information theoretical concept of Holevo quantity. We measured the importance of an
edge in terms of the difference in Von Neumann entropy between the original graph and
the graph where that edge has been remove. We showed that by taking a quadratic ap-
proximation of the Von Neumann entropy we obtain an approximated value of the Holevo
centrality that is proportional to the negative degree centrality. We performed a series of
experiments on both real-world and synthetic networks and we compared the proposed
centrality measure to widely used alternatives. Future work will investigate higher order
approximations of this centrality measure as well as the possibility of defining network
growth models based on the Holevo quantity.
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4.3 Graph Similarity through CTQW and QJSD
In this Section, we extend upon the results of Rossi et al. [154] by further investigating
the Hamiltonian choice and applying the algorithm to a different graphs typology as well.
Note that it is still work in progress but with the prospect of publishing the outcomes
shortly.

The original method aims at measuring the similarity between two structures. For
this purpose, the authors introduce a novel kernel on unattributed and undirected graphs
which evaluates the similarity by way of the evolution of a continuous-time quantum
walk on their structures. More to the point, two structures are merged by creating a
complete set of connections between their nodes. Then, they define two continuous-
time quantum walks over this resulting structure such that the density operators of the
quantum states are orthogonal whenever the two original graphs are isomorphic. Finally
they measure the quantum Jensen-Shannon divergence between these states. Clearly, the
algorithm is not intended to provide any speedup with respect to classical counterparts,
rather to pinpoint how quantum walks are excellent tools to capture information about the
structural similarities between two graphs.

Our contribution concerns different facets related to the original algorithm. In partic-
ular, we investigate whether the method may benefit from different choices of Hamilto-
nian not taken into consideration yet. To this end, we take into account the normalized
Laplacian matrix option. As the original method has been intended for undirected and
unattributed graphs, first we are interested in probing its efficacy over attributed graphs.
For that purpose, we enrich the graph information through feature descriptors. More
specifically, we make use of the heat kernel signature [170] and the wave kernel signa-
ture [16] to extract node signatures and thus enhance the topology information. Finally,
we also look at directed graphs. In this case, we exploit the (normalized) Laplacian coun-
terpart for directed graphs.

The remainder of the Section is organized as follows: in 4.3.1 we provide a brief
literature survey and some mathematical background about specific topics taken into ac-
count in this work while 4.3.2 is intended as an introduction to continuous-time quantum
walks and the quantum Jensen-Shannon divergence. In 4.3.4 we introduce the quantum
method. Finally in 4.3.5 we illustrates the experimental results, while the conclusions are
presented in 4.3.6.

4.3.1 Literature Survey
The full expressivity of graphs usually comes at the cost of an increased trouble in apply-
ing standard machine learning and pattern recognition techniques to them. The lack of a
canonical ordering for the nodes in a graph or even the varying dimension of the embed-
ding space are well-known classical issues.

The so called kernel trick allows to transform the problem of finding an embedding of
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the set of data entities into that of defining a positive semidefinite kernel between them.
Kernel methods [158] are based on this elegant transformation.

The most famous example of this approach is the support vector machines (SVMs) [185].
The data under consideration may be of different types: entire graphs, vectors or just
nodes. Given a positive semidefinite kernel k : X ×X →R on a set X , we know that there
exists a map φ : X → H into a Hilbert space H , such that k(x, y) =< φ(x),φ(y) > for all
x, y ∈ X , where < ·, · > denotes the scalar product in H .

Therefore, any algorithm that can be defined as scalar products of the φ(x)’s can be
applied to a set of data on which a kernel is defined. Haussler [83] was one of the pi-
oneer of such a method and its R-convolution kernel inspired many other studies. In
fact, over the years in the literature, a great number of graph kernels have been intro-
duced [31, 76, 161] . The common denominator behind these kernels is that of defining
the similarity between two graphs by breaking them down and then contrasting the result-
ing more elementary substructures. This prompted to the development of of the random
walk kernel by Gärtner et al. [76], based on the list of common random walks between
two graphs. In a similar way, Borgwardt et al. [31] estimate the similarity by comparing
the shortest paths in the structures, whereas Shervashidze et al. [161] by evaluating the
presence of small subgraphs. Another interesting method is the one proposed by Bai and
Hancock in [19], where they study the possibility of defining a graph kernel based on the
Jensen-Shannon kernel. The Jensen-Shannon kernel is a non-extensive information theo-
retic kernel defined in terms of the entropy of probability distributions over the structures
being compared [123]. Bai and Hancock also extend this concept to the graph domain
by linking with each graph either the steady state distribution of a random walk on the
graph or its Von Neumann entropy [139]. However, it is worth noting that the problem of
defining a complete kernel, i.e., a kernel whose implicit map φ is injective, is at least as
hard as the graph isomorphism problem [76].

A large amount of work has been done on designing local point signatures especially
in the context of shape analysis. A local point signature is a data set that represents spe-
cific features of a given point. Strictly speaking a descriptor or signature over a graph
is a means to capture the unique properties of the structure (either locally or globally)
basically to the aim of distinguishing it from others belonging to other classes. At the
same time it should be invariant to a certain class of transformations a graph can un-
dergo [38, 171]. A a considerable number of methods has been proposed by various
scientist to deal with this problem during the last years. One of the initial point signature
was introduced by Chua and Jarvi [47], in 1997. Almost one decade later Rustamov [156]
proposed an approach for a global point signature based on the eigenfunction and eigen-
values of the Laplace Beltrami operator. Recently, two other spectral node signatures, the
heat kernel signature (HKS) [170] and the wave kernel signature (WKS) [16], have been
drawing significant attention. These constructions are inspired by physical processes (e.g.,
heat propagation) on graphs, and are expected to inherit the physical processes’ stability
to perturbations of the underlying graph. However, the analysis of stability of spectral sig-
natures in general is lacking, which hinders the ability to design spectral node signatures
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that are not derived from physical processes [89]. Sun et al. [170] propose a point signa-
ture based on the heat kernel, indeed taking the name of Heat Kernel Signature (HKS).
It is obtained by restricting the heat kernel to the temporal domain where the kernel is
actually the fundamental solution to the heat equation. More to the point, the heat ker-
nel ht (x, y) relates the amount of heat transferred from x to y after time t . The eigen
decomposition of the heat kernel is expressed as

ht (x, y) =
∞∑

i=0
exp(−λi t )φi (x)φi (y) (4.23)

where λi and φi are the i th eigenvalue and eigenfunction of ∆, the Laplace-Beltrami
operator. This implies that the Heat Kernel Signature is being defined as

HK S(x, t ) = ht (x, x) (4.24)

The HKS is intrinsic and isometry-invariant (i.e., two isometric graphs have equal HKS),
multi-scale and captures both local features and global structure. In addition, it is infor-
mative: under mild conditions, if two graphs have equal heat kernel signatures, they are
isometric [170]. Of course, the HKS has been amply and effectively used for characteriz-
ing objects. Especially, the study of this signature has been applied to graphs domain by
employing the eigen-system of the Laplacian matrix to derive the heat kernel.

The Wave kernel signature (WKS) [16] follows a similar idea to the HKS’s, but re-
placing the heat equation with the Schrödinger wave equation. It is defined to be the
time-averaged probability of detecting a particle of a certain energy distribution at the
point x, formulated as

W K S(x,e) =∑
k

exp
(
− (e − log (λk ))2

2σ2

)
φk (x)2 (4.25)

Quantum walks have recently emerged as a primitive for designing novel quantum al-
gorithms [12, 45, 102, 157] on graph structures. Indubitably, the most renowned property
of quantum walks is that of providing polynomial or even exponential speedups over clas-
sical computation in many problems [69, 159]. It turned out that such a speedup is often
caused by the highly symmetrical structure of the graphs. Recall that the automorphism
group of a graph is the set of all permutation on vertices that preserve the adjacency. In
this sense also a symmetry of a graph is an automorphism. Krovi and Brun [106] have
demonstrated that the occurrence of infinite hitting times and of exponential speedup are
generally an effect of the decays within the eigenspace of the evolution operator. In turn,
these are linked with the symmetry group of the graph. The intuition behind is that, in
case of symmetry, a quantum walker will hit a node by multiple paths with an identical
phase. in that event, the interference is constructive and the node has a strong chance of
being hit. This ends up in a quicker hitting time for node. However, based on how the
initial state of the walk are set, the quantum walker may also hit the vertex on paths with
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phases that coincide to destructive interference. In fact, in some cases the likelihood of
the walker to hit a node can be zero, i.e., the hitting time is infinite. Also Emms et al. [60]
investigated over the connection between symmetries and quantum walks. They showed
how degenerate directions in the quantum commute time embedding space match with the
symmetries of the graph. Recently, a way to find approximate axial symmetries in graphs
by measuring the interference patterns of continuous-time quantum walks has been intro-
duced by Rossi et al. [150] Unfortunately, the analyses of Rossi et al. [150] as well as of
Emms et al. [60] are not based on a principled observable and are thus semi-classical.

Rossi et al. in [154] have grounded the analysis of the behaviour of the walks on the
recently introduced quantum Jensen-Shannon divergence. The quantum Jensen-Shannon
divergence is employed as a way to compute the distance between quantum states [107,
120]. The computation of the kernel is naturally managed by means of the interference
effects of quantum walks, hence avoiding the use of either the development of a product
union graph [19] in the classical case or a rotation in Hilbert space [178]. The Quan-
tum Jensen-Shannon Divergence (QJSD) has recently been developed as a generalization
of the classical Jensen-Shannon divergence to quantum states by Majtey, Lamberti and
Prato [107,119,120]. It is symmetric, bounded and always defined, as the classical Jensen-
Shannon divergence [111]. Contrary to its classical analogue, it has been demonstrated
to be the square of a metric only for pure states [107], while only empirical clues indi-
cate that it is for mixed states [107]. Besides, it has been shown that for mixed quantum
states the quantum Jensen-Shannon divergence has a good capacity of distinguish. Since
the QJSD is determined with respect to the Von Neumann entropy, that implies it is not
straight a quantum-mechanical observable, i.e., there exists no operator whose expected
value is the QJSD. However, it can be calculate over density matrices whose entries are
actually observables. The drawback affecting the analysis not based on principled ob-
servable has been overcome by Rossi et al. [155], who resorting to using the quantum
Jensen-Shannon divergence, rendered the analysis fully based on observable properties
effectively. In another studies, based on the classical Jensen-Shannon kernel, Bai and
Hancock [19], build a product graph from the two input graphs in order to measure the
composite entropy. Note that a number of alternative graph kernels based on the classical
Jensen-Shannon divergence and its quantum counterpart have been recently introduced in
the literature [151, 152].

Directed Graphs Laplacian One of the aims in this work is to explore whether the
method proposed by Rossi et al. [154] can be extended from undirected to directed graphs.
In a directed graph edges are directed from one vertex to another, then the adjacency ma-
trix is non-symmetric (presents in-degree and out-degree) and consequently the spectrum
is complex. For this reason directed graphs pose some interesting questions, above all for
the spectra viewpoint.

Suppose G = (V ,E) is a directed graph with node set V and link set E , whose adjacency
matrix is defined as for the undirected version. However, for a directed edge (u, v) in E
we say that there is an edge (u, v) from u to v , namely u has an out-neighbor v while v
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has an in-neighbor u [48]. The in-degree and out-degree of node u is thus

d i n
u = ∑

v∈V
Avu , d out

u = ∑
v∈V

Auv . (4.26)

With a view to provide a definition of Laplacian matrix for such graph type, first we have
to specify the random walk transition matrix P. For a given directed graph G , a typical
random walk transition matrix is

P = D−1
out A (4.27)

where Dout is formed from row sums (out-degree), with the convention that when Dout

is not defined (dout = 0), we modify D−1
out to ensure the entry is 0 in that specific case.

Strongly connected directed graphs (i.e., there exists a path between every pair of ver-
tices and therefore there are no sinks) have P irreducible and an unique nonnegative left
eigenvector π, which has eigenvalue 1 (by applying the Perron-Frobenius theorem [88]).

π=πP (4.28)

Once determined the random walk transition matrix, we can define the Laplacian on a
directed graph3. Let Ω be a diagonal matrix with the elements of π on the diagonal. Then
the Laplacian matrix is defined as

L =Ω− 1

2

(
ΩP+P>Ω

)
(4.29)

whereas the normalized Laplacian will be

L̃ = I − 1

2

(
Ω

1
2 PΦ− 1

2 +Ω− 1
2 P>Ω

1
2

)
(4.30)

The above matrices are symmetric and coincide with the undirected analogues.

Similarity Matrices Let G(V ,E ,u) be an attributed graph, with node set V , edge set
E while u is the function assigning attributes to the nodes. That means at each vertex is
attached a descriptor, usually taking the form of a n-dimensional vector. We determine
the similarity for vertex pairs as w(v j , vk ) = e ||v j (u)−vk (u)||22 where ||v j (u)− vk (u)||2 is the
Euclidean distance between feature points. A matrix of similarities W is computed by
using the above measure between each pair of nodes, in the following way

W j k = w(v j , vk ) ∀ j ,k ∈V (4.31)

Feature points over graphs can be obtained via Heat Kernel Signature (HKS) or Wave
Kernel Signature (WKS), for the sake of clarity. In the section 4.3.4 we will see when e
where apply a similarity matrix.

3for further technical details see [48]
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4.3.2 Continuous-Time Quantum Walks
A continuous-time random walk on the graph G is generally described by a Markovian
diffusion process over its vertices, and transitions are permitted only along the edges
connecting adjacent nodes.

Let pt ∈Rn be a vector denoting the state of the walk at time t , such that its u-th entry
gives the probability of the walk being at vertex u at time t . Then the state vector evolves
according to the equation

pt = e−Lt p0 (4.32)

where L is the generator matrix of the underlying continuous-time Markov process.
The continuous-time quantum walk is the quantum counterpart of the continuous-time

random walk, and it is similarly defined as a dynamical process over the vertices of the
graph [69]. Here the classical state vector is replaced by a vector of complex amplitudes
over V whose squared norm sums to unity, and as such the state of the system is not
constrained to lie in a probability space. In fact, the lack of restrictions on the sign and
complex phase allows for interference effects to take place. Let us denote, using Dirac
notation, the basis state corresponding to the walk being at vertex u ∈V as |u〉. A general
state of the walk is a complex linear combination of the basis states, such that the state of
the walk at time t is defined as ∣∣ψt

〉= ∑
u∈V

αu(t ) |u〉 (4.33)

where the amplitude αu(t ) ∈ C and
∣∣ψt

〉 ∈ C|V | are both complex. Moreover, we have
that αu(t )α∗

u(t ) gives the probability that at time t the walker is at the vertex u, and thus∑
u∈V αu(t )α∗

u(t ) = 1 and αu(t )α∗
u(t ) ∈ [0,1], for all u ∈V , t ∈R+.

The evolution of the walk is then given by the Schrödinger equation, where we denote
the time-independent Hamiltonian as H .

∂

∂t

∣∣ψt
〉=−iH

∣∣ψt
〉

. (4.34)

Given an initial state
∣∣ψ0

〉
, we can solve Equation (4.34) to determine the state vector at

time t ∣∣ψt
〉= e−iH t

∣∣ψ0
〉

. (4.35)

Usually the Laplacian matrix is chosen as the system Hamiltonian, i.e., H = L. Nonethe-
less, any Hermitian operator encoding the structure of the graph can be adopted as alter-
native.

We conclude by remark that we can rewrite Eq. 5.6 in the following way. Given the
spectral decomposition of the Hamiltonian H =ΦΛΦ> 4 and the fact that exp[−iH t ] =
Φexp[−iΛt ]Φ> we can then write∣∣ψt

〉=Φe−iΛtΦ> ∣∣ψ0
〉

. (4.36)
4 where Φ is the n × n matrix Φ = (φ1|φ2|...|φ j |...|φn) with the ordered eigenvectors φ j s of H as

columns and Λ= diag(λ1,λ2, ...,λ j , ...,λn) is the n ×n diagonal matrix with the ordered eigenvalues λ j of
H as elements
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4.3.3 Quantum Jensen-Shannon Divergence

The observation process for a quantum system is defined in terms of projections onto
orthogonal subspaces associated with operators on the quantum state-space called ob-
servables. Let O be an observable of the system, with spectral decomposition

O =∑
i

ai Pi (4.37)

where the ai are the (distinct) eigenvalues of O and the Pi the orthogonal projectors onto
the corresponding eigenspaces. The outcome of an observation, or projective measure-
ment, of a quantum state

∣∣ψ〉
is one of the eigenvalues ai of O, with probability

P (ai ) = 〈
ψ

∣∣Pi
∣∣ψ〉

(4.38)

After the measurement, the state of the quantum systems becomes

∣∣ψ̄〉= Pi
∣∣ψ〉

||Pi
∣∣ψ〉 || , (4.39)

where || ∣∣ψ〉 || =√〈
ψ

∣∣ψ〉
is the norm of the vector

∣∣ψ〉
.

Density operators play an important role in the quantum observation process. The
observation probability of ai is P (ai ) = Tr(ρPi ), with the mixed state being projected
by the observation process onto the state represented by the modified density matrix ρ′ =∑

i PiρPi . The expectation of the measurement is 〈O〉 = Tr
(
ρO

)
. The projective properties

of quantum observation means that an observation actively modifies the system, both
by altering its entropy and forcing an energy exchange between quantum system and
observer.

The von Neumann entropy [135] HN of a mixture is defined in terms of the trace and
logarithm of the density operator ρ

HN =−Tr(ρ logρ) =−∑
i
ξi ln ξi (4.40)

where ξ1, . . . ,ξn are the eigenvalues of ρ. If
〈
ψi

∣∣ρ ∣∣ψi
〉 = 1, i.e., the quantum system

is a pure state
∣∣ψi

〉
with probability pi = 1, then the Von Neumann entropy HN (ρ) =

−Tr(ρ logρ) is zero. On other hand, for a mixed state described by the density operator
σ we have a non zero Von Neumann entropy associated with it. With the Von Neumann
entropy to hand, the quantum Jensen-Shannon divergence between two density operators
ρ and σ is defined as

D JS(ρ,σ) = HN

(ρ+σ
2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (4.41)

This quantity is always well defined, symmetric and positive definite.
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Figure 4.23: Given two graphs G1(V1,E1) and G2(V2,E2) we construct a new graph G =
(V ,E ) where V =V1 ∪V2, E = E1 ∪E2 and we add a new edge (u, v) between each pair of
nodes u ∈V1 and v ∈V2.

It can also be shown that D JS(ρ,σ) is bounded, i.e., 0 ≤ D JS(ρ,σ) ≤ 1. Let ρ =∑
i piρi

be a mixture of quantum states ρi , with pi ∈ R+ such that
∑

i pi = 1, then one can prove
that

HN (
∑

i
piρi ) ≤ HS(pi )+∑

i
pi HN (ρi ) (4.42)

where HS indicates the Shannon entropy and the equality is attained if and only if the
states ρi have support on orthogonal subspaces. By setting p1 = p2 = 0.5, we see that

D JS(ρ,σ) = HN

(ρ+σ
2

)
− 1

2
HN (ρ)− 1

2
HN (σ) ≤ 1 (4.43)

Hence D JS is always less than or equal to 1, and the equality is attained only if ρ and σ
have support on orthogonal subspaces.

The interest in the quantum Jensen-Shannon divergence stems from the fact that it
verifies several interesting properties which are necessary to be a measure of distinguisha-
bility between quantum states [107,120]. The distinguishability problem is of pivotal im-
portance in quantum mechanics, and strictly connected to the concept of distance between
states. For instance, Wootters [200] measures the distance between two states

∣∣φ〉
and

∣∣ψ〉
of the same physical system by enumerating the distinguishable states between

∣∣φ〉
and∣∣ψ〉

. Wootters’ work is basically grounded on the extension of a distance over the space
of probability distributions to the Hilbert space of pure quantum states. In the literature
many other metrics have been introduced, such as the Bures distance [41], which is quite
comparable to the QJSD since both need the same number of observations. Nevertheless,
the QJSD seems to be preferable as it is faster to compute.

4.3.4 The QJSD Kernel
Let G1(V1,E1) and G2(V2,E2) be two unattributed graphs, i.e., graphs with no attributes
or features attached to their nodes and edges. Given G1 and G2, we build a new graph
G = (V ,E ) (4.44) where V =V1∪V2, E = E1∪E2∪E12, and (u, v) ∈ E12 only if u ∈V1 and
v ∈V2 (see Fig. 4.23 for an example).

On the contrary, in the case of attributed graphs, G1(V1,E1) and G2(V2,E2) are replaced
by G∗

1 (V1,E1,u1) and G∗
2 (V2,E2,u2). The new graph G = (V ,E ) is no longer composed
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by edges and nodes but replaced by a different structure, made up of similarity matrices.
Given G∗

1 and G∗
2 , first we compute four similarity matrices, namely Gs11, Gs22, Gs12 and

Gs21, as expressed in Eq. 4.31. Here Gsi j means nodes and attributes from graph G∗
i and

nodes and attributes from graph G∗
j are taken on board for the computation. Note that

Gs11 and Gs22 have zero diagonal though. Then, a block matrix G , in place of G 4.44, is
defined as

G =
(
Gs11 Gs12

Gs21 Gs22

)
Nevertheless, the initial states remain the degree distributions of G1 and G2.

With this new structure to hand (either G or G), we define two independent continuous-
time quantum walks with starting states∣∣ψ−

0

〉= ∑
u∈V1 du |u〉−∑

v∈V2 dv |v〉
C

∣∣ψ+
0

〉= ∑
u∈V du |u〉

C
(4.45)

where the basis state corresponding to the walk being at vertex v ∈ V is denoted as |v〉, dv

denotes the degree of vertex v , and C is the normalisation constant such that the probabil-
ities sum to one. We set the initial amplitude on the nodes of G1 and G2 to be respectively
in antiphase and in phase. In other words, we form the initial states of the walks in this
way in order to stress the presence of destructive and constructive interference schemes.

We let the two quantum walks evolve under Eq. 5.6 until a time T and we define the
average density operators ρ−

T and ρ+
T as

ρ−
T = 1

T

∫ T

0

∣∣ψ−
t

〉〈
ψ−

t

∣∣ dt ρ+
T = 1

T

∫ T

0

∣∣ψ+
t

〉〈
ψ+

t

∣∣ dt (4.46)

Strictly speaking, we define two mixed systems with equivalent likelihood of being in any
of the pure states determined by the quantum walks evolutions.

According to the designers of the original method [154], the justification for the pro-
posed approach is that, whenever G1 and G2 are isomorphic, the distinguishability be-
tween the two states ρ−

T and ρ+
T , which accentuates respectively destructive and construc-

tive interference, will be maximal. Indeed, experiments are conceived so that the starting
states are orthogonal and remain orthogonal during the quantum walk evolution, provided
that G1 and G2 are isomorphic. Then, given two graphs G1 and G2, the quantum Jensen-
Shannon kernel kT (G1,G2) between them is

kT (G1,G2) = D JS(ρ−
T ,ρ+

T ) (4.47)

where ρ−
T and ρ+

T are the density operators defined as in Eq. 4.46. Note that this kernel
may be parametrised by the time T and the choice of the time parameter can affect the
computational complexity of the kernel. Finally, recall that in Eq. 4.45 we defined the ini-
tial state to be proportional to the nodes degree in the original graphs. As a consequence,
the kernel is not defined on graphs G = (V ,E) with E = ;, i.e., completely disconnected
graphs.
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4.3.4.1 Kernel Computation

Here we evaluate the computational complexity of the kernel. In particular, we show that
the solution to Eq. 4.46 can be computed analytically. Define Pλ = ∑µ(λ)

k=1 φλ,kφ
>
λ,k to be

the projection operator on the subspace spanned by the µ(λ) eigenvectors φλ,k associated
with the eigenvalue λ ∈ Λ, where Λ is the set of eigenvalues of the Hamiltonian. Given
this set of projectors, the unitary operator inducing the quantum walk can be rewritten as

U t =∑
λ

e−iλt Pλ (4.48)

Recall that
∣∣ψt

〉=U t
∣∣ψ0

〉
. Given Eq. 4.48 we can express the density matrix at time t in

terms of the projectors Pλ, i.e.,

ρt =U tρ0(U t )† = ∑
λ1∈Λ

∑
λ2∈Λ

e−i (λ1−λ2)t Pλ1ρ0P>
λ2

(4.49)

As a consequence, we can reformulate Eq. 4.46 as

ρT = ∑
λ1∈Λ

∑
λ2∈Λ

Pλ1ρ0P>
λ2

1

T

∫ T

0
e−i (λ1−λ2)t dt (4.50)

The integral in Eq. 4.50 can be solved yielding

ρT = ∑
λ1∈Λ

∑
λ2∈Λ

Pλ1ρ0P>
λ2

i (1−e i T (λ2−λ1))

T (λ2 −λ1)
(4.51)

Letting T → ∞, the integral in Eq. 4.50 reduces to the Dirac delta function δ(λ1 −λ2).
Hence, Eq. 4.50 simplifies to

ρ∞ = ∑
λ∈Λ̃

Pλρ0P>
λ (4.52)

where Λ̃ is the set of distinct eigenvalues of the Hamiltonian, i.e., the eigenvalues λ with
multiplicity µ(λ) = 1. Finally, along the same lines of Rossi et al. [155], one can show that
as a consequence of Eq. 4.52 the infinite-time limit of the average density matrix com-
mutes with the Hamiltonian H , and thus the complexity of computing the Von Neumann
entropy of ρ∞, i.e., the Shannon entropy of its eigenvalues, is O

(∑
λ∈Λ̃µ(λ)2

)
, where µ(λ)

is the multiplicity of the eigenvalue λ. As a consequence, we have that the complexity
of computing the QJSD kernel with T →∞ is upper bounded by that of computing the
eigendecomposition of H , i.e., O(|V |3).

Note that the authors in [154] also provided and proved some interesting properties of
the QJSD kernel. They proved that if G1 and G2 are two isomorphic graphs, then ρ−

T and
ρ+

T have support on orthogonal subspaces. As corollary they also showed that given a pair
of graphs G1 and G2, the kernel satisfies the following properties: 1) 0 ≤ k(G1,G2) ≤ 1 and
2) if G1 and G2 are isomorphic, then k(G1,G2) = 1. Unfortunately, a formal proof of the
positive semi definiteness has not been produced yet.
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Datasets MUTAG PPI PTC COIL NCI1
Max # vertices 28 232 109 241 111
Min # vertices 10 3 2 72 3
Avg # vertices 17.93 109.60 25.56 144.97 29.87
# graphs 188 86 344 360 4110
# classes 2 2 2 5 37

Table 4.1: Information on the undirected graph datasets

4.3.5 Experimental Results

In this Section we evaluate the accuracy of the QJSD kernel in a classification task. In
particular, for the undirected version of the algorithm, we use the following standard graph
datasets:
MUTAG [54] is a dataset consisting originally of 230 chemical compounds assayed for
mutagenicity in Salmonella typhimurium [143]. Among the 230 compounds, however,
only 188 (125 positive, 63 negative) are considered to be learnable and thus are used in
our simulations. The 188 chemical compounds are obviously represented by graphs. The
aim is predicting whether each compound possesses mutagenicity.
PPIs (Protein-Protein Interaction) is a dataset collecting protein-protein interaction net-
works related to histidine kinase [96] (40 PPIs from Acidovorax avenae and 46 PPIs from
Acidobacteria) [63]. The graphs describe the interaction relationships between histidine
kinase in different species of bacteria. Histidine kinase is a key protein in the develop-
ment of signal transduction. If two proteins have direct (physical) or indirect (functional)
association, they are connected by an edge. The original dataset comprises 219 PPIs
from 5 different kinds of bacteria with the following evolution order (from older to more
recent): Aquifex 4 and Thermotoga 4 PPIs from Aquifex aelicus and Thermotoga mar-
itima, Gram-Positive 52 PPIs from Staphylococcus aureus, Cyanobacteria 73 PPIs from
Anabaena variabilis and Proteobacteria 40 PPIs from Acidovorax avenae. There is an ad-
ditional class (Acidobacteria 46 PPIs) which is more controversial in terms of the bacterial
evolution since they were discovered.
PTC (Predictive Toxicology Challenge) dataset records the carcinogenicity of several
hundred chemical compounds for Male Rats (MR), Female Rats (FR), Male Mice (MM)
and Female Mice (FM) [110]. These graphs are very small and sparse. We select the
graphs of Male Rats (MR) for evaluation. There are 344 test graphs in the MR class.
COIL Columbia Object Image Library consists of 3D objects images of 100 objects [129].
There are 72 images per object taken in order to obtain 72 views from equally spaced
viewing directions. For each view a graph was built by triangulating the extracted Har-
ris corner points. In our experiments, we use the gray-scale images of only five objects,
referring to it as COIL5.
NCI1 The Anti-cancer activity prediction dataset represents a balanced subset of data
sets of chemical compounds screened for activity against non-small cell lung cancer
lines. [187].
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As regards directed graphs we utilized the following datasets:
Shock The Shock dataset consists of graphs from a database of 2D shapes [179]. Each
graph is a medial axis-based representation of the differential structure of the boundary
of a 2D shape. There are 150 graphs divided into 10 classes, each containing 15 graphs.
The original version contains directed trees each with a root node, the undirected version
has been created by removing the directionality.
Alzheimer The dataset is obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [6] and concerns interregional connectivity structure for fMRI (functional mag-
netic resonance imaging) activation networks for normal and Alzheimer subjects. Each
image volume is acquired every two seconds with BOLD signals (Blood Oxygenation
Level Dependent). The fMRI voxels here have been aggregated into larger regions of in-
terest (ROIs). The different ROI’s correspond to different anatomical regions of the brain
and are assigned anatomical labels to distinguish them. There are 96 anatomical regions
in each fMRI image. The correlation between the average time series in different ROIs
represents the degree of functional connectivity between regions which are driven by neu-
ral activities [188]. Subjects fall into four categories according to their degree of disease
severity: AD - full Alzheimer’s (30 subjects), LMCI - Late Mild Cognitive Impairment (34
subjects), EMCI - Early Mild Cognitive Impairment (47 subjects), HC - Normal Healthy
Controls (38 subjects). The LMCI subjects are more severely affected and close to full
Alzheimerś, while the EMCI subjects are closer to the healthy control group (Normal). A
directed graph with 96 nodes is constructed for each patient based on the magnitude of
the correlation and the sign of the time-lag between the time-series for different anatom-
ical regions. To model causal interaction among ROIs, the directed graph uses the time
lagged cross-correlation coefficients for the average time series for pairs of ROIs. We
detect directed edges by finding the time- lag that results in the maximum value of the
cross-correlation coefficient. The direction of the edge depends on whether the time lag
is positive or negative. We then apply a threshold to the maximum values to retain di-
rected edges with the top 40% of correlation coefficients. This yields a binary directed
adjacency matrix for each subject, where the diagonal elements are set to zero. Those
ROIs which have missing time series data are discarded. In order to fairly evaluate the
influence caused by edges directionality, an undirected copy has been created as well. In
particular, let Ad be the adjacency matrix of a directed graph. Then its projection over the
symmetric matrices space will be given by (Ad + A>

d )/2.

We use a binary C-Support Vector Machine (C-SVM) to test the efficacy of the QJSD
kernel [43]. More specifically, we perform 10-fold cross validation, where for each sam-
ple we independently tune the value of C, the SVM regularizer constant, by considering
the training data from that sample. The process is averaged over 100 random partitions
of the data, and the results are reported in terms of average accuracy ± standard error.
We recall that, in classification tasks, the accuracy is intended as the fraction of the data
occurrences that are assigned the correct class label. In our case, an occurrence is a
graph. Moreover, we contrast the performance of the kernel with that of other well-
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established alternative graph kernels, namely the shortest-path kernel [31], the classic
random walk kernel [76] and the the Weisfeiler-Lehman subtree kernel [160]. Except for
the Weisfeiler-Lehman kernel, all the kernels do not consider graph attributes. In the case
of the Weisfeiler-Lehman, nevertheless, each node is labelled with its degree. As con-
cerns the maximum subtree height h, in our experiments we let h = {1 · · ·3} and we opted
for the best value by cross-validation [160].

When we evaluate the accuracy of the QJSD kernel, we assume that the kernel is
computed for T →∞. In the previous section, we showed that in the large time limit the
density matrix of the quantum walk commutes with the Hamiltonian, and thus the value
of the QJSD kernel can be easily calculated by eigendecomposition of H . This, in turn,
reduces the computational complexity, motivating in part the choice of T →∞. However,
also results from the original work [154] influenced the preference. Specifically, experi-
ments carried out over the QJSD kernel as a function of the time parameter T suggest that
for T → ∞ the algorithm is able anyhow to reach a classification accuracy close to the
optimum.

Kernel ALZd ALZu SHOCKd SHOCKu

QJSDA - 65.87±0.25 - 41.48±0.15

QJSDL 79.26±0.24 60.42±0.23 45.89±0.23 35.77±0.21

QJSDN L 82.07±0.17 61.45±0.22 46.05±0.20 44.38±0.21

SP 59.86±0.25 59.00±0.29 22.09±0.29 40.16±0.24

RW 79.06±0.21 58.71±0.21 8.48±0.17 24.34±0.28

WL 70.87±0.27 59.46±0.35 38.74±0.27 35.78±0.26

Table 4.2: Classification accuracy (± standard error) on directed and undirected coun-
terpart graph datasets. QJSDH is the QJSD kernel, where H denotes the Hamiltonian,
i.e., Adjacency matrix (A), Laplacian matrix (L) or normalized Laplacian matrix (NL),
SP is the shortest-path kernel [31], RW is the random walk kernel [76] while WL is the
Weisfeiler-Lehman subtree kernel [160].

We commence by commenting results reported in Table 4.2, regarding the directed
graphs datasets. Here we evaluate the accuracy (± standard error) of the QJSD kernel for
different choices of the Hamiltonian. More specifically, we let the Hamiltonian be either
the adjacency (only for undirected graphs) or the Laplacian or the normalized Laplacian
matrix. Interestingly, we achieve the best performance with the normalized Laplacian
matrix in almost all cases, with the exception for the Alzheimer in the undirected version.
Moreover, for both dataset the best accuracy is given by the directed version which hence
seems to better capture information from the graph topology. However, to contrast our
outcomes with other studies we carried out further experiments. In particular we refer
to the work of Wang et al. [191] where they use entropic measurements to distinguish
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Kernel AD/Normd AD/Normu EMCI/LMCId EMCI/LMCIu

QJSDA - 100.0±0.00 - 100.0±0.00

QJSDL 100.0±0.00 100.0±0.00 100.0±0.00 98.58±0.04

QJSDN L 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

SP 100.0±0.00 100.0±0.00 96.60±0.11 96.68±0.09

RW 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

WL 97.63±0.22 99.38±0.18 98.02±0.22 99.63±0.12

Table 4.3: Classification accuracy (± standard error) on directed and undirected coun-
terpart graph datasets. QJSDH is the QJSD kernel, where H denotes the Hamiltonian,
i.e., Adjacency matrix (A), Laplacian matrix (L) or normalized Laplacian (NL), SP is the
shortest-path kernel [31], RW is the random walk kernel [76] while WL is the Weisfeiler-
Lehman subtree kernel [160].

subjects falling into different categories. These experiments differ from the previous be-
cause here the aim is distinguishing subjects falling into only two classes, namely AD vs
Normal and EMCI vs LMCL (see Table 4.3). Unlike Wang et al. [191], whose approach
proved to be well-performing already, achieving a peak of ∼ 91% of accuracy, in our case,
the worst value is ∼ 98% - but in the undirected forms, derived by symmetrizing and thus
by definition with a loss of topological information. Even if the results are excellent, it
must be pinpointed, to be fair, that in this last case the classes to be distinguished are quite
far away from each other.

As far the Hamiltonian choice is concerned, for undirected graphs exclusively, results
are shown in Table 4.4. The best values for each dataset are in bold font style whereas the
second best values are in italic font style. Differently from previous outcomes, there is not
an apparent homogeneity. However we can observe that in case of datasets with average
graph size > 100 nodes the wave kernel in the Laplacian declination tends to be the best
performer, while for the other dataset this assumption does not hold. The signature choice
anyhow appears to provide an improvement to the MUTAG dataset and is the second
best value also for PTC. The fact that NCI1 has outstanding outcomes only with WL is
not unexpected at all [160] even if the Laplacian matrix is the best among the worst ones.
Generally, however, the QJSD kernel obtains a classification accuracy which is better than
that of the other kernels SP, RW, and WL (or sometimes comparable), regardless of how
we set H .

4.3.6 Conclusions

Graph-based representations are undoubtedly a powerful tool for modelling real-world
complex systems. However, in terms of tractability a number of problem are posed, espe-
cially when it comes to apply pattern recognition or machine learning techniques. Even
if kernel methods give a way to shift this representational issue, designing novel graph
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Kernel MUTAG PPI PTC NCI1 COIL
QJSDA 86.72±0.14 78.71±0.30 56.09±0.15 66.90±0.03 69.90±0.08
QJSDL 84.92±0.18 73.79±0.42 59.70±0.16 69.48±0.03 70.72±0.07
QJSDN L 87.10±0.14 74.63±0.37 55.16±0.18 66.36±0.03 69.61±0.10

QJSDhk
A 88.51±0.13 81.56±0.34 58.76±0.14 63.88±0.03 69.68±0.06

QJSDhk
L 86.36±0.16 77.08±0.28 57.63±0.13 64.96±0.02 70.24±0.06

QJSDhk
N L 87.79±0.12 74.38±0.37 58.45±0.16 64.01±0.04 70.55±0.09

QJSDwk
A 85.97±0.14 74.91±0.32 58.91±0.13 63.52±0.05 70.48±0.06

QJSDwk
L 85.81±0.16 84.66±0.26 58.01±0.13 64.45±0.03 71.34±0.05

QJSDwk
N L 87.61±0.16 74.74±0.30 57.46±0.16 63.34±0.04 70.31±0.06

SP 84.98±0.16 66.40±0.31 56.89±0.71 65.44±0.04 70.50±0.13
RW 78.02±0.20 69.94±0.27 55.59±0.01 58.80±0.04 21.03±0.22
GR 81.93±0.17 52.34±0.42 56.20±0.10 62.28±0.02 67.22±0.11
WL 84.62±0.23 79.93±0.35 55.64±0.20 78.55±0.04 31.33±0.21

Table 4.4: Classification accuracy (± standard error) on undirected graph datasets.
QJSDH is the QJSD kernel, where H denotes the Hamiltonian, i.e., Adjacency ma-
trix (A), Laplacian matrix (L) or normalized Laplacian matrix (NL). QJSD∗indicates the
heat kernel signature (hk) or the wave kernel signature (wk), SP is the shortest-path ker-
nel [31], RW is the random walk kernel [76] while WL is the Weisfeiler-Lehman subtree
kernel [160].

kernels is still an open challenge. In this work, we proposed an extension of a quan-
tum inspired kernel where the similarity between the input structures is gauged through
continuous-time quantum walks and quantum Shannon-Jensen divergence. More specifi-
cally, we investigated over the Hamiltonian choices, especially we proposed to take into
consideration even attributed graphs, where features descriptors are obtained via HKS and
WKS. Besides, we tested the kernel over directed graphs as well.

Our experimental validation has shown that the QJSD kernel can outperform state-of-
the-art kernels in a graph classification task. We noted that, for the directed version, the
best choice is always the normalized Laplacian matrix. On the other hand, for undirected
graphs, it seems that the graph dimensionality may somehow influence the performance
of the Hamiltonian and the use of kernel signature. In any case, on average, all the new
choices did not lead to poorer results but only improvements.

Future work should first include further detailed studies in order to figure out whether
there exists any connection between the kernel and the size of the graphs. Also it should
be analysed in detail how the similarity matrices actually affect the kernel behaviour.
Moreover, an investigation over the normalized Laplacian matrix and its influence in the
directed graphs case could lead to uncovering some interesting properties.
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5
Quantum Thermodynamics of

Time-Varying Graphs

In this Chapter we present a novel analysis of time-evolving networks, based on a thermo-
dynamic representation of graph structure. We show how to characterize the evolution of
time-varying complex networks by relating major structural changes to thermodynamic
phase transitions. In particular, we derive expressions for a number of different ther-
modynamic quantities (specifically energy, entropy and temperature), which we use to
describe the evolutionary behaviour of the network system over time. Since in the real
world no system is truly closed and interactions with the environment are usually strong,
we assume an open nature of the system. We adopt the Schrödinger picture as the dy-
namical representation of the quantum system over time. First, we compute the network
entropy using a recent quantum–mechanical representation of graph structure, connecting
the graph Laplacian to a density operator. Then, we assume the system evolves according
to the Schrödinger representation. This allows us to obtain a measure of energy exchange
through the estimation of a hidden time-varying Hamiltonian from the available network
data. Using the thermodynamic relationship between changes in energy, entropy, pres-
sure and volume, we recover the thermodynamic temperature. We assess the utility of the
method on real-world time-varying networks representing complex systems in the finan-
cial and biological domains. We also compare and contrast the different characterizations
provided by the thermodynamic variables (energy, entropy, temperature, and pressure).
The study shows that the estimation of the time-varying energy operator strongly charac-
terizes different states of a time evolving system and successfully detects critical events
occurring during network evolution.

The remainder of the Chapter is organized as follows. We commence in Section 5.1
by outlining the work and clarifying the exact advantage of the present approach. In
Section 5.2 we review the thermodynamic background and introduce the novel analysis
thermodynamic method while Section 5.3 shows results of the resulting thermodynamic
representation to a number of real-world time-varying networks. In Section 5.4 we gen-
eralized the analysis to size-changing networks, and finally in Section 5.5 we conclude
discussing outcomes and future work.
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5.1 Overview

The problem of identifying an effective and succinct characterization of complex network
structure has been the ongoing focus of interest in network analysis for several decades
[10, 13, 184]. Initially efforts focused around a static view of network structure and on
developing ways to describe networks through identifying salient substructures, such as
communities, hubs or clusters [65, 70, 133]. In these cases the resulting representation
is defined by the connectivity structure [14], and this approach has proved effective for
problems of both clustering and classification [52, 122]. Recently, on the other hand,
dynamical network analysis has attracted more attention. In particular the analysis of the
processes underlying network evolution and the detailed mechanisms involved, have both
acquired an increasingly crucial role in network science. However, capturing the large-
scale properties of a time evolving structure has proven to be an extremely challenging
problem. An excellent framework for the study of complex networks relies on statistical
physics and thermodynamics, connecting the macroscopic properties of a system to the
behavior of microscopic particles [90,95,124]. In particular, thermodynamics defines the
macroscopic properties of a system through three variables, subject to constraints imposed
by the four laws of thermodynamics.

During the last years, the literature has witnessed a lot of work seeking to understand
the evolution of time-varying networks by means of analogies and formal similarities with
thermodynamics and quantum information. However, most attempts built their approach
around a given Hamiltonian, de facto assuming a complete representation of the system
to be studied. In this work we look at a different and less studied scenario, where the
network is only a partial component of a larger system and its evolution is affected by the
interaction with the larger environment. Following a classic renormalization approach,
we assume that these forces act at a different time-scale, so that they can be effectively
approximated by a (time-varying) potential term in the Hamiltonian. The fact that the
effects of the environment are unknown, results in an unknown potential and thus an
unknown effective Hamiltonian, which we need to estimate from the evolution of the net-
work. This results in an inverse-problem formulation from the observed dynamics to esti-
mate the thermodynamic quantities. With this formulation to hand, we aim at analysing,
comparing, and contrasting the characterization quality of the obtained thermodynamics
measures. The goal is to see whether major variations in the thermodynamic-variables
are linked with fundamental topological changes and key events in the evolution of the
system. In our approach the graph Laplacian at each time epoch is viewed as a quantum
mixed state undergoing free evolution through the Schrödinger equation under an un-
known time-dependent Hamiltonian. In particular, the Hamiltonian represents the change
in potential due to external factors. Entropy and energy change with time as a result of
direct interaction with the environment. From the observed evolution of the network, we
estimate the Hamiltonian together with the Energy-exchange at each time epoch, as well
as the variation in entropy of the underlying structure. Finally, from these variations we
derive the actual thermodynamic variables of the evolving network system, including the
free energy and temperature.
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5.2 Quantum Thermodynamics of the Network
Let G(V ,E) be an undirected graph with node set V and edges set E ⊆V ×V and let A = ai j

be the adjacency matrix, where

ai j =
{

1, vi ∼ v j ,
0, otherwise.

The degree d of a node is the number of edges incident to the node and it can be repre-
sented through the degree matrix D = (di j ) which is a diagonal matrix with di i =∑

i ai j .
The graph Laplacian is then defined as L = D − A, and it can be interpreted as a combi-
natorial analogue of the discrete Laplace-Beltrami operator. The normalized Laplacian
matrix L̃ is defined as

L̃ = D− 1
2 L D− 1

2 (5.1)

In standard quantum mechanics, the state of a quantum mechanical system associated
to the n–dimensional Hilbert space H ∼= Cn is identified by a n ×n positive semidefinite
hermitian matrix, with Tr(ρ) = 1, the density matrix. The density operator is introduced
in quantum mechanics to describe a system whose state is an ensemble of pure quantum
states

∣∣ψi
〉
, each with probability pi . In other words, every density matrix can be written

as a weighted sum of pure states, with real non-negative weights summing up to 1.

ρ =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣ . (5.2)

There are different ways to associate graphs to specific states or dynamics, e.g., graph-
states [36, 84] or spin networks [28, 32, 104]. However here we opt for another approach,
the mapping between discrete Laplacian and quantum states, firstly introduced by Braun-
stein et al. [35](see also [85]). In the first place, it is easy to observe how the normalized
Laplacian matrix, scaled by the number of vertices in the graph, has the characteristic
features of a quantum mechanical density matrix: it is a positive semidefinite unit trace
matrix, which actually provides a link to quantum states. In [140], Passerini and Severini
suggest how the normalized Laplacian can be also seen as a density matrix in a quantum
system representing a quantum superposition of the transition steps of quantum walk over
the graph. Furthermore, the normalized Laplacian may be interpreted as a mixture of
pure states (i.e., , a convex combination of rank-1 operators), more precisely a uniformly
random mixture of pure states in the vertex-space, where each state in the mixture corre-
sponds to a single edge of the graph [51]. In this way, we can associate with any graph G
a specific mixed quantum state [85].

The Shannon entropy measures the uncertainty associated with a classical probability
distribution. However, if we replace probability distributions with density operators, we
can generalize the definition of the Shannon entropy to quantum states (actually described
in a similar fashion), obtaining in fact the entropy of a quantum state. More to the point,
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the von Neumann entropy [135] or quantum entropy HN of a mixed state is defined in
terms of the trace and logarithm of the density operator ρ

HN =−Tr(ρ logρ) =−∑
i
ξi ln ξi (5.3)

where ξ1, . . . ,ξn are the eigenvalues of ρ. In this sense, the quantum entropy is related
to the distinguishability of the states, i.e., , the amount of information that can be ex-
tracted from an observation of the mixed state. In [35] Braunstein et al., introduce the
von Neumann entropy as a quantitative measure of mixedness of the density matrix ρ.
This definition in turn is based on the mapping between quantum states and the com-
binatorial graph Laplacian, as discussed above. Many detailed studies followed this
work [13, 14, 50, 51, 58, 140], but one in particular deserves more attention. Precisely,
Passerini and Severini in [140] investigated the use of the normalized Laplacian as a den-
sity operator, to define the current state of the network, and allowing so to derive the
network entropy in terms of the von Neumann entropy

SV N =−
|V |∑
i=1

λ̃i

|V | ln
λ̃i

|V | (5.4)

where λ̃1, . . . , λ̃n are the eigenvalues of L̃ and |V | defines the number of vertices. Still in
their work, they provide an interpretation of this quantity as a measure of regularity for
graphs. The resulting intuition is thus that we can somehow measure the complexity of
a graph through the von Neumann entropy. Nevertheless, the interpretation of this spec-
tral measure, in terms of structural patterns, is as yet unclear, as pointed-out in [125].
Specifically, the ability of distinguish certain structural patterns is strictly influenced by
the topology of the underlying graph. In other words, these kind of measures are ex-
tremely susceptible to structural properties of graphs, such as graph symmetries [155].
Consequently, we adopt this quantum approach in the analysis of network, not so much
because we believe the system or its evolution to be quantum in nature, but due to the
observed sensitivity to structural changes of these quantum-probing mechanisms.

We have already recalled in the previous Chapters that the continuous-time quantum
walk is the quantum analogue of the continuous-time random walk [69], where the clas-
sical state vector is replaced by a vector of complex amplitudes over V . The general state
of the walk is a complex linear combination of the basis states |v〉 , v ∈V , then the state of
the walk at time t is defined as ∣∣ψt

〉= ∑
u∈V

αu(t ) |u〉 (5.5)

where the amplitude αu(t ) ∈ C and
∣∣ψt

〉 ∈ C|V | are both complex. Moreover, we have
that αu(t )α∗

u(t ) gives the probability that at time t the walker is at the vertex u, and thus∑
u∈V αu(t )α∗

u(t ) = 1 and αu(t )α∗
u(t ) ∈ [0,1], for all u ∈V , t ∈R+.
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The evolution of the walk is then given by the Schrödinger equation, where we denote
the (possibly time-dependent) Hamiltonian as H .

∂

∂t

∣∣ψt
〉=−iH

∣∣ψt
〉

. (5.6)

Time-dependent Hamiltonian, within the context of the Schrödinger equation, means
that there is an external interaction of the system which manifests itself by a time-dependent
potential term. In general, the Schrödinger’s equation must be solved for the joint state
describing system and environment together. However, for certain Hamiltonians and ini-
tial quantum states of the environment, the open system’s dynamics can be well described
by an effective (possibly time-dependent) potential term in the Hamiltonian, to some good
approximation.

Here, we assume that the dynamics of the network is governed by a free evolution
following the Schrödinger equation under an unknown time-varying Hamiltonian H t ,
together with an interaction with the external world, which acts as an observer thus af-
fecting the entropy and exchanging energy with the system. Indeed, the free evolution
does not change the thermodynamic variables and the cause of any variation in entropy
has to be understood in terms of the external interaction process, which also causes an
energy exchange.

To measure the energy exchange we need to recover the potential term expressed by
the unknown Hamiltonian. In fact, the Hamiltonian acts as an energy operator, resulting
in the following expression for the change in energy between state ρt and ρt+1

dU = Tr(H t+1ρt+1)−Tr(H tρt ) (5.7)

We estimate the Hamiltonian H t as the one that minimizes the exchange of energy
through the interaction with the external environment. To this end we assume that the
interaction intervenes at the end of the free evolution, where the density matrix ρt is
transformed by the Schrödinger equation into

ρ̂t = U (t , t0)ρt0U
†(t , t0) (5.8)

Approximating the Hamiltonian Ĥ t0 with a piece-wise constant operator, we can use
the time-invariant Schrödinger equation to estimate the constant value of the Hamiltonian
between time epochs t and t +1 through the use of the unitary transformation U (t , t0) =
exp(−iĤ t0 (t − t0)), resulting in

ρ̂t+1 = exp(−iĤ t0 )ρt0 exp(iĤ t0 ) (5.9)

The exchange of energy in the interaction is then

∆Et = Tr(Ĥ t0ρt+1)−Tr(Ĥ t0 ρ̂t+1) (5.10)
= Tr

(
Ĥ t0

(
ρt+1 −exp(−iĤ t0 )ρt0 exp(iĤ t0 )

))
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Figure 5.1: USSM dataset - Entropy and Energy variation vs time, respectively top and
bottom chart. The vertical coloured lines mark some important events for the trade mar-
ket: September 11 attacks, Downturn of 2002-2003, Financial Crisis of 2007-2008, Dow
Jones lowest point (March 2009), Stock Markets Fall (August 2011), Greek legislative
election (June 2012), United States debt-ceiling crisis (October 2013), Chinese stock mar-
ket turbulence 2015, Brexit Referendum (June 2016).
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Figure 5.2: USSM dataset - Entropy and Energy variation vs time, respectively top and
bottom, details. The vertical coloured lines refer to political and financial affecting the
trade market. Left: September 11 attacks, Downturn of 2002-2003. Right: Chinese stock
market turbulence 2015-16, Brexit Referendum (June 2016).
from which we can estimate the Hamiltonian as the operator that minimizes this quantity.

Let ρt = ΦtΛtΦ
T
t be the spectral decomposition of the state of the network at time

t , equation (5.10) can be solved by noting that the minimum energy exchange intervenes
when the interaction changes the eigenvalues of the density matrices, and with them the
entropy, but does not change the corresponding eigenspaces. In other words, the Hamil-
tonian is the cause of the eigenvector rotation, while the interaction with the environment
causes only changes in eigenvalues. Under this assumption, the Hamiltonian can be re-
covered from the rotation:

Ĥ t ≈ i log(Φt+1Φ
T
t ) (5.11)

It is worth noting that we have computed a lower bound of the Hamiltonian, since we
cannot observe components on the null spaces of ρ. Furthermore, we have

Φt+1Φ
T
t︸ ︷︷ ︸

U

ρ0ΦtΦ
T
t+1︸ ︷︷ ︸

U

= ρ̂t+1 , (5.12)

where U =Φt+1Φ
T
t is the unitary evolution matrix. The final change in internal energy is
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then
dUt = Tr ( ˆH t+1

−
ρt+1)−Tr (Ĥ t

+
ρt ) = Tr (Ĥ t+ 1

2
(ρt+1 −ρt )) , (5.13)

Where ˆH t+1
− and Ĥ t

+ are respectively the left and right limit of the top and bottom of
the interval. Due to the piecewise-constant approximation we have

ˆH t+1
− = Ĥ t

+ = Ĥ t+ 1
2

. (5.14)

In the general time-varying case the evolution operator can be expressed as

U (t , t0) = exp(−iΩ(t , t0)) (5.15)

where Ω(t , t0) can be obtained from the Hamiltonian through a Magnus series [118].
To estimate the exchange in energy, we compute the variation in energy from ρt to

ρ̂t+1 as

dU =
∫ t+1

t
Tr

(
H sρs

)
d s =∫ t+1

t
Tr

(
H sU (s, t )ρt U †(s, t )

)
d s =∫ t+1

t
Tr

(
i

d U (s, t )

d s
ρt U †(s, t )

)
d s =∫ t+1

t
Tr

(
U (s, t )

(
I −exp(i adΩ)

−i adΩ

)
Ω′(s, t )ρt U †(s, t )

)
d s =

Tr

(∫ t+1

t
U (s, t )

(
I −exp(i adΩ)

−i adΩ

)
Ω′(s, t )d sρt

)
=

Tr
(
Ω(t +1, t )ρt

)
(5.16)

where the derivative of the exponential U (s, t ) = exp(−iΩ(s, t )) is

d U (s, t )

d s
=U (s, t )

(
I −exp(i adΩ)

−i adΩ

)
Ω′(s, t ) (5.17)

with adX representing the adjoint action of a Lie algebra on itself 1. As a consequence,
the exchange in energy is

dUt = Tr (Ω(t +1, t )ρt+1)−Tr (Ω(t +1, t )ρt ) (5.18)

This means that the unitary operator minimizing the exchange in energy is still

U ≈Φt+1Φ
T
t (5.19)

1The adjoint action is an endomorphism of Lie algebras. Let G be a Lie group with Lie algebra g, then
the operator is defined as adX : g→ g with adX (Y ) = [X ,Y ], that is a linear transformation of the Lie algebra
where [ , ] is the bracket operation in the algebra g.
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and that logarithm of the unitary operator can be used as an effective “mean energy”
operator to compute the energy differences.

With the energy operator to hand, the thermodynamic temperature T can then be re-
covered through the fundamental thermodynamic relation dU = T dS −PdV (5.20) but
where we assume that the volume is constant, i.e., , dV = 0 (isochoric process). As a
result, the temperature T is simply the rate of change of entropy with energy

T = dU

dS
(5.21)

This definition can be applied to evolving complex networks which do not change the
number of nodes during their evolution.

5.3 Experiments and Evaluations
In this section, we explore the ability of the thermodynamic formulation to identify global
topological changes in structure. In particular, we apply the analysis to three real-world
time-evolving networks in order to assess the ability of the thermodynamic formulation to
identify important topological transitions in network structure and characterize the over-
all dynamics of the system. First, we give a brief overview of the three datasets extracted
from real-world complex systems, then we discuss the outcomes of the analysis. Wher-
ever possible we make a comparison with similar approaches.

5.3.1 Datasets
Here, we use three data sets. The first and third sets are based on financial data, whereas
the second comes from the biological domain.

Dataset 1 – NYSE: The dataset is extracted from a database consisting of the daily
prices of 3799 stocks continuously traded on the New York Stock Exchange (NYSE). To
construct the dynamic network, 347 stock with historical data from May 1987 to February
2011 are selected [141]. In order to construct an evolving network, a time window of 28
days is used and it is moved along time to obtain a sequence (from day 29 to day 6004);
in this way, each temporal window contains a time-series of the daily return stock values
over a 28 day period. Trades among the different stocks are represented as a network. For
each time window, we compute the cross correlation coefficients between the time-series
for each pair of stock and create connections between them if the absolute value of the
correlation coefficient exceeds a threshold. The result is a stock market network which
changes over the time, with a fixed number of 347 nodes and varying edge structure for
each of trading days.

Dataset 2 – Drosophila: The dataset comes from the field of developmental biology,
and concerns the interactions among genes of Drosophila Melanogaster - better known
as the fruit fly - during its life cycle. The data is sampled at 66 sequential developmental
time points. The fruit fly life cycle is divided into four stages, namely a) the embryonic
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Figure 5.3: USSM dataset - Temperature vs time. The vertical coloured lines refer to
some important events for the trade market: September 11 attacks, Downturn of 2002-
2003, Financial Crisis of 2007-2008, Dow Jones lowest point March 2009, August 2011
stock markets fall, Greek legislative election June 2012, United States debt-ceiling crisis
October 2013, Chinese stock market turbulence 2015-16, Brexit Referendum June 2016.

(samples 1-30),b) larval (samples 31-40) and c) pupal (samples 41-58) periods together
with d) the first 30 days of adulthood (samples 59-66). Early embryos are sampled hourly
and adults are sampled at multi-day intervals, according to the speed of the morphological
changes. To represent this data using a time evolving network, the following steps are
followed [167]. At each developmental point the 588 genes that are known to play an
important role in the development of the Drosophila are selected. These genes are the
nodes of the network, and edges are established based on the microarray gene expression
measurements reported in [15]. To make the normalized Laplacian more tractable, any
self-loop in the obtained undirected graph has been removed, at each time step. This
dataset yields a time-evolving network with a fixed number of 588 nodes, sampled at 66
developmental time points.

Dataset 3 – USSM : The dataset USSM is extracted from a database of the daily
prices of 431 companies in 8 different sectors from the New York Stock Exchange and
the NASDAQ Stock Market (NASDAQ). Data has been gathered from January 1995 to
December 2016. The dataset is arranged to be around 5500 trading days and built simi-
larly to the NYSE dataset, i.e., a time window of 28 days is used and moved along time to
obtain sequences of the daily return stock values. Then the cross correlation coefficients
between each pair of stocks time-series are used to define links. The resulting network is
an evolving stock market network where the number of nodes is fixed (equal to 431) but
the edge structure is constantly changing.

5.3.2 Experiments

We aim at analysing how the thermodynamic variables describe network evolution and
specifically if they can detect critical events as the system develops (e.g., financial crises
or crashes in the stock market and morphological changes during the fruit fly life cycle).
To conduct our analysis, at each time interval, we computed the normalized Laplacian
of the network which we used to estimate the Hamiltonian. Then entropy and energy
state variables have been calculated using equations 5.4 and 5.7, respectively. However,
it should be recalled we deal with open systems, which do not evolve towards an equi-
librium. Therefore, we do not expect to observe any conservation in energy or a constant
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increase in entropy either.
We commence by studying variations in thermodynamic quantities and consequent

relationships between them. The first measures analysed are the variations in energy and
entropy. We are particularly interested in these variations because if there is any pattern
variation in these quantities, they are sufficient evidence of topological reactions in the
networks. For instance, as mentioned in Section 5.2, the von Neumann entropy allows us
to have an insight in terms of network complexity. Even if we do not have any direct link,
a map, between entropy values and structural changes happening in the network, anyway
we can see an effect of such alterations over the entropy trend.

In Fig. 5.1 we show their time series for the U.S. Stock Market data. Both quantities
detect financial and political factors, which have influenced the structure of the trading
network. However, the entropy variation sometimes appears somewhat noisier than the
energy, probably because it is more susceptible even to slight structural mutations.

In Fig. 5.2 we study two financial crises in detail, namely the Downturn of 2002-2003
and Chinese stock market turbulence 2015-16. We observe how crisis are well-localised in
energy dimension but less well so in entropy. Moreover, the entropy variation time series
between 2004 and 2006 does not look so stable in comparison to the energy dimension. In
fact, during this intermediate period, the energy exchange is small, and this corresponds
to a period of prolonged network stability. In other words, energy-exchange proves to
be effective in characterizing the network state as well as in the estimation of the hidden
time-varying Hamiltonian which successfully extracts information concerning the change
in network structure.

Next, we investigate the relationship between the previous thermodynamic quantities
by studying the network temperature. This variable has been calculated similarly to Eq.
5.21. However, to reduce excessive surges or drops, we performed a Laplace smooth-
ing of the series by adding a constant ε to the denominator, i.e., to the entropy variation
dS. The individual time-series for the thermodynamic variable shown in Fig. 5.3 clearly
presents many significant fluctuations, most of them corresponding to some realistic ma-
jor financial crises, e.g., the Downturn of 2002-2003, as well as significant influential
political events, e.g., the Brexit referendum. Another interesting feature in the figure
is that, although the network structure becomes particularly unstable after the Financial
Crisis of 2007-2008, different crucial events are still detectable. This in turn tells us that
this dimension provides the fundamental information to capture the market trend. Unlike
the quantum entropy in graphs field, which is a well-established topic in the literature, the
temperature, specifically its interpretation in terms of network analysis, has not reached
a clear formalization yet. Nevertheless, Ye et al. in [205] have attempted to provide an
insight about the connection between temperature and network behaviour, by defining
the thermodynamic variables by means of node degree statistics for nodes connected by
edges. In particular, according to their definitions, a low temperature is observed when
there are large local variations in edge structure, whereas when there is a significant over-
all change in the number of edges, the temperature tends to become higher. Moreover,
since this observation is based on the von Neumann entropy properties, such insights also
apply in our formulation.
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Figure 5.5 shows the scatter plot of energy versus entropy, for the U.S. Stock Mar-
ket dataset. The main feature to note is that different epochs of network evolution form
distinct clusters, occupying different regions of the plot. In fact, the plot reveals an in-
teresting feature of the network whereby there exists a clustering tendency of the market
when the system goes through strong modifications. Actually, each pattern presents a
wide variation in entropy a low variation in energy. Thus, we conclude network states are
better identified by energy, which effectively captures cluster compactness. Entropy on
the other hand is more dispersive.

Interesting results can also be observed in the experiments on the Fruit Fly data too.
In Fig. 5.4, we show an alternative representation of the network temperature, presented
as the scatter plot of the difference in energy dU over the difference in entropy dS. Most
of the data clusters around a straight-line (shown in red), whose slope corresponds to
the temperature of the network. However, there are also outliers exhibiting substantial
departures from the main cluster.

Interestingly, these samples represent fundamental developmental landmarks in the
evolution of the Drosophila Melanogaster. Specifically, they belong to the early embry-
onic stage, the mid larval transaction and final stage of the pupal step. According to [15],

Figure 5.4: Drosophila Melanogaster dataset - Scatter plot of the difference of energy vs
difference of entropy, as alternative representation of the network temperature. The red
line fits the trend of the temperature. Outliers are epochs when the transcript levels of the
genes has changed.
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Figure 5.5: USSM dataset - Scatter plot of Energy (U ) over Entropy (S). Each dot is a
day and grey dots are the background. Dots of the same color belong to the same network
phase. Horizontal lines represent cluster centroids for the energy dimension.

these are three of the four major morphological changes in terms of the transcript levels
of genes. In fact, they mark the beginning and end of embryogenesis, the larval-pupal
transition and the end of the pupal period, as the histogram in the upper right corner of
Fig. 5.4 shows.

In addition, we analyse entropy and temperature. As before we performed Laplacian
smoothing of the estimation of the temperature time series. In Fig. 5.6 the temperature
(bottom time-series) clearly outperforms the entropy (top time-series), by detecting salient
developmental changes during the fruit fly life cycle. Actually, entropy does not capture
any information about the transcript level decline. Furthermore, by comparing the tem-
perature dimension with the corresponding ones in [205] and [204], our method would
seem to be able to capture genuine developmental stages effectively, rather than limiting
the analysis to morphological changes alone.
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Figure 5.7: NYSE dataset - Temperature components vs time, as pressure changes. The
vertical coloured lines indicate important events for the trade market: Friday the 13th
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5.4 Non-Isochoric processes
The method outlined so far was initially designed for analysing isochoric (constant vol-
ume) processes. Nevertheless, we can generalize the formulation to deal with variations
in network size and, thus, in volume. We do this by assuming an isobaric process, i.e., the
pressure from the external environment is assumed independent of the system’s evolution.
By keeping a system at constant pressure, the change in volume becomes an integral part
of the thermodynamic identity (see Eq. 5.20). Clearly, diverse pressure levels affect the
temperature differently, as the volume variation effect changes. In fact, the temperature
formula can be rewritten as

T = dU +PdV

dS

= dU

dS
+P

dV

dS
(5.22)

where P dV
dS depends on the volume and pressure whereas dU

dS depends on the energy
variation.

As an implementation note, to handle density matrices with different sizes. We over-
come the dimension incongruity by padding with zeros the normalized Laplacian matri-
ces. Then, once both the energy and the entropy variations have been recovered, we can
compute the network temperature.

In Fig. 5.7 we analyse the effect of the pressure parameter in the NYSE dataset. Here,
the two temperature components are depicted simultaneously. When pressure is very
small, the volume component does not contribute to the temperature. On the other hand,
at high pressure values, the volume variation adds noise to the temperature. By balancing
this term (in our case P = 3 ·10−5), the estimated temperature time-series accurately iden-
tifies occurrences of major events. In particular, the volume contribution often reinforces
crucial parts of the signal, e.g., during the Persian Gulf War or throughout the Russian
Financial crisis, and only occasionally generates noise, for instance between the Septem-
ber 11 attacks and the beginning of the Downturn of 2002-2003. In fact, a comparison
with [204] and [205] shows similar performance in terms of event-detection accuracy,
proving that the generalization to size-varying graphs is still capable of modelling the
underlying dynamical processes over the networks.

5.5 Discussion
In this work, we have introduced a novel thermodynamic framework to characterize net-
work structure. Specifically, our driving goal was the visualization and understanding of
the evolution of the time-varying network systems. This analysis is based on quantum
thermodynamics and connects to recent work on the von Neumann entropy of networks.
To this end, we provided expressions for a variety of thermodynamic variables, such as en-
tropy, energy and temperature. In particular, energy is derived by estimating an unknown
Hamiltonian operator governing the free evolution through the Schrödinger equation.
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We have evaluated the method on real world complex systems, from the financial and
biological domains. The experimental outcomes prove that the thermodynamic state vari-
ables are effective at characterizing the evolution properties of dynamic networks, includ-
ing the detection of global topological changes, phase transitions in structure or distinctive
periods in the evolution of time-varying complex networks. However, we observed that
noise in the system’s observables or overlap of consecutive significant events may affect
the signals clarity, thus highlighting a certain level of sensitivity of the approach. Despite
this, our objective of determining a correspondence between network evolution and re-
lated thermodynamic-variables has been mostly accomplished, although we are still far
away from a truly and definitive mapping between thermodynamics measures and infor-
mation provided by the system. Nevertheless, even without such a mapping, still we can
indirectly get knowledge. For instance, by following Ye et al. [205] suggestions, where
entropy is seen as a measure of degree change correlations on the edges, we can infer tem-
perature significance. Indeed, a low temperature implies a large correlation. Conversely,
the greater the disruption of the pattern of correlations, the higher is the temperature.
Moreover, we were not able to identify clear precursors for the events, nor indicators of
the scale of change; thus the approach as presented is mainly descriptive and, at this stage,
not predictive.

There are many ways in which the work reported here can be improved. For instance,
it would be interesting to study in greater depth the manifold structure of the thermody-
namic space, and understand its links to phase transitions in the structure of networks.
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6
Conclusions and Future Work

In this thesis, we focused on problems involving the deeper questions posed by the struc-
tural analysis of graphs. These include developing generative models, characterizing
graph structures by different perspectives and modelling of the dynamics defined over the
networks. The leitmotiv behind our research has been to adopting analogies and formal
similarities in order to relate one theoretical approach to another so that to acquire new
intuitions and knowledge for a wide set of subjects. In fact, much of the work is rooted in
a quantum information theory framework. This choice has been prompted by the recently
uncovered connections between graphs and information theory. More to the point, we
took advantage from new insights about the interpretation of the quantum entropy when
applied to the domain of graphs, made possible by mapping between Laplacian matrix of
a graph and quantum states.

We commenced our treatise with a brief synopsis of the more relevant literature, in-
tended as a general outline for the reader. Then we moved on to the core of the thesis,
where we presented our studies. Specifically, our contributions can be regarded as ap-
pertaining to three different themes, which share many common concepts though. In
Chapter 3 we focused on generative models. Specifically, we used a generative approach
initially designed for graphs in the context of 3D shape retrieval. The overarching aim in
Chapter 4 has been to exploiting quantum processes to interpret and investigate problems
concerning the structural analysis - an umbrella term referring to a wide-ranging variety
of subjects though. Here, we dealt with network complexity, centrality indexes, quantum
walks, graph similarities, but not only that. In the next section, we will anyhow detail each
of them singularly. Finally, in Chapter 5 we proposed a novel thermodynamic framework
for studying the properties of time-evolving complex networks.

Contributions and Novelty

Generative models in graphs domain are important tools for learning the class-structure
of data abstracted in terms of relational graphs. Indeed, in Chapter 3 we investigated
if the application of a generative model originally designed for the general-purpose of
graphs may lead to good outcomes also for non-rigid 3D shape retrieval task. Not so
unexpectedly, the method worked fine and also allows to adopt a sampling scheme to
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improve computation complexity.

In Chapter 4 quantum processes allowed us to undertake diverse analysis paths. Quan-
tum information theory and in particular the well-known von Neumann entropy was the
first topic treated in 4.1. Here we studied and compared the two variants of the von Neu-
mann entropy along with the related quadratic approximations and we analysed how the
graph topology can bias this measure as well. We found that 1) the two entropies lead
to the emergence of similar structures, but with some significant differences; 2) the cor-
relation between them ranges from weakly positive to strongly negative, depending on
the topology of the underlying graph; 3) the quadratic approximations fail to capture the
presence of non-trivial structural patterns that seem to influence the value of the exact en-
tropies; 4) the quality of the approximations, as well as which variant of the von Neumann
entropy is better approximated, depends on the topology of the underlying graph.

In 4.2 we proposed a novel edge centrality index rooted in quantum information. The
importance of an edge is measured in terms of the difference in Von Neumann entropy
between the original graph and the graph where that edge has been removed. Since this
centrality appears higher on edges connecting low degree nodes we can deduce that it
better gauges a structural component by the peripheral viewpoint. We also compared the
proposed centrality measure to well-established alternatives, figuring out that the under-
lying topology of a graph influences the correlation with other centralities. Probably the
reason stems from the fact that diverse random graph models differently behave at leaves
level.

In the last part of Chapter 4, we extended the Rossi et al. work [154]. They devised a
graph kernel aimed at probing the structure of graphs through continuous-time quantum
walks and at defining similarity through the quantum Shannon-Jensen divergence. In our
extension, we explored alternatives to the Laplacian and adjacency matrices, as Hamilto-
nian. We successfully applied the kernel to directed graphs and attributed graphs as well.
In this latter case, we extracted feature points in terms of kernel signature and then worked
with similarity matrices in place of the adjacency structures. Outcomes are promising, but
as it is work in progress, these final considerations cannot be considered mature totally.

Finally, in Chapter 5 we adopted a thermodynamic representation of network structure
in order to visualize and understand the evolution of time-varying networks. We provided
expressions for thermodynamic variables on networks, including the entropy, energy and
temperature. Even this analysis is connected to recent work on the von Neumann entropy
of networks. Energy and temperature are derived by estimating an unknown Hamilto-
nian operator governing the free evolution through the Schrödinger equation. We have
evaluated the method experimentally using data representing real world complex systems
taken from the financial and biological domains. The experimental results proved that
the thermodynamic variables are efficient in capturing abrupt changes and phase transi-
tions in structure, as well as distinctive periods in the evolution of time-varying complex
networks.
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6.1 Future Work
There are several directions in which the work as a whole reported here can be extended.
First, unless already applied, the work is expandable to directed graphs. For instance, as
regards Chapter 5, in a recent paper [206] an approximation to the von Neumann entropy
of directed graphs has been reported, which can be used to develop a similar framework
for graph in which the edges posses directionality. This may provide particularly interest-
ing in the context of characterising the thermodynamics of sources and sinks in a network.
Also learning directed graphs could be a feasible continuation of the generative model in
Chapter 3. As concerns the centrality index via Holevo quantity in Section 4.2, future
work may include investigation of higher order approximations of this centrality measure
as well as the possibility of defining network growth models based on the Holevo quan-
tity. With respect to the analysis over the von Neumann entropy in Section 4.1 it is already
under consideration a parallel work with directed graphs.

To conclude, it is worth mentioning that methods and studies here presented, like
many others in this area of research, may open up fascinating possibilities of the analysis
of data represented in terms of graphs. That means studying in detail the structure of
real-world networks, leading so impact in a broad array of subject domains sampled from
the physical, biological and social sciences. For instance, characterising the functionality
of data furnished by brain imaging experiments, we may help in issues of major signifi-
cance for the problem of brain-mapping, as well as new complexity indices might yield
to surprising understanding of demographic networks.
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