
J. LOGIC PROGRAMMING 1993:12:1–199 1

MODULARITY IN LOGIC PROGRAMMING

MICHELE BUGLIESI, EVELINA LAMMA AND PAOLA

MELLO

� The research on modular logic programming has evolved along two different
directions during the past decade. Various papers have focused primarily
on the problems of programming-in-the-large. They have proposed mod-
ule systems equipped with compositional operators for building programs
as combinations of separate and independent components. Other propos-
als have instead concentrated on the problem of programming-in-the-small
in an attempt to enrich logic programming with abstraction and scoping
mechanisms available in other programming paradigms.

The issues that arise in the two approaches are substantially different.
The compositional operators of the former allow one to structure programs
without any need to extend the theory of Horn clauses. The scoping and
abstraction mechanisms of the latter are modeled in terms of the logical
connectives of extended logic languages.

In this paper we provide a uniform reconstruction of the above approaches
and we show, wherever this is possible, how the object-level logical connec-
tives of the latter can be mapped onto the compositional operators of the
former. �

1. INTRODUCTION

The interest in modular logic programming has motivated a considerable research
effort over the past decade and it has been the subject of an active and still open

Address correspondence toMichele Bugliesi, Dipartimento di Matematica Pura ed Applicata,
Università di Padova, Via Belzoni 7, 35131 Padova, Italy, e-mail: michele@goedel.unipd.it

Evelina Lamma, Paola Mello, Dipartimento di Elettronica, Informatica e Sistemistica,
Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy,
e-mail: {evelina,paola}@deis33.cineca.it

THE JOURNAL OF LOGIC PROGRAMMING

c©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

2

debate. The need for a modular extension to logic programming has been always
widely agreed upon. It was in fact acknowledged that relations provide a too fine-
grained unit of abstraction for the design of large programs, and that having flat
composition of clauses as the only mechanism at disposal leaves the programmer
with rather poor tools for structuring programs.

However, as to the question of what modular extension should be adopted, there
seems to be as yet no final answer. There are at least two measures for evaluating
the adequacy of any such proposal. In fact, if from a programming language point
of view, any extension can be justified to the extent that it implements useful pro-
gramming features, it is nevertheless reasonable – from a logic programming point
of view – to evaluate it also in terms of the logic (if there is any) it encompasses.

A further and important issue that should be addressed in the design of a mod-
ular language is related to the ability of the underlying abstraction mechanisms
to provide an effective support for both the programming disciplines which are
sometimes qualified as programming-in-the-large and programming-in-the-small.

The design of a principled modular extension of logic programming should there-
fore address both these issues and satisfy several properties [75]. A modular lan-
guage should allow rich forms of abstraction, parametrization and information hid-
ing; it should ease the development and maintenance of large programs as well as
provide adequate support for re-usability and separate and efficient compilation;
it should finally encompass a non-trivial notion of program equivalence to make it
possible to justify the replacement of equivalent components. At the same time, we
should also expect that these features do not undermine the declarativity of logic
programming as it stands, and therefore that the logical foundations on which the
extension relies be as firm and well-established as those of the underlying language.

The interest in the aforementioned two dimensions of programming inspired the
two orthogonal lines of research the study of modularity has evolved along, over
the past ten years.

Various proposals have focused primarily on the issue of programming-in-the-
large. This research was inspired by the work of O’Keefe in [86]. His idea was to give
a formal account of one of the fundamental principles of the software engineering
view of programming: programs should be developed incrementally by defining
several units and their interfaces and then by composing those units. This led him
to propose an approach to modularity based on the notion of program composition.
He formalized this idea by interpreting logic programs as elements of an algebra
and by modeling their composition in terms of the operators of the algebra. The
distinguishing property of this approach is that the modular extension of logic
programming takes place without any need to extend the language of Horn clauses.
In fact, module-composition is inherently a meta-linguistic mechanism: modules
are viewed as sets of Horn clauses and their algebraic composition is modeled in
terms of various operations on the component clauses: union, deletion, closure
and combination of the above. The compositional frameworks of Mancarella and
Pedreschi [61], Gaifman and Shapiro [39], Bossi et al. [8] and of Brogi et al. [15, 12]
can in fact be seen as different formulations of this idea.

Information hiding and encapsulation can also be accounted for in this framework
quite elegantly. Algebraic program composition can be made more selective so as
to distinguish, within a module, predicates to be imported from other modules
and/or predicates to be exported to other modules. This idea has been exploited
by Gaifman and Shapiro in [39] and by Brogi et al. in [16] for defining a variety

3

of powerful composition mechanisms. Similar mechanisms have also been adopted
by prototypical implementations such as the Gödel system described in [46] and,
coupled with additional cross-referencing facilities between modules, by some of the
existing commercial Prolog systems such as Quintus [87] and SICStus [90].

An alternative approach to developing a principled modular (logic) language arose
in the attempt to instrument logic programming with linguistic abstraction mech-
anisms richer than those offered by Horn clauses. The idea was to provide a richer
support for programming-in-the-small and then to tailor those mechanisms to at-
tack the problems of programming-in-the-large.

This approach originated with the work of Miller in [71], and was inspired by
the observation that logical systems richer than Horn clauses could be employed
to provide a natural support for modular programming. His idea was to model
the operators for building and composing modules directly in terms of the logical
connectives of a language defined as an extension of Horn Clause Logic. This led
him to propose in [71] a modular language based on the use of implication goals in
the body of clauses. A language with the same structural properties was then pro-
posed by Giordano et al. in [42] and [43] to model visibility rules more refined than
those effecting the language of [71]. On similar grounds, a non-monotonic inter-
pretation of implication led Monteiro and Porto to introduce the context extension
operator of [78] as the foundation for Contextual Logic Programming. Similarly,
messages were proposed [62, 13, 19] as a way to achieve a logical reinterpretation for
some of the distinguishing features of the Object-Oriented programming paradigm.
Later extensions to the framework of [71] led Miller and his colleagues [70, 85] and,
independently, Shapiro and Moscowitz [82], to study other (higher-order) logical
frameworks where different notions of scope over clauses and program constants
could be modeled.

Outline. In this paper we survey the existing literature on this area. Both the
aforesaid lines of research will be taken into account. One of the points of the
survey is actually to address, whenever possible, the connections between the two
approaches and to point them out.

The first part of the survey (section 2) is dedicated to the study of the algebraic
approach in the different formulations it has been proposed. The second part is
instead dedicated to the study of the different modular languages defined as linguis-
tic extensions of Horn clauses. Section 3 studies the operational characterization
of these languages whereas section 4 explores their logical foundations. Section
5 is devoted to describing their implementation. The final section contains some
concluding remarks.

Throughout the paper we will concentrate only on definite programs, i.e. on
definite Horn programs in section 2, and on programs without negation for the
modular languages disussed in the remaining sections. Under this assumption, we
will be able to draw a picture where most of the theoretical work which has been
done in the area can be discussed in a uniform manner. Also, this choice is faithful
to the current status of the research in the field which, with few notable exceptions
that will be pointed out in the paper, has concentrated primarily on the case of
definite programs.

4

2. MODULAR PROGRAMMING AS ALGEBRAIC PROGRAM COMPOSI-

TION

We start off our analysis with the study of the algebraic approach to modularity
introduced by O’Keefe in [86]. As already anticipated, the fundamental idea behind
the work of O’Keefe is that a logic program should always be understood as part
of a system of programs. Having taken this view, he argues that new programs can
be designed by combining the components of that system and possibly by defining
new ones. He formalizes this idea in terms of an algebraic approach where a logic
program is viewed as an element of an algebra and the operators for composing
programs as operators over that algebra.

Viewing modularity as algebraic program composition offers several advantages.
Firstly, program composition is a powerful tool for structuring programs without
any need to extend the theory of Horn clauses. Secondly, it supports naturally
the re-use of the same program within different composite programs and, when
accompanied by an adequate notion of program-equivalence, the replacement of
equivalent components. It is also highly flexible, for new composition mechanisms
can be accounted for by simply introducing a corresponding operator in the algebra
or by combining the existing ones. Finally, when coupled with mechanisms for
specifying the interfaces between components (the import/export lists mentioned
in the introduction are an example of these interfaces) it also allows one to model
powerful forms of encapsulation and information hiding.

In the next subsection we will introduce three operators, called union, overriding-
union and closure. Following the guidelines of [14], we will show that these operators
suffice to model a rich set of mechanisms for program composition. We will then
discuss the notions of program equivalence that arise for the different operators and
finally describe the extension of this framework with import/export facilities.

Other operators, such as intersection [61] and deletion [15], which have been
considered in the literature will not be taken into account in this survey since less
relevant to the study of modular programming.

2.1. The Algebra of Programs and its Operators

The Algebra. The language L for the programs of the algebra is defined by fixing
ahead a signature Σ of function and constant symbols (constants are viewed as
usual as nullary functions) and a set Π of predicate symbols. We will henceforth
call Σ-term any term built over Σ, and Σ-formula any formula built over Σ and Π.

All the programs in the algebra have the same Herbrand Base built over the
signature of L. We denote with B the Herbrand Base and with P (B) the power-set
of B. Programs in the algebra are ordinary logic programs.

Following the style of [71], we will use > to denote the distinguished formula
true and three metalinguistic variables – A, D and G – to stand respectively for
atomic formulas, definite clauses and goals. Using these conventions the structure
of Horn clauses can be expressed in terms of the following syntax:

G ::= > | A | G ∧G | ∃xG

D ::= A | D ∧D | ∀xD | G ⊃ A

For reasons of notational convenience, we will often adopt the conventional Prolog
syntax for clauses and write A ← G1, . . . , Gn as an alternative notation for (G1 ∧

5

· · · ∧Gn) ⊃ A. In doing so, we will also assume that A← G1, . . . , Gn is in normal
form, i.e. that all the variables occurring in it are universally quantified.

According to the above definition, a logic program P can be viewed as a con-
junctive D-formula or equivalently as a set of D-formulas.

Operators. Program composition is modeled in terms of the operators in the alge-
bra of programs. As already mentioned, we will consider three algebraic operators:
union (∪), closure (∗) and overriding-union (�). Their composition will be denoted
with the extension formulas defined by the following productions:

E ::= P | E ∪ E | E∗ | E �E

Here P is the name of a logic program, and we abuse the notation writing P to
denote a program as well as its name in the algebra. To account for a formal
semantics for the composition operators as well as for the programs in the algebra,
we will take the immediate consequence operator as the denotation of a program.

Given a program P , the denotation [[P]] of P is defined as [[P]] = TP . TP is the
standard [91] continuous operator over the lattice (P (B),⊆).

TP (I) = {A | A← A1, A2 . . . , AN ∈ [P]Σ such that {A1, A2, . . . AN} ⊆ I}

The application of TP corresponds to a one-step deduction, using P , of ground
atoms from ground atoms. The notation [P]Σ is used here to stand for the set
of D-formulas obtained from P by closure under conjunction and instantiation.
Formally, [P]Σ is the smallest set satisfying the following conditions:

P ⊆ [P]Σ

D1 ∧D2 ∈ [P]Σ ⇒ D1 ∈ [P]Σ ∧ D2 ∈ [P]Σ

∀xD ∈ [P]Σ ⇒ D[x/t] ∈ [P]Σ for all the Σ-terms t

In the following we will also make use of the following definitions. Given any
function f : P (B) 7→ P (B), the ordinal powers of f are defined as follows:

f ↑ 0 = ∅
f ↑ α = f(f ↑ α−1)
f ↑ α = ∪β≤α f ↑ β if α is a limit ordinal

For any f as above, we also define the iteration operator ω on f as fω(X) =
∪∞i=0 f

i(X) for any X ⊆ B. Note that T ω
P and TP ↑ ω denote different objects:

respectively, a function over P (B), and an element of P (B) – the least fixed point
of TP . It is also easy to see that TP ↑ ω = Tω

P (∅).

The choice of TP as the denotation of a program was discussed by Mancarella and
Pedreschi in [61]. As in that case, it will allow us to have an elegant homomorphic

semantics for our algebra. In fact, we will be able to show that the equality [[P ◦Q]] =
[[P]]σ(◦) [[D]] holds for a suitable choice of a homomorphism σ which maps the
operator ◦ over programs onto the corresponding operator σ(◦) over the programs’
denotation.

It may be argued that the choice [[P]] = TP does not provide a very useful
semantics for reasoning about programs since the notion of program-equivalence it
induces has a too strong operational flavour. The objection is admittedly reasonable
and we will discuss the choice of other and more abstract semantics in section 2.2.
We now turn, instead, to the study of the different operators.

6

2.1.1. Union. The union of programs is the simplest operator in the algebra.
Taking the union of two programs amounts simply to taking the set-theoretic union
of their clauses (actually any program can be viewed as the union-composition of
all its clauses). The denotation of the union P ∪ Q of two programs P and Q is
immediately obtained by setting [[P ∪Q]] = TP∪Q where:

TP∪Q(I) = TP (I) ∪ TQ(I)

Using this definition, Mancarella and Pedreschi [61] proved the identity [[P ∪Q]] =
[[P]] ∪ [[Q]] thus showing that the invariant [[·]] is homomorphic with respect to ∪
(notice that here “∪” stands for two different operators defined over programs, on
the left of the previous equation, and over their denotation, on the right).

From a programming language perspective, this type of composition implements
a form of dynamic scope, since each reference to a predicate in a program refers
to a different definition depending on the composition that program is part of.
The composition by union has also been shown to be well-suited for implementing
forms of knowledge assimilation, where knowledge is dynamically updated as new
information becomes available. Each program can in fact be naturally interpreted
as open with respect to (compositions with) other programs. This corresponds to
view an open program as an incomplete description of some knowledge domain.
The composition of open programs may increase the degree of completeness of the
description, as something which does not hold in one program can hold in another
one, and the former can exploit the latter (and vice-versa) to derive new knowledge.

2.1.2. Closure. There are situations in which it might be useful to view a pro-
gram as closed (as opposed to open) with respect to possible compositions with
other programs. This situation is discussed by Brogi et al. in [12], where the au-
thors introduce a closure operator which enforces a form closed world assumption
on the programs of their algebra. Roughly, the application of the closure oper-
ator to a program makes that program visible to other programs only in terms
of its logical consequences (its extensional knowledge) whereas it encapsulates the
program’s intensional knowledge (its clauses). In our algebra, we will denote the
closure of a program P with P ∗. P ∗ corresponds to the program consisting of the
atomic consequences of P ; hence, its denotation will be simply given by the con-
stant transformation which returns the least Herbrand model of P for any possible
interpretation I . This yields the following homomorphic definition for the closure
operator:

[[P ∗]] = [[P]] ↑ ω

From a programming language point of view, the result is a mechanism for
defining modules with an associated local and closed policy of scope. Consider a
composite program obtained taking the union of programs which have been encap-
sulated by means of the ∗ operator. The formulas which can be proved in such
compositions are all the formulas which can be proved separately in the component
programs.

Example 2.1. Let P and Q be the two programs:

P = {p(X)← q(X)} Q =







p(1)
q(2)
q(X)← p(X)







7

Here P ∗ = ∅ (the empty set of clauses) and the composition P ∗ ∪ Q∗ is the
program consisting of the three atomic clauses {p(1), q(2), q(1)}.

2.1.3. Overriding-union. The third operator of the algebra allows us to model
a different and, in a way, hierarchical type of program composition. Indeed, the
union P ∪ Q of two programs can be itself thought of as a form of hierarchical
composition where P is composed with Q to extend the set of definitions contained
in Q. Needless to say, as long as we take the union of two programs the order of
the components doesn’t matter. There are situations, however, in which we may
wish to model a mechanism of specialization where the order does matter: a typical
case is given by inheritance-based systems, where the definitions (methods) in a
class override the corresponding definitions provided by the super-class(es). The
operator of overriding-union captures precisely this type of behaviour.

Given two logic programs P and Q, P � Q stands for the composition of P
and Q into a hierarchy where Q is P ’s immediate ancestor. Since an overriding
semantics is assumed, if both P and Q contain a definition for same predicate, then
the definition in P overrides the one found in Q.

The overriding-union of two programs can be defined in terms of union and
restriction over the clauses of the component programs. Say that a predicate p is
defined by a program P , if P contains a clause whose head’s predicate symbol is p.
Let δ(P) be the set of predicate symbols defined by P and let Pred(A) denote the
predicate symbol of any given atom A. Then, P �Q denotes the program obtained
as the union of the clauses of P with the clauses of Q which do not define any of
the predicates in δ(P). Formally:

P �Q = P ∪ {A← G ∈ Q : Pred(A) 6∈ δ(P)}

Example 2.2. Consider the two programs

P = {p(2)} Q =

{

p(1)
q(X)← p(X)

}

Their composition P �Q is a new program which contains definitions for both
p/1 and q/1, and where Q’s definition of p/1 is overridden by the corresponding
definition of P .

{

p(2)
q(X)← p(X)

}

Note that the operator of overriding-union is inherently non-monotonic: formulas
derivable in Q may be no longer derivable in the composition of P �Q. For the
two programs above, p(1) is derivable from Q whereas it is not so from P �Q.

The �-composition of two programs can be expressed in terms of the programs’
denotation using the following operator introduced in [19].

Definition 2.1. Let π be an arbitrary set of predicate symbols and let S1 and S2

be two elements of P (B). Then the function 3π : P (B) × P (B) 7→ P (B) is
defined as follows:

S13πS2 = S1 ∪ {t ∈ S2 | Pred(t) 6∈ π}

8

This definition is used in [19] to show that 3π is continuous over (P (B),⊆) for any
given π, and that, for any I ⊆ B:

TP/ Q(I) = TP (I) 3δ(P) TQ(I)

Hence, a homomorphic definition for [[P�Q]] can be obtained by lifting the definition
of 3 at the function level and setting [[P �Q]] = [[P]] 3δ(P) [[Q]]

2.1.4. Operator Composition. Various proposals for modular logic programming
adopt scope policies which are more complex than those we have discussed so far:
typical examples are the operators for nested composition of [5, 78, 43] and the
different forms of inheritance-based compositions discussed in [11] and [19, 79].

Programs can be composed in a nested fashion by accommodating them in a
stack. Let S = [Pn, ..., Pi, ..., P1] be a stack where P1, . . . , Pn are the component
programs and Pn is the top of S. The behaviour of a nested composition is defined
by specifying how the evaluation of a goal should be carried out in the stack.
The idea is that the clauses used for reducing the goal in S are selected searching
the components of S from top to bottom. If one such clause is selected from Pi,
then the body of that clause in evaluated in the sub-stack [Pi, ..., P1]. In other
words, the definitions contained in Pi are visible only to the programs which have
been added to the stack after Pi. This type of composition can be formalized in
our setting by means of a composition where ∪ and ∗ are suitably alternated. A
stack [Pn, ..., Pi, ..., P1] can be expressed as the composition (Pn ∪ (. . .∪ (Pi ∪ (. . .∪
P ∗

1) . . .)∗ . . .)∗)∗: definitions in Pi are accessible to Pi+1 but not the other way
around.

Example 2.3. Consider again programs P and Q of example 2.1. The program we
obtain by taking the hierarchical composition (P ∪Q∗)∗ has one additional unit
clause. Namely:

(P ∪Q∗)∗ = {p(2), p(1), q(2), q(1)}

In [86], O’Keefe introduces a similar scope rule in terms of an operator named
composition and denoted by ◦. Given M1 and M2, two programs in the algebra,
their compositionM1◦M2 corresponds to a program where the definitions of M2 are
accessible to M1, but not the other way around. O’Keefe uses the (more abstract)
denotation [[P]]O′Keefe = (TP + Id)ω for his programs, where “+” denotes the
addition of two functions ((f + g)(X) = f(X) ∪ g(X)) and Id is the identity
function. Under this definition1, he is able to model the meaning of M1 ◦ M2

homomorphically as:

[[M1 ◦M2]]O′Keefe = [[M1]]O′Keefe ◦ [[M2]]O′Keefe

The notable difference with respect to our framework is that M1 ◦M2 denotes
a function over P (B) whereas the denotation of (M1 ∪M∗

2)∗ is a subset of B. In
fact, it’s immediate that [[(M1 ∪M∗

2)∗]] = [[M1 ◦M2]]O′Keefe(∅).

1Actually O’Keefe uses for his programs the different denotation [[P]]O′Keefe = T ω
P

, but all
the properties he attributes to this invariant imply that the definition he is really employing is
the one we have introduced here.

9

Inheritance-based Compositions. The �-composition of programs can be used to
model both the forms of overriding inheritance which are qualified by Reddy in [88]
as static inheritance, a lá SIMULA67, and dynamic inheritance, a lá SMALLTALK.

The difference between the two mechanisms can be explained as follows. Let HP
be the hierarchy Pn isa · · · isa Pi isa · · · isa P1, where Pi is Pi+1’s immediate
ancestor, and let G be a goal to be evaluated in HP . Assume that the evaluation
of G selects a clause in Pi: now, if isa is interpreted as static inheritance, then the
body B of that clause will be evaluated in the sub-hierarchy Pi isa · · · isa P1. If,
on the contrary, isa is interpreted as dynamic inheritance, B will be evaluated in the
complete hierarchy HP . In both cases the overriding semantics of isa is captured
by the fact that the clauses used for evaluating each (sub) goal are selected only
from the top-most component, in the current hierarchy, which contains a definition
for that goal.

Dynamic inheritance (with overriding) can be modeled in our framework by
connecting the components of the isa hierarchy directly through the � operator.
More specifically, the hierarchy Pn isa · · · Pi isa · · · P1, can be expressed in terms
of the extension formula Pn�....�Pi�...�P1. Example 2.2 illustrates this point: in
the composition P �Q the call to p/2 in the definition of q/1 refers to the definition
contained in P .

Static inheritance, instead, can be modeled in terms of compositions where the
application of � and ∗ is alternated: (Pn � (. . .� (Pi � (. . .� P ∗

1) . . .)∗ . . .)∗)∗. For
the two programs of example 2.2, the composition (P �Q∗)∗ would now consist of
the two unit clauses {p(2), q(1)}.

Obviously, the different forms of inheritance with extension or overriding mode
(as well as the other composition mechanisms) are allowed to co-exist within the
same inheritance tree as illustrated by the following example.

Example 2.4. The following inheritance tree [14] represents the knowledge that
tigers and elephants are animals, that Kahan is a tiger and that Dumbo is an
elephant.

↙ T iger ←− Kahan
Animal

↖ Elephant ←−// Dumbo

Each node contains a set of clauses stating the properties that hold at that
node. We assume thatDumbo overrides the corresponding properties of a generic
elephant. An inheritance tree like this is expressed in terms of the operators of
our algebra by the the extension formula:

(Animal ∪ T iger ∪Kahan)∗ ∪ (Dumbo� (Elephant ∪ Animal)∗)

Notice the use of � to obtain dynamic inheritance with overriding and the use
of ∗ to avoid exchanging of knowledge between the two inheritance chains.

2.2. Compositionality and Full-Abstraction

We mentioned earlier in this section that the choice of TP as the denotation of a
program may not yield a satisfactory semantics for the algebra. Indeed, the property

10

of being homomorphic is very basic as it simply gives us the ability to define the
meaning of a composite program in terms of the meaning of its components.

As noted by Maher in [77], this represents probably the very least we should
expect from a semantic characterization of a modular language. In fact, what is
also reasonable to expect is that the notion of equivalence induced by the choice
of the denotation be “useful” for reasoning about the computational behaviour of
programs. From a practical point of view, this concept of equivalence is crucial for
the development and the maintenance of large programs since it allows one to iden-
tify when two modules can be safely substituted with one another without affecting
the global behaviour. It should be noted, in this regard, that the (potential) inter-
actions between different components yields a fairly rich notion of equivalence. In
fact, two components which are computationally equivalent if considered as stand-
alone programs are likely to exhibit a completely different behaviour when viewed
as part of a context. Consider for instance the two (equivalent) modules P = {}
and Q = {p← q} and contrast them with the (non-equivalent) programs obtained
by taking the union of P and Q with the program R = {q}. Thus, in a modular lan-
guage, two modules are to be considered equivalent if they can be interchanged in
any context without affecting the visible results of the computation. More precisely:

“two modules P and Q are observationally congruent (P ≡obs Q) iff
for every context C[·], C[P] and C[Q] exhibit the same observational
behaviour [68].”

Needless to say, reasoning about programs (and their computational equivalence)
in terms of their denotation will be worthwhile only when the notion of semantic
equivalence is a “good approximation” of the relation of computational equivalence.

These intuitive arguments can be formalized as suggested in [39] and [68], in
terms of the two notions of compositionality and full abstraction. Compositionality
ensures that two semantically equivalent programs are also observationally equiv-
alent; full abstraction guarantees that any distinction made at the semantic level
has also an observational counterpart. Formally:

“a semantics is compositional if semantic equality implies observa-
tional congruence. It is fully abstract if semantic equality coincides
with ≡obs [68].”

We make these ideas precise following the style and terminology of [39]. For any
denotation (or invariant) [[·]], the definition of semantic equivalence ≡[[·]] is standard:
it states that two programs are equivalent if and only if their denotations coincide.
Let now P denote a class of programs and Com a class of composition operators.
We say that:

An equivalence relation ≡ over P preserves Ob if and only if

P ≡ Q ⇒ Ob(P) = Ob(Q)

An equivalence ≡ is a congruence for Com if for every f ∈ Com

Pi ≡ Qi i = 1, . . . , n ⇒ f(P1, . . . , Pn) ≡ f(Q1, . . . , Qn)

For any notion of observable Ob, and any op ∈ Com, we can define the equivalence
induced by (Ob, op) as follows:

P ≡Ob,op Q ⇐⇒ for all R

{

Ob(R op P) = Ob(R op Q)
Ob(P op R) = Ob(Q op R)

11

We say that the invariant [[·]] is (Ob, op)-compositional if ≡[[·]] preserves Ob and is a
congruence for op. [[·]] is fully abstract if ≡[[·]] coincides with ≡Ob,op.

Given two equivalences ≡i and ≡j , we will henceforth say that ≡i is finer or
stronger than ≡j (dually ≡j weaker, or coarser, than ≡i) whenever ≡i implies ≡j .

As for the notion of observables, there are of course several possible choices. Here
we will rely on the following definition:

Ob(P) = {A | P |= A and A ∈ B}

This definition is essentially equivalent to the standard definition of observables
based on the notion of success set. As noted by Maher in [77], if we assume that
the domain of B contains infinitely many constant symbols, then the equivalence
associated with Ob coincides with the equivalence that results by taking as observ-
ables the set of ground and non-ground atomic consequences. However, if we are to
consider only the composition of programs belonging to the same algebra, we don’t
need this generality and the above definition suffices (see [77] for a fuller discussion
about this point).

In the rest of this section, we will consider the different operators of our algebra
and study the properties of compositionality and full abstraction for the set of
invariants listed below (in increasing order of abstraction):

[[P]]1 = TP ;

[[P]]2 = TP + Id;

[[P]]3 = (TP + Id)ω

[[P]]4 = TP ↑ ω.

These invariants, and the corresponding equivalences, have all been studied by
Maher in [77]. The equivalence induced by [[·]]1 (denoted by ≡1) coincides with
subsumption equivalence. [[·]]2 induces a form of weak subsumption equivalence (≡2)
which abstracts upon tautological clauses. The third invariant computes the set of
logical consequences of a program (obtained in any number of steps), and induces
a notion of equivalence (≡3) which coincides with logical equivalence. Finally, [[·]]4
is the standard semantics of logic programming which identifies two programs as
equivalent (≡4) if they have the same least Herbrand model.

Note that in the previous section we have already (implicitly) shown that [[·]]1
is compositional for all the operators in the algebra. In fact, we have shown that
[[·]]1 has a homomorphic definition for all such operators. Then, for any composite
program C[·], it follows that [[C[P]]]1 = [[C[Q]]]1 whenever the components P and
Q have the same denotation. Since [[·]]1 preserves the observable Ob, it follows that
[[·]]1 is compositional for all the operators. On the other hand, it is easy to verify
that it is not fully abstract for any of them.

We next turn to the analysis of the remaining invariants. In [10] Brogi develops
a similar analysis for a different set of operators, and shows that the sequence
of invariants listed above coincides with the sequence of compositional and fully
abstract equivalences for the subsets obtained dropping from the complete set of
operators one operator at the time. As we show next, some – but not all – of these
results carry over to our framework.

We start with ≡4 and proceed in decreasing order of abstraction.

12

2.2.1. Minimal-model Semantics: ≡4. The minimal model semantics is obvi-
ously compositional and fully abstract with respect to the closure operator. In
fact, in this case, the notion of observable coincides with the chosen denotation and
thus compositionality and full abstraction are an immediate consequence of the fact
the closure of a program is itself is defined in terms of the least Herbrand model
of that program. It is also immediate to verify that ≡4 is not compositional with
respect to either ∪ or �.

2.2.2. Logical Equivalence: ≡3. As it turns out, the invariant [[·]]3 is (Ob,∪)-
compositional and fully abstract. Compositionality was first shown by Maher in
[77] using the identity [[P ∪Q]]3 = ([[P]]3 +[[Q]]3)

ω proved by J.L. Lassez and Maher
himself in [59]. On the other hand, full abstraction has been proved independently
by several authors (see Maher [77], Gaifman and Shapiro [39] and Gabbrielli et al.
[38]).

Here we present an equivalent proof based on the following result proved by Brogi
et al. in [15]. Let P and Q be two programs; then, for any Herbrand interpretation
M , it holds that:

M |= P ∪Q⇐⇒M |= P and M |= Q (1)

Hence, we have that any model M for the union of two programs is also a model for
both the component programs. Furthermore, since two programs are ≡3-equivalent
iff they have the same Herbrand models, from (1) above we have that:

[[P ∪Q]]3 = [[P]]3 ∩ [[Q]]3

This result, in turn, serves as the basis for proving that [[·]]3 is fully abstract as
shown by the following

Theorem 2.1 (Full abstraction of [[·]]3). Given two programs P and Q:

∀R Ob(P ∪ R) = Ob(Q ∪ R) =⇒ P ≡3 Q

Proof. by contradiction. Assume that for every program R, Ob(P ∪ R) =
Ob(Q ∪ R) but P 6≡3 Q. Then, there exists a model M of P which is not a
model of Q. But then, there exists a ground instance A← B1, ..., BN of a clause
in Q, such that {B1, . . . , BN} ∈ M , and A 6∈ M . Let now R′ be the program
composed by the set of facts B1, . . . , BN . Then M |= P ∪ R′ since M |= P and
B1, . . . , BN ∈ M . On the other hand, from A 6∈ M and M |= P ∪ R′, it follows
that P ∪ R′ 6|= A whence A 6∈ Ob(P ∪ R′). But this is a contradiction since
Q ∪R′ |= A and hence A ∈ Ob(Q ∪R′). 2

The previous results do not apply to the operator of overriding-union. In fact, [[·]]3
is not even (Ob,�)-compositional.

Example 2.5. Let P and P ′ be the two following programs:

P =

{

p(a)← q(b)
q(b)

}

P ′ =

{

p(a)
q(b)

}

13

P and P ′ are obviously logically equivalent (they have the same models) and
thus P ≡3 P

′. Now, by taking R = {q(a)}, we have:

R� P =

{

p(a)← q(b)
q(a)

}

R�Q =

{

p(a)
q(a)

}

and these two program are no longer logically equivalent. Hence ≡3 is not a
congruence for �, and [[·]]3 is not compositional.

It is shown in [20] that none of the invariants we have considered provides an
adequate semantics for the type of program composition encompassed by �. An
interesting example is given by the two programs {p(a) ← p(b)} and {p(b) ←
p(a)}. These two programs are clearly not logically equivalent whereas they are
indistinguishable with respect to ≡Ob,/. Notice that the only logical semantics that
would identify these two programs as equivalent seems to be the classical minimal
Herbrand model semantics2. Yet, the choice of minimal models as invariant would
then fall short of capturing the compositional properties of the union of clauses
which is used to define the �-composition.

We conclude by noting that the two remaining equivalences are strictly finer
than ≡3 and thus that they cannot be fully abstract with respect to ∪.

2.3. Import and Export

In traditional modular languages [50], a module is defined as a collection of dec-
larations and statements which constitute closed scope: identifiers imported from
the external environment as well as identifiers to be exported must be explicitly de-
clared. An identifier is imported by a module if it is used there but defined in some
other module; it is exported by a module if it is defined there and used elsewhere.
This way, the import/export designator attached to each identifier constrains the
visibility of that identifier to the modules which import it, and hence, they allow
forms of encapsulation and information hiding in the module system.

Obviously, these principles can be applied as well to modular logic languages. In
this context, a designator can be thought of as attached to several syntactic entities:
predicate names, constant/function names and data constructors in general. How-
ever, most of the currently published work on encapsulation in logic programming
deals with the import/export of predicate names. Two notable exceptions are the
module system of Sannella and Wallen [89] and the module facility provided by
Gödel [46].

In this section we will emphasize the analysis of the import/export of predicate
names and approach the case of constant and function symbols on more informal
grounds3.

2Another possible solution would be to consider the completed programs but, since the very
idea of program composition is implicitly based on an open world assumption, the notion of
completion in this context does not seem that reasonable.

3This is not to dismiss the latter case as less interesting or relevant than the former. To the
contrary: the real point is that, while the idea of constraining the visibility of constant/function
names seems natural, its rendition in our algebraic framework is not. In fact, it is in straight
contrast with our initial assumption that the signature Σ of the constant and function symbols
be fixed, and hence global and visible, for all the programs in the algebra.

14

Once the visibility of each predicate identifier has been established, there are two
ways that the corresponding relation can be imported and/or exported within the
module system. A module can either import/export intension of the relation, i.e.
the clauses defining it, or its extension, – i.e. the tuples belonging to the relation or,
equivalently, the atomic consequences of the clauses defining it. In section 2.1 we
have already seen examples of both these mechanisms: the union operator can be
used to implement a mechanism for importing/exporting all of a program’s clauses;
the closure operator as a mechanism for exporting all of the program’s extensional
knowledge (its atomic consequences).

The problem with these operators is that their granularity is too coarse for them
to be used as effective software engineering tools. Following the approaches pre-
sented in [39, 14, 16, 86, 10], we show next that these operators can be generalized
to build more sophisticated modular systems in which it is possible to specify more
refined visibility rules as well as model import/export of a relation at the intensional
and/or extensional levels.

2.3.1. Intensional View. An intensional mechanism for import/export has been
studied by Gaifman and Shapiro in [39]. They interpret a logic module as a quadru-
ple (P , Im, Ex, Int) where P is a logic program and {Ex, Im, Int} is a partition of
all the predicates of P into three disjoint sets such that no predicate of Im occurs
in the head of a clause. Im defines the set of the module’s imported predicates, Ex
the set of exported predicates, while the internal predicates in Int are the predi-
cates local to the module. The union of Im and Ex constitutes the interface of the
module.

The composition of two logic modules M1 = (P1, Im1, Ex1, Int1) and M2=
(P2, Im2, Ex2, Int2) is a new logic module M3= (P3, Im3, Ex3, Int3) such that:

• P3 = P1 ∪ P2,

• Im3 = (Im1 ∪ Im2) \ (Ex1 ∪ Ex2),

• Ex3 = (Ex1 ∪ Ex2), and

• Int3 = (Int1 ∪ Int2).

The two sets Ex1 and Ex2 are assumed to be disjoint. When this is not the case
they are renamed to avoid any possible name clash. In [39], the authors present
a compositional and fully abstract semantics for this type of module composition
and show that the induced equivalence is an extension of logical equivalence.

2.3.2. Extensional View. Several other papers in the literature approach the
problem at the extensional level. Here, we will survey some of these proposals (e.g.
[14, 16, 10]), and discuss some further extensions.

We first need to extend the definition of the closure operator introduced in section
2.1.2, with two new arguments representing the set of atomic consequences which
can be imported from/exported to other modules.

The new operator, denoted by (P, Imp,Ex)∗ models a selective form of closure
whereby a module has visibility of (dually, makes visible) only those atoms whose
predicate name belongs to Imp (dually Ex). Thus (P, Imp,Ex)∗ provides a very
general and flexible operator that can be specialized in several ways. The complete
encapsulation of a program is expressed by the formula (P, {}, {})∗, that declares

15

that no predicate should be either imported or exported. On the other hand, open
programs simply correspond to importing and exporting all formulas; their closure
is given by (P, γ(P), γ(P))∗, where γ(P) is the set of predicate symbols occurring
in P . Moreover, (P, {}, γ(P))∗ corresponds to the ∗ operator introduced in section
2.1.2, and (P, Imp, γ(P))∗ to the operator closure(P, Imp) introduced in [14] which
supports import declarations only.

A similar and essentially equivalent operator is studied by Fitting [32]. He

introduces the enumeration operator [P I1,...,In

O1,...,Om

] as the formal counterpart of a
module which has P as axioms, imports predicates I1, . . . , In and exports predicates
O1, . . . , Om. According to our notation, Fitting’s operator would be expressed as
(P, {I1, . . . , In}, {O1, . . . , Om})∗.

The denotation of the extended closure operator can be itself modeled in terms
of the immediate-consequence operator. For any program P , the denotation of
(P, Imp,Ex)∗ can be defined by the following equation:

[[(P, Imp,Ex)∗]](I) = ΦEx((TP + Id)ω(ΦImp(I)))

The transformation ΦS (where S is a set of predicate names) is a filter over Herbrand
interpretations defined as follows:

ΦS(I) = {A ∈ I | Pred(A) ∈ S}

Thus ΦImp acts as an input filter by importing only those atoms whose predicate
name belongs to Imp, and ΦExp acts as an output filter by exporting only those
atoms whose predicate name belongs to Ex.

Similar import/export mechanisms are defined by O’Keefe in [86] where the
elements of the algebra are called breeze blocks and building bricks. Breeze blocks
correspond to import/export lists in conventional module systems, while building
bricks correspond to separate logic programs. A breeze block is defined as a function
over predicate symbols:

b : Π 7→ Π ∪ ⊥

where ⊥ represents falsity. An import/export declaration is defined in terms of
the ad-hoc breeze block include{p1, . . . , pn}. Here p1, . . . , pn are distinct predicate
symbols and include is used for shutting out predicates that a module is not inter-
ested in, by naming only the predicates of interest. This behaviour is modeled by
defining the breeze-block as follows:

include{p1, . . . , pn} = λp

{

p if p ∈ {p1, . . . , pn}
⊥ otherwise

This definition – lifted to interpretations – models an operator which corresponds
directly to the filter function Φ{p1,...,pn}. A program consisting of n modules, where
module Mj imports predicates Ij and exports predicates Ej can be specified as
follows:

n
⋃

j=1

include Ej ◦Mj ◦ include Ij

where ◦ is the composition operator discussed in section 2.1.2. For each program
component, the first composition, include Ej ◦ Mj , ensures that only exported
predicates are made visible to other components. Mj ◦ include Ij , in turn, makes

16

sure that only the imported predicates are made visible within Mj . Hence, the
denotation of each component can be modeled in terms of our closure operator by
setting

[[(include Ex) ◦ P ◦ (include Imp)]]O′Keefe(I) = [[(P, Imp,Ex)∗]](I)

for any Herbrand interpretation I .
A similar composition mechanism has been studied by Brogi in [10]. Again

the idea is to couple encapsulation and information hiding with mechanisms for
exporting predicate names. He defines a new binary operation, P ≺ Q, which
builds a module out of a pair of modules P and Q. P plays the role of the visible
part of the module, Q the role of the hidden part.

In the composition P ≺ Q, P is visible by other modules which thus are allowed
to access its clauses. On the other hand, the hidden part Q cannot be accessed
directly from the outside. The set of formulas which are provable in Q can be
referred to only by the visible part P .

The intended semantics of the composition P ≺ Q is introduced in [10] in terms
of an encapsulation operator. In practice, it can be written in our framework as
follows:

[[P ≺ Q]](I) = [[P]](I ∪ [[Q∗]])

Notice that P ≺ Q differs from the hierarchical composition P ∪Q∗ (section 2.1.2),
since in this latter case the extensional knowledge of Q is not hidden from the
outside.

As a final remark we should note that in most of the existing logic programming
languages with modules, such as MProlog [60], Quintus Prolog [87], SICStus Prolog
[90] the import and export facilities are typically introduced at the extensional
level. This choice is, most probably, dictated by reasons of efficiency: importing
(or exporting) the extension of a definition allows one to resolve statically (and thus
compile) all the local references that occur in that definition.

2.3.3. Visibility Rules for Data Constructors. The module system for Prolog de-
scribed by Sannella and Wallen in [89] is in several respects similar to that proposed
by O’Keefe. Structures are the basic program components and play the same role as
O’Keefe’s bricks. However, O’Keefe’s system is untyped and his scope mechanisms
are applied only to the clauses of the bricks. Constant and function symbols are
instead thought of as global. Conversely, in [89] Sannella and Wallen extend the
scope rules of their language to apply also to the constant and function symbols of
a module.

Gödel [46] shares several features with the module system of Sannella and Wallen.
All symbols in Gödel are treated equally by the module system, thus Gödel supports
import and export mechanisms for predicates names as well as for data structures
and types. Each module is equipped with an export part and a local part. The
export part specifies the module’s interface. The export part begins with an EXPORT

declaration and contains zero or more IMPORT declarations, together with other
declarations for types and predicate signatures. The local part is not visible from
the outside and models a form of encapsulation and information hiding. The local
part begins with a LOCAL declaration and contains zero or more IMPORT declarations,
together with other language declarations and statements.

17

Example 2.6. We borrow the following example of a module definition in Gödel
from [46].

EXPORT M.

IMPORT Lists.

BASE Day, Person.

CONSTANT Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday : Day;

Fred, Bill, Mary : Person.

PREDICATE Append3 : List(a)*List(a)*List(a)*List(a).

LOCAL M

Append3(x,y,z,u) <- Append(x,y,w) & Append(w,z,u).

M has an export and a local part. The export part of M makes all the symbols
it declares or imports available for use by other modules which import M. In the
example, this is the case for the declarations of the bases (types) Day and Person,
of the constants Monday, Fred etc. and of the predicate Append3. The declaration
IMPORT Lists makes all the symbols exported by Lists visible in M. Any module
which imports M automatically imports all the symbols exported by Lists. The
local part of M contains the definition of predicate Append3 which uses the definition
of Append from Lists.

In a recent paper [45], Hill discusses an extension of the Gödel module system to
account for parametrized modules. The main motivation is to increase re-usability:
modules can be parametrized with respect to predicates and types, and different
instances of a parametrized module can be obtained by importing it with different
values for actual parameters. The module name which follows the keywords EXPORT
and LOCAL consists now of an identifier with zero or more symbols as arguments.

Example 2.7. In the following module, Trans defines the transitivity relation over
a generic type Point and a generic predicate Connect.

EXPORT Trans(Point,Connect).

BASE Point.

PREDICATE Connect, Tr : Point*Point.

LOCAL Trans(Point,Connect).

Tr(x,y) <- Connect(x,y).

Tr(x,y) <- Connect(x,z), Tr(z,y).

This module is initial: instances of Trans(Point,Connect) can be obtained by
substituting new symbols for the parameters occurring in the module name. For
example, the declaration IMPORT Trans(Person, Parent) where Person is a type
and Parent a predicate defining the parent relation, imports an instance of the
parametric module Trans.

18

3. MODULAR PROGRAMMING: BEYOND HORN CLAUSE LOGIC

For the development of large applications, the possibility to define separate pro-
gram components and to combine them using mechanisms like those outlined in the
previous section represents certainly a fundamental requirement. However, there
are other properties that we should expect from a modular system. In fact, the
composition operators we have outlined allow us to specify only the collection of
modules that are to be used for evaluating a top-level goal. Once the modular
configuration of the program has been set, there is no way that we can dynami-
cally modify its structure and enforce the evaluation of a (sub)-goal to occur in a
collection of modules different than the one associated with the top-level goal.

To get a richer notion of composition, what we need is to have the operators for
building and composing modules act as built-in mechanisms which directly effect
the language’s evaluation procedure. This argument motivated the work of Miller
in his seminal paper on this subject [69]. His idea was to consider languages which
make stronger use of the logical connectives, and to use them as modular languages
where the composition operators correspond directly to these connectives.

From a programming language point of view, the main challenge in this approach
is to isolate, within the wide class of candidate languages at disposal, a language
which exhibits the desired modular features and which is also amenable to efficient
implementations. There is of course also the question of whether the semantics of
the extended language can be defined without undermining the language’s declar-
ative reading. This latter aspect will be discussed thoroughly in section 4. In the
present section we will instead concentrate upon a programming-oriented style of
presentation. We will survey the different extensions explored in the literature and
discuss their computational characterization as well as the programming paradigms
they encompass.

3.1. Preliminaries

Proof Systems. The operational semantics of each language will be defined proof
theoretically. The associated proof-relation will be presented in terms of a corre-
sponding inference system in the sequent calculus.

It could be argued that a more direct presentation of the operational semantics
could be given relying on a transformational approach as it has been done, for in-
stance, in [79] and [82]. The semantics of the extended language could be defined
in terms of a mapping from programs in the extended language to corresponding
Horn-clause programs. We could then appeal to the theory of SLD-resolution to
specify (and logically justify) the computational behaviour of the extended lan-
guage. However, depending on the type of module-composition we are to model,
this approach may or may not be adequate. In fact, as we will show later, a trans-
formational (or static) semantics is inadequate to capture the dynamic flavour of
some of the modular languages we will consider. For this reason, in the remainder
of this section we will employ a dynamic presentation.

Sequents will be denoted as pairs of the form ∆ ` Γ where the antecedent ∆ and
the succedent Γ stand for (possibly empty) sets of formulas. When Γ ∩∆ contains
an atomic formula we will say that ∆ ` Γ is an initial sequent. The intended
interpretation of the sequent ∆ ` Γ is that there exists a proof from the antecedent
∆ to some of the formulas in the succedent Γ.

19

Proofs are defined constructively by composing inference figures (proof rules) of
the form:

upper sequent(s)

lower sequent

When interpreted bottom up, these rules can be directly employed as the basis of
a goal-directed proof system which uses them to rewrite each lower sequent into a
corresponding set of upper sequents. Hence, we can think of the inference figures
as instructions for an idealized interpreter: when fed with the sequent ∆ ` Γ, the
interpreter will succeed if the sequence of rewritings leads either to an empty set
of sequents or to a set of initial sequents; it will fail when no rule applies to a
non-initial sequent.

This operational re-interpretation of proofs in the sequent calculus has been
extensively studied by Miller et al. in [76]. The purpose of their research was to
identify and isolate a (maximal) subset of this calculus that could be implemented
in a programming language. The aforesaid property of goal-directedness is just
one of the properties that a practical implementation of a proof-system should
satisfy. The idea of goal-directed search can be in fact carried much further by
imposing stronger requirements on the structure of a “good” proof: namely, that
the inference rule applied at each sequent be uniquely determined by the top-level
logical connective of (one of the formulas of) the succedent of the current sequent.
This intuitive argument was formalized by Miller and his colleagues [76] in terms
of the notion of uniform proof, “a cut-free proof in which (i) the succedent of each
sequent is a singleton set of formulas and (ii) each occurrence of a sequent whose
succedent contains a non-atomic formula is the lower sequent of the inference figure
that introduces the formula’s top level connective”.

These general principles will provide the key for defining the operational meaning
of the languages we will consider. Our sequents will have the simplified form P ` G,
where P will denote the set of program formulas and G a single goal formula. The
proof systems will satisfy the aforesaid principle of uniformity.

Sequent Proofs for Horn Clauses. Following the style introduced in section 2, we
will describe the syntax of Horn Clauses by means of the three metalinguistic vari-
ables A, D and G defined by the productions we introduced there. The operational
semantics of the language of Horn clauses can be described by means of the following
proof system which we borrow from [76].

(SUCCESS)
P ` >

(AND)
P ` G1 P ` G2

P ` G1 ∧G2

(INSTANCE)
P ` G[x/t]

P ` ∃xG
(BACKCHAIN)

P ` G

P ` A

The proviso for (BACKCHAIN) is that there exists a closed instance G ⊃ A of
a clause in [P]Σ. Here Σ denotes the set of constant and function symbols of the
program and, as in section 2, [P]Σ denotes the closure of P under conjunction and
instantiation over all the possible Σ-terms.

It is important to remark that the above rules only partially specify the course
of action of a real interpreter for logic programming as they do not specify what
the result of the computation should be. Note in particular that the proof of
an existentially quantified goal does not produce a witness substitution, as it is

20

customary in logic programming. Instead, it results into a potentially infinite non-
deterministic or-branching where each branch corresponds to a particular witness
guessed by the interpreter. The same remark applies as well to the definition of the
(BACKCHAIN) rule. This substitution-free notion of derivation, which we inherit
from [76] has two advantages: it is completely general, as it does not commit to
any definition of unification, and, for this very reason, it allows us to delegate
substitutions and unification to implementation issues which will be dealt with in
more detail in section 5.

Fixed Points. An alternative and more abstract presentation of the operational
semantics will also be given in terms of a fixed point reconstruction of the proof-
theoretic definitions. This will help us identify some of the distinguishing features of
the different composition mechanisms and clarify the relations between them. The
formal framework employed for the fixed point presentation will be a possible-world
semantics based on Kripke-like interpretations [55].

Kripke interpretations provide an ideal setting for modeling – semantically speak-
ing – the dynamic type of modular composition underlying the languages we will
consider. The link between the proof-theoretic and the fixed point approaches will
be established by introducing a notion of weak satisfiability (|=|=) for goals in the
set-theoretic structures (the possible worlds) we will associate with our programs.

What is important to remark here is that both the proof-theoretic and the fixed
point presentations are to be understood as inherently operational specifications.
As in [71], we will not assume any “a priori relation between ` and other logical
notions of derivation or provability”; nor we will assume any relation between weak
satisfiability and other notions of entailment in any logical system. The analysis of
these relations will be approached and discussed later in section 4.

3.2. Embedded Implications: A Foundation for Modular Programming

We now wish to build on top of Horn Clauses and assume a more complex syntax
for a G-formula where we now allow occurrences of implication goals. The new
sets of D and G-formulas are defined by the following (now mutually recursive)
definitions of the meta-linguistic variables D and G:

D ::= A | D ∧D | ∀xD | G ⊃ A

G ::= > | A | G ∧G | ∃xG | D ⊃ G

A language with this structure has been originally studied in the literature by Gab-
bay and Reyle [37, 36] in the attempt to enrich logic programming with mechanisms
for hypothetical reasoning4. They observed that the embedded implication D ⊃ G
can be read as the hypothetical statement asserting that the truth of the conse-
quent G of the implication is subject to the truth of the antecedent D. On this
basis, they proposed the following operational interpretation: querying a program
P with the goal D ⊃ G amounts to requesting that the proof of G be drawn from
P by assuming D as a further hypothesis.

It was Miller, though, who firstly proposed a notion of modular programming
based on this use of embedded implications. In [71], he formalized the operational

4In [36] Gabbay considers an extension of this language that allows negative G-formulas.

21

semantics of implication goals by extending the provability relation ` for Horn
Clauses with the following inference rule:

(AUGMENT)
P ∪D ` G

P ` D ⊃ G

We will henceforth use the subscript ⊃, and write
⊃̀

to denote the proof predicate
obtained by extending ` with the (AUGMENT) rule.

WhenD andG are closed formulas, the above rule provides a direct formalization
of the deduction theorem: to prove D ⊃ G, assume D and prove G from P ∪
D. However, the (AUGMENT) rule works just as well when D and G contain
occurrences of free variables. Consider in fact the case of a sequent P

⊃̀
∃x(D(x) ⊃

G(x)) where x is free in D(x) and G(x). By virtue of the treatment of existential
quantifiers introduced earlier, a proof of ∃x(D(x) ⊃ G(x)) will be constructed
by first guessing a closed term t (non-deterministically) and then by attempting a
proof of the new sequent P

⊃̀
D(t) ⊃ G(t). Note how the choice of a unification-free

notion of derivation helps ease the definition of the (AUGMENT) rule. Consider in
fact what would happen if we replaced the existentially quantified variable x with a
logical variable, say X . Now, in the attempt to find a proof for P

⊃̀
D(X) ⊃ G(X),

the clauses D(X) would again be added to P , but then whenever we produced
a substitution for X both the formulas in D(X) and the goal G(X) would need
updating consistently.

The study of a substitution semantics and its implementation for the language
of embedded implications (and its variations) will be studied in detail in section 5.
Until then, we will appeal to it informally when presenting some of the following
examples. Our next goal is in fact to show how embedded implications can be taken
as the basis for implementing modules in a logic language.

3.2.1. Implementing Modules. When D is a set of universally quantified clauses,
the implication goal D ⊃ G, in a program P , can be interpreted operationally as a
request to load the clauses in D before attempting G, and then discard them after
the derivation for G succeeds or fails. Note that this type of composition between
D and P is the same as that encompassed by the algebraic composition of two
programs by union (see section 2). The fundamental difference is that here D and
P are composed dynamically as the result of evaluating D ⊃ G.

This dynamic form of composition supports naturally a modular approach to
writing code. Modules can be introduced as named collections of clauses and
programs can be structured as collections of modules each one dedicated to an-
swer a specific class of queries. Cross-referencing between modules and module-
composition can then be accounted for relying on the workings of embedded impli-
cations. If, in module M , the answer to a goal G requires that the clauses of module
M1 be loaded, then we will simply enforce the evaluation of G in the composition
of M and M1 by means of the implication goal M1 ⊃ G.

This programming discipline permits also to model forms of encapsulation and
scoping over the clauses contained in a program. Consider for instance the case
of a conjunctive goal (M ⊃ G1) ∧ G2. Here the clauses in M are only available
for evaluating G1 whereas they are hidden during the evaluation of G2. A more
concrete example of the use of embedded implications as a scope mechanism is
illustrated by the following definition of the list-reverse predicate which we borrow

22

from [71].

∀x, y rev(x, y) ← { ∀l rv1([], l, l).
∀x, l1, l2, k rv1([x|l1], l2, k)← rv1(l1, l2, [x|k])
} ⊃ rv1(x, y, [])

This two-argument reverse works in linear time. As usual, it is defined in terms of an
auxiliary predicate, rv1, which uses a third argument as accumulator. The notable
difference is that the auxiliary definition is now encapsulated in the embedded
implication. The effect is that the clauses for rv1 are local to the definition of rev
which is now the only predicate which has access to them.

A notion of parametric module can also be accounted for in this framework. The
fact that we allow embedded implications of the form ∃x(D(x) ⊃ G(x)) suggests
that the clauses defining a module can contain free variables. Thus, as proposed in
[71], modules can be referred to by names which have an arity and take arguments
just as predicate names. If D(x) denotes a set of clauses whose free variables are
in the list x, then MD(x) will be the module name used to refer to D(x). The
arguments for a module name designate the parameters of that module. Different
instances will be then obtained by providing values for the module’s parameters
and, correspondingly, by instantiating the free variables of the associated set of
clauses. An application of this idea has been already exemplified in section 2.3.3.
Other examples will be described more fully in section 3.6, where we discuss an
Object-Oriented extension of logic programming based on the use of embedded
implications.

What we show next, instead, is how free variables in an embedded implication
can be employed to model powerful forms of variable inheritance between nested
scopes.

Example 3.1. The following program, proposed in [70], provides a refined version
the previous definition of the list-reverse predicate:

∀x, y rev(x, y) ← { rv2([], y).
∀x, l1, l2 rv2([x|l1], l2)← rv2(l1, [x|l2])
} ⊃ rv2(x, [])

Notice that y now occurs free in the first clause of rv2. It is interesting to look at
the behaviour of this program more closely. Assume that we query the program
with the goal rev(x, Y). If x is instantiated to a ground list and (the logical
variable) Y is unbound, this goal triggers the evaluation of rv2(x, []). This,
in turn, recursively traverses the list x and reverses it. Upon returning from
the call rv2(x, []), the free variable y gets instantiated to the reversed list and
this binding is finally propagated back up to instantiate Y in the original goal
rev(x, Y).

The nature of embedded implications as a scope mechanism will be discussed fur-
ther in section 3.3. We now turn to consider an alternative and more abstract
characterization of the operational workings of embedded implications. As already
anticipated, the result will consist of a fixed point reconstruction of the proof-
theoretic setting discussed so far.

23

3.2.2. A Fixed point Semantics for Embedded Implications The framework for
this reconstruction is given by a Kripke-like semantics. The idea, due to Miller [69,
71], is to model the behaviour of embedded implications by viewing a program as a
form of computation in a set of possible worlds. At this level, the dynamic evolution
of the proof space, which is peculiar of embedded implications, is captured by
having the possible worlds of a Kripke interpretation act as partial interpretations
of a program. Each world will be used to interpret the set of clauses corresponding
to the “image” of the program at a given stage of the computation.

The notion of Kripke-like interpretation employed by Miller is a special case of
a more general definition which will be introduced in section 4. Assume we have
fixed ahead the signature Σ,Π of the program, let B be the associated Herbrand
base and P (B) be its power-set. An interpretation is defined as a mapping I :
W 7→ P (B) where W is the set of all possible programs and I is monotone on W :
∀w1, w2 ∈ W, w1 ≤ w2 ⇒ I(w1) ⊆ I(w2). Interpretations defined according to
these principles will be referred to as =-interpretations to distinguish them from
Herbrand interpretations and from general Kripke interpretations.

Associated with this notion of =-interpretation, Miller defines the following rela-
tion of weak satisfiability for a closedG-formula, in an =-interpretation I at program
w:

I, w |=|= >

I, w |=|= A iff A ∈ I(w) (A atomic)

I, w |=|= G1 ∧G2 iff I, w |=|= G1 and I, w |=|= G2

I, w |=|= ∃xG iff I, w |=|= G[x/t] for a Σ-term t

I, w |=|= D ⊃ G iff I, w ∪D |=|= G

This definition has a natural intuitive reading. An =-interpretation can be thought
of as a collection of partial interpretations indexed by sets of program clauses. The
relation I, w |=|= G means that the goalG holds in the interpretation associated with
the set of clauses w. The case of embedded implications parallels the corresponding
proof-rule: to interpret an implication goal D ⊃ G in I at w, we interpret G in the
interpretation indexed by the extended program w ∪D.

The relation of weak satisfiability serves as the basis for establishing the link
between the proof-theoretic and the fixed point descriptions. The goal of the latter
is to compute an =-interpretation I∗ such that G is operationally derivable from
P (P

⊃̀
G) if and only if I∗, P |=|= G. For this purpose, =-Interpretations are

accommodated in a complete lattice (=,v) where v is defined as the following
ordering:

I1 v= I2 ⇐⇒ ∀w ∈W I1(w) ⊆ I2(w).

The bottom element of this lattice is denoted by I⊥ and defined by setting I⊥(w) =
∅ for all w ∈ W . The join of two =-interpretations is the =-interpretation defined as
(I2tI2)(w) = I1(w)∪I2(w). The =-interpretation I∗ with the desired properties is
computed as the least fixed point of a continuous immediate-consequence operator
on =-interpretations. The definition of this operator relies on the notion of weak
satisfiability we have just introduced5:

T (I) = λw {A | A← G ∈ [w]Σ such that I, w |=|= G}

24

The notation [w]Σ is used here as in section 2, to stand for the set of D-formulas
obtained from w by closure under conjunction and instantiation. The continuity of
T , proved in [71], guarantees that there exists the least fixed point lfp(T) and that
lfp(T) can be computed as the interpretation Tω(I⊥) = tk∈ωT

k(I⊥). The equiv-
alence between the fixed point and the proof-theoretic definitions of derivability is
then established by the following result proved by Miller.

Theorem 3.1. [71] For any program P and any closed (ground or existentially quan-
tified) goal G:

P
⊃̀
G if and only if Tω(I⊥), P |=|= G

In section 4, we will present a stronger result for Miller’s computational interpre-
tation of embedded implications. What we will show there is that the proof relation
encompassed by

⊃̀
is sound and complete with respect to the notions of provability

and entailment in intuitionistic logic. Before doing so, however, we now move on
to study other interpretations of embedded implications which have been proposed
in the literature as extensions or variations of the one we have just surveyed.

3.3. Embedded Implications and Lexical Scoping

Although the previous characterization of implication appears to be quite natural,
it is by no means the only possible one. In fact, from a programming language
point of view, the notion of scope encompassed by the (AUGMENT) rule appears
to be rather weak. Consider, in this regard, the evaluation of an atomic goal A
in a program P containing the clause A ← D ⊃ G. After backchaining on that
clause and reducing the embedded implication, we are left with the evaluation of
G in P ∪ D. Assume now that the next backchaining step selects a clause from
P and let G′ be the body of that clause. Notice that, by virtue of the definition
of (AUGMENT), at this stage the clauses of D are still accessible to G′. Hence,
in the proof of G′ we will be able to use not only the clauses in P but also those
provided by D. But this implies that the meaning of the clauses of the surrounding
scope P depends on the definitions coming from the inner scope D. Furthermore,
this dependency is inherently dynamic: each call to a predicate in P will be associ-
ated with different definitions depending on the sequence of embedded implications
which leads to consider that call during the proof.

This observation led other authors to study alternative characterizations of embed-
ded implications in the attempt to capture stronger notions of scope. The first
proposal in this direction was due to Giordano et al. in [42] and in [43]. Later

5This definition suggests a deeper technical justification for using weak satisfaction in this
context. The following observation was pointed out to us by Dale Miller [74]. The problem is
that if the T operator is defined using a full possible-world notion of satisfaction, then T is not
monotone. In particular, having |= denote Kripke’s S4-validity operator (see section 4.3) consider

defining T (I)(w) = {A|G ← A ∈ [w] and I,w |= G}. That this definition of T is not monotone
is revealed by the following counter-example. Let J⊥ be the S4-interpretation that attaches the
empty set of atoms to all worlds. Now consider the two programs w0 = {(p ⊃ q) ⊃ r} and
w1 = {p, (p ⊃ q) ⊃ r}: we have T (J⊥)(w0) = {r}, T (J⊥)(w1) = {p, r}, and T 2(J⊥)(w0) = {}.
Hence, J⊥ v T (J⊥) but T (J⊥) 6v T (T (J⊥)) and T is not monotonic.

25

work led then Miller himself [70] and, independently, Moscowitz and Shapiro [82]
to obtain similar results by resorting to limited forms of higher order universal
quantification over embedded implications. This second approach will be consid-
ered later in the paper (section 3.7). Here we concentrate on the solution proposed
in by Giordano et al. in [42].

Their idea is to model a notion of lexical scope which allows one to determine the
set of formulas available for reducing each goal by simply inspecting the syntactic
structure of a program. The language they considered has the same structure as
that proposed by Miller but the embedded implications are interpreted differently.
The idea is similar to that underlying the use of the closure operator described in
section 2: the difference, as for the dynamic scope-rule of Miller, is that here the
composition occurs dynamically. The new proof rule for the sequent P ` D ⊃ G
composes D with the set of atomic formulas which are provable from P .

In analogy to what we have done in section 2, we denote with P ∗ the set of the
atomic consequences of P :

P ∗ = {A | A is atomic and P ` A}

The following “abstract” rule for embedded implications formalizes the previous
intuition:

D ∪ P ∗ ` G

P ` D ⊃ G
(1)

Notice how this is different from the semantics of embedded implications encom-
passed by (AUGMENT): the meaning of P , the set of its atomic consequences
through `, is computed before extending P with the new clauses coming from D.
The remarkable consequence is that the dependency between P and D works now
in one single direction: the body of a clause of D depends on P but not vice-versa.
All of the references to a predicate in the outer scope P can thus be bound lexically
to the definitions occurring in that scope. Hence, a lexical rule of scope can be
accounted for quite elegantly in this framework.

The previous definition is admittedly idealized: to construct a proof for P ` D ⊃
G, an interpreter will have to “guess” all the atomic formulas provable from P which
are needed to construct a proof for G. However, it is easy to show how the proof
system defined by the rules (AND), (INSTANCE), (BACKCHAIN) and (1) can be
implemented in terms of an equivalent (and more effective) proof system. The trick
is to allow a more complex structure for sequents and to have the antecedent of a
sequent be structured as a stack (to be contrasted with set) of clauses. The idea is
due to Giordano et al. and the following definition of the proof predicate s̀tk can
be found in [42].

Let P 1, . . . , Pn denote sets of program clauses and let S = P n | · · · | P 1 denote
a stack of programs (P n being the top of the stack).

(ANDstk)
S s̀tkG1 S s̀tkG2

S s̀tkG1 ∧G2
(INSTANCEstk)

S s̀tkG[x/t]

S s̀tk ∃xG

(BACKCHAINstk)
P i | · · · | P 1 s̀tkG

Pn | · · · | P 1 s̀tkA
(AUGMENTstk)

D | S s̀tkG

S s̀tkD ⊃ G

The proviso for (BACKCHAINstk) is that the clause G ⊃ A used to backchain on

26

A belongs to P i, the top-most component of the stack in the upper sequent. The
notion of initial sequent introduced in section 3.1 can be easily reformulated here by
taking as initial any sequent P n | · · · | P 1 s̀tk Γ such that (∪i=1,...nP i) ∩ Γ contains
an atomic formula.

The program stack provides a dynamic representation of the scoped structure
of the embedded implications occurring in the clauses of the program. The key
to understand the workings of the proof predicate s̀tk is in the definition of
(AUGMENTstk) and (BACKCHAINstk). An application of (AUGMENTstk) corre-
sponds to a push of the new scope D on top of the current stack. D will be popped
off the stack once G succeeds or fails. The selection of a matching clause for a
goal A on (BACKCHAINstk) has a dual effect: it shrinks the program stack and
reduces the definitions available for subsequent backchaining steps to the clauses
which occur at the same nesting level as that of the clause used to backchain on A.
This is how the lexical scope rule encompassed by s̀tk is captured.

The different behaviour of the proof predicates
⊃̀

and s̀tk is illustrated in the
following simple example.

Example 3.2. Consider the program P = {p ← q} and the goal G = q ⊃ p. It is
easy to see that P 6 s̀tkG whereas P

⊃̀
G. The following steps show that P

⊃̀
G.

p← q
⊃̀
q ⊃ p only if (AUGMENT)

q, p← q
⊃̀
p only if (BACKCHAIN)

q, p← q
⊃̀
q

The last sequent is proved by a further application of (BACKCHAIN) using the
atomic clause q coming from the embedded implication. Conversely, for s̀tk , the
sequence of steps we obtain is

p← q s̀tk q ⊃ p only if (AUGMENTstk)

q | p← q s̀tk p only if (BACKCHAINstk)

p← q s̀tk q only if (BACKCHAINstk)

and there is no clause for reducing q.

Example 3.3. The following example illustrates how the proof predicate s̀tk can
be used to model visibility according to a lexical rule of scope. Consider the
following program:

anc(X,Y) ← parent(X,Y).
anc(X,Y) ← parent(X,Z), anc(Z, Y).

parent(a, b).
parent(b, c).
parent(d, e).

test(X,Y) ← {parent(a, d).} ⊃ anc(X,Y).

The program is structured into two nested blocks: the enclosing one, containing
the definitions for anc/2 and parent/2 and the inner one containing a definition

27

for parent/2. Now consider querying this program with, say, test(a,X). It is
easy to verify that evaluating this goal produces only the two bindings X/b and
X/c as the additional clause defining parent/2 in the inner block is not accessible
to the corresponding calls in the outer block.

Lexically scoped Implications: fixed point semantics. In [42] the authors present
a fixed point semantics for this scope mechanism using a construction similar to
that proposed by Miller. The notable difference is that they employ a conventional
Herbrand semantics in contrast to Miller’s possible-world setting. Associated with
a program, they define a mapping from the lattice of the program’s Herbrand
interpretations to itself. Given two Herbrand interpretations, I and X , and a
program P , the mapping is denoted with TP,I and is so defined:

TP,I(X) = I ∪ {A | A← G ∈ [P]Σ and X |≈ G}

Here |≈ denotes the relation of weak satisfiability for a goal in a Herbrand inter-
pretation defined below.

X |≈ >

X |≈ A iff A ∈ X (A atomic)

X |≈ G1 ∧G2 iff X |≈ G1 and X |≈ G2

X |≈ ∃xG iff X |≈ G[x/t] for a Σ-term t

X |≈ D ⊃ G iff Tω
D,X(∅) |≈ G

The intuitive reading of the definition is the following. The set I in TP,I represents
the interpretation associated with the outer scope of P , whereas X is the inter-
pretation we are associating with P itself. The lexical form of scope attributed to
embedded implications is reflected in the definition of satisfiability for implication
goals. The interpretation X , which we initially associated with P , becomes the
interpretation for the outer scope of D (P itself) and the empty set is the new in-
terpretation we associate with D. Thus, informally, X provides the approximation
of the set of the atomic consequences of the outer scope P and this approximation
is used to compute (an approximation of) the interpretation associated with the
nested scope D. The well-foundedness of this construction follows from the fact
that, although mutually recursive, TP,I and |≈ are both defined inductively on the
nested structure of a program.

The continuity of TP,I , proved in [43], guarantees the existence of the least fixed
point lfp(TP,I), which is again computed as the limit T ω

P,I(∅) =
⋃

k≤ω{T
k
P,I(∅)}.

That this limit provides a sound and complete semantics is shown by the following
theorem proved in [43].

Theorem 3.2. [43] For any program P and any closed (ground or existentially quan-
tified) goal G the following holds:

P s̀tkG if and only if Tω
P,∅(∅) |≈ G

We will show later (section 4.3) how this fixed point construction has been used
in [42, 43] and [41] as an intermediate step to prove a soundness and completeness

28

result for s̀tk with respect to entailment in S4-modal logic. What we show now,
instead, is that an equivalent fixed point construction can be obtained using the
possible-world setting proposed by Miller.

Let (=,v) be the lattice of =-interpretations as defined by Miller. Again, we denote
with T a mapping from = onto itself defined as follows:

T (I) = λw {A | A← G ∈ [w]Σ such that I, w |=|=∗ G}

What is new here is the choice of the relation |=|=∗ of weak Kripke satisfiability.
The new relation coincides with |=|= for all the cases except (not surprisingly) for
embedded implications. The truth of D ⊃ G in I at w is now defined as follows:

I, w |=|=∗ D ⊃ G iff I, I(w) ∪D |=|=∗ G

This definition should be contrasted with the corresponding case of the weak Her-
brand satisfiability |≈ . I(w) plays here the same role as X there: I(w) represents
an approximation of the atomic consequences provable from the outer scope w of
D.

The proof of the continuity of the mapping T can be carried out in the exact
same way as for the original operator defined by Miller. Hence, the least fixed
point of T is well defined and can be again computed as the limit =-interpretation
Tω(I⊥).

We show now that this fixed point construction is equivalent to that proposed by
Giordano and her colleagues in [42]. To our knowledge, the proof of the following
result has not been presented earlier in the literature.

For any Herbrand interpretation I , let I∗ denote the corresponding program
(consisting of the ground formulas of I).

Theorem 3.3. For any program P , closed goal G and Herbrand interpretation I,

Tω
P,I(∅) |≈ G if and only if Tω(I⊥), P ∪ I∗ |=|=∗ G

Proof. outline. The following two properties can be proved by induction on
the level of nested occurrences of the connective ⊃ in P and G:

(a) For any =-interpretation I and program w, I(w) |≈ G iff I, w |=|=∗ G.

(b) For any Herbrand interpretation I , T ω
P,I(∅) = Tω(I⊥)(P ∪ I∗).

Now take w = P ∪ I∗ and I = Tω(I⊥). Then, from (b), we have that I(ω) =
Tω

P,I(∅). Hence the claim follows by applying (a). 2

The equivalence between the two semantics follows now as an immediate corollary
of the previous result.

Corollary 3.1. For any program P and closed goal G

Tω
P,∅(∅) |≈ G if and only if Tω(I⊥), P |=|=∗ G

Proof. Apply theorem 3.3 with I = ∅. 2

29

3.4. From Open to Closed Scope Mechanisms

Now that we have a characterization of embedded implications as a lexical scope
mechanism, it is easy to develop an even stronger notion of scope. Note, in this
regard, that both the interpretations of an embedded implication we have outlined
so far are inherently open: the meaning of the nested scope D introduced by the em-
bedded implication D ⊃ G depends on the (the meaning) of outer scope associated
with the goal D ⊃ G itself.

It should however be clear how to account for a notion of closed scope in this
framework. We simply need to tailor the proof rule for embedded implications so as
to break any dependency between nested scopes. The following definition satisfies
this requirement:

D ` G

P ` D ⊃ G
Proving the embedded implication D ⊃ G from P amounts now to prove G in a
new program, D, which inherits no knowledge from P . This behaviour captures
precisely the semantics of the demo predicate defined by Bowen and Kowalski in
[9]. A similar reconstruction can be found in [49, 47] where Hodas and Miller use
linear logic to partially account for the demo predicate.

In terms of a possible-world semantics, we have a corresponding new notion of weak
satisfiability. The new definition reflects the change of context encompassed by last
proof rule for ⊃.

I, w |=|= D ⊃ G iff I,D |=|= G

The truth of D ⊃ G in the =-interpretation I at program w is now tested by moving
to a new interpretation, indexed by D, where no information about the outer scope
of D is assumed available. This is how the behaviour of implication as a closed
scope mechanism is captured in the fixed point framework.

3.5. Contextual Logic Programming: Implication and Overriding

There is an independent perspective wherefrom embedded implications have been
studied in the context of modular logic programming. The idea, which led Monteiro
and Porto in [78] to the definition of Contextual Logic Programming (CxLP in the
following) is again inspired by the interpretation of implication as a mechanism of
scope but differs from the previous characterizations substantially. According to
its original definition, the interpretation of an implication goal in CxLP models
again a “lexical” notion of scope: the novelty introduced by CxLP is that, in the
evaluation of the implication goal D ⊃ G (the extension goal D � G according
to the terminology of CxLP) the extension of the search space is non-monotonic.
The new definitions coming from the nested scope D override the corresponding
definitions provided by the outer scope.

The proof rule for the connective � can be introduced abstractly using a con-
struction similar to that followed for the static scope mechanism described in the
previous section. Namely:

D � P ∗ ` G

P ` D � G
(2)

This definition should be contrasted with the algebraic composition discussed in
section 2 based on the operators of overriding-union � and closure ∗. By virtue of

30

the non-monotonic extension of the search space associated with �, we obtain a
new mechanism of scope: according to the above rule, the nested scope D depends
on the outer scope P only for those definitions which are not local to D. The
“visibility” rules affecting the behaviour of extension goals are thus more selective
than those encompassed by the embedded implications of Giordano et al. in [42]:
non-local definitions will be used for reducing a goal only when there is no definition
for that goal in the local scope.

Not surprisingly, we can obtain a more effective characterization of the above
rule by means of the same artifice used earlier to describe the proof predicate s̀tk .
In fact, the provability relation for CxLP, which we will denote with

�̀
, can be

formalized as originally proposed by Monteiro and Porto in terms of the same proof
rules used for s̀tk . The overriding semantics of � is modeled by imposing a new –
and much more stringent – proviso for the backchain rule. In

(BACKCHAIN�)
P i | · · · | P 1 �̀

G

Pn | · · · | P 1 �̀
A

we impose that P i be the top-most component of P n | · · · | P 1which contains a
definition for the predicate symbol of A. Note the difference between this definition
and the corresponding one given for s̀tk . In that case, the choice of Pi was non-
deterministic: hence, all the definitions provided by P n | · · · | P 1 can be used for
backchaining. To the contrary, here we commit to the top-most definition, thus
modeling the effect of overriding.

The overriding semantics of � can be used to model the typical lexical scope
rule found in conventional programming language.

Example 3.4. This is how the second version of the list-reverse predicate of section
3.2 (example 3.1) would be written in Contextual Logic Programming.

∀x, y rev(x, y) ← (rev([], y).
∀x, l1, l2 rev([x|l1], l2)← rev(l1, [x|l2])

) � rev(x, [])

Note that there is no need to rename the nested clauses defining rev/2 as we did
in example 3.1. The overriding semantics of � ensures that these clauses are
the only available to evaluate the call rev(x, []).

In [78], Monteiro and Porto use their operator to model structuring mechanisms
more general than the scope rule we have exemplified here. They give names
to modules and allow the same module to have multiple occurrences in different
extension goals. The effect is that, differently from [42], a reference to a predicate
occurring in a module cannot be bound statically to the definitions occurring in the
outer scope. Although conceptually (and semantically) equivalent, this usage of
extension goals raises some interesting questions relative to their implementation.
This and related issues will be discussed more fully in section 5.

Extensions of CxLP: overriding and dynamic scope. Motivated and inspired by the
original definition of CxLP, an alternative semantics for extension goals is proposed
by Mello et al. [67] in the attempt to couple a notion of dynamic scope with the
overriding semantics proposed by Monteiro and Porto.

31

As a matter of fact, the formal framework we have developed so far is rich enough
to provide a formal definition of this new interpretation of extension goals. The
corresponding semantics can in fact be described in terms of the following proof rule
which couples the dynamic flavour of the (AUGMENT) rule with the overriding
semantics of CxLP.

D � P ` G

P ` D � G
Here, as in our first definition of Miller’s proof predicate

⊃̀
, P denotes a set

(as opposed to a stack) of clauses. The new proof relation, denoted with
+̀�

, is
obtained from the definition of

⊃̀
by replacing (AUGMENT) with the above rule.

The extension of the search space associated with � is non-monotonic as in CxLP
but it retains the dynamic flavour of (AUGMENT). The new set of clauses used in
the proof of G is the result of the overriding-union (to be contrasted with the union)
of D and P . Hence, the dependency between D and P is again bi-directional, as for
(AUGMENT), but constrained by virtue of the restricted form of union provided
by �. An example of how this mechanism can be used to implement useful forms
of dynamic scope will be discussed in the next subsection.

In [67], the authors introduce an equivalent proof system for
+̀�

by extending
the stack-based proof system for

�̀
. The definition we have used here appears to

be more elegant and concise. However, the proof system of [67] is more general
since it makes it possible to integrate into a unique framework all the mechanisms
of scope we have outlined so far.

From the previous proof-theoretic presentation, it should by now be clear how the
two proof relations

�̀
and

+̀�
can be expressed in terms of two corresponding

definitions of weak satisfiability in =-interpretations. We simply need to tailor
the interpretation of the connective � so as to mimic the overriding semantics
underlying the composition operator �. This can be accomplished by having I, w |=
|= D ⊃ G be defined respectively as:

I, w |=|=
�
D ⊃ G iff I,D � I(w) |=|=

�
G

to model the lexical scope rule encompassed by
�̀

and
I, w |=|=

+�
D ⊃ G iff I,D � w |=|=

+�
G

for the dynamic scope rule
+̀�

.
What should be discussed here is whether or not the non-monotonic extension

of the search space encompassed by the operator � affects the continuity of the
associated mapping T on =-interpretations. As it turns out, in the dynamic case
(and similarly for

�̀
) the continuity proof for T goes through in the exact same way

as the corresponding proof for the original operator defined by Miller (the continuity
of essentially the same operators was proved in [18] and similarly in [80]). Hence, we
will again be able to compute the least fixed point of T as the limit =-interpretation
Tω(I⊥) and to use it to establish the desired soundness and completeness result for
the corresponding proof procedures. The proof of the following theorem is similar
to the corresponding one found in [71] and is therefore omitted.

Theorem 3.4. Where |=|=
�

and |=|=
+�

denote the two satisfiability relations defined
above, and

�̀
and

+̀�
the two corresponding proof predicates, the following

equivalences hold true for any program P and closed goal G.

P
�̀
G if and only if Tω(I⊥), P , |=|=

�
G

P
+̀�
G if and only if Tω(I⊥), P , |=|=

+�
G

32

In a recent paper [81], Monteiro and Porto present a similar semantics for a language
that extends Contextual Logic Programming with constructs for parametric mod-
ules, import mechanisms and encapsulation. The framework for their fixed point
construction is again a possible-world semantics – a situation semantics according
to the terminology of [81]. The notable difference is that in [81] the construction has
a finitary character, in that the structure used to interpret a program has finitely
many modules (as opposed to the infinitely many programs needed for Miller’s se-
mantics), and it is homomorphic in the sense that the denotation of a context is
determined in a compositional way from the denotations of the component modules.

3.6. Inheritance and message-passing: Object-Oriented Logic Program-

ming

In section 3.2 we briefly alluded to the use of embedded implications to model an
Object-Oriented (OO) extension of logic programming.

The study of the integration of the OO and logic programming aradigms has
been approached from two different perspectives. The first dates back to the work
of Aı̈t-Kaci and Nasr on LOGIN [2], a logic language with built-in inheritance. In
LOGIN classes and objects are represented as compound terms whose arguments
designate the objects’ attributes. A labeling schema over terms is employed to
logically link objects into isa hierarchies. Attribute inheritance is then achieved by
overloading unification to take the term-hierarchy into account when attempting to
match two terms. The work on LOGIN inspired a number of other proposals pursu-
ing this idea and extending it with higher-order features to accommodate methods
within complex terms (see [26] and [54] for examples).

The second approach, which we consider here, is based on the idea of representing
an object as a first-order logic theory. This view inspired McCabe’s Class Tem-
plate Language [62] and has been adopted by many other authors in the literature
([35, 34, 40, 66, 48] among others). In his Class Template Language McCabe pro-
poses a logical reconstruction of the OO paradigm where objects are interpreted
as sets of axioms defining the objects’ attributes and methods. The same idea
can be exploited to model an OO extension of logic programming using embedded
implications.

Classes are introduced as parametric modules whose parameters act as (stateless)
instance variables in conventional OO languages. As pointed out by McCabe, a
parametric module is interpreted declaratively as the denotation of the (infinitely
many) instances obtained by substituting corresponding terms for the module’s
parameter.

Message passing can then be accounted for directly using embedded implications.
A message-sent O : G, requesting that G be evaluated in object O, is modeled by
having “:” cause a change of context from the current object (module) to the object
O. The interpretation of embedded implications discussed in section 3.4 works just
as well here. If O is the current object, the proof rule for O : G is simply

O `oo G

O `oo O : G

Inheritance Class hierarchies can be modeled by combining algebraic composition
and message-sents as proposed, for instance in [13] and [19]. The super-class relation

33

isa is expressed there as a meta-level axiom O1 isa O2 stating that O2 is O1’s
immediate ancestor in the isa hierarchy. Accordingly, the message-sentO : G causes
the evaluation of G to take place not simply in O but in the program obtained by
the (algebraic) composition of O with all of its ancestors in the object hierarchy.
Depending on the type of algebraic composition associated with the isa relation, all
the different forms of inheritance discussed in section 2.1.3 can be accommodated
in this context.

Consider the hierarchy On isa On−1 . . . O2 isa O1 and the message-sent Oj :
G. A system with dynamic (overriding) inheritance is modeled by means of the
following proof rule (H is the current object hierarchy):

Oj �Oj−1 � . . .� O1 `oo G

H `oo Oj : G

Static inheritance can be accounted for by simply changing the above definition to:

(Oj � (Oj−1 � (. . .�O∗
1) . . .)∗)∗ `oo G

H `oo Oj : G

In the style of the conventional OO systems, McCabe models the behaviour of
dynamic inheritance by using explicit references to self . The message-sent self :
G requests that G be evaluated in the hierarchy associated with the object that
received the last message-sent. Monteiro and Porto [79] resort instead to a clever
use of parametric modules. Here, as suggested by Mello in [65] we can rely on the
workings of the �-composition we have outlined in section 2.1.3.

Example 3.5. Consider the following example written using McCabe’s Class Tem-
plate Language.

bird isa animal
tweety isa bird
human(S,A) isa animal
peter isa human(male, 30)
mary isa human(female, 42)

human(S,A) is the name of a parametric class. bird isa animal states that
bird is a sub-class of animal and similarly peter isa human(male, 30) states
that peter is an instance of human(S,A). When we say that bird is a sub-
class of animal (or that human(S,A) is a sub-class of animal) we are stating
that whatever holds for animals, and is not overridden, holds also for birds
(respectively, for humans). In other words, theory bird inherits from theory

34

animal. A possible definition for the above classes and instances is the following:

animal :





mode(walk).
mode(run)← self : no of legs(2).
mode(gallop)← self : no of legs(4).

bird :





mode(fly).
no of legs(2).
covering(feather).

human(S,A) :













sex(S).
age(A).
no of legs(2).
likes(logic)← sex(male), age(Age), less than(Age, 40).
likes(logic)← sex(female).

tweety : [no of wings(2).

peter : [likes(music).

mary [likes(painting).

The call self : g realizes the self-reference mechanism we have discussed before:
it causes the proof of g to be performed in the tip node of the current hierarchy
independently of the class where the call occurs. In our framework, the above
hierarchy can be realized in terms of the following compositions:

peter � human(male, 30) � animal
mary � human(female, 42) � animal
tweety � bird� animal

Messages to self need not be explicit thanks to the workings of the � composi-
tion. Thus animal can be simply defined as follows:

animal :





mode(walk).
mode(run)← no of legs(2).
mode(gallop)← no of legs(4).

If we now ask whether peter likes logic, by evaluating the message-sent peter :
likes(logic), the goal likes(logic) gets evaluated in the composition:
peter � human(male, 30) � animal.
The answer will be “no” since peter redefines likes/1 to state that he only likes
music.

Objects with state The above characterization of objects as logic theories does not
account for any notion of state. In [62], McCabe suggests that the change of state
for an instance can be simulated by creating new instances. Other proposals [34]
simulate the changes of state by means of assert and retract but this approach lacks
any logical foundation. A refined solution has been proposed by Chen and Warren
in [27], where intensional variables are introduced to keep track of state changes
without side effects. In other proposals [35, 66] state change is simulated by means
of unification and recursion within a concurrent logic programming framework. In

35

[3] and [28], multi-headed clauses are used for similar purposes whereas a (goal)
continuation-passing style of programming is used in [48, 49, 47]. The interested
reader should refer to these references for a fuller description of these issues and of
the different proposals.

3.7. Lexical Scoping as Universal Quantification

All of the modular extensions we have considered so far rely on the (stringent)
assumption that all the free variables of an embedded implication be existentially
quantified. In this section we consider a language which allows G-formulas (and
forcefully, embedded implications) to be universally quantified and study the scope
mechanisms that arise by virtue of this extension.

Uniformity and First-Order Universal Quantification. Let’s first consider the ex-
tent to which the combination of the logical connectives at our disposal should be
allowed in the language. We first note that, as discussed by Miller et al. [76], an
unrestricted use of these connectives should be prevented in order for the language
to satisfy the computational requirement of uniformity we have introduced at the
outset. Consider in fact the class of D-formulas defined by the productions:

D ::= A | D ∧D | ∀xD | B ⊃ A

where B denotes an arbitrary first-order formula and A, as before, stands for
an atomic formula. The formulas in this class are known as Harrop Formulas
for they satisfy the condition, introduced by Harrop [44], that they contain no
strictly6positive occurrence of disjunctions or existential quantifiers. Harrop for-
mulas enjoy an important computational property proved by Harrop: if a formula
B, arbitrary, follows (intuitionistically) from a set of Harrop formulas P , then there
exists a sequent proof for P ` B whose last step introduces the top-level connective
of B. In [76], the authors observe that this property can be exploited to make a
proof involving these formulas, we quote, “uniform at the root” but not uniform.
The problem arises from the fact that one such proof might contain sequents whose
antecedents are not sets of Harrop formulas. In fact, if we allow an arbitrary for-
mula to occur in the body of a clause, then that body might contain an embedded
implication B ⊃ G with B again arbitrary. Hence, an application of the augment
rule on P ` B ⊃ G, will generate P ,B ` G as its upper sequent and B might not
be a Harrop formula.

This consideration motivated Miller and his colleagues [76, 85] to consider a
subclass of the Harrop Formulas, the class of Hereditary Harrop Formulas, which
are so defined as to ensure that the antecedent of an embedded implication be itself
a Harrop Formula7. This guarantees that the Harrop property is satisfied by
any sequent introduced by an application of the augment rule and, consequently,
that the proofs involving these formulas can be made uniform. The set of G and
D formulas which meet these conditions were introduced in [85] by means of the

6Here strictly refers only to the top-level occurrences: in the formula ((a ∧ b) ⊃ p) ⊃ r, the
disjunction has a positive occurrence that is not strictly positive.

7In [85] and [76] they also consider a higher-order extension of these formulas which will be
discussed in section 3.7.2. Until then, the language we consider is to be understood as strictly
first-order.

36

following definition.

G ::= > | A | G ∧G | ∃xG | ∀xG | D ⊃ G

D ::= A | D ∧D | ∀xD | G ⊃ A

A language which shares the same structural properties for D- and G-formulas
has also been considered by McCarty8[64] in his approach to clausal intuitionistic
logic9and by Bonner et al. in [7].

The quantificational extension to the language N-Prolog of Gabbay and Reyle
[37] falls also in this class. They all show that this extended logic can be used for
modeling powerful forms of knowledge-representation and common-sense reasoning.
Our interest here is, instead, in the use of Hereditary Harrop Formulas in the context
of modular programming.

Sequent Proofs for Universally Quantified Goals. There are two ways that we can
interpret a universal quantifier, either intensionally or extensionally. Correspond-
ingly, we have two possible ways to attempt a proof for a universally quantified
goal ∀xG(x). Interpreting the quantifier extensionally amount to attempting a
proof for ∀xG(x) by showing that G holds for every element in any given domain.
In contrast, if we assume an intensional interpretation, then a proof for ∀xG(x)
will be constructed by first instantiating G(x) with a “new” object, say c, and then
attempting a proof for the new goal G(c).

This constructive flavour of the intentional interpretation appeals implicitly to
the intuitionistic definition of proof. The relations between the intuitionistic and
the intensional interpretations will be addressed more fully in section 4. We next
show how the intensional interpretation can be formalized proof-theoretically in the
sequent calculus.

The idea is to enrich the structure of a sequent so as to make it explicit which is
the domain over which the individual variables should range. The new sequents will
have the form Σ;P ` G where Σ represents the signature of the current domain,
and P and G respectively a set of D-formulas (clauses) and a goal formula over the
signature Σ. The definition of a proof system for Hereditary Harrop formulas is
obtained by simply attaching the signature Σ to the sequents occurring in the proof
rules. An additional rule will be needed to handle the case of universally quantified
goals. The following definition is adapted from the corresponding one proposed in
[70].

(AND∀)
Σ;P

∀̀
G1 Σ;P

∀̀
G2

Σ;P
∀̀
G1 ∧G2

(INSTANCE∀)
Σ;P

∀̀
G[x/t]

Σ;P
∀̀
∃xG

(BACKCHAIN∀)
Σ;P

∀̀
G

Σ;P
∀̀
A

(AUGMENT∀)
Σ;P ∪D

∀̀
G

Σ;P
∀̀
D ⊃ G

(GENERIC∀)
Σ + {c};P

∀̀
G[x/c]

Σ;P
∀̀
∀xG

There are some important remarks. In the definition of (BACKCHAIN∀), we are
assuming not only that there exists in P a clause of the form G ⊃ A, but also that

9In [64] McCarty considers an extension of this language that allows negation rules of the form
p← ¬Q and ¬p← Q .

37

this clause be a Σ-formula. Similarly, in (INSTANCE∀), we require that the term
t which replaces x in G, be a Σ-term. In contrast, in (GENERIC∀), the constant c
is new, i.e. it is required to not be an element of Σ.

The effect of (GENERIC∀) on the signature Σ parallels that of (AUGMENT∀)
on the program P : it causes the extension of the current signature with a new and
fresh constant symbol. It is important to note, in this regard, that the choice of a
unification-free definition of the above rules helps substantially ease the treatment
of existentially quantified variables. Suppose we replace the existential variable x
in the lower sequent of (INSTANCE∀) with the logical variable X and delegate
the construction of the witness t to the unification algorithm. Then, we must also
ensure that the term t which will eventually instantiate X be a term over the signa-
ture Σ associated with the sequent that introduced X . This might be a non-trivial
task for, at the time X gets bound, the signature Σ might have been augmented
by several applications of (GENERIC∀). Unification should therefore be instructed
to not instantiate X with any term containing the new constants (eigen-variables)
introduced by (GENERIC∀) after X itself has been introduced. The description of
how this can be accomplished is contained in [70, 73] and similarly in [63, 31, 83].
Details can be found in section 5. In the remaining of this section we will present,
instead, two applications of universally quantified embedded implications for mod-
eling powerful forms of scope over the constants and the clauses of a program.

3.7.1. Local Constants and Abstract Data Types In section 3.2 we have seen that
the free variables occurring in the clauses introduced by an embedded implication
can be used to exchange values between nested scopes. We now show that uni-
versally quantified embedded implications provide a way of introducing constants
with local scope. This use of universal quantifiers was firstly addressed by Miller
and Nadathur in [85] and then further studied by Miller in [70]. Consider the se-
quent P

∀̀
∃x∀y(D(y) ⊃ G(x)). A proof for this sequent would first substitute a

Σ-term t for x, then introduce a new constant c for y and finally prove G(t) in the
Σ + c program P ∪D(c). If we replace x with a logical variable, say X , a proof of
∀y(D(y) ⊃ G(X)) would be required to bindX to a term which does not include the
new constant introduced for y. Thus, that constant would be local and encapsulated
into D(c). Note also that when y does not occur free in G(x), ∃x∀y(D(y) ⊃ G(x))
is (intuitionistically and classically) equivalent to ∃x(∃y(D(y)) ⊃ G(x). Thus a
local constant can be formally thought of (and implemented as well) as a “variable
that is existentially quantified over the clauses in a module [85]”. This property
of existentially quantified variables can be exploited to account for data abstrac-
tion and encapsulation in ways similar to those based on existential types in the
quantified λ-calculus of [24]. The following example was proposed by Miller in [70].

Example 3.6. A stack can be implemented as an abstract data type by means of
the following definition:

∃e∃st empty(e)
∀x, s(push(x, s, st(x, s))
∀x, s(pop(x, st(x, s), s)

Here “e” and “st” act as the stack constructors and are hidden to the programs
using this definition of the stack data type. A typical example of how this im-
plementation would be used is the following. Suppose we are to write a program

38

for evaluating expressions in reverse polish notation. An easy way to write that
program is to use a stack for storing the intermediate values that arise during
the computation. A possible definition would be:

eval(expr, val) ← empty(s), ev(expr, val, s).
ev([], val, s) ← pop(val, s,).
ev([e|r], val, s) ← push(e, s, ns), · · ·

If stack is the name for the stack definition, we can evaluate any expression by
calling stack ⊃ eval(expr, val). Note that the stack constructors are hidden to
the call whereas the stack elements are visible to it. Hence the value returned
by ev/3 will be bound to val as we expect.

3.7.2. Local Predicates: A Higher-Order view of Lexical Scope. We conclude
this section with a brief outline of the higher-order use of universal quantification
proposed by Miller and Nadathur [70, 85] and by Moscowitz and Shapiro [82] to
model a lexical scope rule over the clauses of a program.

The extension of Miller and Nadathur was based on the language of Higher-
Order Hereditary Harrop Formulas whereas Moscowitz and Shapiro defined it by
introducing the notion disjunctive lexical clauses. The two languages share the same
restriction on the higher-order use of universal quantification. Universal quantifiers
are permitted over the predicate symbols that occur in the embedded implications,
but the top-level symbol of a clause is required to be a constant. Thus, they both
allow clauses of the form ∀x p(x) ← ∀q (q(x) ⊃ r(x)), and disallow clauses like
∀p, x p(x)← q(x) ⊃ r(x) whose head’s predicate symbol is universally quantified10.

During a proof, universally quantified predicates can be treated in much the same
way as universally quantified variables. The proof of a goal ∀p p(· · ·) is attempted
by first generating a new predicate symbol, say pc, and then trying to prove the
goal pc(· · ·). This allows the realization of a lexical scope rule with an overriding
behaviour which is similar to that encompassed by the operator � introduced in
Contextual Logic Programming.

Example 3.7. Consider again the program of example 3.1. The way this program
would be written using a universally quantified embedded implication has been
shown by Miller in [70]:

∀x, y rev(x, y) ← ∀rv ((rv([], y).
∀x, l1, l2 rv([x|l1], l2)← rv(l1, [x|l2])

) ⊃ rv(x, []))

Now, a proof rev([a, b, c], r), would first generate a new symbol for rv, say p,
load the corresponding clauses for p, and finally prove the goal p([a, b, c], r) in
the extended program. This definition of reverse should be contrasted with the
corresponding definition that uses the � operator of CxLP (cf. example 3.4).

10As noted in [76] this restriction avoids them the need of full higher-order unification and, as
such, it keeps this set of formulas still amenable to efficient implementations.

39

The difference is that here the overriding semantics associated with� is captured
by generating a new name for the universally quantified predicate rv.

4. LOGICAL FOUNDATIONS FOR MODULAR PROGRAMMING

The modular extensions presented in the previous section have been studied primar-
ily in terms of their operational semantics. We have described the different impact
of each composition mechanism and outlined the programming features that can
be accounted for in the different languages. The goal of this section is to explore
the logical foundations of the extensions, i.e. to study whether the operational
characterizations have an equivalent formulation in terms of corresponding logical
notions of provability and entailment. This correspondence represents a well-known
result in logic programming: the proof of equivalence between SLD-resolution and
entailment in classical logic dates back to the seminal papers of Apt, Kowalski and
van Endem [91, 4].

Here, the first question that arises is whether we can still appeal to classical logic
to attempt a logical reconstruction of the extensions. Not surprisingly the answer
depends on the extension we consider. In [82], Moscowitz and Shapiro formalize
the semantics of their lexical logic programs by interpreting them as higher-order
intuitionistic formulas. However, they also present an equivalent classical first-
order semantics by defining a transformation ψ mapping lexical logic programs
onto corresponding (and equivalent) logic programs. Monteiro and Porto used a
similar technique in [79] to justify the proof rules they introduce for describing the
workings of their inheritance system.

A different approach has been considered for most of the remaining proposals.
In [71] and [76] Miller and his colleagues use a proof-theoretic argument to show
that the operational semantics of Hereditary Harrop formulas finds its logical coun-
terpart in the intuitionistic proof theory. A similar result is then obtained by Miller
[72] in terms of entailment in intuitionistic logic. The intuitionistic model theory is
also at the basis of the logical reconstruction proposed by Gabbay [36], by McCarty
[64] and by Bonner et al. [7]. Finally, Giordano and Martelli [41] show that the
semantics of lexically scoped embedded implications can be equivalently expressed
in terms of entailment in S4-modal logic.

In this section we will survey the intuitionistic and modal reconstructions outlined
above. The interested reader should refer to the work of Moscowitz and Shapiro
and of Monteiro and Porto for more details about the transformational approach.
Also, in the following discussion, we will emphasize the description of the model-
theoretic frameworks and approach the proof theoretic reconstruction of [76] only
on intuitive grounds.

4.1. Intuitionistic Proof Theory for Modular Logic Programming

Miller’s choice of intuitionistic logic was initially motivated by the observation that
“classical provability is too strong for specifying the behaviour of the (AUGMENT)
rule [71]”. The following example, which we borrow from [71], provides a convincing
argument in favour of the previous statement. If

⊃̀
were equivalent to classical

40

provability, then an interpreter implementing it, should be able to construct a proof
for p starting from the D-formula (p ⊃ q) ⊃ p. That this should be the case follows
by observing that p is classically entailed by (p ⊃ q) ⊃ p as (p ⊃ q) ⊃ p holds only
when p does. Conversely, it is immediate to see that there is no way to prove the
sequent (p ⊃ q) ⊃ p ` p using a proof system based on the (AUGMENT) rule.

In [71], Miller proved that the operational notion of derivability encompassed
by

⊃̀
corresponds to provability in intuitionistic logic. More precisely, where `I

denotes the intuitionistic proof predicate, he proved that:

Theorem 4.1. [71] For any program P and closed goal G, P
⊃̀
G iff P `I G

This result relies on the close correspondence between the two notions of derivation.
As a matter of fact, the soundness part of the theorem is proved easily by noting
that the proof-rules defining

⊃̀
are a subset of the intuitionistic sequent calculus. As

for the opposite direction, the completeness result is established in [71] by showing
that any intuitionistic sequent-proof can be turned into an equivalent proof that
uses only the inference rules defining

⊃̀
.

In [76] a corresponding result was proved for the language of Hereditary Harrop For-
mulas. Here the equivalence between

∀̀
-derivability and intuitionistic provability

can be justified intuitively by means of the following observation. The intensional
interpretation of universal quantifiers encompassed by

∀̀
appeals implicitly to the

intuitionistic definition of proof for a universally quantified formula. The intensional
reading of ∀xG(x) corresponds in fact to the question of whether G holds for any
possible object; to prove this we construct a generic witness, c, on which we make
no assumption, not even that it belongs to the domain of interest. Correspondingly,
given a domain D and a formula A(x) stating a property on the elements of D, an
intuitionistic proof for A(α), where α ∈ D, is a constructive mapping – a method
– π(α) which transforms the hypothesis α ∈ D into the thesis A(α). An intuition-
istic proof for (∀x ∈ D)A(x) is then defined as a proof π(α) : α 7→ A(α) which is
intuitionistic and, most importantly, variable-free, that is such that, for any other
element β ∈ D, π(α/β) is the constructive mapping π(α/β) : β ∈ D 7→ A(β). The
equivalence between the intensional and the intuitionistic interpretations should
now be clear: the “newness” requirement on the constant c in the former corre-
sponds to the “freeness” requirement on α in the latter.

4.2. Intuitionistic Model Theory for Modular Logic Programming

We start by introducing the intuitionistic notions of satisfaction and model. The
first modeling structure for first-order intuitionistic logic was proposed by Kripke in
[55]. Here we will briefly outline the basics of this approach following the notation
introduced by Fitting in [33] and used also by Bonner et al. and Miller respectively
in [7] and [72].

An intuitionistic structures is a quadruple of the form M = 〈S,≤, φ,Dom〉 where
S is a non-empty set, the set of worlds (or substates), ≤ is a reflexive and transitive
relation on S, φ is a mapping from elements of S to sets of ground atomic formulas
(the facts that are true in the associated substate) and Dom is a domain function
mapping each substate to the set of terms over the signature associated with that
substate. The mapping φ is required to be monotone, i.e. φ(s1) ⊆ φ(s2) whenever

41

s1 ≤ s2 and, for any s ∈ S, φ(s) is assumed to contain only formulas built over the
signature of Dom(s).

In the remainder of this section we will assume that the signature associated
with each substate be the set of constant and function symbols occurring in the
terms associated to that substate.

Truth in an intuitionistic structure is defined relative to its substates. We will
therefore consider the truth value of a formula ψ at a particular state s of some
intuitionistic structure M and write s,M |=I ψ if ψ is satisfied in M at s. In
general the statement s,M |=I ψ is taken to be false if ψ contains symbols which
do not belong to the signature of Dom(s). This proviso applies to all the cases of
the following definition which we borrow from [7].

Definition 4.1. [Intuitionistic Satisfiability] Let M be an intuitionistic structure
and s be a substate of M . Let ψ denote an arbitrary first order formula (con-
taining no occurrences of negation and disjunction).

s,M |=I >

s,M |=I A iff A ∈ φ(s) (A atomic)

s,M |=I ψ1 ∧ ψ2 iff s,M |=I ψ1 and s,M |=I ψ2

s,M |=I ∃xψ iff s,M |=I ψ[x/t] t ∈ Dom(s)

s,M |=I ∀xψ iff r,M |=I ψ[x/t] ∀ r ≥ s, t ∈ Dom(r)

s,M |=I ψ1 ⊃ ψ2 iff r,M |=I ψ1 ⇒ r,M |=I ψ2 ∀ r ≥ s

Definition 4.2. [Models] We say that an intuitionistic structure M is a model for
a formula ψ and we write M |=I ψ iff s,M |=I ψ holds true for all the substates
s of M such that the set of function and constant symbols occurring in ψ belong
to the signature of s.

To establish the truth of a formula at a given state s, we require that the formula
be satisfied not only at s but also at all the possible r ≥ s. This property of the
intuitionistic notion of truth is left implicit for some cases in the above definition
but it can easily shown to be implied by it if we assume, as we do, that the mapping
φ is monotone. It is this very same property that makes the above definition capture
the constructive flavour of the intuitionistic notion of proof. Note in particular the
cases of implicative and universally quantified formulas. In both these cases the
definition of truth differs from the classical one. To assertD ⊃ G at a given state, we
require that at any later state where we can assert (and prove) D we can also assert
G. Consider for instance the formula p ⊃ q and the structure M = 〈S,≤, φ,Dom〉
where S = {s1, s2}, φ(s1) = ∅ and φ(s2) = {p}. Now, s1 |= p ⊃ q classically but
s1,M 6|=I p ⊃ q, for s2 ≥ s1 and s2,M |=I p but s2,M 6|=I q.

The argument for universally quantified formulas is similar. Here |=I models the
intensional interpretation of universal quantifiers peculiar of intuitionistic logic. To
assert ∀x p(x) at state s we require not simply that p(t) holds for any choice of
term t in Dom(s), but rather that p(t) holds for any new element that can ever be
introduced in the domain of discourse.

42

Based on this definition of satisfiability, we finally have a corresponding notion
of entailment: for any two (sets of) formulas ψ1 and ψ2 we say that ψ1 entails
intuitionistically ψ2, and we write ψ1 |=I ψ2, iff M |=I ψ2 for all the intuitionistic
models M of ψ1.

Having set the appropriate formal framework we now turn to the proof that Miller’s
operational semantics is sound and complete with respect to intuitionistic entail-
ment.

4.2.1. Embedded Implications and Dynamic Scope. We first restrict to the lan-
guage of existentially quantified embedded implications discussed in section 3.2.
This will allow us to assume a simpler definition of intuitionistic structures: for any
program P , we will assume that in any given intuitionistic structure the domain
of each world is the same and coincides with the Herbrand universe built over the
constant and function symbols of P . This assumption, which helps simplify the
result of completeness, will be shown to not involve any loss of generality given the
restrictions we impose on the use of universal quantifiers. Proving the soundness
and completeness result amounts to proving the following equivalence.

Theorem 4.2. For any program P and closed goal G, P
⊃̀
G iff P |=I G.

Note how this is different from the corresponding equivalence between operational
and fixed point semantics discussed in section 3.2.2. The =-interpretation computed
using Miller’s fixed point construction is – structurally – an intuitionistic interpre-
tation for the program. As a matter of fact, it is also an intuitionistic model, as it
will become apparent later. However, in that context we didn’t even define what
a model for a formula should be; we simply demanded that one “point” in that
=-interpretation, the point associated with the program P , be a “weak model” for
all of (and only) the goals which are provable from P . Hence, there was no account
of entailment in that result.

The proof of theorem 4.2 could be derived indirectly relying on the equivalence
between operational and intuitionistic provability established by theorem 4.1 and
by noting that intuitionistic provability is sound and complete with respect to
intuitionistic entailment. Here we will appeal to this latter result to sustain the
proof that P

⊃̀
G ⇒ P |=I G and we will instead prove the opposite implication

by a direct and more constructive argument.
A similar result has been proved by Gabbay in [36]. Here we present an equivalent

but refined proof inspired by a similar completeness proof contained in [7]. What
we obtain is not only a proof of equivalence but also a constructive method for
defining a canonical model for any program.

For any program P , let UP denote the Herbrand universe of P . We define
the canonical model MP of P as the quadruple 〈S,⊆, φ,Dom〉 with the following
structure:

S = {s | s is a set of D-formulas}
⊆ = set inclusion
φ(s) = {A | A is atomic and P ∪ s

⊃̀
A}

Dom(s) = UP (constant)

Note that the structure computed by the fixed point iteration used by Miller (cf.
section 3.2.2) is isomorphic to MP . Hence, as shown below, that structure is not
only an intuitionistic interpretation, but indeed a model for the program.

43

The two following properties of MP can be proved inductively on the structure
of D- and G-formulas:

(a) MP |=I G ⇒ P ∪ s
⊃̀
G for all s ∈MP .

(b) MP is an intuitionistic model for P : for any D ∈ [P], MP |=I D.

From (a) and (b) above, we have an immediate proof of the following completeness
result.

Theorem 4.3. For any program P and closed goal G, P |=I G ⇒ P
⊃̀
G.

Proof.

P |=I G ⇐⇒ M |=I P ⇒ M |=I G for any intuitionistic structure M
by (b) =⇒ MP |=I G being MP |=I P
by (a) =⇒ P ∪ s

⊃̀
G ∀s ∈MP

=⇒ P
⊃̀
G choosing s = ∅

As a corollary, we have that P |=I G ⇒ P
⊃̀
G even if we take |=I to stand for

entailment in intuitionistic structures with constant domain. Note, in fact, that the
argument used in the previous proof applies just as well to this latter case being
MP defined over substates with constant domain.

This justifies our initial claim that the restriction to the class of intuitionistic
structures (and similarly of Kripke interpretations) with constant domain does not
involve any loss of generality.

As already anticipated a construction similar to the one we have just presented is
used by McCarty et al. in [7] to prove a completeness result for a language which
allows universal quantification over embedded implications. The extended use of
universal quantifiers enforces them to have a more general definition of canonical
model where they assume that the domain of each substate is constant but defined
over a signature containing infinitely many constant symbols. In our case we don’t
need this generality thanks to the restriction we impose on the use of universal
quantifiers. This point is discussed in more detail in the next section where we
consider intuitionistic semantics of Hereditary Harrop formulas.

4.2.2. Universal Quantification. As mentioned above, the syntactic restriction
on the use of universal quantifiers allowed us to state the soundness and complete-
ness results by assuming the simplified framework of intuitionistic interpretations
with constant domain. The canonical model used in theorem 4.3 made specific
appeal to this assumption.

This is no longer possible if we assume the use of universal quantifiers allowed
by the definition of Hereditary Harrop formulas. Consider the proof predicate

∀̀

defined in section 3.7. The completeness result of theorem 4.3 would now be stated
as follows:

If P |=I G then Σ;P
∀̀
G for any program P and goal G over the

signature Σ

44

It is easy to see that the canonical model of theorem 4.3 is useless here. Let P
be the program {p(a) ∧ p(b)} and G be the goal ∀x p(x). Then clearly, for any
Σ ⊇ {a, b}, Σ;P 6

∀̀
∀x p(x). In fact, by an application of (GENERIC∀) we obtain:

Σ;P
∀̀
∀x p(x) only if Σ + {c};P

∀̀
p(c)

and there is no way we can reduce this sequent any further. Conversely, MP |=I

∀x p(x) since for all its substates Dom(s) = {a, b} and φ(s) ⊇ {p(a), p(b)}. As a
matter of fact, any intuitionistic model of P whose states have all the Herbrand
universe of P as the associated domain will satisfy ∀x p(x) and thus the complete-
ness proof will not go through under this assumption. Indeed, this shouldn’t sound
surprising: ∀x p(x) is certainly not (either classically or intuitionistically) entailed
by the conjunctive formula {p(a) ∧ p(b)} and thus the fact that ∀x p(x) cannot be
proved is just what we should expect.

The point is that we need to consider a wider class of intuitionistic structures.
One possible solution is to allow infinitely many constants in the domain of each
substate. Under this assumption we can still have a completeness proof following
the same construction proposed by Bonner et al. in [7]. A more general approach
consists of considering structures with non-constant domain as it is done by Miller
in [72] and by McCarty in [64].

Miller’s construction in [72] is based on a canonical model defined along the same
guidelines as that used in theorem 4.3. The difference is that the substates of his
model are defined as a pairs of the form 〈Σ, s〉. The domain function Dom applied
to substate 〈Σ, s〉 returns the set of all the Σ-terms and the growth of the universe
is captured by means of a refined definition of the ordering relation ≤ over the
substates. Namely, 〈Σ, s〉 ≤ 〈Σ′, s′〉 iff Σ ⊆ Σ′ and s ⊆ s′.

In [64], McCarty takes a different approach and defines a fixed point computation
of the intuitionistic models he associates with his programs. The approach is in
some respects similar to the fixed point construction proposed by Miller in [71]
with a few interesting differences. Instead of considering the set of all the possible
programs as substates, he starts with an initial substate s0, which is essentially a set
of facts (atomic formulas) and then works, for any program, with all the substates
s′ ≥ s0 which satisfy the formulas in that program. The result of his fixed point
construction is again an intuitionistic model for the program and, within that model,
he is also able to identify one particular substate, the minimal one, which satisfies
all (and only) the goals which can be proved from the program.

4.3. S4-Modal Logic: Foundations for Embedded Implications

We conclude our analysis by discussing the modal reconstruction of embedded im-
plications proposed by Giordano and Martelli in [41]. In the following, we assume
that the reader is familiar with the notions of modal logic. Here we will only give an
intuitive account of the basics in the attempt to keep the discussion self-contained.
The interested reader will find in [25] and [51] a full description of the underlying
theory.

Modalities and Modal Logics. The extension of a logical system to accommodate
the modal operators is meant to capture notions of truth and falsity richer than the
classical ones. Among true propositions we allow ourselves to “distinguish between
those which merely happen to be true and those which are bound to be true [51]”.

45

Similarly, between propositions which are false, we distinguish between those which
are simply false and those which are necessarily false. The concepts of necessary
truth and falsity have a very elegant and intuitive interpretation in terms of Kripke’s
possible-world semantics. If we think of a proposition as stating a property about
a given world (the elements of the domain of that world) then we can interpret a
necessarily true proposition as one that “could not fail to be true no matter how
the present situation evolved”, i.e. a proposition which is true in every possible
world accessible from the present one. In contrast, a true proposition is one which
is true in the present world but which could turn out to be false in (at least one of)
the situations accessible from the present one.

Given this intuition, it is of course reasonable to expect that there exist formal
ways of forming propositions which are necessarily true, and for distinguishing them
from simply true propositions. Similarly, there should be formal methods for infer-
ring necessarily true and true consequences from a given set of hypotheses. Modal
logic provides an adequate ground for this formalization. Of course, even richer no-
tions of truth can be considered and correspondingly different modal languages can
be used to formalize them. The language we consider here is the S4-modal system
with a single modal operator of necessity. More precisely, we will consider a subset
of this logic whose language is the same as that we have considered so far with
the addition of the modal operator 2. For any D- or G-formula F , the intended
interpretation of the corresponding modal formula 2F will be “it is necessary that
F”.

The definition of the S4-modal calculus is simply obtained by extending the
axiomatization of classical first-order logic with the following three axioms:

(1) 2α ⊃ α

(2) 2(α ⊃ β) ⊃ 2α ⊃ 2β

(3) 2α ⊃ 22α

and by adding a third inference rule, the rule of necessitation
`S4 α

`S4 2α
A few remarks will help clarify the intuitive reading of the axioms and the rule

of necessitation. The latter formalizes the (quite reasonable) intuition that “any
proposition which has the form of a valid formula is not merely true but rather
necessarily true [51]”. As for the axioms, axiom (1) should be clear since it states
that whatever is necessarily true is also true. Axiom (2) is simply a more convenient
representation of the formula (2α ∧ 2(α ⊃ β)) ⊃ 2β which formalizes another
intuitive statement: “whatever (β in the above formula) logically follows from a
necessary truth (α) is itself a necessary truth”. Finally, axiom (3) formalizes the
assumption, which is peculiar of S4-modal logic, that “whatever is necessary is also
necessarily necessary”. Interpreted in a possible-world semantics, this simply means
that not only will a formula 2α be true in all the possible situations accessible from
the present one, but it will be necessarily true in all such situations.

S4-modal Satisfaction and Validity. These intuitive arguments can be formalized
in the following definition of S4-modal satisfaction. As it is done in [41], in the
remainder of this section we will restrict to study the semantics of the proposi-
tional subsets of the languages we have considered. Accordingly, we will consider
a propositional modal language defined over the connectives ∧, ⊃ and the modal
operator 2.

46

Within this setting, an S4-Kripke interpretation can be defined as a triple K =
〈W,≤, φ〉 where W is the set of worlds, ≤ is a reflexive and transitive relation over
W and the valuation function φ is defined over W and ranges over the power-set of
the predicate symbols of the language. The truth of a formula α in an S4-Kripke
interpretation K at world w is formalized by the following definition [41].

w,K |=S4 α iff α ∈ φ(w) (α atomic)

w,K |=S4 α ∧ β iff w,K |=S4 α and w,K |=S4 β

w,K |=S4 α ⊃ β iff w,K |=S4 α ⇒ w,K |=S4 β

w,K |=S4 2α iff w′,K |=S4 α for all w′ ≥ w

A formula α is said to be true in K iff w,K |=S4 α for all the worlds of K; α is
S4-valid iff it is true in every S4-Kripke interpretation.

4.3.1. Embedded Implications and Dynamic Scope. We first consider the propo-
sitional case of the language proposed by Miller. The interpretation of this language
within S4-modal logic is based on the well-known mapping between intuitionistic
logic and S4-modal logic [33]. Applied to the set of D- and G-formulas, this map-
ping can be defined as follows:

>∗ = >

A∗ = 2A

(α ∧ β)∗ = α∗ ∧ β∗

(α ⊃ β)∗ = 2(α∗ ⊃ β∗)

The corresponding language of D- and G-formulas is defined by the following pro-
ductions:

G∗ ::= > | 2A | G∗ ∧G∗ | 2(D∗ ⊃ G∗)

D∗ ::= 2A | D∗ ∧D∗ | 2(G∗ ⊃ 2A)

In view of the definitions of S4 and intuitionistic satisfiability, it should be clear
that this mapping provides a semantic preserving transformation. Given any S4-
Kripke interpretation K and any propositional formula α, it is immediate to verify
that w,K |=I α iff w,K |=S4 α

∗. The following result is, in fact, an instance of the
equivalence proved by Fitting in [33].

Theorem 4.4. Let P be a set of propositional D-formulas and G be a propositional
goal formula. Then: P |=I G iff P ∗ |=S4 G

∗

In [41], Giordano and Martelli present an interesting reconstruction of Miller’s
proof-predicate

⊃̀
. Their idea is to look at the modal formula 2(D∗ ⊃ G∗) as

specifying a transition to a new world where D∗ ⊃ G∗ is true and where we can
attempt a proof for G∗ by adding D∗ to the set of available formulas. Now assume
that 2(D∗ ⊃ G∗) occurs as a goal in one of the D-formulas of P ∗. All such
formulas are of the form 2(G∗ ⊃ 2A) and are thus necessarily true in all the
worlds accessible from the current one. But then, in any new world reached in the
attempt to prove D∗ ⊃ G∗, both the formulas in D∗ and P ∗ will be at our disposal.

47

More importantly, the formulas in D∗ will be available to construct a proof for
any of the goals occurring in the D-formulas of P ∗ (and vice-versa). This is how
the dynamic scope rule encompassed by (AUGMENT) is captured in the modal
framework.

The same argument suggests how the static scope mechanism embedded in the
proof predicate s̀tk should be modeled.

4.3.2. Embedded Implications and Lexical Scope. The idea is that, when moving
to a new world to construct a proof for 2(D ⊃ G), we should have at our disposal
not the D-formulas of P ∗ but rather only the atomic formulas which can be derived
from them. But this implies that the implication symbol we use for clauses and
embedded implications should be given different characterizations in the modal
language. This observation led Giordano and Martelli to formulate their modal
reconstruction of the proof predicate s̀tk in terms of a new mapping that assumes
the co-existence of two interpretations of the implication connective: classical and
intuitionistic implication.

For the purpose of illustrating this point, we will find it convenient to adopt the
syntax of [41] to explicitly distinguish between classical implication (denoted with
⇒) and intuitionistic implication (⊃). The resulting language is defined by the
following productions.

G ::= > | A | G ∧G | ∃xG | D ⊃ G

D ::= A | D ∧D | ∀xD | G⇒ A

The mapping from this language to S4-modal logic behaves as the the previous
one on atomic, conjunctive and disjunctive formulas and it applies two distinct
transformations for implicative formulas. Namely:

(α ⊃ β)∗ = 2(α∗ ⊃ β∗)

(α⇒ β)∗ = α∗ ⊃ β∗

When applied to the D and G-formulas introduced above, this transformation pro-
duces the modal language defined by the following productions:

G∗ ::= > | 2A | G∗ ∧G∗ | G∗ ∨G∗ | 2(D∗ ⊃ G∗)

D∗ ::= 2A | D∗ ∧D∗ | G∗ ⊃ 2A

Note that G⇒ A is not interpreted as the necessarily true implication 2(G∗ ⊃ 2A)
but simply as G∗ ⊃ 2A. Hence, when attempting a proof for the G-formula
2(D∗ ⊃ G∗) in a program P ∗, the set of formulas available for backchaining on
the goals occurring in D∗ will not be the clauses of P ∗, but rather their atomic
consequences which are in fact necessarily true statements of the form 2A. This
is precisely the meaning of the abstract definition of the (AUGMENT) rule we
introduced in section 3.3 to account for the interpretation of ⊃ as a lexical scope
rule.

The following example, which we borrow form [41], provides a nice and quite
intuitive picture.

Example 4.1. Consider again program P = {a ⇒ b} and goal G = a ⊃ b of
example 3.2. We have shown there that P 6 s̀tkG. Now we show that the same

48

behaviour is obtained by interpreting P and G in S4-modal logic. Consider in
fact the transformed formulas P ∗ = {2a ⊃ 2b} and G∗ = 2(2a ⊃ 2b). It is
easy to see that P ∗ 6|=S4 G

∗. Consider the following counter-model. Take K =
〈{w1, w2},≤, φ〉 with w1 ≤ w2, φ(w1) = ∅ and φ(w2) = {a}. Then w1,K |=S4

2a ⊃ 2b, but w1,K 6|=S4 2(2a ⊃ 2b)

The soundness and completeness result for the proof-predicate s̀tk with respect to
entailment in S4-modal logic is stated and proved in [41].

Theorem 4.5. [41] For any propositional program P and propositional goal G, P `

stkG iff P ∗ |=S4 G
∗.

The proof is derived by defining several intermediate semantics which are shown to
be equivalent to the operational definition of s̀tk . The first step is represented by the
fixed point semantics described in section 3.3; this is proved equivalent to an ad-hoc
Kripke semantics where the two connectives ⇒ and ⊃ are interpreted respectively
as classical and intuitionistic implication. Finally, in [41] this Kripke semantics is
shown to coincide, through the mapping (*), with the S4-Kripke semantics we have
outlined in this section.

4.3.3. Embedded Implications and Closed Scope We conclude by noting that the
modal framework used so far can also be employed to give a formal semantics for the
closed scope mechanism described in section 3.4. The idea has been again proposed
in [41], and consists of interpreting a goal D ⊃ G as specifying a transition to a
world where none of the currently available formulas denote true propositions. The
following definition of the mapping meets this requirement.

G∗ ::= > | A | G∗ ∧G∗ | G∗ ∨G∗ | 2(D∗ ⊃ G∗)

D∗ ::= A | D∗ ∧D∗ | G∗ ⊃ A

Now D ⊃ G specifies a change of context from P to a new world where no formulas
other than those introduced by D are valid.

In a recent paper [6], Badaloni et al. present an extension of the modal framework
we have outlined in this section and propose a modal language in which richer
forms of module composition and powerful scope rules can be elegantly integrated.
The language is defined as a clausal fragment of a multimodal logic for which they
present a Kripke semantics and a sequent calculus.

5. IMPLEMENTATION

In the last part of this survey we focus on the implementation of the algebraic
operators and of the scoping mechanisms outlined in the previous sections.

At the implementation level, the issues that arise in the two cases are closely
related. The different forms of algebraic composition are realized in terms of cor-
responding binding policies for the local and non-local references to a predicate.
The same principles apply to the modular languages based on the use of embedded
implications. In this latter case, however, the design is complicated by the dynamic
evolution of the structure of a program. Thus, the implementation will have to sup-
port the dynamic update of the binding for a predicate as well as provide adequate

49

data structures for the run-time representation of a program. In this respect, the
architectural design for the modular languages described in section 3 generalizes
the case of the composition operators of section 2.

A natural way to think of the run-time representation of a program is in terms of
the list of its component clauses. Whenever an embedded implication D ⊃ G is
encountered, the clauses in D are added to the list and as soon as G is determin-
istically solved or finitely fails, they are discarded. This run-time representation
can serve different purposes depending on the specific approach adopted for the
implementation. We have in fact two possibilities: we can either add an extra layer
on top of Prolog and have this layer handle the list of clauses explicitly, or hide the
representation and let the underlying engine manipulate it.

Meta-Interpretative and Transformational Implementations. The first idea has
been exploited in the literature in two different ways. In [17] Brogi and Turini
show that their algebraic operators can be implemented using a meta-interpreter
which takes the list of modules as an extra argument. A similar technique is used by
Gabbay and Reyle [37] for developing a prototypical implementation of N-Prolog.
Although elegant and well-suited for quick prototyping, this solution is by far too
inefficient to be used for real applications.

A more refined idea, to which we alluded earlier in the paper (cf. section 3.1)
consists of defining a transformation mapping from modular programs into ordinary
logic programs. For instance, in [53] the authors implement a logic programming
module system with a preprocessor that maps modular logic programs into flat
Prolog code. This approach may turn out to be quite effective depending on the
scoping constructs we are to implement. For example, the operator described by
Moscowitz and Shapiro in [82] to transform lexical logical programs into correspond-
ing logic programs produces quite efficient programs as it only relies on a renaming
scheme for predicate names and variables. However, for more dynamic composi-
tion mechanisms, as those adopted by Miller or in Contextual Logic Programming,
the transformation requires that new arguments be added to the predicates of the
transformed program to represent the list of the clauses currently in use. This intro-
duces a considerable overhead due to the unification of the extra-arguments. The
interested reader is referred to the work of Denti et al. [29] for a fuller discussion
on this point.

Compilative Implementations. Most of the proposals found in the literature (see
for example [5, 58, 30, 52, 23]) rely on a run-time program representation defined
in terms of internal data structures manipulated by the underlying engine. They
propose different extensions of the standard Prolog abstract machine, the Warren’s
Abstract Machine introduced by D.H.D. Warren in [92], with new instructions
and data structures needed to support the modular languages under consideration.
Throughout this section, we will concentrate on this approach as it provides a good
framework for an efficient treatment of all the compositional and scoping constructs
we have considered in this survey. We will review the existing proposals and discuss
some optimizations. We assume familiarity the workings of the WAM; the interested
reader will find in [1] and in [92] a comprehensive and detailed description.

The fundamental issues that must be dealt with in an implementation of the dy-
namic aspects of modules are:

• The treatment of embedded implications: this conceptually amounts to “as-

50

serting” and “retracting” program clauses. Since embedded implications can
be nested arbitrarily, several nested applications of these operations may
have to be performed at run time. However, as stated by Nadathur et al.
[84], “the assertion and retraction of program clauses follows a stacking dis-
cipline, and may as such be implemented using a run-time stack”. Of course,
backtracking will need special treatment as it may require the reinstatement
of a program “asserted” at earlier stages of the computation.

• The treatment of existentially quantified embedded implications: the evalua-
tion of one such goal may enforce the assertion of program clauses containing
variables that are dynamically instantiated.

• The treatment of universally quantified goals. As noted in section 3.7, this
may require the introduction of “fresh” constants to be substituted for the
universally quantified variables occurring in the goal. Furthermore, uni-
versal and existential quantifiers might appear in any order in a goal (in
particular the existential quantification may surround the universal one). In
this case, we must also guarantee that the existentially quantified variables
be not instantiated to the constants introduced in place of the universally
quantified variables that occur within the scope of the existential quantifier.
This requires an appropriate treatment of unification and the introduction
of tagged variables [83].

For the sake of clarity, these issues will be dealt with separately. There is in fact
little overlap among the techniques needed to handle each of them and thus their
integration can be accomplished smoothly.

5.1. Embedded Implications

We first briefly review the systems described in section 3 to point out some im-
portant remarks about the terminology used there. We have used the term lexical
to refer to the scope rules adopted in Contextual Logic Programming as well as in
the language proposed by Giordano et al. in [42]. As a matter of fact, the term
is consistent with the use of embedded implications presented in [42] but not with
the use of extension goals suggested by Monteiro and Porto in [78]. The problem is
that in Contextual Logic Programming, modules have names and the same name
can occur in several extension goals. Thus, the same module may have different
surrounding scopes and the binding for the references to non-local predicates in
that module depends on the different possible scopes. In other words, there is no
way that we can determine lexically which definition to associate with a reference
to a non-local predicate in a module. This is possible if we assume, as Giordano et
al. in [43], that the clauses (and not their name) be nested by means of an embed-
ded implication. In fact, under this assumption, an embedded implication can be
compiled away by means of a renaming schema similar to that used by Moscowitz
and Shapiro in [82].

In the following discussion, we will assume that modules are designated by names
and that the same name may have multiple occurrences in the same program. We
will, accordingly, use the (more appropriate) term quasi-static to refer to the lexical
scope rules introduced in section 3 for Contextual Logic Programming.

51

There are (at least) two properties which should be satisfied by a realistic imple-
mentation of a modular system.

• Separate compilation of each module. This a fundamental requirement for
programming in the large; separate segments of compiled code should be
produced for each module and dynamically linked in the run-time represen-
tation of the program.

• Code sharing in module representation. If we can use a module in different
contexts or have multiple occurrences of the same module in the same context
we would like to maintain one single copy of the module code to be used in
any context. This naturally leads to a dynamic representation of modules
corresponding to the closures used in functional languages.

Modules as Closures. Modules will be represented in the WAM as closures. A
closure for a module M consists of a set of bindings for the module’s parameters
and local variables, plus a set of bindings for the predicate calls occurring in M .

The stack discipline underlying the workings of embedded implications can be
implemented using a run-time stack to hold the closures of the modules that occur
in the embedded implications. When an implication goal M ⊃ G is encountered,
the closure of M gets recorded on the context stack and the access to the code is
made relative to it. Upon completing the evaluation of the embedded implication,
the closure of M is discarded and becomes inaccessible to subsequent goals.

In the architecture proposed by Lamma et al. in [57, 58], closures are im-
plemented as new data structures called instance environments. A correspond-
ing structure, called implication point, is used by Jayaraman, Nadathur et al. in
[52, 84, 56] for the same purpose. The difference between these two approaches is
that in the former closures are allocated in a new stack (the instance environment
stack), whereas in the latter they are held in the local stack of the WAM.

To outline the basic features of the implementation of embedded implications,
in the following we will assume that the run-time support holds the closures in
a separate stack. We will refer to it as the context stack and let pc denote its
top element. The new instructions allocate ctx and deallocate ctx introduced
in [57, 58] will be used for manipulating the context stack (two corresponding
instructions, push impl point and pop impl point are used in [84, 56]).

As an example, consider the goal (M1 ⊃ G1) ∧ G2. The compiled code for this
goal is opened by an allocate ctx instruction for M1, it is followed by the code
for G1 (which is thus evaluated in a context stack containing the closure of M1),
then by a deallocate ctx which deallocates the closure of M1 and restores the
previous context before proceeding to the code for G2.

The interaction of backtracking with this compilation schema has to be consid-
ered carefully. If, in the previous example, G2 fails, then the closure of M1 needs to
be restored in the context stack before considering alternative choices for G1. The
implementation must provide methods for realizing this behaviour in an efficient
manner. In the case of the implication M ⊃ G, this is obtained in the existing
implementations by performing the physical deallocation of the closure of M only
when G is deterministically solved, and by performing the necessary bookkeeping
to backtrack correctly. In particular, an extra-field is added to each choice point in
order to record the value of the pc register at the time the choice point is created.
This solution is adopted both in [57, 58] and in [56].

52

Predicate Bindings. In the WAM the address used by the call and the execute

instructions is determined statically. In the implementation of modular languages,
instead, this address must be determined dynamically. Determining the bindings
between predicate calls and definitions represents the major source of run-time
overhead for these systems as the cost of binding resolution amounts to a look-up
access in the context stack to determine the correct address for the call.

In [21] and [22], we showed how the overhead due to the look-up can be sub-
stantially reduced by means of a source-to-source transformation based on partial
evaluation. The interested reader in referred to [21] and [22] for more details on
this issue. Here, we concentrate on the compilative approaches proposed in the
literature. We will distinguish two modes for embedded implications. The non-
monotonic extension of the program, peculiar of Contextual Logic Programming
and its variation proposed by Mello et al. in [67] will be referred to as the overrid-
ing mode. The term extension will be instead used to qualify the scope mechanisms
used by Miller in [71] and by Giordano et al. in [42].

5.1.1. Overriding Mode for Embedded Implications

Dynamic Scope Rules. In the architecture proposed in [57, 58], for each module
the compiler produces a table (the module’s p-table) which associates the names
of the predicates defined in that module with the address of their local definition.
When a closure is allocated on the context stack for that module, it is made to
point to the module’s p-table.

At run time, the binding for a predicate call is computed by inspecting the p-
tables referenced by the closures that occur in the context stack, starting from the
closure pointed by pc. The address of the call is retrieved from the first p-table that
contains an entry for the predicate being called. Although the access to the tables
can be optimized using a hashing schema, the search along the context stack is
linear in the length of the stack and it is performed at each call. Thus the overhead
can be high.

An improvement to this schema is proposed in [52, 56]. In this case the access
to the code is performed via a hash function which represents the set of all the
bindings between predicate calls and definitions in use at the current computation
stage. Given a predicate name, the hash function returns the appropriate entry
point in the code area if a definition exists and an indication of failure otherwise.

This way, the time spent in the search of a predicate definition is considerably
reduced. However, the hash function must be updated each time an implication goal
is encountered and previous hash functions have to be restored when an implication
goal is successfully solved or upon backtracking. Thus the major overhead of this
solution is in the creation of a new access function each time an implication goal is
encountered.

A similar approach is adopted in the implementation of CSM (Contexts as
SICStus Modules [29]) which adds contexts to SICStus Prolog. As in [52, 56],
hash functions indexed on predicate names are used to represent contexts. One
hash function at time is in use, and previously computed functions are recorded in
order to be restored as soon as the corresponding context is either restored (upon
backtracking or success) or re-built.

More Static Scope Rules. The quasi-static scope rule of Contextual Logic Pro-
gramming leaves room for more efficient and specialized implementations. In this

53

case, even though the binding for a call depends on the structure of the context
stack, the associated definition can be determined as soon as the context stack gets
updated with a new closure. This is possible since the reference to a predicate in a
context stack is not affected by any further extension of that stack. This is different
from case of the dynamic scope rule since in that case the reference to a predicate
can be resolved on at the time of the call.

Thus, the idea presented in [57, 58] is to compute the bindings for non-local
calls occurring in a module only once, at the time the context stack gets extended
with the closure of that module or, more precisely, at the time the call is firstly
performed. The bindings are recorded as extra entries in the module’s closure so
that they can be accessed for future calls, indirectly, without repeating the search.
The access to these entries in the closure can be performed by offset as their position
in the closure can be fixed ahead by the compiler.

Inheritance When modules are statically configured into isa-hierarchies as sug-
gested in section 3.6, the cost of binding resolution can be made constant inde-
pendently of the scope rules that are adopted. If we assume a static scope rule,
the binding between each call and the associated definition can be computed at
compile time. The case of dynamic scope can be handled almost as efficiently as
suggested by Bugliesi and Nardiello in [23]. In fact, in this case the evolution of
the context stack is subject only to the evaluation of a message-sent. At each stage
of the computation, the context stack contains the closures of the modules in the
isa-hierarchy associated with the receiver of the last message-sent. Since the isa-
hierarchies are associated statically with each module, the context stack can be
represented with a single register, self, which points to the (closure of) the mod-
ule which is the receiver of the last message-sent. The trick to handle a dynamic
reference to a non-local predicate is the following. The modules’ p-tables produced
during compilation are set up so as to ensure the alignment of the p-table entries for
the predicates in all the modules belonging to the same branch of the isa-hierarchy.
At run time, the p-tables can then be accessed by offset, to realize an indirect call
mechanism in much the same way as virtual tables are used in C++ to evaluate a
virtual function.

5.1.2. Extension Mode for Embedded Implications. The extension mode for em-
bedded implications has some effects on the implementation. In fact, when eval-
uating a call we may need to select clauses from more than one of the modules
currently in use. Consequently, the clauses for the same predicate occurring in
different modules should be conceptually chained.

For a dynamic scope rule, the chaining of clauses belonging to different modules
in the same context cannot be performed at compile time. For the same reason, we
cannot establish whether a predicate is deterministic or not. Thus, both in [57, 58]
and [56, 84], the compiled code for a definition is always preceded by a try me else

instruction even when the definition is deterministic. Similarly, the last instruction
of the definition should guarantee that other clauses that may become available will
be tried. Hence, the code for the last clause of the definition p is preceded by the
retry me else instruction and finally followed by a new instruction trust extends

Pi.
The reference Pi is left unsolved at compile-time and is solved only as soon as a

new closure gets pushed on the context stack. The corresponding address for the

54

(possible) new definition will be inserted in the i-th position of that closure. The
trust extends instruction is similar to the trust instruction of the WAM; the
only difference is that the instruction counter P of the WAM and the new register
pc are now set to the values stored in the i-th position of the current closure in
order to perform inter-module backtracking. It must be noted, however, that this
implementation of the extension mode makes the indexing scheme of the WAM
much less effective.

The approach based on the p-tables discussed in section 5.1.1 can be substantially
improved if we assume an extension mode for embedded implications with dynamic
scope rules. In fact, in this case the run-time representation always correspond to
the union of the clauses contained in the modules currently in use. If M1, . . ., Mn

are the modules of a given program P , we can represent the evolving list of the
modules in use with an n-bit vector. If at a given stage, Mi is in use, the i’s position
of the bit vector is set to 1. With each predicate name defined in the program, we
can then associate a table recording (as a bit vector) the modules where that name
is defined, together with the corresponding addresses. With this representation,
binding a predicate call for p requires simply a bit-wise AND between the bit
vector representing the context stack and the bit vector associated with p. All the
addresses occurring at positions set to 1 after the bit-wise AND are accessed for
evaluating p. Thus, the cost of computing a binding is constant. Furthermore this
solution performs the extension of the context stack in a very efficient way. When
the context stack is extended with module, the corresponding position in the bit
vector is set to 1. Obviously, the current bit vector needs saving in order to make
it possible to restore after the execution of the implication goal has been completed
or upon backtracking.

5.1.3. Controlling Redundancy The treatment of implication goals described so
far may result in the same closure being added several times to the context stack.
This has a potential drawback since it may cause useless look-ups to be performed
and the same solution to be produced several times.

One interesting question is whether the number of copies of any module in a
program context can be restricted to just one. This can be done only for the
dynamic scope rules and when we assume an extension mode for the evaluation of
an embedded implication. As a counter-example, consider the modules:

m1 = {b:-c} m2 =

{

c
a:-b

}

The implication goal m2 ⊃ m1 ⊃ m2 ⊃ a succeeds since a definition for a exists
in the context [m2,m1,m2] (in module m2, in particular), one for b is found in
[m2,m1], and finally one for c in [m2]. However, [m2,m1,m2] is not equivalent
to [m2,m1] if we assume a quasi-static scope rule. It is in fact easy to check that
the evaluation of m1 ⊃ m2 ⊃ a fails under this assumption. It follows that for a
quasi-static scope rule, neither the order of modules in the program context can be
changed, nor the number of copies of module m2 restricted to just one. Conversely,
if we consider a dynamic scope rule, then the program context is interpreted as
the union of the clauses of component modules. Hence, multiple occurrences of the
same module in the same context can be safely avoided. Notice, to this regard,
that the same set of successful derivations is obtained both in [m2,m1,m2] and
[m2,m1] with m1 and m2 defined as before.

55

In [56] the problem of redundancy in the case of dynamic scoping is solved by
slightly changing the treatment of implication goals. To solve a goal of the form
D ⊃ G (where D is a set of clauses), D is added to the program context only if not
already available. When an implication goal is of the form ∃x1 . . . ∃xn D ⊃ G, the
addition of D[x1/c1 . . . xn/cn] is performed only if the program context does not
already contain D[x′1/c1 . . . x

′
n/cn].

An elegant solution to the problem of redundancy can be obtained using the bit
vector representation of the context stack discussed in section 5.1.2. The position in
the bit vector corresponding to a module, will be set to 1 only once, independently
of the number of repeated occurrences of the same module in the context stack.
However, this implementation works well only for dynamic scope rules and turns
out to be inadequate for more static scope mechanisms.

5.2. Parametric Modules

As pointed out in section 3, an implication goal surrounded by existential quantifiers
may give rise to a module parametrized by variable bindings. In particular, consider
solving the implication goal ∃x({p(x), r(x, a)} ⊃ g(x)). Assuming that x is replaced
by the logic variableX , one would have to solve the goalm(X) ⊃ g(X) wherem(X)
is the parametric module consisting of the two clauses p(X) and r(X, a). In this
case, we use a general term rather than just a constant to refer to the module,
encoding the module name (m) as the main functor and the parameters (X) as
arguments.

Assuming that the embedded implication is dealt with as required, with reference
to the example above we would have to solve g(X) with respect to a program that
contains the two clauses p(X) and r(X, a). As stated in [84], the main difference
with respect to the standard case is that now the variable X occurring in these
clauses cannot be instantiated in arbitrary fashion, but only in a way consistent
with the instantiation of the same variable in the goal. Moreover, this variable is
shared between these two clauses: hence, starting from a program containing the
clause g(a) ← p(b) the goal m(X) ⊃ g(X) fails since, to succeed, it would require
instantiating X simultaneously with a and b.

To implement this behaviour correctly, the implementation must distinguish be-
tween existential and universal variables that appear in a module’s designator, and
provide mechanisms for dealing with this new kind of existential variables (called
parametrized variables in the following).

This problem is solved both by Nadathur et al. in [84] and Lamma et al. [58]
by recording the bindings for parametrized variables in the modules’ closures. In
particular, in [58] the structure holding the instance environments is expanded
with a number of cells used to allocate the parameters of a module. Accordingly,
allocate ctx is given one additional argument specifying the number of parame-
ters (and therefore of the additional cells to be allocated in the instance environ-
ment) of the module involved in the implication goal. While the offsets for these cells
in the instance environment are determined at compile-time, their actual values will
be determined dynamically. A new set of argument-registers (called A G registers)
is added to the WAM register set. These registers are unified with the arguments
of a parametrized module before the extension of the program context takes place.
Accordingly, the get, put and unify instructions are modified for handling these
new registers together with the cells of the current instance environment.

56

A similar effect is obtained in [84] where an initializing step is performed for the
clauses containing parametrized variables through the initialize Vn,i instruc-
tion. This instruction is similar to the get variable instruction of the WAM with
the difference that the second argument is obtained by using the i-th variable of
the associated closure.

In both the implementations, to perform backtracking correctly, the references
to the parametrized variables that have been bound during unification – and that
must be unbound on backtracking – are recorded in the trail area.

The use of parametric modules raises new problems related to the redundancy
checks described in section 5.1.3. In particular, the technique proposed in [56]
does not apply directly in this case. For example, assume that the current context
contains module m(X) and assume that are to extend that context with m(Y).
The question is whether we should unify X and Y when checking to see if m(Y)
is already present in the context. It is easy to think of cases where binding them
is not the intended behaviour. On the other hand, if we don’t unify them, then it
appears that (m(Y) ⊃ G), X = Y and X = Y, (m(Y) ⊃ G) may differ significantly,
at least operationally11.

5.3. Universally Quantified Goals

As pointed out in section 3.7 (similarly, at the beginning of section 5) permitting
universal quantifiers in the body of a clause may produce alternated sequences of
universal and existential quantifiers.

The problems related to a correct treatment of unification in these situations
have been studied by several authors in the literature. In [63] McCarty presents
a tableau proof procedure for his Clausal Intuitionistic Logic and proves it sound
and complete with respect to intuitionistic entailment. In [31] Elliot and Pfenning
present the implementation of Hereditary Harrop formulas in Standard ML. In
[73], Miller discusses the combination of unification and quantifiers in a general
higher-order setting.

Here we refer to the solution adopted by Nadathur et al. in [84] for λProlog [85].
In [83], Nadathur presents a correctness proof for this approach.

The idea is to use numeric tags for the constants and the logical variables in-
volved in the computation. The tag is used to index the universes of symbols
created during the execution. All the constant symbols appearing in the program
clauses and the original goal are tagged with value 1. Each time a universal quan-
tifier is encountered during the evaluation of the goal, (whence a new constant is
introduced), the universe index is incremented by 1, and the newly added constant
is tagged with this index. When an existential quantifier is encountered, a logic
variable X is introduced tagged with the current value of the universe index.

During the unification process, a logic variable X can be bound only to terms
with constants tagged by a tag smaller or equal to that associated to X . In par-
ticular, when binding a variable X with tag i to a term T , prior to permitting this
instantiation, a consistency check is performed in order to ensure that i is greater
or equal to the tag of any constant in T . The check, in practice, amounts to an
occur-check test; if it succeeds so does the unification of X with T .

11We gratefully acknowledge Dale Miller [74] for bringing this point to our attention.

57

A different scenario arises when a variable of T is tagged with a universe index
greater than i. This happens, for example, when the goal ∃x∀y∃z p(x, f(z)) gets
evaluated in the program ∀a p(a, a). Using the tagging schema outlined above,
evaluating this goal reduces to evaluating p(X1, f(Z2)) (where the indexes annotate
logic variables) in the program p(A1, A1). A situation like this should not prevent
unification to succeed provided that a proper tag propagation is performed on the
term f(Z) to which X is bound. This is needed to ensure that subsequent goals
referencing Z be treated correctly. Consider for instance the program above, a new
goal ∃x∀y∃z p(x, f(z)) ∧ p(y, z) and its tagged version p(X1, f(Z2)) ∧ p(c2, Z2) (c
is new constant). As before, X1 is bound to f(Z2); the problem is that now the
subsequent attempt to bind Z2 to the constant c2 will succeed in spite of the fact
that this binding violates the restrictions on the permitted instantiation for X1

(being X1 bound to a term which contains c2).
To avoid this problem, as soon a variable X with universe index i is bound to

a term T , the tags of all the variables occurring in T with universe index greater
than i are set to i. With reference to the example above, after the binding of X1

to f(Z2), the tag for Z becomes 1 thus preventing the unification of this variable
with the constant c2 and leading to a failure for the goal considered.

At the WAM level, the implementation requires the addition of a new field in
each cell for representing the tags, and an extension of the WAM instructions for
unification (e.g., get value, unify value, etc.) for performing both the consis-
tency check on tags and the tag propagation.

6. CONCLUSIONS

We conclude our discussion with few additional remarks and considerations.
We hope that this survey has conveyed an adequate view of all the valuable

work that has been done in the area over the past years. The extension of logic
programming with module constructs was long understood as one of the keys to
make this programming paradigm appealing to a wider community and adequate
for developing practical applications. The research in the field has contributed, we
believe, to make these expectations realistic.

The modular extensions we have outlined in this paper uphold the validity of this
belief. They provide evidence of how different programming features and method-
ologies can be imported in logic programming to model abstraction mechanisms
comparable in power to those available in procedural and functional languages.

In this respect, the foundations for future work appear to be solid and well-
established as the logic of the modular systems we have described is relatively well-
understood. Of course there are still several open questions as we have pointed out
and a tighter integration of the two approaches we have outlined would be desirable.
A further problem that certainly deserves future investigation is the impact of the
different extensions on logic languages richer than those we have considered here.
The treatment of negation in these languages represents one interesting instance of
this problem.

At the current state of the art, however, there is already enough room to start
moving from theory to practice. The time has come, or so it seems, to concentrate
also on the design of logic languages that incorporate these features in elegant and,
more importantly, practical ways. This first step will be certainly needed before

58

this technology can be put to test in the development of practical and real-sized
applications.

Acknowledgements

This article has greatly benefited from joint work and many fruitful discussions
with Annalisa Bossi, Antonio Brogi, Paolo Mancarella, Dale Miller, Luis Monteiro,
Antonio Natali, Antonio Porto, Gianfranco Rossi, Cristina Ruggieri and Giovanni
Sambin.

Special thanks are due to Antonio Brogi, Laura Giordano, Dale Miller, Alberto
Martelli, Andrea Omicini, Franco Turini and the anonymous referees for their useful
comments on the first version of this paper.

This work has been partially supported by “Progetto Finalizzato Sistemi In-
formatici e Calcolo Parallelo” of C.N.R. under grants n. 91.00898.PF69 and n.
93.01627.PF69.

REFERENCES

1. H. Äıt-Kaci. Warren’s Abstract Machine. The MIT Press, 1991.

2. H. Äıt-Kaci and R. Nasr. Login: a logic programming language with built-in
inheritance. Journal of Logic Programming, 3:182–215, 1986.

3. J.M. Andreoli and R. Pareschi. Linear objects: logical processes with built-in
inheritance. New Generation Computing, 9:445–473, 1991.

4. K. R. Apt and M.H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841–862, 1982.

5. H. Bacha. MetaProlog design and implementation. In R. A. Kowalski and K. A.
Bowen, editors, Proc. 5th Int. Conference on Logic Programming, pages 1371–1387.
The MIT Press, 1988.

6. M. Baldoni, Giordano, and A. Martelli. A Multimodal Logic to Define Modules
in Logic Programming. In D. Miller, editor, Proceedings of the International Logic

Programming Symposium ILPS’93, pages 473–487. The MIT Press, 1993.

7. A. J. Bonner, L. T. McCarty, and K. Vadaparty. Expressing database queries
with intuitionistic logic. In L. Lusk and R.A. Overbeek, editors, Proc. 1989 North

American Conf. on Logic Programming, pages 831–850. The MIT Press, 1989.

8. A. Bossi, M. Bugliesi, M. Gabbrielli, G. Levi, and M. C. Meo. Differential Logic
Programs. In Proc. 20th Annual ACM Symp. on Principles of Programming Lan-

guages, pages 359–370. ACM Press, 1993.

9. K.A. Bowen and R.A. Kowalski. Amalgamating Language and Metalanguage in
Logic Programming. In K.L. Clark and S.A. Tarnlund, editors, Logic Programming,
pages 153–173. Academic Press, 1982.

10. A. Brogi. Program Construction in Computational Logic. PhD thesis, Department
of Computer Science, University of Pisa, Tech. Report TD-2/93, March 1993.

11. A. Brogi, E. Lamma, and P. Mello. Inheritance and Hypothetical Reasoning in
Logic Programming. In Proceedings of 9th European Conference on Artificial In-

telligence, pages 105–110. Pitman, 1990.

12. A. Brogi, E. Lamma, and P. Mello. Compositional Model-theoretic Semantics for
Logic Programs. New Generation Computing, 11(1):1–21, 1992.

59

13. A. Brogi, E. Lamma, and P. Mello. Objects in a Logic Programming Framework.
In A.Voronkov, editor, Logic Programming, LNCS, pages 102–113. Springer-Verlag,
1992.

14. A. Brogi, E. Lamma, and P. Mello. Composing Open Logic Programs. Journal of

Logic and Computation, 4(4):417–439, August 1993.

15. A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Composition Operators for
Logic Theories. In J.W. Lloyd, editor, Computational Logic, Symposium Proceed-

ings, pages 117–134. Springer-Verlag, 1990.

16. A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Meta for Modularising Logic
Programming. In A. Pettorossi, editor, Proceedings of the Third Workshop on

Meta-programming in Logic META92, pages 24–37, 1992.

17. A. Brogi and F. Turini. Metalogic for Knowledge Representation. In J.A. Allen,
R. Fikes, and E. Sandewall, editors, Principles of Knowledge Representation and

Reasoning: Proceedings of the 2nd Int. Conf., pages 100–106. Morgan Kaufmann,
1990.

18. M. Bugliesi. Inheritance Systems in Logic Programming: Semantics and Implemen-
tation. Ms Thesis, Dept. of Computer Science, Purdue University, West-Lafayette
IN, USA.

19. M. Bugliesi. A declarative view of inheritance in logic programming. In K. Apt,
editor, Proc. Joint Int. Conference and Symposium on Logic Programming, pages
113–130. The MIT Press, 1992.

20. M. Bugliesi. On the Semantics of Inheritance in Logic Programming: Composi-
tionality and Full Abstraction. In E. Lamma and P. Mello, editors, Extensions of

Logic Programming, LNAI 660, pages 205–215. Springer-Verlag, 1993.

21. M. Bugliesi, E. Lamma, and P. Mello. Partial evaluation for hierarchies of logic
theories. In S. Debray and M. Hermenegildo, editors, Proc. 1990 North American

Conf. on Logic Programming, pages 359–376. The MIT Press, 1990.

22. M. Bugliesi, E. Lamma, and P. Mello. Partial Deduction for Structured Logic
Programming. Journal of Logic Programming, 16:89–122, 1993.

23. M. Bugliesi and G. Nardiello. Inheritance Systems in Logic Programming: the
Language and its Implementation. Technical report, Post Conf. Workshop on
Practical Implementations and Systems Experience in L.P. ICLP’93, Budapest,
1992.

24. L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Poly-
morphism. Computing Surveys, 17(4):471–522, 1985.

25. B. F. Chellas. Modal Logic: an Introduction. Cambridge University Press, 1980.

26. W. Chen and D. S. Warren. C-Logic for Complex Objects. In ACM SIGMOD

Conference on Management of Data, 1989.

27. W. Chen and D.H. Warren. Objects as intensions. In R. A. Kowalski and K. A.
Bowen, editors, Proc. 5th Int. Conference on Logic Programming, pages 404–419.
The MIT Press, 1988.

28. J.S. Conery. Logical objects. In R. A. Kowalski and K. A. Bowen, editors, Proc.

5th Int. Conference on Logic Programming, pages 420–434. The MIT Press, 1988.

29. E. Denti, E. Lamma, P. Mello, A. Natali, and A. Omicini. Techniques for Imple-
menting Contexts in Logic Programming. In E. Lamma and P. Mello, editors, Ex-

tensions of Logic Programming, LNAI 660, pages 339–359. Springer-Verlag, 1993.

60

30. A. M. Dias. An implementation of a contextual logic programming system. Tech-
nical Report UNL-DI 26/90, Departamentop de Informatica, Universidade Nova
de Lisboa, Master Thesis, September 1990.

31. C. Elliott and F. Pfenning. A Semi-functional Implementation of a Higher-order
lLgic Programming Language. In P. Lee, editor, Topics in Advanced Language

Implementation, pages 289–325. The MIT Press, 1991.

32. M. Fitting. Enumeration Operators and Modular Logic Programming. Journal of

Logic Programming, 4:11–21, 1987.

33. M. C. Fitting. Intuitionistic Logic, Model Theory and Forcing. Studies in Logic

and the Foundations of Mathematics, North-Holland, 1969.

34. K. Fukunaga and S. Hirose. An experience with a Prolog-based object-oriented
language. In Proceedings of OOPSLA-86. ACM Press, Portland (Oregon), 1986.

35. K. Furukawa, A. Takeuchi, S. Kunifujii, H. Yasukawa, M. Ohki, and K. Ueda.
Mandala: A logic based knowledge programming system. In Proc. FGCS’84 Int.

Conference, pages 613–622, Tokyo (J), 1984.

36. D. M. Gabbay. N-Prolog: an Extension of prolog with Hypothetical Implication.
II Logical Foundations and Negation as Failure. Journal of Logic Programming,
4:251–283, 1985.

37. D.M. Gabbay and N. Reyle. N-Prolog: an Extension of Prolog with Hypothetical
Implications. I. Journal of Logic Programming, 4:319–355, 1984.

38. M. Gabbrielli, G. Levi, and M. C. Meo. Observationally Equivalences for Logic
Programs. In K. Apt, editor, Proc. Joint Int. Conference and Symposium on Logic

Programming, pages 131–145. The MIT Press, 1992.

39. H. Gaifman and E. Shapiro. Fully abstract compositional semantics for logic pro-
grams. In Proc. 16th Annual ACM Symp. on Principles of Programming Languages,
pages 134–142. ACM Press, 1989.

40. H. Gallaire. Merging objects and logic programming: Relational semantics. In
AAAI-86 Conference Proceedings, pages 754–758, 1986.

41. L. Giordano and A. Martelli. A modal reconstruction of blocks and modules in
logic programming. In Proc. 8th Int. Conference on Logic Programming, pages
239–253. The MIT Press, 1991.

42. L. Giordano, A. Martelli, and G.F. Rossi. Local definitions with static scope rules
in logic languages. In Proc. FGCS’88 Int. Conference, pages 389–396, 1988.

43. L. Giordano, A. Martelli, and G.F. Rossi. Extending Horn Clause Logic with
Modules Constructs. Theoretical Computer Science, 95:43–74, 1992.

44. R. Harrop. Concerning Formulas of the types A → B ∨ C, A → (Ex)(B(x)) in
Intuitionistic Formal Systems. Journal of Symbolic Logic, 25(1):27–32, 1960.

45. P. Hill. A parametrised module system for constructing typed logic programs. In
Proceedings of 13th International Joint Conference on Artificial Intelligence, pages
874–880. Morgan Kauffman, August 1993.

46. P.M. Hill and J. W. Lloyd. The Gödel Programming Language. The MIT Press.
Forthcoming.

47. J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Journal of Information and Computation. To appear.

48. J. Hodas and D. Miller. Representing Objects in a Logic Programming Language
with Scoping Constructs. In D.H.D. Warren and P. Szeredi, editors, Proc. 7th Int.

Conference on Logic Programming, pages 511–526. The MIT Press, 1990.

61

49. J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic lin-
ear logic: Extended abstract. In G. Kahn, editor, Proceedings of Sixth Annual

Symposium on Logic in Computer Science, pages 32–42, 1991.

50. E. Horowitz. Programming Languages. Springer-Verlag, second edition, 1984.

51. G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen &
Co. Ltd, 1968.

52. B. Jayaraman and G. Nadathur. Implementation techniques for scoping constructs
in logic programming. In K. Furukawa, editor, Proc. 8th Int. Conference on Logic

Programming, pages 871–886. The MIT Press, 1991.

53. I. Karali, E. Pelecanos, and C. Halatsis. A versatile module system for Prolog
mapped to flat Prolog. In Proceedings ACM Symposium on Applied Computing

SAC93, 1993.

54. M. Kifer and G. Lausen. F-Logic: a Higher-Order Language for Reasoning about
Objects, Inheritance and Schema. In ACM SIGMOD Conference on Management

of Data, pages 134–146, 1989.

55. S. A. Kripke. Semantical Analysis of Intuitionistic Logic. In J. N. Crossley and
M. A. E. Dummett, editors, Formal Systems and Recursive Functions, pages 92–
130. North-Holland Pub. Co., 1965.

56. K. Kwon, G. Nadathur, and D.S. Wilson. Implementing a Notion of Modules in the
Logic Programming Language λProlog. In E. Lamma and P. Mello, editors, Ex-

tensions of Logic Programming, LNAI 660, pages 359–393. Springer-Verlag, 1993.

57. E. Lamma, P. Mello, and A. Natali. The design of an abstract machine for efficient
implementation of contexts in logic programming. In G. Levi and M. Martelli,
editors, Proc. 6th Int. Conference on Logic Programming, pages 303–317. The MIT
Press, 1989.

58. E. Lamma, P. Mello, and A. Natali. An Extended Warren Abstract Machine
for the Execution of Structured Logic Programs. Journal of Logic Programming,
14:187–222, 1992.

59. J.L. Lassez and M.J. Maher. Closures and fairness in the semantics of logic pro-
gramming. Theoretical Computer Science, 29:167–184, 1984.

60. Logicware Inc., Toronto, Canada. M-Prolog Language Reference, 1985.

61. P. Mancarella and D. Pedreschi. An algebra of logic programs. In R. A. Kowalski
and K. A. Bowen, editors, Proc. 5th Int. Conference on Logic Programming, pages
1006–1023. The MIT Press, 1988.

62. F.G. McCabe. Logic and Objects. Prentice Hall International, London, 1992.

63. L. T. McCarty. Clausal Intuitionistic Logic II: Tableau Proof Procedures. Journal

of Logic Programming, 5(2):93–132, 198.

64. L. T. McCarty. Clausal Intuitionistic Logic I: Fixed point Semantics. Journal of

Logic Programming, 5(1):1–31, 1988.

65. P. Mello. Inheritance as Combination of Horn Clause Theories. In D. Lenzerini,
D. Nardi, and M. Simi, editors, Inheritance Hierarchies in Knowledge Representa-

tion, pages 275–289. J. Wiley and Sons, 1989.

66. P. Mello and A. Natali. Objects as Communicating Prolog Units. In J. Bezivin,
J.M. Hullot, P. Cointe, and H. Lieberman, editors, Proceedings of ECOOP 87,
number 276 in LNCS, pages 181–191. Springer-Verlag, 1987.

67. P. Mello, A. Natali, and C. Ruggieri. Logic programming in a software engineering
perspective. In L. Lusk and R.A. Overbeek, editors, Proc. 1989 North American

Conf. on Logic Programming, pages 451–458. The MIT Press, 1989.

62

68. A. Meyer. Semantical Paradigms: Notes for an Invited Lecture. In Proceedings 3rd

Annual Symposium on Logic in Computer Science, pages 236–242. IEEE Computer
Society, 1988.

69. D. Miller. A theory of modules in logic programming. In Proceedings of Symposium

on Logic Programming, pages 106–114, 1986.

70. D. Miller. Lexical scoping as universal quantification. In G. Levi and M. Martelli,
editors, Proc. 6th Int. Conference on Logic Programming, pages 268–283. The MIT
Press, 1989.

71. D. Miller. A logical analysis of modules in logic programming. Journal of Logic

Programming, 6:79–108, 1989.

72. D. Miller. Abstract Syntax and Logic Programming. In Proc. 1st and 2nd Russian

Conf. on Logic Programming, pages 322–337. Lecture Notes in AI, number 52,
Springer-Verlag, 1992.

73. D. Miller. Unification under a mixed prefix. Journal of Symbolic Logic, pages
321–358, 1992.

74. D. Miller. e-mail communication. July 1993.

75. D. Miller. Invited Lecture. In JICSLP92 Workshop on Modules in Logic Program-

ming Languages, Washington D.C. 1992.

76. D. Miller, G. Nadathur, F. Pfenning, and A. Shedrov. Uniform Proofs as a Foun-
dation for Logic Programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

77. M.Maher. Equivalences of Logic Programs. In J. Minker, editor, Foundations of

Deductive Databases and Logic Programming, pages 627–658. Morgan Kaufmann,
1988.

78. L. Monteiro and A. Porto. Contextual logic programming. In G. Levi and
M. Martelli, editors, Proc. 6th Int. Conference on Logic Programming, pages 284–
302. The MIT Press, 1989.

79. L. Monteiro and A. Porto. A transformational view of inheritance in Logic Pro-
gramming. In D.H.D. Warren and P. Szeredi, editors, Proc. 7th Int. Conference

on Logic Programming, pages 481–494. The MIT Press, 1990.

80. L. Monteiro and A. Porto. Syntactic and Semantic Inheritance in Logic Pro-
gramming. In J. Darlington and R. Dietrich, editors, Workshop on Declarative

Programming. Workshops in Computing, Springer-Verlag, 1991.

81. L. Monteiro and A. Porto. A Language for Contextual Logic Programming. In J.W.
de Bakker K.R. Apt and J.J.M.M. Rutten, editors, Logic Programming Languages,

Constraints, Functions and Objects, pages 115–147. The MIT Press, 1993.

82. Y. Moscowitz and E. Shapiro. Lexical logic programs. In K. Furukawa, editor,
Proc. 8th Int. Conference on Logic Programming, pages 349–363. The MIT Press,
1991.

83. G. Nadathur. A Proof Procedure for the Logic of Hereditary Harrop Formulas.
Journal of Automated Reasoning, pages 115–145, August 1993.

84. G. Nadathur, B. Jayaraman, and K. Kwon. Scoping Constructs in Logic Program-
ming: Implementation Problems and Their Solution. Technical Report CS-1993-17,
Department of Computer Science, Duke University, July 1993.

85. G. Nadathur and D. Miller. An Overview of λProlog. In R. A. Kowalski and K. A.
Bowen, editors, Proc. 5th Int. Conference on Logic Programming, pages 810–827.
The MIT Press, 1988.

63

86. R. O’Keefe. Towards an algebra for constructing logic programs. In J. Cohen and
J. Conery, editors, Proceedings of IEEE Symposium on Logic Programming, pages
152–160. IEEE Computer Society Press, 1985.

87. Quintus Computer Systems, Inc., Mountain View, California. Quintus Prolog

User’s Guide, 1986.

88. U. Reddy. Objects as Closures: Abstract Semantics of Object Oriented Languages.
In Proc. Lisp and Functional Programming, pages 289–297. ACM, 1988.

89. D.T. Sannella and L.A. Wallen. A calculus for the construction of modular Prolog
programs. Journal of Logic Programming, 12:147–177, 1992.

90. Swedish Institute of Computer Science, Kista, S. SICStus Prolog User’s Guide,
1990.

91. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

92. D.H.D. Warren. An abstract Prolog instruction set. Technical Report TR 309, SRI
International, 1983.

