From Systems to Components: Constructive Methods for Product-Form Solutions: other product-forms

Andrea Marin¹ Maria Grazia Vigliotti²

¹Dipartimento di Informatica Università Ca' Foscari di Venezia

²Department of Computing Imperial College London

Andrea Marin

University of Venice

Multiple application of (G)RCAT A class of non-pairwise cooperations are considered. We show how multiple applications of (G)RCAT can still derive the product-form solution when it exists. Case studies: finite capacity queues with *skipping* [Pittel '79, Balsamo et al. '10], G-networks with signals [Harrison '04b].

Extended Reversed Compound Agent Theorem (ERCAT). The Extended Reversed Compound Agent Theorem [Harrison '04a] is introduced. Applications for cooperations of pairs of automata which do not yield structural conditions of RCAT are shown.

Introduction

Skipping queues

G-networks and triggers

Part I

Multiple applications of RCAT

Andrea Marin

University of Venice

Introduction	Skipping queues	G-networks and triggers
Andrea Marin		Outline
Introduction		
Skipping queues		
G-networks		

1 A mild introduction

2 Finite capacity queues with skipping: the RCAT solution

Operation of the second sec

Preliminary

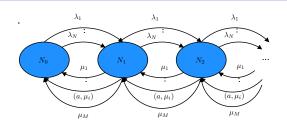
Introduction

Andrea Marin

Introduction

Skipping queues

G-networks and triggers



- Value K_a may be interpreted as the sum of the reversed rates of the active transitions labelled by a incoming into each state
- In case of Birth and Death processes this may be easily computed, i.e.:

$$K_{a} = \frac{\sum_{j=1}^{N} \lambda_{j}}{\sum_{j=1}^{M} \mu_{j}} \mu_{i}$$

University of Venice

G-networks and triggers

Andrea Marin

Introduction

Skipping queues

G-networks and triggers

RCAT or GRCAT?

- The Reversed Compound Agent Theorem (RCAT) [Harrison '03] requires each state to have one incoming active transition for each synchronising label. Value *K*_a may be interpreted as the (constant) reversed rate of this unique transition.
- The Generalisation (GRCAT) proposed in [Marin et al. '10] requires each state to have at least one incoming active transition for each synchronising label. Value *K_a* may be interpreted as the (constant) sum of the reversed rates of these transitions.

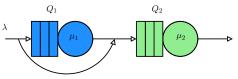
Introduction

Skipping queues

G-networks and triggers

Skipping mechanism for queues with finite capacity

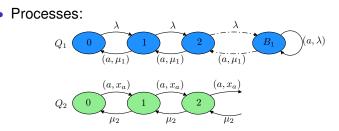
- Consider a tandem of exponential queues, Q1 and Q2
- Q_1 has a finite capacity $B_1 > 0$
- Customers arrive according to a homogeneous Poisson process at Q₁
- If at the arrival epoch Q₁ is saturated, the customer immediately enters in Q₂
- After service completion in Q1 customers go to Q2



Introduction

Skipping queues

G-networks and triggers



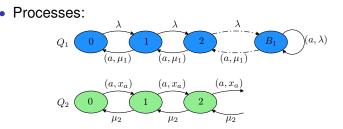
- Clearly, the reversed rates of *a*-transitions are constant, hence $K_a = \lambda$
- Structural (G)RCAT conditions are satisfied
- Steady-state distribution:

$$\pi(n_1, n_2) \propto \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(\frac{\lambda}{\mu_2}\right)^{n_2} \text{ with } 0 \le n_1 \le B_1, n_2 \ge 0$$

Introduction

Skipping queues

G-networks and triggers



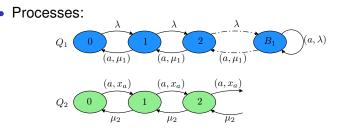
- Clearly, the reversed rates of *a*-transitions are constant, hence $K_a = \lambda$
- Structural (G)RCAT conditions are satisfied
- Steady-state distribution:

$$\pi(n_1, n_2) \propto \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(\frac{\lambda}{\mu_2}\right)^{n_2} \text{ with } 0 \le n_1 \le B_1, n_2 \ge 0$$

Introduction

Skipping queues

G-networks and triggers



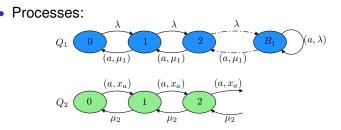
- Clearly, the reversed rates of *a*-transitions are constant, hence $K_a = \lambda$
- Structural (G)RCAT conditions are satisfied
- Steady-state distribution:

$$\pi(n_1, n_2) \propto \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(\frac{\lambda}{\mu_2}\right)^{n_2} \text{ with } 0 \leq n_1 \leq B_1, n_2 \geq 0$$

Introduction

Skipping queues

G-networks and triggers



- Clearly, the reversed rates of *a*-transitions are constant, hence $K_a = \lambda$
- Structural (G)RCAT conditions are satisfied
- Steady-state distribution:

$$\pi(n_1, n_2) \propto \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(\frac{\lambda}{\mu_2}\right)^{n_2} \text{ with } 0 \leq n_1 \leq B_1, n_2 \geq 0$$

Introduction

Skipping queues

G-networks and triggers

Possible generalisation?

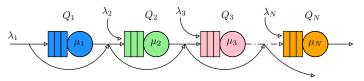
- Consider a sequence of *N* exponential stations Q_1, \ldots, Q_N with finite capacities B_1, \ldots, B_N
- Customers arrive at *Q_i* according to a homogeneous Poisson process with rate λ_i, 1 ≤ i ≤ N
- At a job completion at queue Q_i, the customer tries to enter queue Q_{i+1}, 1 ≤ i < N
- A customer is allowed to enter Q_i if this is not saturated, or must try to enter Q_{i+1} otherwise, 1 ≤ i < N
- After a job completion at queue *Q_N* or if this is saturated, customers leave the system
- Note the system in unconditionally stable

Introduction

Skipping queues

G-networks and triggers

Are these pairwise cooperations?



- Each transition in the system may change the state of only two components but...
- Consider the cooperation between Q₁ and Q₃: an arrival or a job completion at Q₁ may generate an arrival at Q₃ depending on the state of Q₂!
- The cooperation cannot be described only in terms of pairs of queues in isolation
- These cases may still be studied by RCAT with multiple applications

In	+	d	uc	43	~	n
	uυ	JU	uc	u	υ	п.

Skipping queues

G-networks and triggers

Andrea Marin

Outline

Introduction

Skipping queues

G-networks and triggers

A mild introduction

2 Finite capacity queues with skipping: the RCAT solution

Operation of the second sec

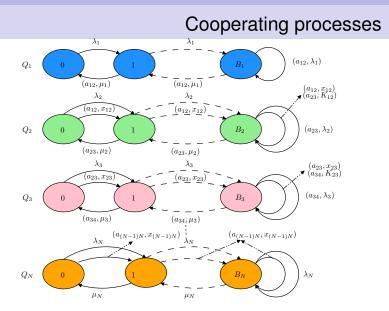
Andrea Marin

University of Venice

Introduction

Skipping queues

G-networks and triggers



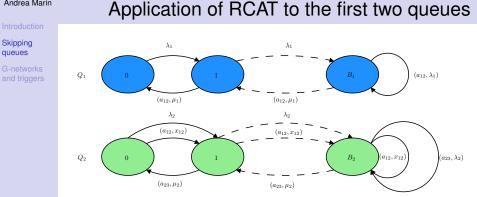
University of Venice

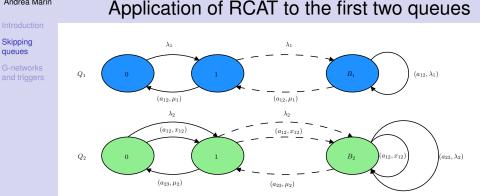
Peculiarity of the model

Introduction

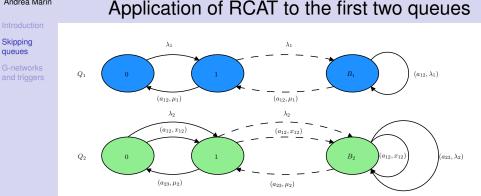
Skipping queues

- For 1 < i < N a self-loop of state B_i has two *roles*:
 - it is passive with respect to cooperation label a_{(i-1)i}
 - it is active with respect to cooperation label $a_{i(i+1)}$ and has $K_{(i-1)i}$ as a forward rate
- We apply (G)RCAT multiple times adding at each time a new queue

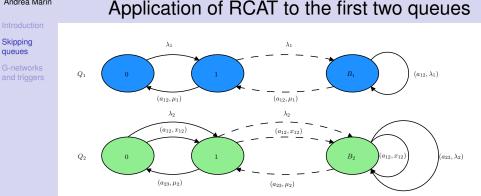




- Structural conditions on passive transitions are satisfied



- Structural conditions on passive transitions are satisfied
- Structural conditions on active transitions are satisfied.

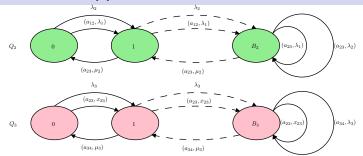


- Structural conditions on passive transitions are satisfied
- Structural conditions on active transitions are satisfied.
- We have $K_{12} = \lambda_1$

Skipping queues

G-networks and triggers

Application of GRCAT to Q_2 and Q_3



- Structurally, the situation is analogue to the previous case
- Note that state B_2 has two transitions incoming with the same label \Rightarrow We apply GRCAT and sum the reversed rates obtaining $\lambda_2 + \lambda_1$
- The reversed rate of the death transitions is λ₂ + λ₁ which is the value of x₂₃

Introduction

Skipping queues

G-networks and triggers

Steady-state distribution

 Multiple applications of (G)RCAT lead to the following values of the reversed rates:

$$K_{i(i+1)} = \sum_{\ell=1}^{i} \lambda_i \quad 1 \le i < N$$

• The steady-state distribution is in product-form:

$$\pi(n_1,\ldots,n_N)\propto\prod_{\ell=1}^N\rho_\ell^{n_\ell},$$

with $0 \leq n_{\ell} \leq B_{\ell}$ and

$$\rho_{\ell} = \frac{\sum_{j=1}^{\ell} \lambda_j}{\mu_{\ell}}$$

Some notes

Andrea Marin

Introduction

Skipping queues

- The result may be easily extended to more general topologies
- Does the product-form yield in case of multiple server stations?
 - Yes! ⇒ the reversed rates do not change!
- Does the product-form yield in case of negative customers?
 - No! ⇒ the reversed rates of the "death" transitions are different (smaller) from those of the self-loops
 - But if we properly slow-down the arrival rates to saturated queues we may still obtain a product-form solution!

п	r	ş	÷	r	0	d		0	ŧi	0	n	
J.	5		ŧ		U	u	u	C		U		

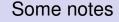
Skipping queues

G-networks and triggers

Andrea Marin

Introduction

Skipping queues



- The result may be easily extended to more general topologies
- Does the product-form yield in case of multiple server stations?
 - Yes! ⇒ the reversed rates do not change!
- Does the product-form yield in case of negative customers?
 - No! ⇒ the reversed rates of the "death" transitions are different (smaller) from those of the self-loops
 - But if we properly slow-down the arrival rates to saturated queues we may still obtain a product-form solution!

Some notes

Andrea Marin

Introduction

Skipping queues

- The result may be easily extended to more general topologies
- Does the product-form yield in case of multiple server stations?
 - Yes! ⇒ the reversed rates do not change!
- Does the product-form yield in case of negative customers?
 - No! ⇒ the reversed rates of the "death" transitions are different (smaller) from those of the self-loops
 - But if we properly slow-down the arrival rates to saturated queues we may still obtain a product-form solution!

	rc			

Skipping queues

G-networks and triggers

Andrea Marin

Outline

Introduction

Skipping queues

G-networks and triggers

A mild introduction

2 Finite capacity queues with skipping: the RCAT solution

3 Product-form solution for G-networks with positive

Introduction

Skipping queues

G-networks and triggers

Model description

- Network of *N* exponential queues *Q*₁,..., *Q_N* with external Poisson customer arrivals with rate λ_i and service rate μ_i
 - At a job completion at *Q_i* a customer can:
 - go to queue Q_j, j ≠ i, with probability P⁺_{ij} as a standard customer
 - go to queue Q_j , $j \neq i$, with probability P_{ij}^- as a trigger
 - leave the system with probability $1 \sum_{i} (P_{ij}^{+} + P_{ij}^{-})$
 - At a trigger arrival at Q_j it:
 - vanishes if Q_j is empty
 - removes a customer from Q_j and add a customer to Q_k , $k \neq j$, with probability R_{ik} , if Q_i is non-empty
 - removes a customer from Q_j with probability
 - $1 \sum_{k} R_{jk}$, if Q_j is non-empty

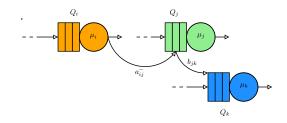
Model picture

Introduction

Andrea Marin

Introduction

Skipping queues



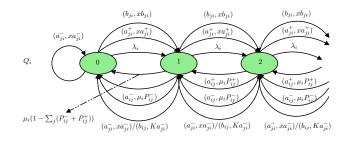
- The picture shows just the cooperation among three queues Q_i, Q_j, Q_k embedded in a general networks
- · We focus on the analysis of the trigger behaviours
- Positive customer analysis is the same of Jackson's networks
- A job completion in Q_i may change the state of three queues simultaneously: Q_i , Q_j , Q_k

Introduction

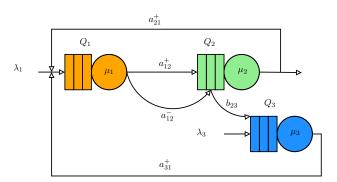
Skipping queues

G-networks and triggers

Process underlying a generic queue Q_i



- 1 ≤ j ≤ N, j ≠ i
- a⁺_{ii}: positive customer from Q_i to Q_j
- a_{ii}^- : trigger from Q_i to Q_j
- *b_{ij}*: customer arrival at *Q_j* caused by a trigger arrival at queue *Q_i*



- We set up the RCAT traffic equations by the analysis of each queue in isolation
- This operation can be done algorithmically

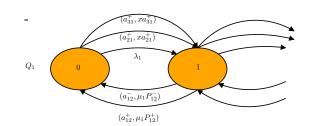
Skipping queues

Queue 1

Andrea Marin

Skipping queues

G-networks and triggers

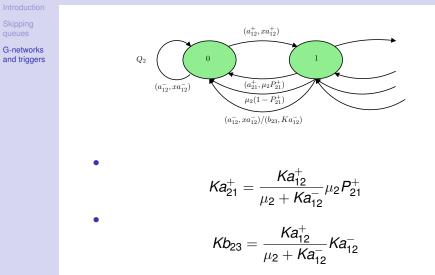


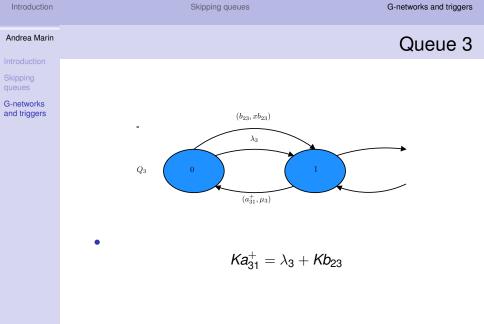
 $Ka_{12}^{-} = (\lambda_1 + Ka_{31}^{+} + Ka_{21}^{+})P_{12}^{-}$ $Ka_{12}^{+} = (\lambda_1 + Ka_{31}^{+} + Ka_{21}^{+})P_{12}^{+}$

Skipping queues

Andrea Marin

Queue 2





University of Venice

Introduction

Skipping queues

G-networks and triggers

Concluding the example

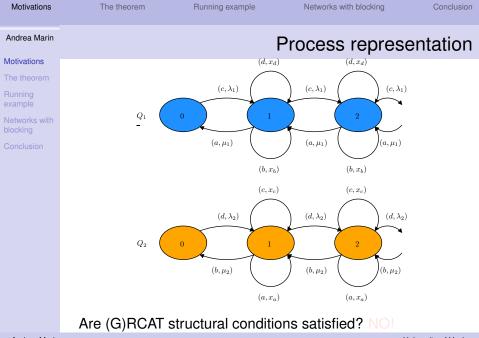
- The solution of the traffic equations straightforwardly gives the product-form solution
- The traffic equations may be solved either symbolically or numerically
- The algorithm presented in [Marin et al. '09] applies an iterative schema to efficiently solve such networks of queues
- The approach may be extended to deal with negative triggers (at a trigger arrival the receiving non-empty queue may send a trigger to another queue)

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin				
Motivations				
The theorem				
Running example		_		
Networks with blocking		Part		
Conclusion	Extend	ed Reversed Theorem (Compound Age (ERCAT)	ent

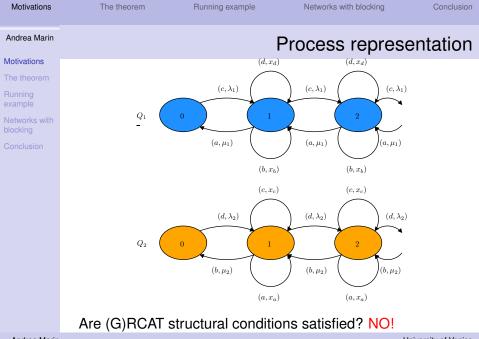
Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin				
Motivations				
The theorem	4 Motivations	by example		
Running example				
Networks with blocking	5 The theoren	ſ		
Conclusion				
	6 Solution of t	he running exam	ple	
	Open netwo and blocking		al queues with finite o	capacity
	8 Conclusion			

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin		A system in Be	oucherie's produ	ct-form
Motivations				
The theorem				
Running example		λ_1 Q_1	λ_2 Q_2	
Networks with blocking				
Conclusion		· · · · · · · · · · · · · · · · · · ·	·	

- Two exponential queues Q_1 and Q_2 with independent Poisson arrival streams with rate λ_1 and λ_2
- Service rates are μ₁ and μ₂
- If one of the queues enters in state 0 the other one is blocked (i.e. no arrivals or service completions occur)
- The model is known to be in Boucherie's product-form



University of Venice



University of Venice

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin			Joint state	e space
Motivations				
The theorem				
Running example				

- Networks with blocking
- Conclusion

- ERCAT requires to check a rate equation for each state of the irreducible subset of the joint process
- Often, states can be opportunely clustered and hence the computation becomes feasible
- The computational complexity is higher than the standard (G)RCAT
- Let (*s*₁, *s*₂) be a state of the irreducible subset of the joint process

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin		F	undamental def	initions
Motivations				
The theorem				
Running example	$\sigma(\varepsilon, \varepsilon) \rightarrow$			
Networks with blocking		outgoing labels t		
Conclusion			e labels into s_1 or s_2	
	• $\mathcal{A}^{(s_1,s_2) o}$:	outgoing active	abels from s_1 or s_2	
	• $\mathcal{A}^{(s_1,s_2)\leftarrow}$:	incoming active	labels into s_1 or s_2	
	• $\alpha^{(s_1,s_2)}(a)$: rate of transition	n labelled by <i>a</i> outgoi	ng from
	(<i>s</i> ₁ , <i>s</i> ₂)			
	• $\overline{\beta}^{(s_1,s_2)}(a)$: reversed rate of	f the passive transitio	n
		y a incoming into		

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin			ERCAT forn	nulation

Motivations

The theorem

Running example

Networks with blocking

Conclusion

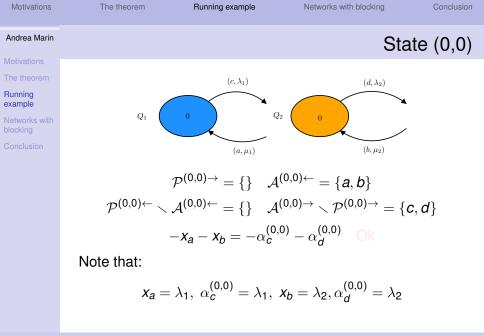
Theorem (ERCAT)

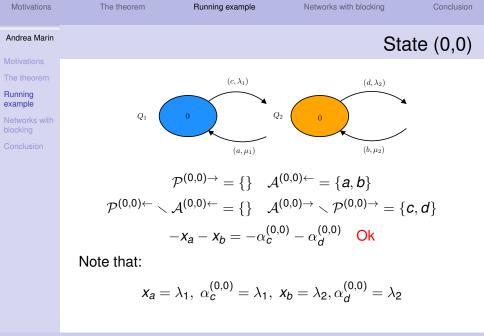
Given two models Q_1 and Q_2 in which RCAT structural conditions are not satisfied but the reversed rates of the active transitions are constant, their cooperation is in product-form if the following rate equation is satisfied for each state (s_1 , s_2) of the irreducible subset of states of the joint process:

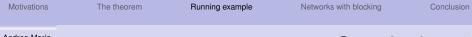
$$\sum_{a \in \mathcal{P}^{(s_1, s_2) \to}} x_a - \sum_{a \in \mathcal{A}^{(s_1, s_2) \leftarrow}} x_a$$
$$= \sum_{a \in \mathcal{P}^{(s_1, s_2) \leftarrow} \setminus \mathcal{A}^{(s_1, s_2) \leftarrow}} \overline{\beta}_a^{(s_1, s_2)} - \sum_{a \in \mathcal{A}^{(s_1, s_2) \to} \setminus \mathcal{P}^{(s_1, s_2) \to}} \alpha_a^{(s_1, s_2)}$$

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin				
Motivations				
The theorem	4 Motivations	by example		
Running example				
Networks with blocking	5 The theorer	n		
Conclusion				
	6 Solution of t	the running examp	ble	
	Open netwo and blocking		I queues with finite of	capacity
	Conclusion			

8 Conclusion





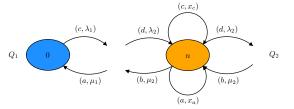


State (0,n), n>0

The theorem

Networks wit

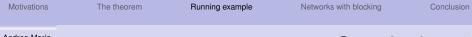
Conclusion



$$\mathcal{P}^{(0,n) \rightarrow} = \{a, c\} \quad \mathcal{A}^{(0,n) \leftarrow} = \{a, b, d\}$$
$$\mathcal{P}^{(0,n) \leftarrow} \smallsetminus \mathcal{A}^{(0,n) \leftarrow} = \{c\} \quad \mathcal{A}^{(0,n) \rightarrow} \smallsetminus \mathcal{P}^{(0,n) \rightarrow} = \{b, d\}$$
$$x_a + x_c - x_a - x_b - x_d = \overline{\beta}_c^{(0,n)} - \alpha_b^{(0,n)} - \alpha_d^{(0,n)} \mathsf{Okl}$$

Note that:

$$x_b = \lambda_2, \ x_c = \mu_1, \ x_d = \mu_2, \ \overline{\beta}_c^{(0,n)} = \mu_1, \ \alpha_b^{(0,n)} = \mu_2, \ \alpha_d^{(0,n)} = \lambda_2$$



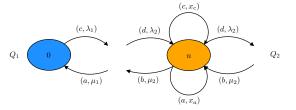
State (0,n), n>0

The theorem

Running example

Networks with blocking

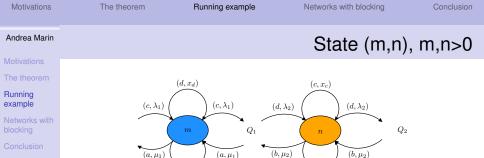
Conclusion



$$\mathcal{P}^{(0,n) \rightarrow} = \{a, c\} \quad \mathcal{A}^{(0,n) \leftarrow} = \{a, b, d\}$$
$$\mathcal{P}^{(0,n) \leftarrow} \setminus \mathcal{A}^{(0,n) \leftarrow} = \{c\} \quad \mathcal{A}^{(0,n) \rightarrow} \setminus \mathcal{P}^{(0,n) \rightarrow} = \{b, d\}$$
$$x_a + x_c - x_a - x_b - x_d = \overline{\beta}_c^{(0,n)} - \alpha_b^{(0,n)} - \alpha_d^{(0,n)} \mathsf{Ok!}$$

Note that:

$$x_b = \lambda_2, \ x_c = \mu_1, \ x_d = \mu_2, \ \overline{\beta}_c^{(0,n)} = \mu_1, \ \alpha_b^{(0,n)} = \mu_2, \ \alpha_d^{(0,n)} = \lambda_2$$



 (b, x_b)

$$\mathcal{P}^{(m,n)\to} = \{a, b, c, d\} \quad \mathcal{A}^{(m,n)\leftarrow} = \{a, b, c, d\}$$
$$\mathcal{P}^{(m,n)\leftarrow} \smallsetminus \mathcal{A}^{(m,n)\leftarrow} = \{\} \quad \mathcal{A}^{(m,n)\to} \smallsetminus \mathcal{P}^{(m,n)\to} = \{\}$$
$$=0$$

 (a, x_a)

Note that states (m, 0) with m > 0 are similar to (0, n), n > 0.

Andrea Marin

0

University of Venice

WUUWAUUUIS	The theorem	nunning example	Networks with blocking	Conclusion
Andrea Marin		Conclusion	of the running e	xample
Motivations				
The theorem				

• The model, as expected, is in product-form:

Dumping support

The theese

$$\pi(m,n) \propto \left(\frac{\lambda_1}{\mu_1}\right)^m \left(\frac{\lambda_2}{\mu_2}\right)^n$$

- Note that state (0,0) is either the only ergodic state or does not belong to the irreducible subset
- Hence, the normalising constant distinguishes this solution from the case of independent queues
- Every Boucherie's product-form with full blocking can be studied by ERCAT [Harrison '04a]

Running

example

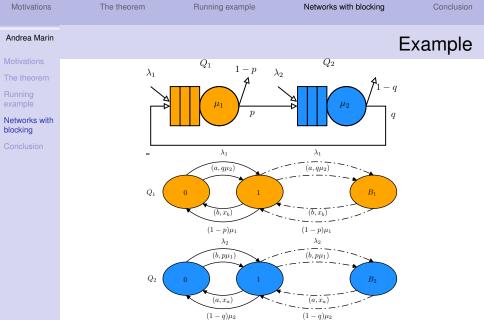
Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin				
Motivations				
The theorem	4 Motivations	by example		
Running example				
Networks with blocking	5 The theoren	n		
Conclusion				
	6 Solution of t	he running exan	nple	
	Open netwo and blocking		al queues with finite o	capacity

8 Conclusion

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin Motivations	Queues	s with finite	capacity and Re Service (RS) b	•
The theorem				locking
Running example				
A final state of the state of the				

- We consider a network of queues, *Q*₁,..., *Q_N* with finite capacity *B_i* and service rate μ_i
 - At a job completion at Q_i the customer goes to Q_j with probability P_{ij} . If Q_j if saturated the customer service is restarted and a new target station is selected at job completion
 - In open networks λ_i is the arrival rate at Q_i and customers leave the system with probability 1 − ∑_j P_{ij}. Arrivals at saturated queues are not allowed

blocking

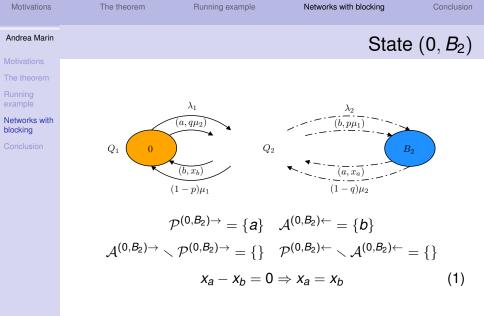


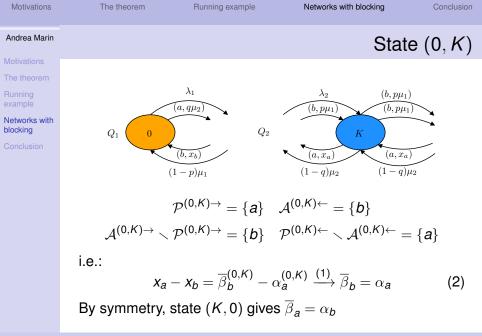
Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin				Notes
Motivations The theorem		(

- Running example
- Networks with blocking

Conclusion

- Differently from ordinary queueing networks we use active transitions to model synchronised arrivals and passive to model synchronised departures
- Which states shall we consider?
 - 1 (0,0)
 - 2 (0, K) with $0 < K < B_2$ (and symmetrically we obtain (K, 0) with $0 < K < B_1$)
 - $(0, B_2)$
 - 4 (K, B_2) with $0 < K < B_1$ (and symmetrically we obtain (0, K) with $0 < K < B_2$)
 - **5** (B_1, B_2)
- Note that $\alpha_a^{(\cdot,\cdot)} = q\mu_2$, $\alpha_b^{(\cdot,\cdot)} = p\mu_1$ and also $\overline{\beta}_a^{(\cdot,\cdot)} = \overline{\beta}_a$ and $\overline{\beta}_b^{(\cdot,\cdot)} = \overline{\beta}_b$





which is a consequence of (2)

 $\mathcal{P}^{(0,0)\to} = \{\} \quad \mathcal{A}^{(0,0)\leftarrow} = \{\}$ $\mathcal{A}^{(0,0)\to} \smallsetminus \mathcal{P}^{(0,0)\to} = \{a,b\} \quad \mathcal{P}^{(0,0)\leftarrow} \backsim \mathcal{A}^{(0,0)\leftarrow} = \{a,b\}$ $\overline{\beta}^{(0,0)}_{a} + \overline{\beta}^{(0,0)}_{b} = \alpha^{(0,0)}_{a} + \alpha^{(0,0)}_{b}$

 λ_1 λ_2 (a, q μ_2) (b, p μ_1) (b, p μ_1) (b, p μ_1) (c, q μ_2) (c, q) (c, q)(

Andrea Marin

Motivations

The theorem

Running example

Networks with blocking

Conclusion

Andrea Marin

State (0,0)

Running example

The theorem

 Q_1

Networks with blocking

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin		States (K, B	B ₂) and (B ₁ , K), (<i>B</i> ₁ , <i>B</i> ₂)
Motivations The theorem				
Running example		λ_1 λ_1 λ_1 $(a, q\mu_2)$ $(a, q\mu_2)$	λ_2 (b, p μ_1)	*
Networks with blocking	Q_1	K		B_2
Conclusion	*	(b, x_b) (b, x_b)		

 $(1-p)\mu_1$

For these states we have:

 $(1-p)\mu_1$

•
$$\mathcal{P}^{(\cdot,\cdot)\rightarrow} = \{a, b\}$$

• $\mathcal{A}^{(\cdot,\cdot)\leftarrow} = \{a, b\}$

 Since all the synchronising labels are present in both these sets, the rate equation for these states is an identity.

 (a, x_a) $(1-q)\mu_2$

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin	Con	ditions derive	d from the ERC	AT rate

equations

Motivations

The theorem

Running example

Networks with blocking

Conclusion

$$\begin{cases} x_a = x_b \\ \overline{\beta}_b = \alpha_a = q\mu_2 \\ \overline{\beta}_a = \alpha_b = p\mu_1 \end{cases}$$

The process analysis gives:

$$\overline{\beta}_b = \frac{x_b(\lambda_1 + q\mu_2)}{x_b + (1 - p)\mu_1} \quad \overline{\beta}_a = \frac{x_a(\lambda_2 + p\mu_1)}{x_a + (1 - q)\mu_2}$$

From which we straightforwardly derive:

$$x_a = \frac{(1-q)p\mu_1\mu_2}{\lambda_2}$$
 $x_b = \frac{(1-p)q\mu_1\mu_2}{\lambda_1}$ (3)

University of Venice

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin		Pro	duct-form rate co	ondition
Motivations The theorem Running example Networks with blocking Conclusion	condition: Under this ass	$(1 - p)q\lambda_2 =$ umption express	he product-form rate = $(1 - q)p\lambda_1$ sions (3) for x_a, x_b sat $x_b = \frac{(x_a + (1 - q)\mu_2)}{\lambda_2 + p\mu_1}$	
		$\begin{array}{c} \bullet & \lambda_1 \\ & & & (a,q\mu_2) \\ Q_1 & & & (b,x_b) \\ & & & (b,x_b) \\ & & & (b,p\mu_1) \\ Q_2 & & & (b,p\mu_1) \\ Q_2 & & & (b,p\mu_1) \\ Q_2 & & & (b,p\mu_1) \\ & & & (b,$	$\begin{array}{c} \lambda_1 \\ (a, qp_2) \\ (\overline{b}, \overline{x}_b) \\ (1-p)\mu_1 \\ (\overline{b}, \overline{p}_{11}) \\ (\overline{b}, pp_1) \\ (\overline{a}, \overline{x}_a) \\ (1-q)\mu_2 \end{array} \\ \end{array}$	

University of Venice

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin			Genera	lisation
Motivations				
The theorem				
Running example			a set of agent with pa	airwise
Networks with	cooperation	ons (this is also k	nown a MARCAT)	
blocking	 In case of 	QN with RS bloc	king and general top	ology in

 In case of QN with RS blocking and general topology ir [Balsamo et al. '10] is proved that:

Theorem

A QN (open or closed) with finite capacity stations and RS blocking policy with reversible routing matrix always satisfies ERCAT rate equations.

 Product-form for reversible routing has been proved in [Akyildiz '87]

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin		Close	ed QN with RS b	olocking
Motivations The theorem Running example Networks with blocking	 Note that 	the ERCAT rate e	RS blocking policy equation is an identit tations is empty in n	

• We immediately have the following result:

Theorem (QN with strict non-empty condition)

A closed QN with finite capacity stations and RS blocking is in product-form if the number of customers is such that none of the station can be empty (strict non-empty condition)

 In [Balsamo et al. '10] we prove that the same result for QN in which at most one station can be empty (non-empty condition)

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin				
Motivations				
The theorem	4 Motivations	by example		
Running example				
Networks with blocking	5 The theorem	n		
Conclusion				
	6 Solution of t	he running exam	nple	
	Open netwo and blocking		al queues with finite c	apacity
	8 Conclusion			

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin			Final re	emarks
Motivations				
The theorem				
example	In the sec	ond nart of the tu	Itorial we have showr	n how to
Networks with blocking	overcome	some limitations	of original RCAT and	
Conclusion		ormulation		
	apply In cas	(G)RCAT iterative	rwise cooperations we y to obtain the product- ons of (G)RCAT are no	-form
	algorithm	()	ERCAT may be done e computational cost of (G)RCAT	

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin			Appli	cations
Motivations				
The theorem				
Running example	Other mo	dels than those p	resented here may b	е
Networks with blocking	studied by	/ RCAT and its ex	tensions (e.g. produ	
Conclusion	Stochasti	c Petri Nets)		
	 New prod 	uct-form may be	derived	

- The solution of the traffic equations may be efficiently computed by means of the algorithm presented in [Marin et al. '09]
 - Numerical and iterative algorithm
- Product-form of models expressed in terms of different formalisms may be derived.

Motivations	The theorem	Running example	Networks with blocking	Conclusion
Andrea Marin		Appendix: Re	eversible routing	g matrix
Motivations				
The theorem	 Conside 	r a queueina netw	ork with N stations a	nd fived
Running example			$r = [p_{ij}], 1 \le i, j \le N$	

*p*_{i0} is the probability of leaving the network after a job completion at station *i*

- *e_i* is the (relative) visit ratio to station *i*
- λ_i is the arrival rate at station *i*

Definition (Reversible routing matrix) The routing matrix **P** is said reversible if:

$$\begin{cases} e_i p_{ij} = e_j p_{ji} & \text{ for } 1 \le i, j \le N \\ \lambda_i = e_i p_{i0} & \text{ for } 1 \le i \le N \end{cases}$$

Conclusion

Motivations	The theorem Running example Networks with blocking Conclus	sion
Andrea Marin	For Further Reading	1
Motivations		
The theorem		
Running example	B. Pittel:Closed exponential networks of queues with saturation: The Jackson-type stationary distribution and	
Networks with blocking	its asymptotic analysis,	
Conclusion	Math. of Op. Res., vol. 4, n. 4, pp. 357–378, 1979	
	 I.F. Akyildiz: Exact product form solution for queueing networks with blocking, IEEE Trans. on Computers, vol. C-36-1, pp. 122-125, 1987 	
	 P.G. Harrison: Turning back time in Markovian process algebra, Theoretical Computer Science, vol. 290, n. 3, pp. 1947–1986, 2003 	

Motivations	The theorem Running example Networks with blocking Conclusion
Andrea Marin	For Further Reading II
Motivations	
The theorem	
Running example	P.G. Harrison: Reversed processes, product forms and
Networks with blocking	a non-product form, Linear Algebra and its App., vol. 386, pp. 359–381,
Conclusion	2004.
	P.G. Harrison: Compositional reversed Markov processes, with applications to G-networks, Perf. Eval., vol. 57, n. 3, pp. 379–408, 2004
	A. Marin and S. R. Bulò: A general algorithm to compute the steady-state solution of product-form cooperating Markov chains, in Proc. of MASCOTS 2009, pp. 515–524, 2009

The theorem	Running example	Networks with blocking	Conclusion	
		For Further Rea	ading III	
📄 A. Marin,	M.G. Vigliotti: A g	general result for deri	ving	
product-form solutions of Markovian models, Proc. of WOSP/SIPEW Int. Conf. on Perf. Eval.				
approach capacity c	to product-forms onstraints,	in networks with finit	e	
	 A. Marin, I product-fo Proc. of W S. Balsam approach capacity c 	 A. Marin, M.G. Vigliotti: A g product-form solutions of M Proc. of WOSP/SIPEW Int. S. Balsamo, P. G. Harrison approach to product-forms capacity constraints, 	 For Further Rea A. Marin, M.G. Vigliotti: A general result for deri product-form solutions of Markovian models, Proc. of WOSP/SIPEW Int. Conf. on Perf. Eval. S. Balsamo, P. G. Harrison, A. Marin: A unifying approach to product-forms in networks with finit 	