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Andrea Marin Second part: sketch

1 Multiple application of (G)RCAT A class of
non-pairwise cooperations are considered. We show
how multiple applications of (G)RCAT can still derive
the product-form solution when it exists. Case studies:
finite capacity queues with skipping
[Pittel ’79, Balsamo et al. ’10], G-networks with signals
[Harrison ’04b].

2 Extended Reversed Compound Agent Theorem
(ERCAT). The Extended Reversed Compound Agent
Theorem [Harrison ’04a] is introduced. Applications for
cooperations of pairs of automata which do not yield
structural conditions of RCAT are shown.
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Part I

Multiple applications of RCAT
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Outline

1 A mild introduction

2 Finite capacity queues with skipping: the RCAT solution

3 Product-form solution for G-networks with positive
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Preliminary

...

.. .. ..

.. .. ..

N0 N1 N2

λ1λ1λ1

λNλN
λN

µ1µ1µ1

(a, µi)(a, µi)(a, µi)

µMµMµM

• Value Ka may be interpreted as the sum of the reversed
rates of the active transitions labelled by a incoming
into each state

• In case of Birth and Death processes this may be easily
computed, i.e.:

Ka =

∑N
j=1 λj∑M
j=1 µj

µi
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RCAT or GRCAT?

• The Reversed Compound Agent Theorem (RCAT)
[Harrison ’03] requires each state to have one incoming
active transition for each synchronising label. Value Ka
may be interpreted as the (constant) reversed rate of
this unique transition.

• The Generalisation (GRCAT) proposed in
[Marin et al. ’10] requires each state to have at least
one incoming active transition for each synchronising
label. Value Ka may be interpreted as the (constant)
sum of the reversed rates of these transitions.
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Skipping mechanism for queues with finite
capacity

• Consider a tandem of exponential queues, Q1 and Q2

• Q1 has a finite capacity B1 > 0
• Customers arrive according to a homogeneous Poisson

process at Q1

• If at the arrival epoch Q1 is saturated, the customer
immediately enters in Q2

• After service completion in Q1 customers go to Q2
Q1 Q2

λ
µ1 µ2
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Standard RCAT analysis

• Processes:

Q1

Q2

λλλ

(a, λ)

(a, µ1) (a, µ1) (a, µ1)

(a, xa)(a, xa)(a, xa)

µ2µ2µ2

0

0

1

1

2

2 B1

• Clearly, the reversed rates of a-transitions are constant,
hence Ka = λ

• Structural (G)RCAT conditions are satisfied
• Steady-state distribution:

π(n1,n2) ∝
(
λ

µ1

)n1
(
λ

µ2

)n2

with 0 ≤ n1 ≤ B1,n2 ≥ 0
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Possible generalisation?

• Consider a sequence of N exponential stations
Q1, . . . ,QN with finite capacities B1, . . . ,BN

• Customers arrive at Qi according to a homogeneous
Poisson process with rate λi , 1 ≤ i ≤ N

• At a job completion at queue Qi , the customer tries to
enter queue Qi+1, 1 ≤ i < N

• A customer is allowed to enter Qi if this is not saturated,
or must try to enter Qi+1 otherwise, 1 ≤ i < N

• After a job completion at queue QN or if this is
saturated, customers leave the system

• Note the system in unconditionally stable
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Are these pairwise cooperations?

Q1 Q2 Q3 QN

λ1

λ2 λ3 λN

µ1 µ2 µ3 µN

• Each transition in the system may change the state of
only two components but. . .

• Consider the cooperation between Q1 and Q3: an
arrival or a job completion at Q1 may generate an
arrival at Q3 depending on the state of Q2!

• The cooperation cannot be described only in terms of
pairs of queues in isolation

• These cases may still be studied by RCAT with multiple
applications
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Cooperating processes

Q1

Q2

Q3

QN

λ1λ1

λ2λ2

λ3λ3

λN

λNλN

(a12, µ1) (a12, µ1)

(a12, λ1)

(a12, x12)

(a12, x12)(a12, x12)

(a23,K12)

(a23, µ2)(a23, µ2)

(a23, λ2)

(a23, x23)

(a23, x23)(a23, x23)
(a34,K23)

(a34, µ3)(a34, µ3)

(a34, λ3)

(a(N−1)N , x(N−1)N ) (a(N−1)N , x(N−1)N )

µNµN

0

0

0

0

1

1

1

1 B1

B2

B3

BN
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Peculiarity of the model

• For 1 < i < N a self-loop of state Bi has two roles:
• it is passive with respect to cooperation label a(i−1)i
• it is active with respect to cooperation label ai(i+1) and

has K(i−1)i as a forward rate

• We apply (G)RCAT multiple times adding at each time
a new queue
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Application of RCAT to the first two queues

Q1

Q2

λ1λ1

λ2λ2

(a12, µ1) (a12, µ1)

(a12, λ1)

(a12, x12)

(a12, x12)(a12, x12)

(a23, µ2)(a23, µ2)

(a23, λ2)0

0

1

1 B1

B2

RCAT can be applied because:
• Structural conditions on passive transitions are satisfied
• Structural conditions on active transitions are satisfied
• We have K12 = λ1
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Application of GRCAT to Q2 and Q3

Q2

Q3

λ2λ2

λ3λ3

(a12, λ1)(a12, λ1)

(a23, λ1)

(a23, µ2)(a23, µ2)

(a23, λ2)

(a23, x23)

(a23, x23)(a23, x23)

(a34, µ3)(a34, µ3)

(a34, λ3)0

0

1

1 B2

B3

• Structurally, the situation is analogue to the previous case

• Note that state B2 has two transitions incoming with the
same label⇒We apply GRCAT and sum the reversed rates
obtaining λ2 + λ1

• The reversed rate of the death transitions is λ2 + λ1 which is
the value of x23
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Steady-state distribution

• Multiple applications of (G)RCAT lead to the following
values of the reversed rates:

Ki(i+1) =
i∑

`=1

λi 1 ≤ i < N

• The steady-state distribution is in product-form:

π(n1, . . . ,nN) ∝
N∏

`=1

ρn`
` ,

with 0 ≤ n` ≤ B` and

ρ` =

∑`
j=1 λj

µ`
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Some notes

• The result may be easily extended to more general
topologies

• Does the product-form yield in case of multiple server
stations?

• Yes! ⇒ the reversed rates do not change!
• Does the product-form yield in case of negative

customers?
• No! ⇒ the reversed rates of the “death” transitions are

different (smaller) from those of the self-loops
• But if we properly slow-down the arrival rates to

saturated queues we may still obtain a product-form
solution!
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Model description

• Network of N exponential queues Q1, . . . ,QN with
external Poisson customer arrivals with rate λi and
service rate µi

• At a job completion at Qi a customer can:
• go to queue Qj , j 6= i , with probability P+

ij as a standard
customer

• go to queue Qj , j 6= i , with probability P−ij as a trigger
• leave the system with probability 1−

∑
j(P

+
ij + P−ij )

• At a trigger arrival at Qj it:
• vanishes if Qj is empty
• removes a customer from Qj and add a customer to Qk ,

k 6= j , with probability Rjk , if Qj is non-empty
• removes a customer from Qj with probability

1−
∑

k Rjk , if Qj is non-empty

Andrea Marin University of Venice
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Model picture
Qi Qj

Qk

µi µj

µk

a−ij

bjk

• The picture shows just the cooperation among three
queues Qi , Qj , Qk embedded in a general networks

• We focus on the analysis of the trigger behaviours
• Positive customer analysis is the same of Jackson’s

networks
• A job completion in Qi may change the state of three

queues simultaneously: Qi , Qj , Qk
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Process underlying a generic queue Qi

Qi 0 1 2

λiλiλi

(a+ji, xa
+

ji)(a+ji, xa
+

ji)(a+ji, xa
+

ji)

(bji, xbji)(bji, xbji)(bji, xbji)

(a−ji, xa
−

ji)

(a+ij , µiP
+

ij )(a+ij , µiP
+

ij )

(a−ij , µiP
−

ij )(a−ij , µiP
−

ij )(a−ij , µiP
−

ij )

(a−ji, xa
−

ji)/(bij ,Ka−ji)(a−ji, xa
−

ji)/(bij ,Ka−ji)(a−ji, xa
−

ji)/(bij ,Ka−ji)
µi(1−

∑
j(P

−

ij + P+

ij ))

• 1 ≤ j ≤ N, j 6= i
• a+

ij : positive customer from Qi to Qj

• a−ij : trigger from Qi to Qj

• bij : customer arrival at Qj caused by a trigger arrival at
queue Qi
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Example

Q1 Q2

Q3

µ1 µ2

µ3

a+12

a+21

a+31

a−12

b23

λ1

λ3

• We set up the RCAT traffic equations by the analysis of
each queue in isolation

• This operation can be done algorithmically
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Queue 1

Q1 0 1

(a+
31
, xa+

31
)

(a+21, xa
+

21)

λ1

(a−12, µ1P
−

12)

(a+12, µ1P
+

12)

•
Ka−12 = (λ1 + Ka+

31 + Ka+
21)P

−
12

•
Ka+

12 = (λ1 + Ka+
31 + Ka+

21)P
+
12
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Queue 2

Q2 0 1

(a+12, xa
+

12)

(a−
12
, xa−

12
) (a+21, µ2P

+

21)

µ2(1− P+

21)

(a−12, xa
−

12)/(b23,Ka−12)

•

Ka+
21 =

Ka+
12

µ2 + Ka−12
µ2P+

21

•

Kb23 =
Ka+

12

µ2 + Ka−12
Ka−12
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Queue 3

Q3 0 1

λ3

(b23, xb23)

(a+31, µ3)

•
Ka+

31 = λ3 + Kb23
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Concluding the example

• The solution of the traffic equations straightforwardly
gives the product-form solution

• The traffic equations may be solved either symbolically
or numerically

• The algorithm presented in [Marin et al. ’09] applies an
iterative schema to efficiently solve such networks of
queues

• The approach may be extended to deal with negative
triggers (at a trigger arrival the receiving non-empty
queue may send a trigger to another queue)
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A system in Boucherie’s product-form

Q1 Q2

λ1 λ2

µ1 µ2

• Two exponential queues Q1 and Q2 with independent
Poisson arrival streams with rate λ1 and λ2

• Service rates are µ1 and µ2

• If one of the queues enters in state 0 the other one is
blocked (i.e. no arrivals or service completions occur)

• The model is known to be in Boucherie’s product-form
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Process representation

Q1

Q2

(c, λ1)(c, λ1)(c, λ1)

(d, λ2)(d, λ2)(d, λ2)

(b, µ2)(b, µ2)(b, µ2)

(a, µ1)(a, µ1)(a, µ1)

(d, xd)(d, xd)

(b, xb)(b, xb)

(c, xc)(c, xc)

(a, xa)(a, xa)

0

0

1

1

2

2

Are (G)RCAT structural conditions satisfied? NO!
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Joint state space

• ERCAT requires to check a rate equation for each state
of the irreducible subset of the joint process

• Often, states can be opportunely clustered and hence
the computation becomes feasible

• The computational complexity is higher than the
standard (G)RCAT

• Let (s1, s2) be a state of the irreducible subset of the
joint process

Andrea Marin University of Venice



Andrea Marin

Motivations

The theorem

Running
example

Networks with
blocking

Conclusion

Motivations The theorem Running example Networks with blocking Conclusion

Fundamental definitions

• P(s1,s2)→: outgoing labels from s1 or s2

• P(s1,s2)←: incoming passive labels into s1 or s2

• A(s1,s2)→: outgoing active labels from s1 or s2

• A(s1,s2)←: incoming active labels into s1 or s2

• α(s1,s2)(a): rate of transition labelled by a outgoing from
(s1, s2)

• β(s1,s2)(a): reversed rate of the passive transition
labelled by a incoming into (s1, s2)
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ERCAT formulation

Theorem (ERCAT)
Given two models Q1 and Q2 in which RCAT structural
conditions are not satisfied but the reversed rates of the
active transitions are constant, their cooperation is in
product-form if the following rate equation is satisfied for
each state (s1, s2) of the irreducible subset of states of the
joint process:∑

a∈P(s1,s2)→

xa −
∑

a∈A(s1,s2)←

xa

=
∑

a∈P(s1,s2)←rA(s1,s2)←

β
(s1,s2)
a −

∑
a∈A(s1,s2)→rP(s1,s2)→

α
(s1,s2)
a
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State (0,0)

Q1
Q2

(c, λ1) (d, λ2)

(b, µ2)(a, µ1)

00

P(0,0)→ = {} A(0,0)← = {a,b}

P(0,0)← rA(0,0)← = {} A(0,0)→ r P(0,0)→ = {c,d}

−xa − xb = −α(0,0)
c − α(0,0)

d Ok

Note that:

xa = λ1, α
(0,0)
c = λ1, xb = λ2, α

(0,0)
d = λ2
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State (0,n), n>0

Q1 Q2

(c, λ1) (d, λ2) (d, λ2)

(b, µ2) (b, µ2)(a, µ1)

(c, xc)

(a, xa)

0 n

P(0,n)→ = {a, c} A(0,n)← = {a,b,d}
P(0,n)← rA(0,n)← = {c} A(0,n)→ r P(0,n)→ = {b,d}

xa + xc − xa − xb − xd = β
(0,n)
c − α(0,n)

b − α(0,n)
d Ok!

Note that:

xb = λ2, xc = µ1, xd = µ2, β
(0,n)
c = µ1, α

(0,n)
b = µ2, α

(0,n)
d = λ2
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State (0,n), n>0

Q1 Q2

(c, λ1) (d, λ2) (d, λ2)

(b, µ2) (b, µ2)(a, µ1)

(c, xc)

(a, xa)

0 n

P(0,n)→ = {a, c} A(0,n)← = {a,b,d}
P(0,n)← rA(0,n)← = {c} A(0,n)→ r P(0,n)→ = {b,d}

xa + xc − xa − xb − xd = β
(0,n)
c − α(0,n)

b − α(0,n)
d Ok!

Note that:

xb = λ2, xc = µ1, xd = µ2, β
(0,n)
c = µ1, α

(0,n)
b = µ2, α

(0,n)
d = λ2
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State (m,n), m,n>0

Q1 Q2

(c, λ1) (c, λ1) (d, λ2) (d, λ2)

(b, µ2) (b, µ2)(a, µ1) (a, µ1)

(d, xd)

(b, xb)

(c, xc)

(a, xa)

m n

P(m,n)→ = {a,b, c,d} A(m,n)← = {a,b, c,d}

P(m,n)← rA(m,n)← = {} A(m,n)→ r P(m,n)→ = {}

0=0

Note that states (m,0) with m > 0 are similar to (0,n),
n > 0.
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Conclusion of the running example

• The model, as expected, is in product-form:

π(m,n) ∝
(
λ1

µ1

)m (λ2

µ2

)n

• Note that state (0,0) is either the only ergodic state or
does not belong to the irreducible subset

• Hence, the normalising constant distinguishes this
solution from the case of independent queues

• Every Boucherie’s product-form with full blocking can
be studied by ERCAT [Harrison ’04a]
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4 Motivations by example

5 The theorem

6 Solution of the running example

7 Open networks of exponential queues with finite capacity
and blocking

8 Conclusion
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Queues with finite capacity and Repetitive
Service (RS) blocking

• We consider a network of queues, Q1, . . . ,QN with
finite capacity Bi and service rate µi

• At a job completion at Qi the customer goes to Qj with
probability Pij . If Qj if saturated the customer service is
restarted and a new target station is selected at job
completion

• In open networks λi is the arrival rate at Qi and
customers leave the system with probability 1−

∑
j Pij .

Arrivals at saturated queues are not allowed
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Example
Q1

Q2

λ1 λ2

µ1 µ2

p

1− p

q

1− q

Q1

Q2

λ1λ1

λ2λ2

(a, qµ2)(a, qµ2)

(b, xb)(b, xb)

(b, pµ1)(b, pµ1)

(a, xa)(a, xa)

(1− q)µ2(1− q)µ2

(1 − p)µ1(1 − p)µ1

0

0

1

1 B1

B2
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Notes

• Differently from ordinary queueing networks we use
active transitions to model synchronised arrivals and
passive to model synchronised departures

• Which states shall we consider?
1 (0,0)
2 (0,K ) with 0 < K < B2 (and symmetrically we obtain

(K ,0) with 0 < K < B1)
3 (0,B2)
4 (K ,B2) with 0 < K < B1 (and symmetrically we obtain

(0,K ) with 0 < K < B2)
5 (B1,B2)

• Note that α(·,·)
a = qµ2, α(·,·)

b = pµ1 and also β(·,·)a = βa

and β(·,·)b = βb
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State (0,B2)

Q1 Q2

λ1 λ2

(a, qµ2)

(b, xb)

(b, pµ1)

(a, xa)

(1− q)µ2(1 − p)µ1

0 B2

P(0,B2)→ = {a} A(0,B2)← = {b}

A(0,B2)→ r P(0,B2)→ = {} P(0,B2)← rA(0,B2)← = {}

xa − xb = 0⇒ xa = xb (1)
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State (0,K )

Q1
Q2

λ1 λ2

(a, qµ2)

(b, xb)

(b, pµ1)

(b, pµ1)

(b, pµ1)

(a, xa)(a, xa)

(1− q)µ2(1− q)µ2(1 − p)µ1

0 K

P(0,K )→ = {a} A(0,K )← = {b}

A(0,K )→ r P(0,K )→ = {b} P(0,K )← rA(0,K )← = {a}

i.e.:
xa − xb = β

(0,K )
b − α(0,K )

a
(1)−−→ βb = αa (2)

By symmetry, state (K ,0) gives βa = αb
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State (0,0)

Q1 Q2

λ1 λ2

(a, qµ2)

(b, xb)

(b, pµ1)

(a, xa)

(1− q)µ2(1 − p)µ1

00

P(0,0)→ = {} A(0,0)← = {}

A(0,0)→ r P(0,0)→ = {a,b} P(0,0)← rA(0,0)← = {a,b}

β
(0,0)
a + β

(0,0)
b = α

(0,0)
a + α

(0,0)
b

which is a consequence of (2)
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States (K ,B2) and (B1,K ), (B1,B2)

Q1 Q2

λ1λ1 λ2

(a, qµ2)(a, qµ2)

(b, xb)(b, xb)

(b, pµ1)

(a, xa)

(1− q)µ2(1 − p)µ1(1 − p)µ1

K B2

• For these states we have:
• P(·,·)→ = {a,b}
• A(·,·)← = {a,b}

• Since all the synchronising labels are present in both
these sets, the rate equation for these states is an
identity.
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Conditions derived from the ERCAT rate
equations


xa = xb

βb = αa = qµ2

βa = αb = pµ1

The process analysis gives:

βb =
xb(λ1 + qµ2)

xb + (1− p)µ1
βa =

xa(λ2 + pµ1)

xa + (1− q)µ2

From which we straightforwardly derive:

xa =
(1− q)pµ1µ2

λ2
xb =

(1− p)qµ1µ2

λ1
(3)
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Product-form rate condition

Since xa = xb by (1) we have the product-form rate
condition:

(1− p)qλ2 = (1− q)pλ1

Under this assumption expressions (3) for xa, xb satisfies:

xa =
(xb + (1− p)µ1)qµ2

λ1 + qµ2
xb =

(xa + (1− q)µ2)pµ1

λ2 + pµ1

Q1

Q2

λ1λ1

λ2λ2

(a, qµ2)(a, qµ2)

(b, xb)(b, xb)

(b, pµ1)(b, pµ1)

(a, xa)(a, xa)

(1− q)µ2(1− q)µ2

(1 − p)µ1(1 − p)µ1

0

0

1

1 B1

B2
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Generalisation

• ERCAT may be applied to a set of agent with pairwise
cooperations (this is also known a MARCAT)

• In case of QN with RS blocking and general topology in
[Balsamo et al. ’10] is proved that:

Theorem
A QN (open or closed) with finite capacity stations and RS
blocking policy with reversible routing matrix always satisfies
ERCAT rate equations.

• Product-form for reversible routing has been proved in
[Akyildiz ’87]
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Closed QN with RS blocking

• Consider a closed QN with RS blocking policy
• Note that the ERCAT rate equation is an identity for

state n when none of the stations is empty in n
• We immediately have the following result:

Theorem (QN with strict non-empty condition)
A closed QN with finite capacity stations and RS blocking is
in product-form if the number of customers is such that none
of the station can be empty (strict non-empty condition)

• In [Balsamo et al. ’10] we prove that the same result for
QN in which at most one station can be empty
(non-empty condition)
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Final remarks

• In the second part of the tutorial we have shown how to
overcome some limitations of original RCAT and
GRCAT formulation

• In case of some non-pairwise cooperations we can
apply (G)RCAT iteratively to obtain the product-form

• In case structural conditions of (G)RCAT are not satisfy
we may apply ERCAT

• Application of (G)RCAT or ERCAT may be done
algorithmically, however the computational cost of
ERCAT is higher than that of (G)RCAT
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Applications

• Other models than those presented here may be
studied by RCAT and its extensions (e.g. product-form
Stochastic Petri Nets)

• New product-form may be derived
• The solution of the traffic equations may be efficiently

computed by means of the algorithm presented in
[Marin et al. ’09]

• Numerical and iterative algorithm

• Product-form of models expressed in terms of different
formalisms may be derived.
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Appendix: Reversible routing matrix

• Consider a queueing network with N stations and fixed
routing probability matrix P = [pij ], 1 ≤ i , j ≤ N

• pi0 is the probability of leaving the network after a job
completion at station i

• ei is the (relative) visit ratio to station i
• λi is the arrival rate at station i

Definition (Reversible routing matrix)
The routing matrix P is said reversible if:{

eipij = ejpji for 1 ≤ i , j ≤ N
λi = eipi0 for 1 ≤ i ≤ N
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