
Composition of product-form Generalized Stochastic Petri Nets: a modular approach

Simonetta Balsamo and Andrea Marin
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
Via Torino, 155

Venice, Italy
{balsamo,marin}@dsi.unive.it

KEYWORDS

Stochastic modeling, product-form, exact analysis

ABSTRACT

In this paper we present a novel approach to specify
and analyze complex system using product-form models.
The main strengths of this approach are its high modu-
larity and its ability of dealing with a very large class of
product-form models. This has been possible because
the product-form analysis is based on two properties
that are formulated at a very low level, i.e., the Markov
implies Markov property and the Reversed Compound
Agent Theorem. We propose a unifying framework for
combining product-form models defined in terms of dif-
ferent formalisms and we give the conditions that allow
the composition to be in product-form. The semantic of
their combination is formally defined because the var-
ious sub-models are transformed into GSPNs with an
equivalent underlying process. In particular, we illus-
trate with several examples that we can perform analy-
sis of models with non-linear traffic equations, including
those with some components being G-queues, product-
form stochastic Petri nets, or multi-class queueing sta-
tions.

INTRODUCTION

Stochastic models have proved to play a pivotal role in
the performance analysis of software and hardware ar-
chitectures. The model of the system can be defined ac-
cording to a large set of formalisms which ranges from
Petri nets extensions to queueing systems and others.
Generalized Stochastic Petri Nets (GSPNs) are a well-
known formalism capable of representing complex sys-
tems in a formal way. This formalism is a stochastic
extension of Petri Nets (PNs) that had been introduced
to describe systems with parallel computations. Infor-
mally, PNs consist of places, transitions and arcs that
connect places to transitions or vice-versa. Tokens rep-
resent the state of the model and are associated with the
places. The firing of the transitions change the state of
the model. In the Stochastic Petri Nets (SPNs) the tran-
sition firing takes an exponentially distributed random

time and, under a set of assumptions on the firing se-
mantic, the marking process, i.e., the stochastic process
that describes the state of the model along the time,
is a Continuous Time Markov Chain (CTMC). GSPNs
[Marsan et al. (1995)] can be seen as a extension of SPNs
that admits two types of transitions: immediate and
timed. The firing of the former ones occurs in a deter-
ministically zero time, while the firing of the latter ones
requires an exponentially distributed random delay. We
summarize the main strengths of GSPNs.

• It has a strong semantic. Indeed, given a GSPN
model with its initial marking, the underlying
stochastic process is uniquely determined. This
property is not shared with all the formalisms for
the stochastic modeling, e.g., queueing networks are
usually described by a high level language.

• It allows for qualitative analysis of the system, by
the so-called structural analysis, e.g., using the net
invariants.

• The state of the model and its structure are strongly
separated. For instance, we can define a struc-
turally finite model with an underlying process with
infinite states.

• The formalism, with inhibitor arcs, is very expres-
sive. Indeed, it is has been proved that PNs with
inhibitor arcs are Turing-complete.

If the process underlying a GSPN has a steady state,
then we can compute its stationary probability distribu-
tion. This plays a pivotal role in the performance eval-
uation field, because from the stationary distribution of
a model we can derive a set of significant performance
indices, such as the throughput, the response time dis-
tribution, the distribution of the number of tokens in
a place, and so on. However, the analysis of a model
defined in terms of GSPNs may easily become an unfea-
sible task. This is mainly due to two reasons: the first
problem is shared with all PNs models, i.e., it is com-
putationally expensive (when not impossible) to build
the set of all the reachable states of the model given its
initial state. Indeed, it is known that the reachability
problem (given an initial marking, is a marking reach-
able after any number or sequence of transition firing?)

for PNs without inhibitor arcs is EXPSPACE, while it
is equivalent to the halting problem of the Turing ma-
chines for PNs with inhibitor arcs. The second prob-
lem concerns the calculation of the performance indices
when the model admits a steady-state (i.e., when the un-
derlying CTMC is ergodic). Indeed, even small models
may have huge state spaces and, in the general case, the
stationary state probability distribution is calculated as
the solution of a linear system whose rank is the number
of states of the model. Usually, this is computationally
expensive and may soon lead to numerical instability of
the algorithms. These problems are partially overcome
by product-form models. These admit a decomposition
in a set of interacting sub-models whose stationary dis-
tribution can be computed in isolation after an appro-
priate parameterization. Then, the stationary solution
of the entire model is obtained as normalized product of
the distributions of the sub-models. Although the most
important example of product-form models is defined
in terms of queueing networks, i.e., the BCMP theorem
[Baskett et al. (1975)], the investigation of this prop-
erty has involved almost all the other formalisms with
an underlying CTMC. In the case of GSPNs a set of
results are presented in [Coleman et al. (1996); Balbo
et al. (2002)]. However, more recently, the problem of
defining a unique framework for the product-form anal-
ysis of Markovian models has been investigated. In our
opinion a major result is stated in [Harrison (2003)],
where the author introduces the Reversed Compound
Agent Theorem (RCAT) whose low-level formulation al-
lows for its application despite of the formalism used to
specify the interacting models. Using this result, and a
generalization of the Markov implies Markov property
[Muntz (1972)], in [Marin (2009)] we propose a unify-
ing framework for combining product-form models de-
fined in terms of different formalisms. In particular, we
show how it is possible to model G-networks and multi-
class queueing networks using GSPNs and then, we give
conditions that allow the composition of these building-
blocks such that the stationary solution is in product-
form. This is useful to model complex systems in a
framework where different types of sub-models can be
combined maintaining the product-form solution. The
various type of sub-models can be defined using different
performance modeling formalisms, such as queueing net-
works and their extensions, GSPNs and some stochas-
tic process algebra. The semantic of their combination
is formally defined because the various sub-models are
transformed in GSPNs with an equivalent underlying
process. Moreover, we show how it is possible to com-
pute the stationary distribution in product-form.

In this paper we present a novel approach to define a
GSPN sub-model in product-form. In simple words, we
aim to allow the modeler to store a library of product-
form GSPN sub-models so that he can use them to de-
scribe complex architectures by specifying the way they
cooperate. Note that we do not aim to define an auto-

matic way to decide whether a sub-model is in product-
form or not (although it can sometimes be done, e.g.,
[Coleman et al. (1996); Balbo et al. (2002)]), but we
introduce the idea that given a library of models that
are known to satisfy a set of properties, and a system
described as a composition of these models, we can au-
tomatically decide whether that system has a product-
form solution, and calculate it. According to this ap-
proach the GSPNs have to be appropriately annotated
with some information that we shall describe in details
in the following sections. It is worthwhile pointing out
that within this framework it is possible to specify mod-
els such as G-queues, SPNs, multi-class queueing sta-
tions and PEPA models that interact. Moreover, we
present a practical contribution of the theoretical re-
sult just illustrated above. Since the modularization
and standardization is really important in this approach
(e.g., we would like that the modeler may define a GSPN
with his favorite tool and then just add the data needed
for the product-form analysis) we propose an implemen-
tation of this framework based on the Petri Net Markup
Language (PNML) [Weber and Kindler (2003)] and its
extension to the modules [Kindler and Weber (2001)].
Finally, as further practical contribution, we show how
to define GSPN models equivalent to G-queues.

We shall now recall the GSPN definition and the mod-
ular composition of GSPN submodels. We start from
an example of modular combination of G-queues. Then
we introduce the two basic properties for product-form
models, i.e., the Markov implies Markov property and
the Reversed Compound Agent Theorem, formulated at
the CTMC level. We present the proposed framework to
combine different sub-models into a unique GSPN that
maintains the product-form solution. The submodels
can be defined in terms of different formalisms and can
be combined because thy can be transformed in GSPNs
whose underlying process is equivalent. We discuss how
to implement the framework by using PNML. Finally,
we present some examples of application of the proposed
technique.

GSPN FORMALISM

In this section we briefly recall the Generalized Stochas-
tic Petri Nets (GSPN) definition. A GSPN is a 8-tuple,
defined as follows:

GSPN = (P, T , I(·, ·), O(·, ·),H(·, ·),Π(·), w(·, ·),m0)

where: P = {P1, . . . , PM} is the set of M places,
T = {t1, . . . , tN} is the set of N transitions (both im-
mediate and timed). I(ti, Pj) : T × P → N is the input
function, 1 ≤ i ≤ N , 1 ≤ j ≤ M , O(ti, Pj) : T × P → N

is the output function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,
H(ti, Pj) : T × P → N is the inhibition function,
1 ≤ i ≤ N , 1 ≤ j ≤ M . Π(ti) : T → N is a function
that specifies the priority of transition ti, 1 ≤ i ≤ N ,

m ∈ N
M denotes a marking or state of the net, where mi

represents the number of tokens in place Pi, 1 ≤ i ≤ N ,
w(ti,m) : T × N

M → R is the function which specifies
for each timed transition ti and each marking m a state
dependent firing rate, and for immediate transitions a
state dependent weight, and finally m0 ∈ N

M represents
the initial state of the GSPN, i.e., the number of tokens
in each place at the initial state. For each transition ti
let us define the input vector I(ti), the output vector
O(ti) and the inhibition vector H(ti) as follows: I(ti) =
(i1, . . . , iM), where ij = I(ti, Pj), O(ti) = (o1, . . . , oM),
where oj = O(ti, Pj) and H(ti) = (h1, . . . , hM), where
hj = H(ti, Pj). Function Π(ti) associates a priority to
transition ti. If Π(ti) = 0 then ti is a timed transi-
tion, i.e., it fires after an exponentially distributed fir-
ing time with mean 1/w(ti,m), where m is the marking
of the net. If Π(ti) > 0 then ti is an immediate tran-
sition and its firing time is zero. We say that transi-
tion ta is enabled by marking m if mi ≥ I(ta, Pi) and
mi < H(ta, Pi) for i = 1, . . . ,M and no other transition
of higher priority is enabled. The firing of transition ti
changes the state of the net from m to m−I(ti)+O(ti).
The reachability set RS(m0) of the net is defined as the
set of all markings that can be reached in zero or more
firings from m0. We say that marking m is tangible
if it enables only timed transitions and it is vanishing
otherwise. For a vanishing marking m let Tα be the set
of enabled immediate transitions. Then the firing prob-
ability for any transition ti ∈ Tα and any state m is
proportional to its weight. Given a tangible marking m
the transition with the lowest associated stochastic time
fires. A GSPN is represented by a graph with the follow-
ing conventions: timed transitions are white filled boxes,
immediate transitions are black filled boxes, places are
circles, if I(ti, Pj) > 0 we draw an arrow from Pj to ti
labeled with I(ti, Pj), if O(ti, Pj) > 0 we draw an arrow
from ti to Pj labeled with O(ti, Pj), if H(ti, Pj) > 0 we
draw an circle ending line from Pj to ti labeled with the
value of H(ti, Pj), the marking m is represented by a set
of mj filled circles representing the tokens in place Pj

for each j = 1, . . . ,M . For ordinary nets we do not use
labels for the arrows. If we do not specify the weight of
immediate transitions it is assumed to be 1 (usually we
do this when we are sure there are no conflicts among
immediate transitions).
GSPN analysis consists in finding the steady-state prob-
ability for each tangible marking of the reachability
set, from which one can derive other average perfor-
mance indices. Some analysis techniques are presented
in [Marsan et al. (1995)].

GSPNs AND MODULES

The problem of giving a correct syntax and semantic of
modular compositions of GSPNs has been addressed by
several authors. In fact, the modularity allows for a def-
inition of the models that is coherent with the principles

of software and hardware engineering. In this paper, we
use the module definition as proposed in [Kindler and
Weber (2001)]. The main idea is that a module can be
instantiated several times with possibly different param-
eterizations. It has an input and an output interfaces
that allow the modeler to define how every instance in-
teracts with the rest of the model, and an internal im-
plementation that is invisible to the user. This approach
could somehow be seen as the well-know procedure call
schema implemented by most of the programming lan-
guages, where the input/output interfaces may be in-
terpreted as the formal input/output parameters and
the instances of a module as the procedure call. Within
this interpretation, when the modeler connects the in-
terfaces of a module with other elements of the model,
he is defining the association between the actual and the
formal parameters. In the following example we show
a GSPN module whose underlying CTMC is equivalent
to that of a G-queue, see [Gelenbe (1991)].

Example 1 (GSPN model of a G-queue) G-
queues are the smallest components of G-networks.
They have been successfully used in a wide range of
applications such as the analysis of database systems,
communication networks or neural networks. In its
simplest definition, a G-queue is a single-class queueing
center with exponential service time distribution. Two
arrival streams of customers are allowed: one for the
so-called positive customers that exactly behave like
ordinary customers in standard queueing stations,
and the other for the negative customers. When one
of these arrives to the station it can either delete
a queued (positive) customer, if any is present, or
simply vanish if the G-queue is empty. By now, we
assume Poisson independent arrivals for positive and
negative customers. Figure 1 illustrates a possible
GSPN representation of a G-queue.

g-queue module

output
interface

input
interface

instances
of the imported
places

P1

P2

Tp1

Tp2

Pp1

Pp2

T1

T2

t3

t4

Figure 1: GSPN module equivalent to a G-queue.

The module consists of two input places P1 and P2. The
former stores a token for each positive customer in the
station, while the latter stores one token at a negative
customer arrival epoch. Notice that if there is one to-
ken in P2 then either immediate transition t3 or t4 is
enabled. The firing of t3 consumes also a token from P1

(positive customer deletion), while the firing of t4 simply
consumes the token in P2 (i.e., the queue is empty and
it vanishes). Moreover, it is immediate to observe that
in every tangible marking of the net there are no tokens
in P2. Finally, T1 and T2 model the service of a cus-
tomer. We use two transitions in order to straightfor-
wardly model two different routings for customers served
in such a station. For example T1 may model the depar-
ture of a positive customer and T2 the departure of a
negative customer. Therefore, the service rate of the
station is µ = w(T1, ·) + w(T2,)̇. The input places are
associated with places PI1 and PI2. TP1 and TP2 repre-
sent a hypothetical connection of a net with an instance
of the module.

A brief introduction to concept of GSPN mod-
ule. In order to keep this paper self-contained, in this
part we review the main concepts concerning the idea of
modularization that we refer to. For a formal definition
of the syntax and of the semantic we refer to [Kindler
and Weber (2001)]. Note that other approaches to PN
modularization are available in literature, e.g., that used
by Timenet [Zimmermann et al. (2000)], but the passage
from one to the other is not complicated.
Informally, we can say that a module is a net with an in-
terface. We can create several instances of a module, but
only the objects specified in its interface are accessible
from outside the instance. What is not in the interface
is called internal implementation. Referring to the Ob-
ject Oriented Programming, this corresponds to the en-
capsulation feature. The interface consists of two parts:
the input part (formed by the imported objects) and the
output part (formed by the exported objects). Imported
objects play the same role of formal parameters in the
programming languages. Indeed, they are representa-
tives of objects that are provided when the module is
instantiated. Conversely, the objects that are exported
are defined inside the implementation of a module (e.g.,
they may be provided as referred objects for an input
interface of other module instances).
One can import and export three type of objects, i.e.,
places, transitions and symbols. The import and export
of symbols allows us to define the parameterization of
the modules. For instance, input symbols may be the
transition rates, the number of tokens in a place of the
internal implementation of the module and so on. The
technique described in [Kindler and Weber (2001)] is re-
ally flexible, so one can just import or export functions,
or anything else which can be useful for the modeler
purposes. In the following we use input (output) object

and imported (exported) object as synonymous.
Let us now reconsider the module defined in Example
1 and let us build a simple G-network using the GSPN
modularization.

Example 2 (G-networks) A composition of G-
queues is called G-network. These models have shown
to be suitable for the analysis of several software and
hardware architectures. Let us consider the G-network
depicted in Figure 2-(A). The G-network consists of

m 1 m 2

3.0

0.9

2.0

0.6

C1 C2

0.9

0.1

0.6

0.4

3.0 2.0
(A)

(B)

+

+

+

-

P1

P1P1

P2

P2P2

P3

T1

T1T1

T2T2

µµ

λ

pp

P4

Figure 2: Use of GSPN modules to describe a G-
network. (A) the original model. (B) the module com-
position.

two nodes, C1 and C2, with service rates 3.0 and 2.0,
respectively. When customers leave C1 they can enter
in C2 either as positive or negative customers, with
probability 0.9 and 0.1. Customers may arrive from
outside to C2 with rate λ. Once a customer is served
by C2 it can leave the system with probability 0.4 or go
back to C1 with probability 0.6.
In order to give a GSPN representation of such a
network we use a composition of two instances of
the module introduced in Example 1. Actually, we
added two symbols in the input interface, µ and p,
which represent the service rate of the node, and the
probability of firing of T1 with respect to T2. Therefore,
p and µ are used in the module definition to specify the
rates of T1 and T2 in an obvious way: w(T1, ·) = pµ
and w(T2, ·) = (1 − p)µ. Figure 2-(B) illustrates two
instances of the module, m1 and m2, that are equivalent
to the G-network of Figure 2-(A). In particular, the
dotted arrows associate an object of an input interface
with a concrete object (e.g., place P1 in m2 with P3, or
µ in m1 with 3.0). Note that, since the scope of the

object names is the module instance itself, the net has
no conflicts on names, e.g., P1 in instance m1 cannot
be confused with P1 of the net.

THE PRODUCT-FORM FRAMEWORK

In this section we present a framework to represent
complex models combining different product-form sub-
models into a unique GSPN that maintains the product-
form solution. This work is based on two results, i.e.,
the Reversed Compound Agent Theorem (RCAT) [Har-
rison (2003)] and the Markov implies Markov property
(M ⇒ M) [Muntz (1972)]. After formally defining
the composition rules of the module instances, we show
that, although deciding whether a GSPN model satisfies
M ⇒ M or RCAT conditions is generally very difficult
to do algorithmically, it is possible to store some infor-
mation in the module descriptions that will allow a tool
to automatically decide if a composition of such models
has product-form solution and then derive the station-
ary distribution. As already mentioned, this means that
the modeler works with a library of product-form models
that have been opportunely annotated and that can be
equivalent to G-queues, BCMP stations or other mod-
els that have been proved to be in product-form. GSPN
in product-form are studied in [Balbo et al. (2002)] and
they are defined as GSPNs reducible to SPNs in Cole-
man, Henderson et al. product-form [Coleman et al.
(1996)].

RCAT and the M ⇒ M property. In this part we
informally introduce RCAT and the M ⇒ M property.
Since the product-form analysis requires to study each
components as if it were in isolation, we give the def-
inition of what we mean by an isolated instance of a
module (IIM).

Definition 1 (Isolated instance of a module)
Given an instance of a module in a net, its IIM is
defined as follows:

1. For each input transition Ti of the module we asso-
ciate a transition with a null input vector and rate
χti.

2. For each input place Pj we associate a place which
is fed by a transition Tpj with a null input vector
and an rate χpj.

The rates χti and χpj for each input transition Ti and
each input place Pj are the input rates of the IIM, and
I is the set of input rates.

As an instance we can consider the net of Figure 1 where
we can observe an IIM of the G-queue. The input rates
are the rates of Tp1 and Tp2. We now introduce the set
of reachable states of a module.

Definition 2 (Reachability set of a module) The
reachability set of a module is the set of all the markings
reachable from its IIMs.

Note that, in general, the reachability set of a module
is not finite, and this is one of the reasons that makes
the automatic decision of the following properties a very
difficult task.
In order to simplify the formulation of RCAT and M ⇒
M for GSPN modules, we limit the output objects to be
transitions or symbols. This can be done without loss
of generality possibly using immediate transitions.

Definition 3 (RCAT-compatible IIM) We say
that a IIM of a module is RCAT-compatible if and only
if the following three conditions are satisfied:

1. For every tangible state, the instances of the in-
put transitions must be always enabled. Informally,
we can say that the module internal implementation
cannot inhibit the input transition in any tangible
marking.

2. Let m be a tangible marking of the reachability set.
Then, if To is an output transition there must exist
one tangible marking m′ such that m is reachable
by m′ through the firing of To.

3. For every pair of m and m′ such that m is reachable
from m′ through the firing of output transition To

the following relation holds:

π(m′)w(To,m
′) = Koπ(m), (1)

where π(m) is the stationary probability of marking
m and Ko ∈ R+.

These three conditions are just a rewriting of RCAT
conditions [Harrison (2003)]. Finally, we observe that
Ko is a constant which is associated with each output
transition To that in general depends on the structure
of the module and the input rates.

Definition 4 (M ⇒ M-compatible module) We
say that a module is M ⇒ M -compatible if and only if
the following three conditions are satisfied:

1. See Condition 1 of RCAT-compatible definition.

2. See Condition 2 of RCAT-compatible definition.

3. Let m be a tangible state reachable from and M =
{m′} through the firing of an output transition To.
Then, the following relation holds:

∑

m′∈M

π(m′)w(To,m
′) = Koπ(m), (2)

where π(m) is the stationary probability of marking
m and Ko is a linear combination of the input rates.

In this case, it is not immediate to see that the con-
ditions on the GSPN module are equivalent to the
M ⇒ M property. Indeed, this property is formulated
in the context of queueing theory, therefore it involves
concepts such as customers, class of customers, work-
conserving an so on. The proof of the equivalence can
be found in [Marin (2009)] and is based on a generaliza-
tion of the M ⇒ M .

Product-form composition and derivation of the
stationary probabilities. Let us introduce the prob-
lem of the product-form composition of the module in-
stances with ax example. Suppose that m1 and m2 are
instances of RCAT-compatible module(s). Our aim is to
define the appropriate input rates of the IIMs of m1 and
m2 such that if m = (m1,m2) is a state of the original
net, and m1 (m2) the state of m1 (m2), then:

π(m) ∝ π1(m1)π2(m2),

where π(m), π1(m1) and π2(m2) are the stationary dis-
tributions of the whole net and of the IIMs of m1 and
m2, respectively.
Obviously, these operations have not to be manually
performed by the modeler, but we expect a tool to do
them automatically. Indeed, the difficult task is the def-
inition of the input rates.
Both M ⇒ M and RCAT give a way to set these rates
and they depend on the solution of a system called traf-
fic equation system. Note that, in this framework it is
not the case that the system of traffic equations is al-
ways linear as for example in BCMP queueing networks
[Baskett et al. (1975)]. Therefore, we are able to study
more general cases of product-form models than those
based on the analysis of queueing networks.
The traffic equations depend on they way the module
instances are connected. We allow two types of connec-
tions as specified by the following definition, where we
consider that the arc weights are all 1.

Definition 5 (Valid net) A net consisting of in-
stances of M ⇒ M -compatible or RCAT-compatible
modules is valid if the connection among the instances
of the modules are such that for each instance:

1. if Ti is an input transition then it is associated with
just one output transition of another instance or
a transition with null input and output vector and
vice-versa

2. each place of the net is associated with one input
place and an output transition which is not associ-
ated with an input transition can have an outgoing
arc to just one place.

In a valid net the interactions among the module in-
stances are pairwise. In other words, at most two in-
stances can change their markings as a consequence of

the firing of a transition. Pairwise interactions are the
only interactions that are considered both by RCAT and
the M ⇒ M property.
It is worthwhile pointing out that the validity of a net
can be decided by a trivial algorithm.

THE FRAMEWORK IN PRACTICE

In this section we illustrate how we use the theoretical
results recalled in the previous section to specify com-
plex systems with product-form solutions. Informally,
we can say that once the modeler has chosen the mod-
ules to instantiate, he/she connects them in one of the
two ways that have been described. This operation can
be seen as a graphical way to specify the traffic equa-
tions. We think that this is the key-point of our ap-
proach, i.e., the modeler uses a library of module whose
behavior is known and when he connects them he is
simply specifying the system of traffic equations. Note
that, although this idea may seems trivial, it should
be pointed out that it can be implemented thanks to
the combination of the recent theoretical results about
product-form such as RCAT and the idea of mapping
each formalism into equivalent GSPNs.
What do we need to know about a module to be able
to generate the system of traffic equations? As we al-
ready mentioned, the analysis of a single module with
the aim of deciding whether it is RCAT-compatible or
M ⇒ M -compatible may be a really hard task. Specif-
ically, it can be often the case that the reachability set
of the module may be not finite. In order to overcome
this problem, we introduce the concept of product-form
GSPN module (PF-GSPN module). Let I be the set of
the input rates and V be the set of the parameters of
the module.

Definition 6 (PF-GSPN module) A PF-GSPN
module is a module with the following features:

• fRCAT : I × V → {true, false} is a boolean func-
tion which assumes the value true if, for a given
parameterization, the module is RCAT-compatible

• fM⇒M : I × V → {true, false} which assumes
the value true if, for a given parameterization, the
module is M ⇒ M -compatible.

• For each output transition To, Ko : I × V → R+ is
the function which specifies the reversed rate of To

in case of RCAT-compatibility or the sum of the
reversed rates in case of M ⇒ M -compatibility.
Obviously Ko is defined only if fRCAT(I,V) ∨
fM⇒M (I,V).

We now illustrate a set of example of PF-GSPN mod-
ules.

Example 3 (G-queue) Let us consider again the G-
queue of Example 1. In this case we have I = {χp1, χp2}

and V = {µ, p}. The station is known to be always in
RCAT product-form, [Harrison (2003)], while if fulfills
the M ⇒ M property only if there are not negative cus-
tomer arrival (i.e., it is a standard exponential queue),
therefore, we have:

fRCAT(χp1, χp2, µ, p) = true always

fM⇒M (χp1, χp2, µ, p) = true if χp2 = 0

From the G-network analysis [Gelenbe (1991)] the sta-
tionary probability of observing m customers in P1 is
(1− ρ)ρm, where ρ = χp1/(µ + χp2). Then, we straight-
forwardly obtain:

K1(χp1, χp2, µ, p) =
χp1µ

χp2 + µ
p

K2(χp1, χp2, µ, p) =
χp1µ

χp2 + µ
(1 − p)

Example 4 (A model of a shared bus contention)
In this example we address the problem introduced in
[Afshari et al. (1982)], where the author propose a
queueing model to study the access to a shared bus of
a set of customers that are clustered into R classes.
The authors assume that the bus is able to handle K
simultaneous transmissions. As soon as a channel of
the bus becomes available, a waiting customer is chosen
with uniform probability among the queued ones to get
served. The service time distribution is exponential and
identically distributed for all the customer classes. In
the paper the authors prove the stationary distribution
and that the station satisfies the M ⇒ M property.
In Figure 3 we propose a module of this system con-
sidering R = 2 classes of customers. Customers of

input interface

output
interface

P1

P2 P3

P5

T1

T2

t3

t4

µ

K

P4

Figure 3: PF-GSPN module of the queueing model of a
shared bus contention for two classes of customers.

class 1 and 2 arrive to input places P1 and P2, respec-
tively. Place P5 contains as many tokens as the free
channels of the bus are. Immediate transitions t3 and t4
model the contention policy of the bus, i.e. their weight
function is w(t3,m) = m1 and w(t4,m) = m2, where

m = (m1, . . . ,m5) is a tangible marking and mi denotes
the number of token in Pi. The rates of timed transition
T1 and T2 are µ. Finally, K is the initial number of
tokens in place P5, i.e., the number of channels of the
shared bus. In this case I = {χp1, χp2} and V = K,µ.
As mentioned, in [Afshari et al. (1982)] the authors
prove that the model satisfies the M ⇒ M property,
the fM⇒M (I,V) = true always. In [Marin (2009)] we
prove that it satisfies RCAT conditions if K = 1, i.e.,
fRCAT(I,V) = true if K = 1. Finally, K1(I,V) = χp1

and K2(I,V) = χp2.

For the sake of brevity we omit to provide other ex-
amples. We just mention that in [Balsamo and Marin
(2008)] a set of GSPN models equivalent to the BCMP
stations are defined and can be straightforwardly used
in this context.

Automatic derivation of the traffic equations. In
order to be able to decide whether a valid net is in
product-form, and in this case provide the stationary
solution, we need to generate and solve the set of traffic
equations. The unknowns of these equations are the in-
put rates of the module instances of the net. If we are
able to solve the traffic equations we can check if they
satisfy the conditions for the M ⇒ M or RCAT appli-
cation for each instance of the module using functions
fRCAT and fM⇒M . If this is the case, then we can derive
the stationary distribution of the IIMs associated with
every module instance using the input rates obtained by
the solution of the traffic equations. Then, the station-
ary solution of the original net is proportional to the
product of these stationary solutions.
In the following, in order to avoid conflicts of names in
the equations, we use the notation instance name.object
(e.g., m1.χp1). A valid net admits only two types of con-
nections. Each of these generate the following equations:

• Suppose that output transition To of instance mk
is the input transition Ti of instance mh with
mk 6= mh. In this case we have mh.χti =
mk.Ko(mk.I,mk.V).

• Suppose that the set output transitions T ∗{mk.To}
is such that all the elements mk.To have an outgoing
arc to PIi that is an instance of input place Pi of
mh, with mk 6= mh. In this case we have that:

mh.χti =
∑

mk.To∈T ∗

mk.Ko(mk.I,mk.V)

It is out of the scope of this paper to address the prob-
lem of an efficient solution of such a system. However,
using Muntz’s result [Muntz (1972)] we can state that
the system is linear if all the instances of the modules
are M ⇒ M -compatible. An approach used in [Argent-
Katwala (2006)] is to export the equations in ASCII
format and solve them using general purpose software

on Mathematics. If all the used modules have a finite
reachability set, then the algorithm presented in [Marin
and Rota Bulò (2009)] may be used.

EXAMPLE

The purpose of the following example is to show how the
technique previously described may be applied to study
a system consisting of sub-components that cannot be
modeled by ordinary queueing stations.

System description. Two classes of requests arrive
through a communication line from two networks. The
communication channel is bidirectional and has a wait-
ing room where the packets are stored. When a trans-
mission is completed a packet is chosen from the waiting
room according to a random policy. Once transmitted,
the requests are pre-processed by an ad-hoc system and
finally sent to the database. Some of the requests of the
first class may be converted into requests of the second
class. In some cases, the pre-processing phase may de-
cide to cancel a transaction that has already been sent
to the database. Some transactions fail, and have to
be sent back to the communication line to get processed
again. The database answers are sent back to the clients
through the channel. Figure 4 shows a sketch of this sys-
tem.

NETWORK 1

NETWORK 2
SHARED
CHANNEL

PRE-PROCESSING
OF THE QUERIES

DATABASE

TRANSACTION CANCELING

INVALID TRANSACTION

ANSWER

Figure 4: Software architecture analyzed in the Example
section.

Model description The modeling assumptions are
the following. The channel behaves like a shared bus
as described in Example 4 and the database is modeled
by a G-queue as described in Example 1. This means
that the service time distributions are exponential and
class independent both for the database and the com-
munication lines. The pre-processing of the requests is
modeled by the Module of Figure 5. For brevity, we
do not specify each phase of the processing, but it is
important to note that fork-join constructs are present,
and this makes the model impossible to be studied by
most of the existing product-form analyzer. For this
module, we have I = {χp1, χp2} and V = ∅. In [Marin
(2009)] is proved that fM⇒M (I) = fRCAT(I) = true,
and K4(I) = χp1 and K5(I) = χp2 (note that also the
stationary distribution is provided). Another module
that we use and that has not been previously described is

INPUT
INTERFACE

OUTPUT
INTERFACE

P1

P2

P3 P4T1

T2

T3

T4

T5

T6

P5

Figure 5: SPN module of the query pre-processing
phase.

a switching module. This simply routes the tokens that
arrive to its incoming place according to a static proba-
bility as depicted by Figure 6. In our framework we can

Input interface

Output interface

P1 t1

t2

p

Figure 6: Simple router module. We have w(t1, ·) = p
and w(t1, ·) = 1− p. I = {χp1} and V = {p}. fM⇒M =
fRCAT = true and K1(I,V) = pχp1, K2(I,V) = pχp2.

model the system as depicted by Figure 7, where m1
is an instance of the module of a shared bus described
in Example 4, m2 is an instance of a router, m3 an in-
stance of the SPN module of Figure 5 and, finally, m4
is an instance of a G-queue module described in Exam-
ple 1. The model parameters are: the firing rates of TA

(λA) and TB (λB), i.e., the arrival rates of the requests,
µTR, i.e., the transmission rate of one line of the chan-
nel, pSWITCH, i.e., the probability that a request of the
first type becomes a request of the second type, pERR,
i.e., the probability of reprocessing of a transaction and
finally µSER, i.e., the service rate of the database.

Traffic equations. In our framework we can algorith-
mically derive the traffic equations using the rules pre-

m 1 m 2 m 3 m 4

P1 P1

P1P1

P2

P2P2

P3

PA

PB

PC

PD PE

PF

PG

PH
T1

T1T1

T2

T2T2

T3

t1

t2

TA

TB

µ
µ

K

p

p

perr

µser

µtr

p
switch

2

Figure 7: Modular composition of the system of Figure 4.

sented in the previous sections, obtaining:



































































m1.χp1 = λA

m1.χp2 = λB

m1.χp3 = m4.K2 =
m4.χp1

m4.χp2+µSER
(1 − pERR)µERR

m2.χp1 = m1.K1 = m1.χp1

m3.χp1 = m2.K1 = m2.χp1pswitch

m3.χp2 = m2.K1 + m1.K2

= m2.χp1(1 − pswitch) + m1.χp2

m4.χp1 = m3.K1 = m3.χp1

m4.χp2 = m3.K2 = m3.χp2

Once derived the solution for the traffic equations, this is
used to set the input rates of the IIMs of the module in-
stances. Then, we observe that all the IIMs are RCAT-
compatible and therefore the model is in product-form.
The stationary solution πi of each IIM for i = 1, . . . , 4
is then derived and the stationary probabilities π of
the whole model are such that π ∝

∏4
i=1 πi. Know-

ing the stationary distribution π of the model allows us
to compute some interesting performance indices, e.g.,
the mean response time of the database, or distribution
of the number of customers in the communication line.

CONCLUSIONS

In this paper we have presented a novel approach to
analyze product-form GSPNs. Its main strengths are
the high modularity and the fact it is capable to deal
with several product-form model classes, such as BCMP
queueing networks, G-queues, product-form SPNs, and
so on. The idea underlying this work is to use the mod-
ule concept as defined in [Kindler and Weber (2001)]
to define product-form models. These have to be anno-
tated in order to allow a software tool to take advantage
from the product-form property in the analysis phase. It
can be shown that all this work may be implemented us-
ing PNML without violating the standard. Finally, it is
worthwhile pointing out that in this framework, a mod-
eler is not supposed to have particular knowledge about
product-form models or GSPN modeling. Indeed, mod-
elers just need to pick some modules from a library and
then create and connect their instances according to the

simple rules that we have described. Then, the steady
state analysis and the derivation of the desired perfor-
mance indices can be automatically computed. Further
research efforts should have two directions. One is the
implementation or the extension of an existing tool ca-
pable to perform such an analysis. This should not be
hard, since it suffices to specify an appropriate PNML
grammar and use a symbolic tool to solve the traffic
equations. Another research open problem could deal
with the possibility of connecting the module instances
with arcs with arbitrary weights. This introduces some
complex problems in the analysis but would enhance the
flexibility of the framework.

REFERENCES

Afshari P.V.; Bruell S.C.; and Kain R.Y., 1982. Modeling a new
technique for accessing shared buses. In Proc. of the Computer
Network Performance Symp. ACM Press, New York, NY, USA,
4–13.

Argent-Katwala A., 2006. Automated product-forms with Meercat. In
SMCtools ’06: Proc. from the 2006 workshop on Tools for solving
structured Markov chains. ACM, New York, NY, USA, 10.

Balbo G.; Bruell S.C.; and Sereno M., 2002. Product Form Solution
for Generalized Stochastic Petri Nets. IEEE Trans on Software
Eng, 28, no. 10, 915–932.

Balsamo S. and Marin A., 2008. From BCMP Queueing Networks to
Generalized Stochastic Petri Nets: An Algorithm and an Equiv-
alence Definition. In Proc. of ESM 2008. Le Havre, FR, 447–455.

Baskett F.; Chandy K.M.; Muntz R.R.; and Palacios F.G., 1975.
Open, Closed, and Mixed Networks of Queues with Different
Classes of Customers. J ACM, 22, no. 2, 248–260.

Coleman J.L.; Henderson W.; and Taylor P.G., 1996. Product
form equilibrium distributions and a convolution algorithm for
Stochastic Petri nets. Perform Eval, Elsevier, 26, no. 3, 159–180.

Gelenbe E., 1991. Product form networks with negative and positive
customers. Journal of Applied Prob, 28, no. 3, 656–663.

Harrison P.G., 2003. Turning back time in Markovian process alge-
bra. Theoretical Computer Science, 290, no. 3, 1947–1986.

Kindler E. and Weber M., 2001. A universal module Concept for
Petri nets. In G.J. und Robert Lorenz (Ed.), Proc. of 8th Work-
shops AWPN. Katholische Universität Eichstätt, Germany, 7–12.

Marin A., 2009. On the relations among product-form stochastic
models. Ph.D. thesis, Università Ca’ Foscari di Venezia, Venice.

Marin A. and Rota Bulò S., 2009. A general algorithm to compute
the steady-state solution of cooperating Markov chains. In Proc.
of 17th Annual Meeting of the IEEE Inter. Symp. MASCOTS.
In press.

Marsan M.A.; Balbo G.; Conte G.; Donatelli S.; and Franceschinis
G., 1995. Modelling with generalized stochastic Petri nets. Wiley,
New York, NY, USA.

Muntz R.R., 1972. Poisson Departure Processes and Queueing
Networks. Tech. Rep. IBM Research Report RC4145, Yorktown
Heights, New York.

Weber M. and Kindler E., 2003. Petri Net Technology for
Communication-Based Systems, H. Ehrig, W. Reisig, G. Rozen-
berg, H. Weber ed., chap. The Petri Net Markup Language. 124–
144.

Zimmermann A.; Freiheit J.; German R.; and Hommel G., 2000. Petri
Net Modelling and Performability Evaluation with TimeNET 3.0.
In TOOLS ’00: Proc. of the 11th Int. Conf. on Computer Perf.
Eval.: Modelling Techniques and Tools. Springer-Verlag, London,
UK, 188–202.

