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Abstract. In this paper we study the relations between multi-class
BCMP-like service stations and generalized stochastic Petri nets (GSPN).
Representing queuing discipline with GSPN models is not easy. We fo-
cus on representing multi-class queuing systems with different queuing
disciplines by defining appropriate finite GSPN models. Note that queu-
ing discipline in general affect performance measures in multi-class sys-
tems. For example, BCMP-like service centers with First Come First
Served (FCFS) and with Last Come First Served with Preemptive Re-
sume (LCFSPr) have a (different) product-form solution under different
hypotheses. We define structurally finite GSPNs equivalent to the multi-
class M/M/k queuing system with FCFS, LCFSPR, Processor Sharing
(PS) and Infinite Servers (IS). Equivalence holds in terms of steady state
probability function and average performance measure. The main idea
is to define a finite GSPN model that simulates the behavior of a given
queue discipline with some appropriate random choice. Moreover, we
prove that the combination of the introduced equivalent models has a
closed-form steady state probability by the M =⇒ M property. We
consider queuing systems with both a single server with load dependent
service rate, and multiple servers with constant service rate.

1 Introduction

Queuing theory and (Generalized) Stochastic Petri Nets are important classes
of stochastic models used to evaluate system performances. Queuing systems
have been widely applied to represent resource contention systems where a set
of customers competes for resource usage. However, basic queuing systems can-
not model the synchronization between concurrent activities. Stochastic Petri
nets (SPN) can be naturally used to represent systems with synchronization and
concurrency and to perform both qualitative and quantitative analysis. An im-
portant problem in system performance evaluation based on performance mod-
els is the efficiency of the solution algorithms, i.e. the ability to define classes of
models that can be analyzed by methods with a limited space and time compu-
tational complexity. Many results have been proposed in literature which give
efficient solutions of some types of stochastic models under certain conditions.



1. INTRODUCTION

Single queuing system models have been widely analyzed by considering various
arrival distributions, service time distributions, classes of users and scheduling
disciplines. The single server queue is analyzed [14], [10], [13], [19] and several
results have been derived for special cases. Queuing networks (QN) extend and
combine various queuing systems to represent more complex systems. QN mod-
els can be represented by defining an associated stochastic process that, under
some exponential and independence assumptions, is a continuous-time Markov
Chain (CTMC) process. Although the stationary state probability solution of
the associated Markov Process, under stability conditions, can be easily defined,
the computation can soon become unfeasible due to the high computational com-
plexity. However, under certain assumptions QNs can be efficiently analyzed by
applying the product-form theorem [5], which defines the steady state probability
function as product of functions of each single service center state. Product-form
QNs can be analyzed by efficient algorithms (e.g. [18], [8], [7], [6]) that yield a
low polynomial computational cost.

SPNs, which are defined in terms of a set of places and a set of exponentially
timed transitions connected by arcs, and a marking, which is the state of the net,
are represented by a CTMC process whose state space is the set of all possible
markings of the net. Specifically the computation of performance measures is
inefficient because it requires to calculate the reachability set, which depends
on the initial marking and whose size grows exponentially with the number of
places of the net and the number of tokens in the initial marking. Henderson
et al. introduced the idea of product-form for SPN in [12] and [11] simplify-
ing the computation of the performance indexes. However, the algorithms for
product-form SPNs still require to check conditions on the reachability set. The
class of Generalized Stochastic Petri Nets (GSPN) allows modelling nets with
both exponentially timed and immediate transitions introducing more flexibil-
ity. The underlying process of a GSPN can be defined as a semi-Markov process.
Product-form for GSPN has been studied by Balbo et al. in [3] and it is based
on techniques to reduce the problem to the product-form SPN theorem.

Investigating the relations between classes of queuing models and GSPN
models is an interesting problem and it has been considered by some recent
research literature ([2], [20], [4]). Most of these works focus on the relations be-
tween QNs and SPNs or GSPNs and derive some equivalence results. However a
little attention has been devoted to the problem of representing various types of
scheduling disciplines of queuing systems by GSPNs. To the best of our knowl-
edge, representing scheduling disciplines in multiclass models with finite GSPNs
is still an open problem. In [20] the authors introduce a comparison between QN
models and SPN models based on the representation of multiclass features by
colored Petri nets. However the differences between different scheduling disci-
plines are not analyzed. Balbo et al. in [2] combine GSPN and product-form QN
by replacing subsystem in a low-level model with their flow equivalents models.
Still little attention is devoted to scheduling disciplines. In [4] the authors ob-
serve how they can map each service station of a BCMP QN to a complex GSPN.
The GSPN model depends on the scheduling disciplines but it has an infinite
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1. INTRODUCTION

number of places and transitions for the FCFS and LCFSPR stations. Then
they give a finite and remarkably compact representation by a GSPN equiva-
lent to the detailed model. The compact representation holds the product-form
conditions for GSPN showed in [3] but it does not distinguish different queuing
disciplines by mapping everything in the PS discipline. Thus it is not possi-
ble to define on the GSPN equivalent conditions to the ones depending on the
service center scheduling discipline of the BCMP theorem. On the other hand
the detailed representations of queuing discipline yield non product-form GSPN
models equivalent to BCMP QN.

In this paper we present an equivalence result between two types of stochas-
tic models. We propose a finite GSPN representation of a set of queuing systems
with various scheduling disciplines. According to the BCMP-type service cen-
ters we analyze First Come First Served (FCFS), Last Come First Served with
preemptive resume (LCFSPR), Processor Sharing (PS) and Infinite Servers (IS)
scheduling disciplines. The main idea behind these results is a probabilistic model
of the queue, i.e., all the customers of the same class wait in the same place and
when a server becomes free the customer which gets the service is chosen in a
probabilistic way similarly to what happens with the random queuing discipline.
In the LCFSPR discipline, we also choose probabilistically the customer that
looses the server when a new customer arrives to the system.

The advantage of having a finite representation which is different for the
various scheduling disciplines is twofold: first it makes the analysis easier. Second
it does not require the definition of new semantic for the GSPN according to
the queuing disciplines. Thus existing analysis or simulation tools can be used
with the GSPN nets defined in this work. The proposed results are interesting
because they allow the representation of an M/M/k queue with various queuing
disciplines by a compact GSPN, which is equivalent to the queuing system in
term of steady state queue length distribution. A practical consequence can be
that it can extend a GSPN simulator or analyzer for analyzing multiclass queue
systems. The only requirement is that the tool is able to model state-dependent
firing rates for timed transitions and state-dependent weights for immediate
transitions. There is no need to support the colored model extension to represent
different classes. One could also integrate a GSPN analyzer by a functionality
that identifies net structures equivalent to different scheduling disciplines M/M/k
queuing systems and then it can apply the closed form steady state formula. For
the FCFS and PS disciplines, the GSPN structure complexity, i.e. the number
of places and transictions, grows linearly just with the number R of classes of
users, for the LCFSPR it grows like O(R2).

We give a GSPN model for the queuing disciplines considered in the BCMP
theorem [5]. An open problem and a possible further research is the analysis
of the GSPN models obtained by combining these blocks. Possibly, under some
assumptions, it is possible to define equivalence between the GSPN steady state
probability function and the BCMP queuing network steady state probability
function.
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The paper is structured as follows. Section 2 briefly reviews the GSPN models
recalling formalism we chose, Section 3 reviews some results of the queuing
systems theory used later in the paper. In Sections 4, 5 we introduce the GSPNs
respectively equivalent to the FCFS and LCFS multiclass M/M/k queue. Section
6 discuss the GSPN models for both PS scheduling and IS systems. The proof of
some theorems are given in appendix. Finally, Section 8 provides some concluding
remarks.

2 Generalized Stochastic Petri Nets

In this section we briefly recall the Generalized Stochastic Petri Nets (GSPN).
We consider the notation for GSPN introduced in [15]. In order to allow marking
dependent probabilities for solving conflicts among immediate transitions we use
the techniques discussed in [9]. Then in the next section we shall present GSPN
models equivalent to queuing systems under various assumptions. Let us define
a marked Stochastic Petri Net which consists of a 8-tuple as follows:

GSPN = (P, T , I(·, ·), O(·, ·), H(·, ·),Π(·), w(·, ·),m0)

where:

– P = {P1, . . . , PM} is the set of M places,
– T = {t1, . . . , tN} is the set of N transitions (both immediate and timed),
– I(ti, pj) : T × P → N is the input function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,
– O(ti, pj) : T × P → N is the output function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,
– H(ti, pj) : T × P → N is the inhibition function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,
– Π(ti) : T → N is a function that specifies the priority of transition ti,

1 ≤ i ≤ N ,
– m ∈ NM denotes a marking or state of the net, where mi represents the

number of tokens in place Pi, 1 ≤ i ≤ N ,
– w(ti,m) : T × NM → R is the function which specifies for each timed

transition ti and each marking m a state dependent firing rate, and for
immediate transitions a state dependent weight,

– m0 ∈ NM represents the initial state of the GSPN, i.e. the number of tokens
in each place at the initial state.

We consider ordinary nets, i.e., functions I,O and H take values in {0, 1}. For
each transition ti let us define the input vector I(ti), the output vector O(ti) and
the inhibition vector H(ti) as follows: I(ti) = (i1, . . . , iM ) where ij = I(ti, Pj),
O(ti) = (o1, . . . , oM ) where oj = O(ti, Pj) and H(ti) = (h1, . . . , hM ) where
hj = H(ti, Pj). Function Π(ti) associates a priority to transition ti. If Π(ti) = 0
then ti is a timed transition, i.e., it fires after an exponentially distributed firing
time with mean 1/w(ti,m), where m is the marking of the net. If Π(ti) > 0 then
ti is an immediate transition and its firing time is zero. We say that transition
ta is enabled by marking m if mi ≥ I(ta, pi) and mi < H(ta, pi) for each i =
1, . . . , M and no other transition of higher priority is enabled. We consider just
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two priority levels, 0 and 1. Hence when an immediate transition is enabled all
the timed ones are disabled. The firing of transition ti changes the state of the
net from m to m−I(ti)+O(ti). The reachability set RS(m0) of the net is defined
as the set of all markings that can be reached in zero or more firings from m0.
We say that marking m is tangible if it enables only timed transitions and it
is vanishing otherwise. For a vanishing marking m let Tα be the set of enabled
immediate transitions. Then the firing probability for any transition ti ∈ Tα and
any state m is denoted by p(ti,m) and it is defined as follows:

p(ti,m) =
w(ti,m)∑

tj∈Tα
w(tj ,m)

. (1)

Given a tangible marking m the transition with the lowest associated stochastic
time fires.

A GSPN is represented by a graph with the following conventions:

– timed transitions are white filled boxes,
– immediate transitions are black filled boxes,
– places are circles,
– if I(ti, pj) > 0 we draw an arrow from pj to ti labelled with I(ti, pj),
– if O(ti, pj) > 0 we draw an arrow from ti to pj labelled with O(ti, pj),
– if H(ti, pj) > 0 we draw an circle ending line from pj to ti labelled with the

value of H(ti, pj),
– the marking m is represented by a set of mj filled circles representing the

tokens in place pj for each j = 1, . . . ,M .

For ordinary nets we do not use labels for the arrows.
GSPN analysis consists in finding the steady state probability for each tan-

gible marking of the reachability set. Some analysis techniques are presented in
[15]. Under general assumptions, the stochastic process generated by the dynamic
behavior of a standard SPN is a CTMC process. Mean state sojourn times are
computed from the mean transition delays of the net. For GSPNs the distribution
of the sojourn time in any marking can be expressed as a negative exponential
and deterministically zero distributions for tangible and vanishing markings, re-
spectively. Thus the marking process can be studied as a semi-Markov random
process.

The GSPN models introduced in this paper present marking processes which
allow us to easily reduce the semi-Markov process to a CTMC. In fact whenever
a vanishing marking is reached, the next marking is tangible. Thus we can simply
obtain a CTMC whose states are the tangible states of the original process and
the transition rates are computed weighting the transitions rates of the original
process with the firing probabilities of the immediate transitions. Hence the
mean sojourn times in the tangible states of the original semi-Markov process
and the mean sojourn times of the CTMC are the same.

Finally let us introduce some other notations: let ei be an M -dimensional
vector with all zero components but the i-th which is 1. We use the lower case
t to name immediate transitions, the upper case T to name timed transitions, t̃
to name a generic timed or immediate transition.
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3 Single Queuing systems with different classes of
customers

In this section we briefly recall single queuing systems with different classes of
customers classifying them on the number of servers and scheduling disciplines.
Let us consider an open queuing system with external arrivals, a queue, a set of
identical servers and a set of R customer classes. The queuing system is shown
in Figure 1. Customers of class r arrive at the system according to a Poisson
process with rate λr and require an exponentially distributed random service
time with parameter µr, r = 1, . . . , R. The system has a set of independent
servers, possibly infinite.

For single class queuing systems some results in terms of steady state prob-
ability hold for any scheduling discipline that is work-conservative and indepen-
dent from the service time [10], [14]. These results can be extended to multiclass
queuing systems although they depend on the scheduling discipline. We con-
sider the following disciplines: First Come First Server (FCFS), Last Come First
Server with Preemptive Resume (LCFSPR), Processor Sharing (PS). The steady

CLASS 1

CLASS 2

CLASS R

Server 1

Server 2

Server k

Queue

Fig. 1. An M/M/k multiclass queuing system.

state probability of a M/M/k multiclass system with a specific queuing disci-
pline and constant service rate is equivalent to the steady state probability of a
M/M/1 multiclass system with the same queuing discipline and an appropriate
load-dependent service rate. If all the customer service times are identical, i.e.,
µr = µ for r = 1, . . . , R, the load dependent service rate µ(j), where j is the
number of customers at the system, is defined as follows:

µ(j) =
{

jµ if j ≤ k
kµ if j > k

(2)
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CUSTOMERS

If the stability condition
∑R

i=1
λr
kµ < 1 holds, then we can evaluate the station-

ary queue length distribution of the multiclass M/M/k system for any scheduling
discipline by the corresponding M/M/1 load dependent system. Let π′(n) denote
the steady state probability of the M/M/k system, with n = (n1 . . . nR), i.e., the
probability of finding ni customers of class i for i = 1, . . . , R in the system. Then
we can write:

π′(n) = π′0

R∏

i=1

λni
i

(
∑r

i=1 ni)!∏R
i=1 ni!

PR
i=1 ni∏

j=1

1
µ(j)

, (3)

where π′0 is the probability of finding the system empty.
When mean service rates for different customer classes are not identical, i.e.,

µi '= µj for i '= j for some couple i, j, then the load dependent service rate
function µr(n), for any class r and state n, is defined as follows:

µr(n) =
nr

n
min(n, k)µr, n =

R∑

i=1

ni. (4)

The following steady state probability holds for LCFSPR and PS queuing disci-
plines:

π′(n) = π′0

∑R
i=1 ni)!∏R
i=1 ni!

R∏

i=1

λni
i

R∏

i=1

( 1
µi

)ni

PR
j=1 nj∏

i=1

1
min(k, i)

. (5)

The stability condition is ∃k : ∀n > k[
∑R

r=1
λr

µr(n) < 1].
The BCMP theorem [5] considers service centers with single servers and state

dependent service time. For FCFS service stations the service time can depend
only on the total number of customers in the system. Let n =

∑R
r=1 nr and x(n)

be an arbitrary positive function of n, representing the service rate when there
are n customers at the service center relative to the service rate when n = 1.
Then the steady state probability function is:

π′(n) = π′0
n!

∏R
i=1 ni!

R∏

i=1

λni
i

( 1
µ

)n n∏

i=1

1
x(i)

. (6)

For LCFSPR and PS systems, BCMP theorem considers another state dependent
service rate. Let yr(nr) be an arbitrary positive function of nr which denotes the
service rate of class r customers at service center i relative to the service rate
when there is one class r customer at service center i i.e. µr. Then the steady
state probability function is:

π′(n) = π′0
n!

∏R
i=1 ni!

R∏

i=1

λni
i

R∏

r=1

[( 1
µr

)nr
nr∏

a=1

1
yr(a)

]
. (7)

Note that these various forms of state dependent service rates can be combined.
For example the steady state probability (5) can be obtained combining equa-
tions (6) and (7) by setting x(n) = min(n,k)

n and yr(nr) = nr.
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4 Representing M/M/k/FCFS queue by GSPN

In this section we define a GSPN that represents an R-multiclass M/M/k/FCFS
queue. Then we prove that the GSPN model is equivalent to the queuing system
in terms of the steady state probability. Given the M/M/k/FCFS models defined
as in Section 3 let us define the model called GSPN-1.

Definition 1 (GSPN-1). According to GSPN definition given in Section 2:

– P = Pq ∪Ps ∪ {P2R+1} with Pq = {P1, . . . , PR} and Ps = {PR+1, . . . , P2R},
– T = Tw ∪ Tq where Tq = {t1, . . . , tR} and Tw = {TR+1, . . . , T2R},
– function Π defined as follows:

Π(t̃i) =
{

0 if R + 1 ≤ i ≤ 2R
1 if 1 ≤ i ≤ R

,

– input and output vectors for transition ti, 1 ≤ i ≤ R: I(ti) = ei + e2R+i and
O(ti) = eR+i. Input and output vector for transition TR+i: I(TR+i) = eR+i

and O(TR+i) = e2R+1,
– H(ti) = (0, . . . , 0) for all ti ∈ T ,
– w(TR+i,m) = mR+iµ for 1 ≤ i ≤ R and w(ti,m) = mi for 1 ≤ i ≤ R,
– m0 = (0, . . . , 0, k) .

Tokens arrive to places Pi, 1 ≤ i ≤ R according to Poisson stochastic processes.

Figure 2 illustrates the graphical representation of GSPN-1 model where t1, . . . , tR
are immediate transitions and TR+1, . . . , T2R are exponential transitions.

Fig. 2. Graphical representation of model GSPN-1

Let m be a valid vanishing state of the GSPN-1, and let Ta ⊆ Tq be the set
of immediate transitions enabled by m, then the probability of firing of ti ∈ Ta
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can be written as:

p(ti,m) = pi(m) =
mi∑

j∈{j|tj∈Ta} mj
(8)

We shall now derive a closed form solution for the steady state proba-
bility of GSPN-1 model by considering the set of reachable markings m =
(m1, . . . ,m2R+1). This is given by Lemma 1. Then we introduce a state aggre-
gation by defining the aggregate state n = (n1, . . . , nR) where ni = mi + mR+i,
1 ≤ i ≤ R. This state corresponds to the number of customers of class i in the
queuing model. Theorem 1 provides the closed form solution for model GSPN-1
in terms of aggregated stationary probability of state n. Finally the GSPN-1
model is shown to be equivalent to the M/M/k FCFS multiclass queuing system
in terms of stationary probability.

Lemma 1. Let m = (m1, . . . , m2R+1) be a reachable tangible state of the GSPN-
1. Then if the stability condition holds, the stationary state probability can be
written as follows:

π(m) = π0

R∏

i=1

λmi+mR+i

i

(
∑2R

i=R+1 mi)!
∏2R

i=R+1 mi!
(
∑R

i=1 mi)!∏R
i=1 mi!

P2R
i=1 mi∏

j=1

1
µ(j)

. (9)

where π0 is a normalizing constant and µ(j) is the function defined by (2).

The proof is given in appendix A and is based on verifying the set of the CTMC
global balance equations.

Theorem 1. Consider model GSPN-1 and let ni = mi + mR+i, 1 ≤ i ≤ R and
n = (n1 . . . , nR) be an aggregated state. Let πa(n) be the steady state probability
of ni for i = 1, . . . , R. Then we can write:

πa(n) = π0
(
∑R

i=1 ni)!∏R
i=1 ni!

r∏

i=1

λni
i

PR
i=1 ni∏

i=1

1
µ(i)

∀n ∈ NR. (10)

Proof. In order to derive equation (10) we prove that:

πa(n) =
∑

m|mi+mR+i=ni

1≤i≤R

π(m), (11)

for n ∈ NR and m in the reachability set of model GSPN-1. Consider the two
following cases: case 1)

∑R
i=1 ni ≥ k and case 2)

∑R
i=1 ni < k.

Case 1:
∑R

i=1 ni ≥ k. Consider any combination of ji with 1 ≤ i ≤ r and
0 ≤ ji ≤ ni. Then the right-hand side of equation (11) by using formula (9) can

9
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be written as follows:
∑

j1+...+jR=k
ji≤ni

π(n1 − j1, n2 − j2, . . . , nR − jR, j1, . . . , jR, 0)

=π0

R∏

j=1

λ
nj

j

PR
i=1 ni∏

j=1

1
µ(j)

∑

j1+...+jr=k
ji≤ni

k!
∏R

i=1 ji!
(
∑R

i=1 ni − k)!
∏R

i=1(ni − ji)!

=π0

R∏

j=1

λ
nj

j

PR
i=1 ni∏

j=1

1
µ(j)

(
∑R

i=1 ni − k)!
∏R

i=1 ni!
k!

∑

j1+...+jR=k
ji≤ni

∏R
i=1 ni!∏R

i=1(ni − ji)!
1

∏R
i=1 ji!

=π0

R∏

j=1

λ
nj

j

PR
i=1 ni∏

j=1

1
µ(j)

(
∑R

i=1 ni − k)!
∏R

i=1 ni!
k!

∑

j1+...+jR=k
ji≤ni

R∏

i=1

(
ni

ji

)
,

where the last sum satisfies the Vandermonde convolution, thus we can write:

π0

R∏

j=1

λ
nj

j

PR
i=1 ni∏

j=1

1
µ(j)

(
∑R

i=1 ni − k)!
∏R

i=1 ni!
k!

(∑R
i=1 ni

k

)

=π0

R∏

j=1

λ
nj

j

PR
i=1 ni∏

j=1

1
µ(j)

(
∑R

i=1 ni)!∏n
i=1 ni!

,

which is formula 10.
Case 2:

∑R
i=1 ni < k, that corresponds to the behavior of the queuing system

where all the customers are being served and in GSPN-1 every place Pi with
1 ≤ i ≤ R is empty. Note that ni = mR+i, so by equation (9) we can write:

π(0, . . . , 0,mR+1, . . . , m2R, l) = π0

R∏

i=1

λni
i

PR
i=1 ni∏

i=1

1
µ(i)

(
∑R

i=1 ni)!∏R
i=1 ni!

,

that yields formula (10) and this ends the proof. ,-

Corollary 1. The M/M/k queuing system with FCFS discipline, R customer
classes, arrival rates λi, 1 ≤ i ≤ R, single server rate µ and steady state proba-
bility π′(n) is equivalent to the GSPN-1 in terms of steady state probability, i.e.,
πa(n) = π′(n) for all n ∈ NR where πa(n) is the aggregated probability of GSPN
given by formula (10)

Proof. It follows immediately from equation (3) and Theorem 1. ,-

Note that GSPN-1 model represents the M/M/k multiclass system when the
service rate is independent from the class of the customers in service. Thus it
can not be used to represent LCFSPR or PS scheduling disciplines. For example
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5. REPRESENTING M/M/K/LCFSPR QUEUE BY GSPN

consider the system with LCFSPR queue, single server, and different average
service rates for each class. Then we show now a counterexample to prove that
the steady state given by queuing theory does not satisfy the GBE for the GSPN.
This implies that GSPN-1 catches somehow the FCFS semantic (by not allowing
preemption).

Example 1. As example, consider a LCFSPR M/M/1 queue with two classes of
customers with average service time 1/µ1 and 1/µ2. From queuing theory we
can write the steady state probability as follows:

π′(n1, n2) = π′(0, 0)λn1
1 λn2

2

(n1 + n2)!
n1!n2!

1
µn1

1

1
µn2

2

.

Suppose to represent this system by GSPN-1 associating different firing rates to
transitions T3 and T4: w(T3,m) = m3µ1 and w(T4,m) = m4µ2. We calculate
the effective arrival rate to reachable tangible state m = (0,m2, 1, 0, 0), with
m2 > 0. The adjacent states are m1 = (0, m2 − 1, 1, 0, 0), m2 = (1,m2, 1, 0, 0),
m3 = (1,m2, 0, 1, 0), thus the effective arrival rate to state m is:

π(m)
[ 1
λ2

m2

m2
µ2λ2 + λ1(m2 + 1)

1
µ1

µ1
1

m2 + 1
+ λ2(m2 + 1)

1
µ2

µ2
1

m2 + 1

]

= π(m)
[
µ2 + λ1 + λ2

]
.

The effective leaving rate for state m is clearly π(m)(µ1 + λ1 + λ2), so the GBE
on state m is satisfied if µ1 = µ2.

Finally note that GSPN-1 can as well simulate a single server FCFS ser-
vice station with an BCMP-like load dependent service rate. We can state the
following lemma:

Lemma 2. Let m =
∑2R

i=1 mi, x(m) be an arbitrary positive function, m0 =
e2R+1 and let the firing rate of transition TR+1, . . . , T2R be w(TR+r) = x(m)µ,
1 ≤ r ≤ R. Then if m is a tangible reachable marking the steady state probability
function is:

π(m) = π0

R∏

i=1

λmi+mR+i

i

(
∑R

i=1 mi)!∏R
i=1 mi!

( 1
µ

)P2R
i=1 mi

P2R
i=1 mi∏

j=1

1
x(j)

. (12)

The proof is given in appendix. By defining ni = mi+mR+i we can aggregate the
states and we can prove that the steady state probability πa of the aggregated
CTMC is identical to π′ defined by equation (6) of BCMP theorem. The net
structure complexity is linear on R, the number of customer classes.

5 Representing M/M/k/LCFSPR queue by GSPN

In this section we introduce a GSPN which can be considered equivalent, for
steady state probability, to a multiclass M/M/k queue with LCFS with preemp-
tive resume scheduling discipline. As we consider just exponentially distributed

11
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service times, we do not consider the problem of representing the resume. We
provide a model for this queue system whose structure is finite and depends
only on the number of classes of customers, i.e., not on the number of servers.
A trivial solution could be obtained by recalling that the steady state formula
for a LCFSPR queue is equal to the Processor Sharing one so that we could use
the same GSPN representation. On the other hand we want to provide a model
which semantically simulate closer the LCFS queue.

Definition 2 (GSPN-2). According to GSPN definition given in Section 2:

– P = Pq∪Pw∪Pa∪{P3R+1} where Pq = {P1, . . . , PR} and Pw = {PR+1, . . . , P2R}
and Pa = {P2R+1, . . . , P3R},

– T = Tq ∪ Tw ∪ Tf ∪ Tg where Tq = {t1, . . . , tR} and Tw = {TR+1, . . . , T2R}
and Tf = {t2R+1, . . . , t3R} and Tg = {tij , 1 ≤ i, j ≤ R},

– function Π is defined as follows:

Π(t̃) =
{

1 if t̃ ∈ Tq ∪ Tf ∪ Tg

0 if t̃ ∈ Tw
,

– Let 1 ≤ i, j ≤ R. The input and output vectors of ti ∈ Tq: I(ti) = ei + e3R+1

and O(ti) = eR+i. The input and output vectors for TR+i ∈ Tw: I(tR+i) =
eR+i and O(tR+i) = e3R+1. The input and output vectors for t2R+i ∈ Tf :
I(t2R+i) = e2R+i + e3R+1 and O(t2R+i) = eR+i. The input and output
vectors for tij ∈ Tg: I(tij) = e2R+i + eR+j and ej + eR+i,

– H(ti) = (0, . . . , 0) for ti ∈ Tq ∪ Tw ∪ Tf and H(tij) = e3R+1 for tij ∈ Tg,
– for 1 ≤ i, j ≤ R let w(TR+i,m) = mR+iµi, w(ti,m) = mi, w(t2R+i,m) = 1

and w(tij ,m) = mR+j,
– m0 = (0, . . . , 0, k).

Tokens arrive to places P2R+i, 1 ≤ i ≤ R, according to Poisson stochastic pro-
cesses.

Figure 3 shows a graphical model for R = 2 classes LCFSPR queue where dotted
lines are introduce for the sake of readability and they do not have ant particular
meaning. Note that when a token arrives to the place P2R+i it is temporally (i.e.
the state is vanishing) stored in P2R+i and we have two cases:

– there is at least one free server, i.e. m3R+1 > 0, thus the customer goes
immediately in service. This is modelled by the immediate transition set Tf

– all the servers are busy, i.e. m3R+1 = 0, so a customer is preempted and
put in queue and the new customer goes in service. This is modelled by R2

transitions, Tg. The inhibitor arcs are needed to avoid pre-emption when
there is at least one free server.

Lemma 3. Consider the sets of immediate transitions Tq, Tf , Tg. Any two tran-
sitions belonging to two different sets cannot be simultaneously enabled. Moreover
any two transitions of Tf cannot be enabled simultaneously, and if tia ∈ Tg is
enabled then just transitions tib ∈ Tg with 1 ≤ b ≤ R can be enabled.

12
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Fig. 3. Graphical representation of model GSPN-2.

The proof immediately derives by GSPN-2 structure.
As consequence to lemma 3 we can solve the conflicts on immediate tran-

sitions with just one simple function. When one or more transitions of Tq are
enabled, the probability of firing for the i-th transition is:

p(ti,m) = pi(m) =
mi∑R
l=1 ml

. (13)

When one or more transitions of Tg are enabled, the probability of firing is:

p(tij ,m) = pij(m) =
mR+j∑R
l=1 mR+l

. (14)

Now we can state a main lemma for model GSPN-2 representation:

Lemma 4. Let m = (m1, . . . , m3R+1) be a reachable tangible marking of GSPN-
2 model. Then if the stability condition holds, the stationary state probability can
be written as follows:

π(m) = π0

R∏

i=1

λmi+mR+i

i

(
∑R

i=1 mi)!∏R
i=1 mi!

(
∑R

i=1 mR+i)!∏R
i=1 mR+i!

R∏

i=1

( 1
µi

)mi+mR+i

·

P2R
i=1 mi∏

j=1

1
min(j, k)

. (15)

where µi is the average service rate for one customer of class i when there are no
other customers in the system, k is the number of servers, π0 is a normalizing
constant.
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The proof is given in appendix A.

Theorem 2. Consider model GSPN-2 and let ni = mi + mR+i, 1 ≤ i ≤ R and
n = (n1, . . . , nR) be an aggregated state. Let πa(n) be the steady state probability
of ni for i = 1, . . . , R. Then we can write:

πa(n) = π0
(
∑R

i=1 ni)!∏R
i=1 ni!

R∏

i=1

λni
i

R∏

i=1

( 1
µi

)ni

PR
i=1 ni∏

i=1

1
min(k, i)

∀n ∈ NR. (16)

Proof. The proof is based on the Vandermonde formula and it is similar the one
given for Theorem 1. ,-

Corollary 2. The M/M/k queuing system with LCFSPR discipline, R customer
classes, arrival rates λi, single server rate µi for class i customers and steady
state probability π′(n) is equivalent to model GSPN-2 in terms of steady state
probability, i.e., πa(n) = π′(n) for all n ∈ NR, where πa(n) is the aggregated
probability of GSPN given by formula (16). The normalizing constant is π0 =
π(0, . . . , 0, k) = π′(0, . . . , 0, k).

Proof. It follows immediately from queuing theory and Theorem 2. ,-

The net GSPN-2 can as well simulate a single server LCFSPR service station
with a BCMP-like load dependent service rate. We can state the following lemma:

Lemma 5. Let m′
r = mr + mR+r, yr(m′

r) an arbitrary positive function, m0 =
e3R+1 and let the firing rate of transitions TR+1, . . . , T2R be w(TR+r) = yr(m′

r).
The if m is a reachable tangible marking, the steady state probability function
is:

π(m) = π0

R∏

i=1

λmi+mR+i

i

(
∑R

i=1 mi)!∏R
i=1 mi!

R∏

r=1

[( 1
µr

)mr+mR+r
mr+mR+r∏

a=1

1
yr(a)

]
. (17)

The proof is given in appendix.
By defining ni = mi + mR+i we can aggregate the states and we can prove

that the steady state probability πa of the aggregated CTMC is identical to
probability π′ defined by equation (7). For what concern the net structure com-
plexity, the number of places grows as O(R) and the number of transitions grows
as O(R2).

6 Representing M/M/k/PS queue and M/M/∞ queue
by GSPN

The processor sharing discipline can be easily represented considering that the
k processors are shared among the users in the system. Different classes of users
can have different average time services, but all modelled by exponentially dis-
tributed random variables. We can think that the k servers are shared among
the R classes in proportion to the number of customers of the classes.

14
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Definition 3 (GSPN-3). Let us define the model GSPN-3 as follows:

– P = {P1, . . . , PR},
– T = {T1, . . . , TR},
– Π(Ti) = 1 for each Ti ∈ T ,
– I(Ti) = ei and O(Ti) = (0, . . . , 0) for each Ti ∈ T ,
– H(Ti) = (0, . . . , 0) for each Ti ∈ T ,
– w(Ti,m) = mi

m min(k,m) where m =
∑R

j=1 mj for each Ti ∈ T ,
– m0 = (0, . . . , 0).

Figure 4 shows a graphical representation of the GSPN-3 model. Note that this

Poisson
Arrivals

Fig. 4. Graphical representation of model GSPN-3

model is equivalent to a queuing system with PS discipline and one server with
load-dependent exponential service time to simulate the multi-server feature.
Therefore it immediately follows the theorem:

Theorem 3. Consider model GSPN-3. Then if stability condition holds the sta-
tionary state probability can be written as follows:

π(m) = π0
(
∑R

i=1 mi)!∏R
i=1 mi!

R∏

i=1

λmi
i

R∏

i=1

( 1
µi

)mi

PR
i=1 mi∏

i=1

1
min(k, i)

,

where µi is the average service rate for one customer of class i when there are no
other customers in the system, k is the number of servers, π0 is a normalizing
constant.

This model is similar to the compact model introduced in [4], the only difference
is that we allow a whole state dependent firing rate thus we don’t need a place
whose tokens represent the total number of customers in the system.

Model GSPN-3 can easily represent also the IS center. It suffices to set the
firing rates of each transition Ti as miµi, 1 ≤ i ≤ R.
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7 M ⇒ M property on the GSPN representation

Markov implies Markov property is introduced and studied by Muntz [17]. In
that paper he shows that if a queuing system with Poisson arrivals presents
departures according to a Poisson process (M⇒M property) then a combination
of service centers of this type in a queuing network has a product-form solution.
As we are considering GSPNs we will prove that a combination of GSPN-1,
GSPN-2 and GSPN-3 models still holds a closed-form steady state probability
by defining appropriate traffic processes over the CTMC associated to each of
the models and using the results given in [16] which generalize Muntz’s work.
We now briefly review Melamed’s results limited to a CTMC in steady state.
Consider an ergodic CTMC with state space Γ and a set of traffic transitions
denoted by Θ1, . . . , ΘR, where Θi ⊆ Γ × Γ , Θi '= ∅. Let us define Ki(t) as
the process which counts the number of transitions (α, β) ∈ Θi up to t. Let
mi =

∑
γ∈Γ

∑
η∈Θi(·,γ) π(η)ξ(η → γ) and for each state γ ∈ Γ let mi(γ) =∑

η∈Θi(·,γ) π(η)ξ(η → γ) where Θi(·, γ) = {β|(β, γ) ∈ Θi} and ξ(η → γ) is the
transition rate between states η and γ.
Then we can state that Ki(t) are mutually independent Poisson processes if and
only if the following equation holds:

∀γ ∈ Γ,
R∑

i=1

mi(γ) = π(γ)
R∑

i=1

mi (18)

We aim to study the departure traffic processes from our models. Take for ex-
ample model GSPN-1, we can define R traffic processes as follows:

Θi = {(m′,m) : |m′|i = |m|i + 1}, i = 1, . . . , R, (19)

where |m|i = mi + mR+i. In our case, in order to prove that Ki(t) are inde-
pendent Poisson processes when there are Poisson arrivals, it suffices to prove
that:

∀γ ∈ Γ,
∑

η∈Θi(·,γ)

π(η)ξ(η → γ) = λiπ(γ), (20)

In appendix we prove that this condition holds for GSPN-1, GSPN-2 and GSPN-
3 models by defining appropriate traffic processes. As observed in [16] this prop-
erty of the CTMC is equivalent to the M =⇒ M given by Muntz thus it assures
that a BCMP-like composition of these GSPN models holds a closed-form steady
state probability function. Random switches between the blocks and user class
switches can be easily modelled by immediate transitions.

8 Final remarks

In this paper we have shown how to represent multi-class single queuing sys-
tems by structurally finite GSPN for various queuing disciplines. For each of
the BCMP center types we have introduced a GSPN model whose steady state
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probability, aggregating on the number of customers in the system for each class,
is equal to the correspondent single queue service center. Hence the two models
are equivalent in terms of steady state distribution and average performance
indexes. The main advantages of our representation are the following.

– We define a finite GSPN model. The abstraction level of the GSPN model
allows the representation of the queuing behavior without introducing a high
level of details in the state specification. We distinguish the customers wait-
ing in the queue from those being served without taking in account the
arrival order. This allows, as well as a finite representation, a steady state
probability which is less detailed than the proposed in [4] which considers
the single station detailed representation with the order of the customers in
the queue, similarly to the BCMP paper [5]. On the other side the models we
propose are more detailed than those which just consider the total number
of customers in a center as the compact models of [4].

– The FCFS and the LCFSPR (or PS) scheduling disciplines have different
GSPN representations and the FCFS can not be used to represent the other
ones if the service depends on the customer class. The GSPN models simulate
the corresponding queuing system even if their semantic is different.

The main idea of the definition of the GSPN models is the way we represent
the customer of the queuing system which gets the free server and the customer
which looses a server in case of preemption. In both cases we model the cus-
tomer choice of a class i with a random selection, according to the probability
proportional to the number of customers in queue (or being served) of that class
over the total number of customers in queue (number of servers).

The M⇒M property allows us to state that a combination of GSPN-1, GSPN-
2 and GSPN-3 models similar to the service centers combination in BCMP net-
works, has a simple closed form steady state probability. In [1] authors define
a queuing center isomorphic to GSPN-1 and show how it can be embedded in
a BCMP queuing network so that the steady state probability function of the
network does not change. In the GSPN formalism probabilistic routing can be
easily simulated by introducing a block with a place and an immediate transition
for each possible route just after the timed transitions of the models.

Further research deals with the extension of the proposed LCFSPR model
to Coxian service time distributions and the definition of algorithms to identify
GSPN which are compositions of models GSPN-1, GSPN-2, GSPN-3 and in
order to obtain efficiently a set of significant performace indexes.

A Appendix

Hereafter, for the sake of simplicity, by referring to the relations between the
queueing system and GSPN models, we refer to and mix the notation of queuing
theory and Petri nets. For example, we can say waiting customers to refer to
tokens in place P1, .., PR of GSPN-1 or GSPN-2, customers being served to refer
to the tokens in PR+1, . . . , P2R of GSPN-1 or GSPN-2, customer arrival to refer
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to token arrival, free servers to refer to the presence of tokens in the place P2R+1

or P3R+1 in the GSPN-1 or GSPN-2 respectively. In our view this description
should make the following proofs easier to understand.

A.1 Proof of Lemma 1

Proof. We consider four cases.
Case 1) Suppose that all servers are busy and at least one customer is

waiting, so m2R+1 = 0 and mi > 0 for some i = 1, . . . , R. Consider state
m = (m1, . . . ,mR,mR+1, . . . ,m2R, 0). Clearly we have that

∑2R
i=R+1 mi = k

that is the number of servers. Consider the tangible markings from which m
is reachable possibly through the firing of immediate transitions combined with
timed ones and the corresponding transition rates::

– Mα = {m′ = m− ei|mi > 0} with rate λi

– Mβ = {m′ = m + ei|mR+i > 0} with rate (mR+i)µpi(m′);
– Mγ = {m′ = m + ei − eR+i + eR+j|mR+i > 0, j '= i} with rate (mR+j +

1)µpi(m′).

The set of markings reachable from m and the corresponding transition rates
can be classified as follows:

– Ma = {m′ = m + ei} with rate λi;
– Mb = {m′ = m− ei|mR+i > 0,mi > 0} with rate (mR+i)µpi(m);
– Mc = {m′ = m − ei + eR+i − eR+j|mR+j > 0,mi > 0, i '= j} with rate

(mR+j)µpi(m).

We prove that equation (9) satisfies the global balance equations (GBE) by
checking that the effective arrival rate to a state due to a new customer is equal
to the effective leaving rate due to a job completion, and the effective arrival rate
due to a job completion is equal to the effective leaving due to new customer
arrival:

∑

m′∈Mα

π(m′)ξ(m′,m) = π(m)
∑

m′∈Mb∪Mc

ξ(m,m′) ∧

∑

m′∈Mβ∪Mγ

π(m′)ξ(m′,m) = π(m)
∑

m′∈Ma

ξ(m,m′) =⇒

∑

m′∈Mα∪Mβ∪Mγ

π(m′)ξ(m′,m) = π(m)
∑

m′∈Ma∪Mb∪Mc

ξ(m,m′)

where ξ(a,b) represents the transition rate from marking a to marking b.
The effective leaving rate from state m due to completion of a job is:

π(m)
[ ∑

mj+k>0

(mj+k)µ
]

= π(m)(kµ).

18



A. APPENDIX

The effective arrival rate to state m due to arrivals to the system is:

∑

m′∈Mα

π(m′)ξ(m′,m) = π(m)
[ ∑

i∈X

(
1
λi

mi∑R
j=1 mj

µ(
2R∑

j=1

mj)λi)
]

= π(m)(kµ)
[ ∑

i∈X

mi∑R
j=1 mj

]
= π(m)(kµ),

where X = {i|mi > 0, 1 ≤ i ≤ R}. Note that by hypothesis
∑2R

i=1 mi ≥ k thus:

µ(
2R∑

i=1

mi) = kµ.

Consider state m and set Y = {j|mR+j > 0, 1 ≤ j ≤ R}. The effective leaving
rate from state m due to arrivals of customers to the system is π(m)

∑R
i=1 λi.

The effective arrival rate to state m is:

π(m)
[ ∑

j∈Y

λj
(
∑R

i=1 mi) + 1
mj + 1

1
µ((

∑2R
i=1 mi) + 1)

mR+jµ
mj + 1

∑R
i=1 mi + 1

+
R∑

j=1

∑

i∈Y
i%=j

λj
mR+i

mR+j + 1
(
∑R

g=1 mg) + 1
mi + 1

1
µ((

∑2R
g=1 mg) + 1)

(mR+j + 1)µ

· mi + 1
(
∑R

g=1 mg) + 1

]

= π(m)
[ ∑

j∈Y

λj
1
kµ

mR+jµ +
R∑

j=1

∑

i∈Y
i %=j

λjmR+i
1
kµ

µ
]

= π(m)
[ ∑

j∈Y

λj
mR+j

k
+

R∑

j=1

∑

i∈Y
i%=j

λj
mR+i

k

]

= π(m)
[ R∑

i=1

λi

]
.

Case 2) Consider now the case when all servers are busy, but places P1, . . . , PR

are empty. Consider a generic state m = (0, . . . , 0,mR+1, . . . , m2R, 0). The mark-
ings from which m is reachable are classified as:

– Mα = {m′ = m− eR+i + e2R+1|mR+i > 0} with rate λi;
– Mβ = {m′ = m + ei|mR+i > 0} with rate (mR+i)µpi(m′);
– Mγ = {m′ = m + ei − eR+i + eR+j|mR+i > 0, j '= i} with rate (mR+j +

1)µpi(m′).

The markings reachable from m and their effective rates are the same as in
case 1). Let Y be the set defined in case 1). We now prove that the effective
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arrival rate to state m from markings in Mα is equal to the effective leaving
rate from m due to job completion which is π(m)(kµ).

π(m)
[ ∑

i∈Y

(
1
λi

mR+i

k
µ(k)λi)

]
= π(m)

[ ∑

i∈Y

mR+iµ
]

= π(m)(kµ).

We prove now that the effective arrival rate from the markings in Mβ ∪Mγ is
equal to the effective leaving rate from m.

π(m)
[ ∑

j∈Y

(λj
1

µ(k + 1)
mR+jµ) +

R∑

j=1

∑

i∈Y
i %=j

λj
mR+i

mR+j + 1
1

µ(k + 1)
(mR+j + 1)µ

]

=π(m)
[ ∑

j∈Y

λj
mR+j

k
+

R∑

j=1

∑

i∈Y
i %=j

λj
mR+i

k

]
= π(m)

[ R∑

j=1

λj

]
.

Case 3) Assume that there are not tokens in places P1, . . . , PR and at least one
server is free and at least one is busy, that is 0 < m2R+1 < k. Then the effective
leaving rate from m is simply π(m)[µ

∑R
j=1 mR+j +

∑R
j=1 λj ]. The states from

which m is reachable and the corresponding rates are:

– Mα = {m′ = m− eR+i + e2R+1|mR+i > 0} with rate λi;
– Mβ = {m′ = m + eR+i − e2R+1} with rate (mR+i + 1)µ.

Let Y be defined as in case 1). We now prove that the effective arrival rate to
state m is equal to the effective leaving rate from m.

π(m)
[ ∑

i∈Y

1
λi

mR+i∑R
j=1 mR+j

µ(
R∑

j=1

mR+j)λi

+
R∑

i=1

λi

∑R
j=1 mR+j + 1
mR+i + 1

1
µ(

∑R
j=1 mR+j + 1)

(mR+i + 1)µ
]

=π(m)
[ ∑

i∈Y

1
λi

mR+i∑R
j=1 mR+j

(
R∑

j=1

mR+j)µλi

+
R∑

i=1

λi

∑R
j=1 mR+j + 1
mR+i + 1

1
(
∑R

j=1 mR+j + 1)µ
(mR+i + 1)µ

]

=π(m)
[
(

R∑

j=1

mR+j)µ +
R∑

i=1

λi

]
.

Case 4) Assume that the system is empty, that is m2R+1 = k. This case is
trivial. The effective leaving rate from m is clearly π(m)[

∑R
i=1 λi]. The effective

arrival rate to m can just be due to a job completion and it is easy to show that
is is equal to the leaving rate.

,-
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A.2 Proof of Lemma 2

Proof. The proof verifies that equation (12) satisfies the set of GBE for the
CTMC associated to the net. We consider two cases.

Case1) Let
m = (m1, . . . ,mR, 0, . . . , 0) + eR+i

be a reachable tangible marking. State m can be reached from states m′ =
m+ er+j− er+i + ei due to a job completion with rate x(1 +

∑2R
r=1 mr)µpi(m′).

So the total effective arrival rate due to a job completion is:

π(m)
[ R∑

j=1

λj
1 +

∑R
r=1 mr

mi + 1
1

x(1 +
∑2R

r=1 mr)µ
x(1 +

2R∑

r=1

mr)µ
mi + 1

1 +
∑2R

r=1 mr

]

= π(m)
R∑

j=1

λj ,

which is the total leaving rate from m due to arrivals to the system. State m
can be reached from states m′ = m− ej where j ∈ X = {j|mj > 0, 1 ≤ j ≤ R}
with rate λj . So the effective arrival rate due to an arrival to the system is:

π(m)
[ ∑

j∈X

1
λj

mj∑R
k=1 mk

x(
2R∑

k=1

mk)µλj

]
= π(m)

[
x(

2R∑

k=1

mk)µ
]
,

which is identical to the total leaving rate due to a job completion.
Case 2) If m2R+1 = 1 the proof is trivial.

,-

A.3 Proof of Lemma 4

Proof. The proof is similar to the proof of Lemma 1. We prove that equation (15)
satisfies the GBE of the CTMC associated to GSPN-2 by verifying the partial
balance. We consider again four cases.

Case 1) Take a reachable marking m with m3R+1 = 0 (i.e. all servers are
busy), and there’s at least one token in one of the places Pi, with 1 ≤ i ≤ R (i.e.
there is at least one customer in queue). Let X = {i|mi > 0, 1 ≤ i ≤ R} and
Y = {i|mR+i > 0, 1 ≤ i ≤ R}. We verify that the effective arrival rate to state
m due to a job completion is equal to the effective leaving rate from m due to a
customer arrival and that the effective arrival rate to state m due to a customer
arrival is equal to the effective leaving rate due to a job completion.

State m is reachable due to an arrival event from states m′ = m − ei with
i ∈ X ∩ Y with rate λipii(m′) or from states m′′ = m− ei + eR+i − eR+j with

21



A. APPENDIX

i ∈ X, j ∈ Y and i '= j with rate λjpji(m′′) Hence we can write:

π(m)
[ ∑

i∈X∩Y

1
λi

mi∑R
s=1 ms

µikλimR+ik

+
∑

j∈Y

∑

i∈X
i %=j

1
λj

mi∑R
s=1 ms

mR+j

mR+i + 1
µjkλj

mR+i + 1
k

]

=π(m)
[ 1
∑R

s=1 ms

∑

j∈X∩Y

mjmR+jµj +
1

∑R
s=1 ms

∑

j∈Y

µjmR+j

∑

i∈X
j %=i

mi

]

=π(m)
[ 1
∑R

s=1 ms

R∑

j=1

µjmR+j

∑

i∈X

mi

]
= π(m)

[ R∑

j=1

µjmR+j

]
,

which is identical to the effective leaving rate from m due to a job completion.
State m is reachable, due to job completion, from states m′ = m + ei with

rate mR+iµipi(m′) and from states m′′ = m + ei − eR+i + eR+j with rate
mR+jµjpi(m′′). Hence the effective arrival rate due to a job completion can be
written as:

π(m)
[ ∑

i∈Y

λi

(
∑R

j=1 mj) + 1
mi + 1

1
kµi

mR+iµi
mi + 1

∑R
j=1 mj + 1

+
R∑

j=1

∑

i∈Y
i %=j

λj
(
∑R

k=1 mk) + 1
mi + 1

mR+i

mR+j + 1
1

kµj
(mR+j + 1)µj

mi + 1
(
∑R

k=1 mk) + 1

]

=π(m)
[ ∑

i∈Y

λi
mR+i

k
+

R∑

j=1

∑

i∈Y
i %=j

λj
mR+i

k

]
= π(m)

[ R∑

i=1

λi

]
,

which is identical to the effective leaving rate form state m due to a customer
arrival to the system.

Case 2) Consider now state m with m3R+1 = 0 and mi = 0 with 1 ≤ i ≤ R
(i.e. no customers in queue). The leaving rates from m for a job completion or
an arrival are the same as case 1. State m is reachable, due to a job completion,
form states m′ = m+ei−eR+i +eR+j with i ∈ Y and j '= i with rate (mR+j +
1)µjpji(m′) and from states m′′ = m + ei with i ∈ Y and rate mR+iµipii(m′′).
Hence the effective arrival rate to m due to a job completion can be calculate
as follows:

π(m)
[ ∑

i∈Y

λi
1

kµi
mR+iµi +

R∑

j=1

∑

i∈Y
i %=j

mR+i

mR+j + 1
1

kµj
(mR+j + 1)µj

]
=

=π(m)
[1
k

∑

i∈Y

λimR+i +
1
k

R∑

j=1

∑

i∈Y
i%=j

mR+iλj

]
= π(m)

[ R∑

j=1

λj

]
,
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which is identical to the effective leaving rate from m due to an arrival to the
system. State m is reachable, due to an arrival to the system, from states m′ =
m− ei + e3R+1 with i ∈ Y with rate λi. Hence the effective arrival rate to state
m due to a customer arrival can be calculated as follows:

π(m)
[ ∑

i∈Y

1
λi

mR+i∑R
s=1 mR+s

µikλi

]
= π(m)

[ ∑

i∈Y

mR+iµi

]
= π(m)

[ R∑

i=1

mR+iµi

]
,

which is identical to the effective leaving rate from m due to a job completion.
Case 3) Consider the case of m with 1 ≤ m3R+1 = b < k. State m is

reachable, due to an arrival, from states m′ = m − eR+i + e3R+1 with rate
i ∈ Y with rate λi, thus the effective arrival rate due to a customer arrival is:

π(m)
[ ∑

i∈Y

1
λi

mR+i∑e
s=1 mR+s

µi(k − b)λi

]
= π(m)

[ R∑

i=1

mR+iµi

]
,

which is identical to the effective leaving rate from m due to a job completion.
State m is reachable, due to a job completion, from states m′ = m+eR+i−e3R+1

with rate (mR+i + 1)µi, thus the effective arrival rate due to a job completion
is:

π(m)
[ R∑

i=1

λi
(
∑R

s=1 mR+s

mR+i + 1
1
µi

1
k − b + 1

]
(mR+i + 1)µi

]
= π(m)

R∑

i=1

λi,

which is identical to the effective leaving rate from m due to an arrival to the
system.

Case 4) considers m3R+1 = k, i.e. when the system is empty, and it is trivial.
,-

A.4 Proof of Lemma 5

Proof. The proof verifies that equation (17) satisfies the set of GBE for the
CTMC associated to the net. We consider two cases.

Case 1) Take the tangible reachable marking m = (m1, . . . , mR, 0, . . . , 0) +
eR+i. State m can be reached from states m′ = m + er+j − er+i + ei due to a
job completion with rate yj(mj + mR+j)µjpi(m′). So the effective arrival rate
to m due to a job completion is:

π(m)
[ R∑

j=1

λj

∑R
k=1 mk + 1
mi + 1

1
yj(mj + 1)µj

jj(mj + 1)µj
mi + 1

∑R
k=1 mk + 1

]

= π(m)
R∑

j=1

λj ,

which is identical to the total leaving rate from m due to arrivals to the system.
State m can be reached from state m′ = m + er+j − ej − eR+ki where j ∈ X =
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{j|mj > 0, 1 ≤ j ≤ R} with rate λj . So the effective arrival rate to m due to an
arrival to the system is:

π(m)
[ ∑

j∈X

1
λi

mj∑R
k=1 mk

yi(mi + mR+i)µiλi

]
= π(m)

[
yi(mi + mR+i)µi

]
,

which is identical to the total leaving rate from m due to a job completion.
Case 2) If m3R+1 = 1 the proof is trivial.

,-

A.5 Proof of Independence of the departure processes from GSPN
models

GSPN-1:

Proof. Consider model GSPN-1. Let Θi = {(m′,m) : |m′|i = |m|i + 1} for
i = 1, . . . , R. In order to verify equation (20) consider a generic tangible markinf
m. We consider the following cases: 1) m2R+1 = 0, and 2) m2R+1 > 0.

Case 1) Let m be a reachable tangible state with m2R+1 = 0, then:

Θi(·,m) = {m′|m′ = m + eR+i + ej − eR+j, mR+j > 0, j '= i}
∪ {m′|m′ = m + ei,mR+i > 0}, 1 ≤ i, j ≤ R.

Let sgn(mi) be the indicator function defined as follows: sgn(mi) = 1 when
mi > 0 and 0 otherwise, and let Y = {j|mR+j > 0, 1 ≤ j ≤ R}. The left hand
side of equation (20) can be rewritten as follows:

π(m)
[ ∑

j∈Y
j %=i

λi
1 +

∑R
a=1 ma

mj + 1
mR+j

mR+i + 1
1
kµ

(mR+i + 1)µ
mj + 1

1 +
∑R

a=1 ma

+ sgn(mi)λi
1 +

∑R
a=1 ma

mi + 1
· 1
kµ

mR+iµ
mi + 1

1 +
∑R

a=1 ma

]

= π(m)
[
λi

( ∑

j∈Y
j %=i

mR+j

k
+

mR+i

k

)]
= π(m)λi,

which gives the right hand side of equation (20).
Case 2) Le m be a reachable tangible state with m2R+1 > 0. Then Θi(·,m) =

{m + eR+i − e2R+1}. Thus equation (20) holds, in fact:

π(m)
[
λi

1 +
∑R

a=1 mR+a

mR+i + 1
1

(1 +
∑R

a=1 mR+a)µ
(1 + mR+i)µ

]
= π(m)λi.

This proves that the traffic processes associated to Θi, 1 ≤ i ≤ R, are pointwise
independent Poisson processes, i.e., the departure processes for each class of
customers are Poisson independent processes under independent Poisson arrivals.

,-
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GSPN-2:

Proof. Consider model GSPN-2. In this model |m|i = mi+mR+i, with 1 ≤ i ≤ R
and let Θi = {(m′,m) : |m′|i = |m|i+1}. In order to verify equation (20) conside
a generic tangible state m. We consider the following cases: 1) m3R+1 = 0, and
2) m3R+1 > 0.

Case 1) Let m be a reachable tangible state with m3R+1 = 0, then:

Θi(·,m) = {m′|m′ = m + eR+i + ej − eR+j, mR+j > 0, j '= i}
∪ {m′|m′ = m + ei|mR+i > 0} 1 ≤ i, j ≤ R.

Let sgn(mi) be the indicator function defined as follows: sgn(mi) = 1 when
mi > 0 and sgn(mi) = 0 otherwise, and let Y = {j|mR+j > 0, 1 ≤ j ≤ R}. The
left hand side of equation (20) can be rewritten as follows:

π(m)
[ ∑

j∈Y
j %=i

λi
1 +

∑R
a=1 ma

mj + 1
mR+j

mR+i + 1
1

kµi
(mR+i + 1)µi

mj + 1
1 +

∑R
a=1 ma

+ sgn(mi)λi
1 +

∑R
a=1 ma

mi + 1
1

kµi
mR+iµi

mi + 1
1 +

∑R
a=1 ma

]

=π(m)
[
λi

( ∑

j∈Y
j %=i

mR+j

k
+

mR+i

k

)]
= π(m)λi,

which is the right hand side of equation (20).
Case 2) Le m be a reachable tangible state with m3R+1 > 0. Then Θi(·,m) =

{m + eR+i − e3R+1}. Thus equation (20) holds, in fact:

π(m)[λi
1 +

∑R
a=1 ma

mR+i + 1
1

(mR+i + 1)µi
(mR+i + 1)µi] = π(m)λi.

,-

GSPN-3

Proof. Consider model GSPN-3. Let Θi = {(m′,m)|m′ = m + ei, 1 ≤ i ≤ R}.
Proving that equation (20) holds is trivial. ,-
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