The Spanning Tree Protocol

Andrea Marin

Università Ca' Foscari di Venezia Dipartimento di Informatica Corso di Sistemi Distribuiti

2009

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

Presentation outline

Introduction

- Local internetworking
- Motivations
- Protocol description
 - High level description
 - Control protocol
- 3 The original formulation (1985)
 - Port states
 - Ageing and hello packets
 - Electing root
 - Managing ports

Local internetworking Motivations

Local intertnetworking

- We have local internetworking when we want to connect a set LANs e.g. within the same company
- This can be done at network level (with routers) or at Data Link level (with Bridges)
- Connecting at Data Link level allows any protocol at Network level (IP or others)
- If the LANs use different standards several problems arise (See Tanenbaum, Computer Networks, Sec. 4.7.1)
- We consider the case of 802.3 LANs

Local internetworking Motivations

Transparent bridges

- Transparent Bridges are used to connect different LANs
- They do not need configuration
- They *learn* the network topology by the analysis of the traffic (backward learning)
- They use a dynamic table to keep the pairs destination/output lines
- They react to changes in the network topology
- When they don't know where they have to forward a message they apply the flooding over all the lines

Local internetworking Motivations

Example

<ロ> <同> <同> < 回> < 回>

æ

Local internetworking Motivations

Purposes

- In order to increment the dependability of LAN inter-connections redundant bridges are often used
- $\bullet\,$ This causes loops in the LAN topology \Rightarrow flooding interrupts connectivity
- Spanning tree protocol (STP)...
 - Avoids loops by reducing network connectivity
 - Reacts to changes in the network topology (either good news or bad news)
 - Is completely transparent to the user
- STP implements fault tolerance at data link level!

High level description Control protocol

Preliminaries

- The network topology is seen as a graph
 - The net segments are the nodes
 - Bridge connections are the edges
 - Edge weights depends on the characteristics of the network between the bridges
- The spanning tree is sub-graph of this graph that...
 - has the same set of nodes
 - has not any loop in the topology
- The algorithm *will not* compute the minimum spanning tree
- The algorithm computes the minimum spanning tree given a root node (just like Prim's algorithm)

High level description Control protocol

Phases,

- Select a root bridge (attention! Are bridges nodes or edges?)
- Oetermine the least cost path from each bridge/network to the route bridge
 - Attention to ties!
- Oisable unused edges

- 4 🗗 ▶

High level description Control protocol

Port states

A port in the bridge is in one of the following states:

- Blocked
- Root
- Designated

Blocked ports do not forward or receive any data message, but just control messages

< 17 ▶

< ∃ >

High level description Control protocol

Selecting the root bridge

- The system administrator assigns to each bridge a priority
- The bridge with the lowest priority is the root bridge
- In case of same priority, the bridge with the lowest MAC address is selected

< ∃ >

< A >

Least cost from the bridge to the root

- Every bridge determines the lowest cost path to the root
- Use of the Bellman principle of optimality
- The root port of the bridge is the port connecting the bridge to the root using the lowest cost path

Least cost from the network segment to the root

- All the bridges connected to the same LAN segment decide which has the lowest cost path to the root
- The port connecting the LAN segment to the right bridge becomes the designed port for that segment
- All the ports that are not designed or root become blocked

High level description Control protocol

Breaking ties

Breaking ties for root ports

- Two or more bridges give the same cost path to the root
- The root port is the port connecting to the bridge with the lowest id

Breaking ties for designated ports

- Two or more bridges give the same cost path from a network segment to the root
- The designated port is that of the bridge with the lowest id

High level description Control protocol

What does a bridge know?

- When the bridge are switched on, they don't know the network topology!
- We don't want the system administrator to configure nothing but the priorities of the bridges and the cost of the LAN segments
- Need a control protocol

Bridge Protocol Data Units (BPDUs)

- BPDUs are special frames
- Source address is the source port
- Destination address is the destination port or a special multicast address 01:80:C2:00:00:00
- Three types of messages
 - Configuration (C)BPDU
 - Opology change notification (TCN)BPDU
 - Solution Topology change notification acknowledge (TCA)BPDU
- BPDUs are exchanged regularly (default every 2 seconds)

High level description Control protocol

Adding the learning states

- A port can then be in one of the following states:
 - Blocking
 - Listening: The switch processes BDPUs and acquires information about the network topology
 - Learning: The switch port does not forward messages yet but starts to acquire addresses
 - Forwarding: the port receives and sends data and BDPUs

Port states Ageing and hello packets Electing root Managing ports

State of the ports

- Forwarding
- Backup (blocking)
- PRE-Forwarding (not yet forwarding but ready to become)
- PRE-BACKUP (not yet backup but ready to become)

(日) (同) (三) (三)

Port states Ageing and hello packets Electing root Managing ports

HELLO messages

- HELLO messages are transmitted by the designed bridges to all the other bridges
- They are transmitted regularly
- A HELLO message contains:
 - Transmitting bridge ID Sourceld
 - ID of the bridge assumed to be root RootId
 - Distance from the assumed root DistanceRoot
 - Age of the HELLO (time since last information from the root arrived) Age
 - Link identifier (local to the transmitter)
 - MAX-AGE

< ロ > < 同 > < 回 > < 回 >

Port states Ageing and hello packets Electing root Managing ports

Managing ages of HELLO

- Root node sends HELLO with age 0
- When a designated bridge receives a HELLO it updates its age since last communication from root with the age of the packet:

$ThisBridge.Age \leftarrow ReceivedHello.Age$

- ThisBridge.Age is kept updated as time passes
- When Packet.Age > MAX-AGE the HELLO must be discarded and contact to the root is assumed to be lost

(日)

Port states Ageing and hello packets Electing root Managing ports

Election of the root

- Initially a bridge assumes to be root *ThisBridge.Root* ← *ThisBridge.id*, *ThisBridge.age* ← 0
- It broadcast packets with age ← 0, RoodId ← ThisBridge.id, DistanceRoot ← 0
- When a bridge receives a hello packed *Hello* it compares *ThisBridge.root* with *Hello.Root*:
 - $\bullet \ <: \ do \ nothing$
 - >: ThisBridge.root ← Hello.Root and ThisBridge.DistanceRoot ← Hello.DistanceRoot + 1
 - =: if ThisBridge.DistanceRoot > Hello.DistanceRoot + 1 then ThisBridge.DistanceRoot ← Hello.DistanceRoot + 1

(日) (同) (三) (三)

Port states Ageing and hello packets Electing root Managing ports

Election of the designated bridge

- A bridge assumes to be the designated bridge on each on its link
- It sends HELLO packets communicating all the other bridges on the link its known root, and the distance to it
- When a bridge receives a HELLO from a LAN segment in which a bridge claims to be closer to the root or with same distance but smaller ID, then the bridge stop sending hello packets on that LAN and renounce to be a designated bridge for that LAN

Image: A matrix

Port states Ageing and hello packets Electing root Managing ports

Using HELLO messages to check the topology

- The root broadcasts hello packets regularly
- They are forwarded by the bridges which also updates they *Age* status
- A designated bridge can send a HELLO in a LAN segment when it receives a HELLO packet
- HELLO in which *Age* is greater than MAX-AGE are discarded so errors in network topology can be identified

Port states Ageing and hello packets Electing root Managing ports

Transitions among link states

æ

Port states Ageing and hello packets Electing root Managing ports

Transition events for root

- Upon startup a bridge sets all its link to PRE-FORWARDING and claims to be Root and designated bridge on every port
- When the information about root are expired the bridge tries to become root
- Arrival of a HELLO message with a good *Age* and better information about root (a new root, or a better distance)
 - Distance to root is recomputed
 - The bridge may be not anymore a designated bridge for a LAN
- After a delay transitions from PRE-FORWARDING to FORWARDING and from PRE-BACKUP to BACKUP occur

< 口 > < 同 >

Port states Ageing and hello packets Electing root Managing ports

Transition events for non-root for the root-port or designated-port

- The root (designated) port has to be set to FORWARDING
- If the actual state is FORWARDING or PRE-BACKUP it is changed to FORWARDING
- If the actual state is PRE-FORWARDING nothing is done
- If the actual state if BACKUP it is changed to PRE-FORWARDING

Port states Ageing and hello packets Electing root Managing ports

Transition events for non-root for the other ports

- The port has to be set to BACKUP
- If the actual state is BACKUP or PRE-FORWARDING it is changed to BACKUP
- If the actual state is PRE-BACKUP nothing is done
- If the actual state is FORWARDING it is changed to PRE-BACKUP

< □ > < 向 >

Port states Ageing and hello packets Electing root Managing ports

Data traffic

- Data traffic in FORWARDING ports is treated as for standard transparent bridges
- Data traffic in PRE-FORWARDING and PRE-BACKUP is examined only for source addresses
- Data traffic is forwarded in FORWARDING and PRE-BACKUP states
- Data traffic is ignored in BACKUP state

< □ > < 同 >

Port states Ageing and hello packets Electing root Managing ports

Conclusion

- Allow interconnection of LANs with redundant bridges
- Self-configuring
- Low memory requirements and bandwidth usage
- Minimizes the probability of transient loops
- The algorithms allow the specification of parameters

< 17 >

< ∃ >